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Data management systems are fast becoming required components in many biology laboratories as the role ofAbstract
computer-based information grows. Although the need for data management systems is on the rise, their inherent
complexities can deter the full and routine use of their computational capabilities. The significant undertaking to
implement a capable production system can be reduced in part by adapting an established data management
system. In such a way, we are leveraging the Genomics Unified Schema (GUS) developed at the Computational
Biology and Informatics Laboratory at the University of Pennsylvania as a foundation for managing and
analysing DNA sequence data in centromere research projects around Arabidopsis thaliana and related species.
Because GUS provides a core schema that includes support for genome sequences, mRNA and its expression,
and annotated chromosomes, it is ideal for synthesising a variety of parameters to analyse these repetitive and
highly dynamic portions of the genome. Despite this, production-strength data management frameworks are
complex, requiring dedicated efforts to adapt and maintain. The work reported in this article addresses one
component of such an effort, namely the pivotal task of marshalling data from various sources into GUS. In order
to harness GUS for our project, and motivated by efficiency needs, we developed a structured framework for
transferring data into GUS from outside sources. This technology is embodied in a GUS object-layer processor,
XMLGUS. XMLGUS facilitates incorporating data into GUS by (i) formulating an XML interface that includes
relational database key constraint definitions, (ii) regularising traversal through that XML, (iii) realising
automatic processing of the XML with database key constraints and (iv) allowing for special processing of input
data within the framework for automated processing. The application of XMLGUS to production pipeline
processing for a sequencing project and inputting the Arabidopsis genome into GUS is discussed. XMLGUS is
available from the Flora website (http://flora.ittc.ku.edu/).

The pronounced rise in computational models applied to mo- ments.[3-7] In domain-specific areas such as molecular biology, a
lecular biology brings with it requirements for data management core database schema can be used to address common require-
systems. Data integration from sundry sources adds to the require- ments at various sites. The Genomics Unified Schema (GUS) is
ment for management solutions, as shown by the number of one such open-source, object-oriented relational database centred
databases of molecular biology information[1] and sequence data on a schema for DNA and protein sequence data.[8] GUS was
that are accumulating at exponential rates at central distribution designed to warehouse and integrate sequence data and annota-
hubs.[2] Although national centres provide central distribution of tions from various heterogeneous sources under a common sche-
public domain data along with analysis services, laboratories ma. The advanced schema and support make GUS an attractive
generating data have site-specific data management require- foundation for data management in molecular biology applica-
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processing.2 Key considerations concerning the interface design
were its architecture and the requirements it placed on users. A
pivotal consideration was where transformations from input data
to the canonical XML occur. These matters are discussed in detail
in the sections that follow.

Genomics Unified Schema (GUS) and Data Input

This section briefly describes GUS and the strategy used to

Table I. Entries for the table DoTS::NASequence. Attribute values corre-
spond directly to the XML in figure 1, except for the primary key se-
quence_id, which is usually generated automatically

Attribute Type

sequence_id number

sequence_name varchar

sequence clob

description varchar

sequence_type_id number

populate the database schema. The central development and man-
tions.[9] This article presents a software-engineering approach to agement of GUS occurs at the Computational Biology and In-
input data into GUS using a tailored XML format. This work formatics Laboratory at the University of Pennsylvania (http://
contributes to the management of molecular biology data by www.gusdb.org/). Concepts behind GUS, data warehouses and
simplifying the complex process of input module development, trade-offs with respect to other data integration approaches are
and by providing a basis for automation of the schema-dependent discussed in an article by the original developers.[8] At the core of
components of the framework. GUS is a relational database with hundreds of tables organised into

The GUS approach of importing data from an outside source collections of logically related tables (or namespaces). An object
uses object-layer plugins, programs that extend and interact with layer encapsulates the relational database such that namespaces
object-layer functionality. The input data are obtained from a wide and tables are associated with object-oriented Perl packages. For
variety of sources and in nearly as many formats. For example, example, SRes::ExternalDatabase is the class for table Ex-
data may be warehoused from the Protein Data Bank, TIGR ternalDatabase in namespace SRes.3 Sequences and annotations
XML-formatted genome annotations, BLAST output and from are stored in the DoTS namespace. Other namespaces have infor-
National Center for Biotechnology Information (NCBI) taxono- mation for (i) gene expression and regulation; (ii) shared princi-
mies, to name a few. Plugins are developed around their target ples that organise application data with ontologies, controlled
input-data idiosyncrasies, by individuals with various software vocabularies, metabolic pathways and the like; and (iii) workflow
development backgrounds, to address data management require- and data warehouse management. The Perl modules that corre-
ments. The resulting stylistic variation in plugin design can com- spond to objects are generated automatically from the schema and
plicate use and maintenance. Moreover, separate plugins around database key constraints. However, the input and output plugins to
each data source can impede the data incorporation process, a the GUS object layer are written manually.
topic we discuss in some detail in this article. Input data typically map directly into GUS objects and the

The XMLGUS framework structures the input processing and schema where, in the latter step, primary-foreign relationships are
nearly eliminates the need for input-specific plugins by way of a resolved. For example, consider the sequence and abbreviated
standard XML description of input data. The standard XML description presented in XML in figure 1. Assume that the se-
(called GUS XML) is processed by a generic processing module.1 quence alpha will be inserted into the sequence table DoT-
The framework also sets the stage for automatic generation of S::NASequence4 of GUS shown in table I. A plugin to input such
database-dependent components. Since imported data typically data into GUS will create objects, read the input, assign values to
correspond directly to relational schema attributes, a natural devel- appropriate object fields and commit the data to the database. In
opment is a structured input interface to GUS using automated some instances it will be necessary to process the input data (see

1 In this article we refer to XMLGUS and plugins, where the term plugin refers to the standard hand-written approach and XMLGUS represents a
framework. The XML processing engine component of the XMLGUS framework functions as a plugin.
2 The term attribute is overloaded because of its use in XML and relational databases. An XML attribute is a name-value pair within an XML element;
a relational attribute is a component in a relational table.
3 The double colon :: is used in two contexts in this article. In this sentence, the usage is the standard Perl package delimiter.[10] In the other context, it
is used to delimit the associated GUS namespace and object. For example, in DoTS::NASequence, NASequence is a view of the GUS table
NASequenceImp within the ‘Database of Transcribed Sequences’ namespace; in DoTS::NASequence::Description, Description is an attribute of the
table NASequence.
4 The GUS relational schema can be browsed from the GUS website (http://www.gusdb.org/).
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Fig. 1. XML describing the sequence alpha for insertion into the database. Element tags correspond directly to relational tables and attributes. XML
attributes are used for describing relationships between tables.

the section titled Tailoring Semantics). These input operations (DTD) describing the document structure. The interested reader is
appear straightforward; however, plugin logic can be considerably referred elsewhere for a review of XML concepts.[13]

complex. The effort required to usher data into GUS is at times
Overviewconsiderable.5

Input processing usually requires resolution of foreign keys The XMLGUS plugin consists of a processor encoded as an
from candidate keys.6 Consequently, the plugin must determine object-oriented Perl module, a context-free grammar and optional
and resolve key dependencies when incorporating data into GUS. user-defined functions. Figure 2 is a schematic of the components.
For example, in figure 1, the sequence alpha is of type DNA. DNA XMLGUS glues the structured XML input to the GUS object layer
in this context is a term in a controlled vocabulary accompanying and relational database with a correspondingly structured interface
the imported data and is a value for the ad hoc candidate key name between these components. Although most data mapped into GUS
in the table DoTS::SequenceType (table II); the table DoT- are a direct assignment to relational tables, exceptions to direct
S::NASequence (table I) requires a sequence type in a non-null mapping occur. This motivated us to develop a framework with
attribute, sequence_type_id, the foreign-key reference to the table the facility for incorporating non-default processing with the de-
DoTS::SequenceType. (The corresponding primary key happens fault automated processing.
to have the same name.) To resolve the foreign key, the input

For XML processing, XMLGUS uses XML::YYLex (http://
module instantiates a DoTS::SequenceType object with the appro-

home.debitel.net/user/boesswetter/xml_yylex/) with the Berkeley
priate sequence type to obtain the primary key for the new DoT-

YACC[14] compiler generator Perl-byacc (http://packages.debian.
S::NASequence object.

org/unstable/devel/perl-byacc.html) in combination with an

The XMLGUS Approach

XMLGUS automates the data input tasks described above with
a declarative framework coupled to a processing module working
as a GUS plugin. We chose XML as the standard input format
because of its descriptive capabilities and the research and devel-
opment surrounding it. An XML document consists of elements
and attributes, along with an optional document type definition

Table II. Entries for the table DoTS::SequenceType. Attribute values corre-
spond directly to the XML in figure 1, except for the primary key se-
quence_type_id, which is generated automatically. The attribute name is a
candidate key used to derive the primary key. Resolution of primary keys
from candidate keys in this manner is common in GUS

Attribute Type

sequence_type_id number

name varchar

5 Examples of the issues encountered can be appreciated directly with a survey of the GUS email archives.[11]

6 Generally, a candidate key is one or more attributes that together uniquely identify at most one record in a given table.[12] Candidate keys that have
been designated in the database are called primary keys.
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4. If special purpose processing is needed, the methods are written
and named according to a convention used by the XMLGUS
dispatcher method (see section titled XMLGUS Grammar). These
methods are triggered into action by non-null fields in the parame-
ter list to the dispatcher.

5. XMLGUS is executed by providing the byacc-generated parser
on the command line with the input XML and any other argu-
ments. Reductions during the XML parse take the action of a
single call to the dispatching routine. All calls to the dispatching
routine are through a simple template, for example in figure 3,
lines 11–19.

In this way, the parser regularises input processing and simulta-

CFG

byaccp

XML parser

Relational
database

XMLGUS
GUS

object layer
GUS XML

formatted data

Optional module
for special processing

Fig. 2. Schematic of the XMLGUS plugin. Input data, such as chromosome
sequence data, are formatted into GUS XML, as described in the text. The
user of the plugin provides the circled components: context-free grammar
(CFG), the XML input and an optional module for any case-specific
processing. neously verifies input syntax.8,9

XML::DOM processor (http://www.w3.org/DOM/). Other XML- GUS XML
to-relational-database tools are discussed in the section titled
Related Work. XML::DOM provides the lexical analysis for the The GUS XML in figure 1 corresponds in a straightforward
parser. The YACC processor regularises traversal over the input way to the GUS object DoTS::NASequence (table I). The XML
by way of a structured grammar and parse that triggers user- elements nested in DoTS::NASequence correspond to either a
defined actions.[14] YACC with Perl actions interfaces the GUS relational attribute or a relational table. The opening and closing
object layer, the latter consisting of object-oriented Perl modules. XML tags dots_nasequence in figure 1 (line 3 and line 15) enclose

The parser encourages orderly and regular processing of the the data intended for the relational table DoTS::NASequence.
XML with depth-first, left-to-right processing of the underlying Other XML tag names follow the same logical naming scheme.
document object model (DOM) tree.[15] The grammar follows The convention where XML element tag names correspond to the
directly from the relational database schema; relational key con- relational tables is not essential; however, it aids readability and
straints are handled during the parse. The XMLGUS framework highlights the correspondence between the schema and XML. In
operates as follows: fact, it is the XMLGUS grammar that determines the correspon-
1. The user defines a grammar and the XML, with both corre- dence between XML elements and relational table attributes. This
sponding to relational database representations of GUS objects. occurs by string names embedded in the parameter list of the calls
For example, the grammar fragment7 in figure 3 corresponds to the to a single dispatching routine on actions taken during the parse
XML in figure 1, and both correspond to the schema represented in (see section titled XMLGUS Grammar).
table II and table I, respectively. Pairwise relationships between primary and foreign keys are
2. Prior to XMLGUS processing, input data are formatted into expressed with the XML attributes fkobj and pkobj, which point
GUS XML, where the XML tag elements correspond to the the foreign-key object to the primary-key object. These XML
terminals in the grammar, which in turn correspond to GUS table attributes trigger the XMLGUS processor to resolve foreign keys
names and relational database attributes as described in step 1. by instantiating and fetching data for referenced objects. For
Key constraints are declared where needed in the XML using example, the object for the primary key sequence_type_id is
XML attributes (see sections titled GUS XML, and Key Con- determined from a fetch of the object DoTS::SequenceType hav-
straints). ing attribute name equal to value DNA, as indicated by lines 11–13
3. The grammar definition is input to the program byaccp, which in the XML of figure 1. The primary key is named in the same
produces the parser; the generated parser is an input to the XML at line 14 with the attribute key. Finally, the foreign key
XMLGUS processor. sequence_type_id is assigned the value of the primary key by the

7 Grammars and code for the examples in this article are available on the Flora website (http://flora.ittc.ku.edu/).
8 The processing order of XML is identical for all input with the XMLGUS processor, namely, left to right, bottom to top in the XML parse tree. This
regularity naturally structures control flow, even those that are authored by different people for different purposes.
9 XML DTDs can also be used to verify XML syntax.

 2005 Adis Data Information BV. All rights reserved. Appl Bioinformatics 2005; 4 (1)



Structured Interface to the Object-Oriented Genomics Unified Schema 17

Fig. 3. Portion of byaccp grammar for table DoTS::NASequence.

description in the XML, also at line 14 in figure 1, by way of the QUENCE_TYPE_ID (figure 3, lines 43–51). This example illus-
XML  element  sequencetypeid.  The  data  are  shipped  to  the trates how objects and attribute relationships are fully defined in
dispatcher by the production DoTS_NASEQUENCE_SE- the XML.10

10 That primary-key to foreign-key object relations are defined in the XML allows data-driven use of the schema. The original intent of GUS foreign-
key associations is at times unclear. Moreover, the ability to use attributes in problem-specific ways extends the applicability of the schema and retains
the spirit of current use.
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Foreign- and primary-key relationships can also be expressed XMLGUS module with the corresponding call to the dispatcher
by nesting XML elements referring to tables. It is shown in the method process_xml_rule(). In figure 3, the string DoTS::NASe-
section titled Key Constraints that nesting alone is insufficient for quence::description informs XMLGUS about the namespace, ob-
expressing all key relationships, thereby calling for an alternative ject and attribute, respectively. The undef arguments indicate that
such as the fkobj and pkobj attributes used by XMLGUS. Persis- special processing should not take place on either the first or
tent primary-key-containing objects can be useful when a single second pass of processing.11 The attribute depth informs the
fetch of an object provides values for many foreign-key-contain- processor about nesting level in the XML for the purpose of
ing objects. The application of fkobj and pkobj facilitates this committing an object hierarchy; objects are committed to the
simplification and performance gain (see section titled Perform- database when they occur at a depth of zero. The GUS object layer
ance). provides methods to construct, in effect, a tree of objects for the

For general XML, we assume some transformation to arrive at purpose of establishing primary- to foreign-key relationships.12

GUS XML, such as XSLT (XSL transformations).[16] Other non- Foreign-key references for objects associated in this way are
XML formats can be translated to GUS XML with typically

automatically resolved in the object layer. This feature, as imple-
simple scripts. The plugin interface to the object layer is stream-

mented in GUS, applies to primary-foreign key relationships de-
lined with this approach. Rather than one module for each format,

clared in the database, where along with other restrictions, it is not
the data supplier is responsible for formatting their data into

a comprehensive key-resolution mechanism. For those objects
GUS XML. Where a program generates data intended for GUS,

defined in the object hierarchy, each object and its child objects –
GUS XML may be output directly. Routine transformations from

should any exist – are committed from the root object; by defini-other formats into GUS can be done modularly, separate from the
tion, the root object in GUS XML has level equal to zero. Sinceobject-layer components. This simplifies the plugin interface, and
description is not involved in a key relationship, the attributemost input data can be processed by the same generic functions.
arguments in the process_xml_rule() parameter list would be

undefined during processing.
XMLGUS Grammar

The production DOTS_NASEQUENCE in figure 3 corre-

sponds to the object DoTS::NASequence. The left-hand-side vari-The XMLGUS grammar consists principally of variables and
able DOTS_NASEQUENCE_SET and the right-hand-side vari-terminals associated with GUS XML elements. GUS XML tag
ables form a partial collection of productions for the object. Thenames correspond to either relational table names or relational
action for DOTS_NASEQUENCE is the second-to-last actiontable attribute names. The XML elements determine the parse
taken in the parse with this grammar snippet; the return for rulethrough the grammar, where XML content is mapped to GUS
XMLDOCUMENT is the last action. The XML tag dots_nase-objects through actions taken when appropriate rules are reduced.
quence, a terminal in the grammar, occurs at the outermost levelThe byaccp grammar of figure 3 with 13 productions is a subset
with a depth of zero. As noted above, zero depth triggers submis-required to parse the XML in figure 1. A parse of that XML first
sion of the object hierarchy. As before, undef indicates that defaultreduces the following production:
processing is to be used, in this case for the first pass.13 The secondDOTS_NASEQUENCE_DESCRIPTION →
argument Specialized is more interesting. This name correspondsdescription TEXT _description
to the module with the special purpose routine with the defaultwhere, by convention, uppercase names are variables and lower-
name DoTS_NASequence_02. The special purpose module mightcase names are terminals. Terminals correspond to XML element
count the number of nucleotides in a sequence or manipulatetags with a leading underscore matching the closing tag. Elements
version numbers, for example. An example of special purposeare retrieved with the method getNodeValue(), and attributes with

the method getAttribute(). The action for the reduction enters the processing is given in the following section.

11 XMLGUS makes two passes through the input XML. In the first pass, empty objects are created and queued for use in the second pass.
12 A parent-child relationship where the parent contains a primary key referenced by the child is created by the method addChild() as in
parentObj→addChild(childObj).
13 In our work with XMLGUS, we have never required any processing other than default processing for the first pass, which simply allocates objects
for second pass processing.
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Fig. 4. XML for second sequence insertion into database. Note the changes relative to figure 1 consisting of an extended sequence and its altered
description.

Tailoring Semantics a low-complexity tail that completed a structural element of inter-
est, so the sequence with data in figure 4 was re-inserted with more

Specialised routines are required where non-default behaviour
of the sequence intact.14 We consider three update policies for the

is desired, or where there is processing apart from direct mapping
re-insertion of the sequence:

of input to schema. Although various policies can be embedded in
1. Update without history: Overwrite a subset of the sequence

the object layer, over time the object layer will be encumbered
entry, losing the original tuple to the modifications, but retaining

with site-specific (specialised) idiosyncrasies that interfere with
the original primary key. This is the default GUS update policy for

scalability and may conflict with fundamental functionality. The
tables that are not versioned.[8]

ability to tailor selectively the input interface for interpretation of
2. Update with history: Create a new entry that retains the primarydata isolates non-default processing from fundamental object-
key of the replaced alpha thereby having a second alpha instance,layer functionality.
with the original instance given a new primary key. Thus, foreign-The example in this section uses an update of a pre-existing
key references to the original alpha will be lost, but transferred tosequence in the database. The default GUS policy for a sequence
the new sequence. The default GUS policy achieves this for tablesupdate looks for relational tables related to the updated root tuple.
that are versioned in the GUS sense.Related tuples are updated with new information as required, with
3. Revise: Create a new instance with a new primary key. Alla history retained in other tables for data warehouse mainte-
foreign-key references to the original sequence are kept intact; thenance.[8] The default GUS semantics are not of primary concern in
revised sequence and its annotations are rebuilt from scratch,this article. Rather, the existence of plausible alternatives to the
while retaining the previous version and its annotations. In thisdefault update semantics motivates the following discussion about
example, an auxiliary table, DoTS::NAEntry, uses the name alphanon-default processing.
as a candidate key to retrieve the latest version of alpha.Consider an example of inserting into the database a modified

sequence, alpha, with the original definition of alpha in figure 1. (A change to a primary key can impact foreign-key references in
Later, it was determined that the original sequence was trimmed of other tables, which must be managed consistently.) These seman-

14 How the trimming came to be is not important here. Also, positional references to the sequence alpha may change with the change of sequence.
These technicalities are important in practice, but not discussed further in this article.
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Table III. Table contents for three different insertion policies. The table NASequence with sequence information contains the candidate key name and
sequence_version, primary key pKey and the sequence; sequences are abbreviated with the letter s and s′, where s′ is the new sequence (discussed in
the section titled Genomics Unified Schema [GUS] and Data Input). The table naentry is used to track the version number of the instance of the most up-to-
date sequence; name alone is a candidate key for naentry. Thus, in this sample application of GUS, a sequence is retrieved by first consulting naentry to
determine the candidate-key component version for a given sequence name. Note that name is not an attribute of the standard GUS table NASequence,
but is an attribute in a view used at our site of the table, NASequenceImp

Update cases nasequence naentry

pKey name sequence_version sequence pKey version name sequence_id

Initial state 10 alpha 1 s 1301 1 alpha 10

Update without history (case 1 in text) 10 alpha 2 s′ 1301 2 alpha 10

Update with history (case 2 in text) 10 alpha 2 s′ 1301 2 alpha 10

11 alpha 1 s

Revise (case 3 in text) 10 alpha 1 s 1301 2 alpha 11

11 alpha 2 s′

tics are summarised in table III. In order to implement these obtained from the referenced object, which happens to have the
semantics, a specialised plugin method is written for the DoT- same name in the corresponding GUS object.16 The ‘pointer’
S::NASequence object. The action alerts the dispatcher to the non- fkobj=dots::nasequence for the primary-key object dots::nase-
default method with a Perl module name in the appropriate param- quencetype informs the processor that this XML nest is for the
eter slot (that is the string Specialized in figure 3, line 11). In turn, purpose of foreign-key definition. The string value dots::nase-
the module Specialized.pm contains an implementation of the quence is superfluous to processing; however, it aids in reading the
method with the constructed name DoTS_NASequence_02.15 The XML.
specialised routine is written in the context of the XMLGUS Foreign-key references also arise where one object refers to
framework with objects and their attributes defined accordingly. In another object, such as in the resolution of the externaldatabaser-
this example, the objects DoTS::NASequence and DoTS::NAEn- eleaseid in the XML fragment in figure 5. Referential constraints
try are manipulated to implement the semantics of case 3 (Revise) of the type expressed by the XML in figure 5 commonly occur in
above. the GUS schema. The referential path[12] in this case involves

intra- and inter-table references. Specifically:
Key Constraints R1 (name) → R1 (external_db_id), R2 (version) →

R2 (external_db_release_id)Key constraints are represented in GUS XML by constructing
where arrows point from foreign and candidate keys referencingpointers from the foreign-key referencing object to the primary-
the candidate key contained in tables R1 and R2, where R1 and R2key defining object using XML attributes with the candidate-key
are shorthand for tables SRES::ExternalDatabase and SRES::Ex-name. Foreign-key references to candidate keys can arise in GUS;
ternalDatabaseRelease, respectively. XML element nesting alonefor example, in the guise of key resolution for controlled vocabu-
cannot represent combinations of such references. In this case, thelaries such as the attribute sequencetypeid in figure 1, line 14. In
external database elements would be nested outside of DoT-this case, the primary key sequencetypeid is derived from the
S::NASequence, which is fine, but awkward.object DoTS::SequenceType using the candidate-key value DNA;

this is also discussed in the section titled GUS XML. In figure 1, The object DoTS::NASequence, however, also requires resolu-
line 14, the ‘pointer’ pkobj for sequencetypeid indicates the name tion of the taxonomy primary key through the taxonomy name.
of the candidate-key defining object dots::sequencetype for the This would require that the outer nests to DoTS::NASequence be
foreign key dots::nasequence::sequence_type_id, whereas the at- two: one each for taxonomy and external database. As a result, one
tribute key indicates the primary key sequence_type_id to be of either taxonomy or external database would be nested within the

15 See http://flora.ittc.ku.edu/ for the complete method.
16 The actual name of the object attributes are used in the grammar with the exception of the XML attribute pointers. For example, line 18 in figure 4
with XML element sequencetypeid will appear as a terminal in the corresponding grammar with the action specifying the actual variable name. This
correspondence is discussed in the section titled XMLGUS Grammar.
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other, which is inappropriate since there are not constraints be- second step, the gene locations on chromosomes were stored using
tween these two tables. An alternative placement of the pkobj and the GUS tables DoTS::GeneFeature, DoTS::NALocation and
fkobj block for the external-database-release key is as a non- DoTS::GeneInstance. As in the first step, a grammar was written
nested block before the DoTS::NASequence block. This important for the GUS XML and this part of the GUS schema. Finally, the
option is discussed in the section titled Performance.

miscellaneous features were added from another set of

GUS XML-formatted files using the table DoTS::NAFeature. The
Applications

order of these steps is both a consequence of style and database

dependences. These multiple steps could be merged into a singleThere are various ways to incorporate XMLGUS into a produc-
step if desired, since dependences can be separated with concate-tion project. As outlined above, the central components are a

grammar and GUS XML-formatted input. Illustrative production nated blocks of XML processed in order in the input file.
applications are presented in this section, and the grammar and One aspect of performance is the overhead in using a system,
XML files for this work are available at the data management apart from the time for execution. (The latter is discussed in the
website for this project (http://flora.ittc.ku.edu/).

section titled Performance.) For the genome loading application,

one may consider the manually written GUS plugin
GenBank-Formatted Arabidopsis Chromosomes

LoadGeneFeaturesFromXML.pm, a suitable but single-point solu-
with Annotations

tion for a limited set of tables in the GUS distribution. The scope

of this plugin is limited by fragility and hard-coded characteristicsThe GUS schema captures the central dogma of biology so that
genomes and annotations can naturally be represented in the developed for specific GUS projects.
database. In this application, the Arabidopsis thaliana genome, The structured approach embodied by XMLGUS makes the
along with gene and miscellaneous feature annotations, was input

same development task repetitive and routine; accordingly, the
to GUS.[17] The data were downloaded from NCBI in GenBank

effort shifts to planning and understanding the schema, and away
flat-file format.[18] The GenBank files were formatted into sever-

from time-consuming development and debugging of hundreds ofal GUS XML files using simple Perl scripts.
lines of object-oriented code. What is more, moving the translationThe first set of GUS XML files contained the gene symbols
of foreign formats to GUS XML with standalone scripts outside ofused in the annotations. One file was used per chromosome for
the object layer reduces the complexity of this task by removing itmanagement purposes. This first step input the gene symbols in

the table DoTS::Gene for reference by feature descriptions. In the from the object layer.

Fig. 5. GUS XML fragment illustrating candidate-key dependencies. The framed ellipses <…> represent XML omitted for this example. See section titled
Key Constraints for details.
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BLAST XML XML file, such as genome features. With a quiescent GUS running
on Oracle and Linux, a single such reference to a small object

In another production application, we utilise XMLGUS in a with less than 1024 bytes takes approximately 0.016 seconds on a
sequence-processing pipeline. In an early pipeline phase, vector computer with two 2-GHz Pentium 4 processors with 2 gigabytes
sequences are identified by aligning sequence reads against a of memory.17 Although it costs little to fetch a single modest-sized
reference vector-sequence database. The coordinates of the object, this time can be needlessly excessive for thousands of
nonvector-containing sequence are noted and stored as feature objects. An example of such a reference is resolution of the
annotations in GUS. In this way, the complete sequence reads are foreign-key reference to DoTS::SequenceType where the candi-
kept in GUS, with the nonvector portion identified with the feature date key is the nucleotide type. This reference requires only one
coordinates. The local sequence alignments were performed with reference to DoTS::SequenceType to resolve the sequence-type
NCBI BLAST,[19] which optionally outputs the results in XML foreign key to the controlled-vocabulary table for nucleic acid
format. Programs that output XML are especially attractive to the types to define the genome features as in the example in the section
XMLGUS framework since numerous tools exist for working with titled GenBank-Formatted Arabidopsis Chromosomes with An-
XML. In this case, we used an XSL-defined mapping from notations. A primary-key-containing object defined at an XML
BLAST XML to GUS XML. level of depth zero persists, thereby facilitating the desired beha-

viour of a single fetch of invariant objects.
Performance

Related Work
In general, XMLGUS processing time will be at least as good

as hand-coded plugins. The processing of an object from XML to In the work described in this article, XML is modelled by a
GUS objects can be readily envisioned from the XML structure, context-free grammar in an interface to object-oriented mid-
which essentially lays bare what is the XMLGUS equivalent to dleware. Timoshkina et al.[20] studied Lex and YACC in the
control flow in the standard plugin. With a plugin, inefficiencies context of constructing a general-purpose processor for transform-
can be more difficult to detect in as much as control flow can be ing XML documents into HTML.[20] They cite the bottom-up
more difficult to ascertain. One can, for example, review a gener- parsing action as a disadvantage, whereas in our experience this is
ated XML file for accuracy, whereas with a plugin there is no an advantage for structuring the plugin logic and processing. The
human-readable intermediate step, except possibly for the messy XML 1.0 specification provides a verification mechanism for
option of dumping the internal data structures of the plugin into a document classes using grammars in the DTD.[21] The DTD is
file. As in code optimisation, experts may find optimisation oppor- essentially a context-free grammar with right-hand sides that may
tunities over XMLGUS, but in general the automated processing contain arbitrary regular expressions.[22] DTDs do not, however,
will be at least as good as the average manually written plugin. provide for key constraint specifications. As an outgrowth of this

The scan and parse of input GUS XML is essentially the same limitation, constraint specification is addressed by XML Sche-
as that encountered in processing XML by hand-written proces- ma.[23] Within our framework, XML that is compatible with the
sors. Although XMLGUS traverses the DOM tree twice, the XMLGUS processor can describe any key constraints required for
traversal is linear in the input length with a modest constant factor the GUS object-oriented database. Numerous systems have been
such that the double pass adds an insignificant overhead. Non- developed for querying XML using relational storage tech-
XML input can be processed in – at best – linear time, so there is niques.[13,24] This work, however, maps XML into pre-existing
not significant overhead in transforming non-XML into an XML relational schemata. The difficult task of arriving at relational
format. designs from XML is the inverse of the problem addressed in this

Additional costs can arise from repetitive queries of the same article.[24] Bourret’s[25] XML-DBMS maps XML objects to rela-
primary-key object to resolve a foreign key. This problem is not tional databases. The tool was not suitable for our work, in part
unique to XMLGUS and can be avoided in any case. Repetitive because of a lack of chaining of candidate keys to an arbitrary
references of invariant keys can happen when the same primary- depth (see section titled Key Constraints) and the restricted capaci-
key object is referenced in multiple objects defined in the same ty for arbitrarily involved processing of input.

17 Earlier releases of XMLGUS required that every primary-key-containing object be nested in the referring object; this is no longer necessary in the
current version.
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Discussion and Conclusions with noteworthy variety in data. Robust software-engineering
practice improves reliability, reduces related overheads and frees
time to pursue other activities. Beyond the software-engineeringClear advantages are realised with XMLGUS over imperative
thrust in part motivating this work, XML representations of aprograms for GUS data-input tasks. The structured and descriptive
relational schema can facilitate joint queries with relational dataprogramming approach coupled with automated processing clari-
warehouses. Also, the XMLGUS input framework can be auto-fies input processing. The approach sets the stage for automated
matically generated, further facilitating integration of data withinput handling based on a schema and meantime makes for less
GUS. Although some GUS input may not be suitable for XMLerror and less overhead filling in framework details, in contrast
processing, and not all developers will be comfortable with thewith single-format plugin solutions. The strategy encourages
mechanics, XMLGUS goes a long way to facilitate assimilation ofstructured plugin architecture, which is especially crucial for a
input. Future work includes automating grammar generation anddiverse developer community. Code readability is enhanced and
XML definitions from the GUS relational schema.programming is reduced. That the object layer interfaces a stan-

dard XML and that the standard XML is produced apart from the
object layer simplifies the interface framework. Acknowledgements
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