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Abstract

The pricing of network services not only determines the eco-
nomic viability of commercial networks but also plays an im-
portant role in traffic management through its influence on
user behavior. This paper discusses the pricing of services in
a priority-based network by employing game-theoretic con-
cepts. Given any price difference between services and an
estimate of users’ utility functions, we describe a method for
predicting what users’ service choices will be. In this fash-
ion, service providers can determine what price ranges better
encourage users to exhibit behavior that is mutually benefi-
cial to users and providers. Under certain strict assump-
tions for the traffic characteristics and utility functions, nec-
essary and sufficient conditions for the achievement of an
optimal equilibrium are presented.

1: Introduction

While a great deal of research has been carried out in the
past few years on the subject of traffic management and
traffic models for wide-area communication networks, the
issue of pricing remains relatively unexplored.

The pricing structure not only affects revenue, but di-
rectly influences the load presented to the network and
hence its performance (for instance, customers may choose
to postpone offered traffic to times when lower tariffs are
in effect). Therefore, the pricing policy plays an important
role in the dimensioning of a commercial network. Several
issues in traffic management, such as congestion control and
Connection Admission Control (CAC), may also be affected
by pricing.

This paper focuses on the study of desirable pricing ranges
for priority classes, taking into account users’ decision-
making process and economic efficiency requirements (max-
imizing network provider and customer benefits). Cus-
tomers’ decisions consist of determining, at any given time,
which of the services available optimizes their individual
cost/benefit relationship. Network providers, on the other
hand, must take into account the satisfaction of all users,
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as well as fairness, network performance and revenue when
deciding what pricing structure to implement.

While at times users and providers may have conflicting
objectives, we believe that pricing can be used as a way to
encourage users to exhibit behavior that is beneficial to the
network as a whole.

The goal of multi-service networks is to simultaneously
meet the diverse quality of service (QoS) requirements of
a variety of applications with acceptable user costs. Game
theoretic concepts are utilized here in order to model the
interaction among users and predict users’ choices among
service classes. This prediction enables us to determine
whether the network is accomplishing the stated goal.

This paper is structured as follows: in Section 2, we pro-
pose a general pricing structure; the model used to describe
the traffic contract and users’ decisions is presented in Sec-
tion 3; Sections 4 and 5 list some general results and specific
examples, respectively, regarding pricing ranges for priority-
based networks; finally, Section 6 summarizes our main con-
clusions. The Appendix contains the proofs of the proposi-
tions in Section 4.

2: Pricing Approach

The pricing of services in circuit-switched networks, and in
particular telephone rate structures, is well understood [9].
However, pricing packet-switched networks presents addi-
tional challenges. Since these networks rely on statistical
multiplexing, the reservation of resources is ideally kept to a
minimum, and measuring usage is more difficult and costly.

The current debates on how to charge for Internet ser-
vices [1, 8, 10] and ATM services [11, 12, 15] have sparked
renewed interest in the field of network pricing.

We contend that a simple but relatively general pricing
policy would assign a price P to service type j according
to three main factors: resource allocation, usage and fixed
connection costs. This relationship can be expressed as:

ty
Pj=¢; +/t (£(t, R(t)) + g;(¢, U(¢)))dt 1)

o

In the expression above, R(t) refers to the amount of re-
sources allocated to the call and U(¢) refers to usage of these



resources (e.g., number of packets delivered), both as func-
tions of time. The integral is taken over the interval [t,, tf],
the duration of the call. The constant ¢; refers to the fixed
connection charge for service j. The f1uncti0ns f; and g;
will determine the exact pricing structure for service type
j; for instance, in service types with a strong resource allo-
cation component (e.g. Constant Bit Rate service in ATM
networks) one can expect f; to dominate over g;. The ex-
plicit dependency of f;, g; on t enables the implementation
of time-of-day pricing, where rates are higher when the net-
work is expected to be more heavily used.

The only restriction we place on f; and g; is that
fi(t,0) = g;(t,0) = 0 V t. However, we do not expect
f;- to be a linear function; this is best explained through
an example. Suppose a user intends to transmit a 1 MB
file over the network, having the choice of reserving 1 Mb/s
or 500 kb/s of bandwidth. If f;(¢, R(t)) = aR(t), the price
charged for the file transfer will be the same for either case,
and the user will choose the first option. However, network
providers generally prefer to spread resource allocation over
a longer period of time; besides, the user will likely be will-
ing to pay more for the first option, since it affords better
quality of service. The combination of these two factors
leads us to believe that f; should be a non-linear function
of R(t).

In the remainder of this paper, we discuss priority-based
networks with no resource allocation (R(t) =0), so f; = 0.

Our study concentrates on relative prices, since they are
the primary factor in determining customers’ choices among
service alternatives. Furthermore, the cost-recovery aspect
of pricing, which is directly related to absolute prices, is not
the subject of this work.

3: System Model

This work employs game theory to model customers’ deci-
sions when utilizing commercial networks. Game theory has
been used for years as a tool of economic analysis, to under-
stand and predict what will happen in economic contexts [7].
Its applications to networking problems include not only
pricing but congestion control and CAC as well [3, 4, 14].

The use of game theory in the study of network service
pricing allows us to model how a user’s choice of service is
impacted by beliefs about other customers’ decisions. In the
present work, we extend the pricing policy model described
in [3], applied in the context of multi-service priority-based
networks. In this scenario, each customer must choose the
most appropriate service for her application taking into
account the performance requirements of the application,
prices of services, and interactions with other users. This
approach is very similar to the one presented in [2, 3]; how-
ever, these papers concentrate on simulation of priority net-
works, whereas we build an analytical framework for the
problem.

Let S; be the set of choices available to user 7 when re-
questing service from the network. The joint strategy space,
denoted by S, is the Cartesian product of the individual
strategy sets; for NV users, we have:

S=51%xS%...xSy = {S = (81,82,...,8N) . 8; € Sz} (2)

We will denote the traffic statistics for customer i by t;;
this may include information such as average transmission
rate and statistics of message size. When the service request
from user i, (s;,t;), is accepted, the user receives some level
of service from the network, characterized by q;, where

q = U(s,t1,...,tN) 3)

\

100

80

3
.

60

>
.
.

\
)

40

\\\\
b
\\\\\\\\\\i\@i\\\\\\\\

\\\\\\ \\\\\
\\\\\\\\\\§\§\§§\\\\\\\\\
\\\\\\\\

N

\
\

\\\\\\\\\\\\\\\\
\\\\\\\
\\\\\\\\\\\\\\\\\\\\\ \\\
\\\\\\\
\\\\
\\\\\\\\\\\\
\\\\\\\\\\

N
AN

)
\\\\\\\\\\\\\\\\
\
.
\
N
\\\\\\\\\\\\\\\

Q\
\\\\\\
\\\\\\\\\\\\iiii\\\\\\\\\

\\\\\\\\\\\\\
\\\\\\\\\\\\\%\\QQQ{\\\\\\\\\%
\\\\\\\\\\\\\\\

\\& \\\ \\\\\
\\
\\\\
\\\\\\\\\\\\\\\
\\\\\\\\\

\
«
€
it
-

W

.

\\\\\

0 Z / /
//////é/ ;
60 T — 0.004
» ////// 0.006

Maximum Delay [ms] Packet Loss Ratio

Figure 1. Example of utility function for a voice application.

The precise characterization of the function ¥ depends
on the network topology and service disciplines; specific ex-
amples are provided in Sections 4 and 5.

3.1: Utility Functions

Utility functions serve to quantify the tradeoffs that cus-
tomers are willing to make between the quality of a service
received and its price. We consider that individual users
associate a value to each service level; this value, referred to
as the user’s wtility function U;(q;), can be interpreted as
the amount the user is willing to pay for a given QoS.

Utility functions are widely used in pricing theory; some
common assumptions about U; include concavity and strict
monotonicity. It is seldom possible in practice to deter-
mine users’ exact utility functions; rather, we postulate a
specific function based on the known characteristics of the
application. For instance, voice applications are typically
very sensitive to maximum delay and delay variation, and
yet can be made relatively insensitive to packet losses. It
is reasonable, then, to represent the value a customer asso-
ciates to a voice application as a function of QoS parameters
such as maximum delay and packet loss ratio as shown in
Figure 1.

3.2:

The consumer’s surplus CZ-(S) is then defined as the difference
between the utility obtained with a given service choice and
the price paid for the service. Users will decide on a service
request (i.e., a pure strategy) that maximizes their surplus
given the other players’ strategies. The effectiveness of a
pricing policy can be evaluated based on the existence of
an equilibrium joint strategy. The idea is that we should be
able to predict users’ choices in order to ensure some level of
satisfaction to users and revenue to providers; the equilib-
rium strategy combination, when one exists, is considered a
consistent prediction [5].

A Nash equilibrium is a strategy combination where no
user can unilaterally increase her utility by changing her
strategy [3, 7]. More precisely, we offer the following defini-
tion:

Evaluating Pricing Policies

Definition 1 (Nash Equilibrium) Strategy combination
s is a Nash equilibrium if C¥ > C**) v sr € S;i €



1,2,..,N}. 1

If an equilibrium exists, we would like to determine
whether it is efficient; for this purpose we use the concept of
Pareto optimality. A strategy combination is Pareto opti-
mal if there is no other strategy combination which at least
one user would prefer and to which all others would be in-
different, or, more formally [14]:

Definition 2 (Pareto Optimality) A strategy combina-

tion s is Pareto optimal if there does not exist s' € S such
that:

1. ¢ >c® Vi; and
2. Ci(sl) > C’gs) for at least one i.

4: Non-preemptive Priority System

In order to analyze the effect of pricing on the equilibrium
achieved, we consider the case of a single FIFO queue with
non-preemptive priorities ("high” and ”low” priority lev-
els). The study of a single queue is applicable to local area
networks (LANs) and metropolitan area networks (MANSs),
which are sometimes modeled as a single server with a queue
that is distributed among all stations [13]. Besides, this rel-
atively simple system is analytically tractable, whereas for
the analysis of a general network one must rely on simula-
tion and/or experiments.

Let N be the number of customers utilizing the queue at
a given time. Each user can choose to tag a percentage s; of
her traffic as high priority, paying a price pg for the band-
width utilized; the remainder of the traffic is transmitted
as low-priority at a price pr. This in effect yields a joint
strategy space to the game S = [0, 1]7V.

If surplus functions C; are differentiable over S and
strictly monotonic functions of the QoS parameter, we can
state that:

Proposition 1 1. A pure strategy Nash equilibrium ez-
ists in the interior of the joint strategy set (S° =

(0,1)N) if and only if it is a solution for the system
of equations:
aC;
681' o

0 (4)

2. If a pure strategy Nash equilibrium § exists in S\S°,
then 5 € {0,1}Y (i.e., § is an extreme point).

9% > 0 over S, then §; = 1; conversely,

Furthermore, if

0s;
9¢: < 0 would imply §; = 0.

Therefore, the procedure for determining the Nash equi-
librium reduces (in the worst case) to solving a system of N

equations plus a search of the 2%V extreme points of S.

An important quantity in determining the equilibrium
(and its optimality) is Ap = py — pr. Intuitively, one can
expect that if Ap is made large enough, all users will tend
to choose low priority service (or simply exit the system).
On the other hand, if Ap is sufficiently low, all users will
tend to choose high priority service, a clearly poor result
from the standpoint of Pareto optimality.

For the sake of concreteness, quality of service in this sys-
tem will be measured by average waiting time in the queue,
denoted by W;. Utility functions will be approximated by:

1We use the following convention: s_; denotes all components of s
except its it" component.

Cs = A; — B; (Wy)% —[pusidi —pr(1—s)N] ()
—_———
U;

Differences in sensitivity to QoS changes between users
can be modeled by varying the parameters A;, B; and d;.
Furthermore, A; plays no role in the determination of an
equilibrium 2. Parameters A;, B; and d; are not arbitrary;
in the determination of a pricing policy, service providers
must estimate (usually based on empirical evidence) how
sensitive customers are to changes in prices and QoS.

Due to the scarcity of closed-form results for delay in
G/G/1 priority queueing systems, we assume Poisson ar-
rivals to the queue, with t; = (A, X5, x?), where ); is the

average arrival rate, and Z; and z? are the first two moments
of message length for customer 4.

Let us for a moment restrict the strategy space to the
extreme points of S. In the simple case of 2 users with
independent identically distributed arrivals to the queue,
exponentially-distributed message lengths of mean p and
constant marginal utility B; (d; = 1), we can determine
sufficient and necessary conditions on Ap for the existence
of an optimal equilibrium, in closed-form:

Proposition 2 Under the assumptions listed above, a two-
user system achieves a unique Nash equilibrium that is
Pareto optimal and mazimizes revenue if and only if:

2) 1
(1 —2X)(p — A)
(6)

2M

i B G = =)

< Ap < (max B;)

In more complex cases, for any given Ap, the Nash equi-
librium can be calculated (and its Pareto optimality eval-
uated) using the procedure delineated above. We provide
two examples in the next section.

5: Examples of Nash Equilibria in Priority
Systems

Utilizing the general form for the utility function described
in equation 5 and well-know queueing theory results [6], and

2 — 12 Vi, we get:

assuming T; = T, x;

801 _ . di J.= (1*EATSi)di_l .
682' - BzK dzm (-7 Zj,\;l 5;0) 01 [23751 A]
—IAT 3z 8iA] — APA (7)

where Az = Y7, \; and

.’L‘2)\T

K 2(1 — f)\T) (8)
To illustrate the search for an equilibrium in the extreme
points of S, we investigate a two-user case with non-linear
utilities (represented in Figure 2); the results confirm the in-
tuitive interpretations of Proposition 2. Typical consumers’
surplus combinations as we vary Ap are shown in Table 1;

the equilibrium § is found to be:

2In competitive pricing, it can be assumed that customers are no
longer willing to pay for the service if the utility falls below a certain
threshold, and that is where A; plays an important part.
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Figure 2. User characteristics for example 1.
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Figure 3. User characteristics for example 2.

(1,1) if Ap<0.9
§= { (0,1) f0.9<Ap<13 9)
(0,0) ifAp>1.3

These results suggest the existence of an optimum price
range (namely, 0.9 < Ap < 1.3) that takes advantage of the
structure of the network to benefit all users according to
their sensitivity to QoS. In this case, no equilibrium exists
in S°.

In order to illustrate the existence of an equilibrium in S°,
we present an example consisting of two users whose applica-
tions are characterized in Figure 3. The partial derivatives
of C; with respect to s; are plotted in Figure 4; the in-
tersection of the two contours is a strictly monotonic curve,
yielding a unique equilibrium in S° (where this curve crosses
the zero plane).

6: Conclusions and Future Work

We have outlined a method for finding the equilibrium in a
priority system given any price difference between services
and an estimate of users’ utility functions. In this fashion,
a network provider can determine the pricing range that
will yield a desirable equilibrium. The results presented
here confirm some of the conclusions of [2], namely that by
providing monetary incentives one can tailor the services
provided to customers’ needs.

Integrated services networks in the near future are ex-
pected to offer service classes based on a mix of priority
and resource allocation. For instance, in ATM networks,

Best Response determination — two users

s2

sl

Figure 4. Determination of an equilibrium in S°.

some service classes differ primarily in the amount of band-
width reserved, and others, where virtually no reservation
is necessary, differ primarily in the assignment of priorities.
In order to extend the results of this paper to such net-
works, the authors are currently conducting a simulation-
based investigation into the problem of equilibrium pricing
for networks with allocation of resources.

A  Proofs

In this appendix, we provide the proofs of the propositions
in Section 4.

Proof 1 1. A Nash equilibrium § = (s1,5») implies that
§1 is the best response to sy and vice-versa [5]. There-
fore, if § belongs to an open set it must mazimize C;
with respect to s_;. The concavity of the utility func-
tions makes the first order necessary conditions also
sufficient.

2. The assumption of strictly monotonic utility functions
forces the equilibria (if they exist) to reside in one of
the extreme points.

Proof 2 In this system, each player has two alternatives:
high (H) and low (L) priority services. Let us denote by
CD) e payoff (consumer’s surplus) derived by user k
wﬁen user 1 chooses type-i service and user 2 chooses type-j.
The ordered pair (i,7) is the pure strategy combination s.

The average waiting time for an M/M/1 queue with non-
preemptive priority is a well-known result in queueing theory
(see, for instance, [6]). For each pure strategy combination
s € {(i,7) : i,j € {H,L}} we can find the expected payoff
for each wuser C,(cs),k € {1,2}. The payoffs are shown in
Tables 2 and 3.

Let us now consider the following cases:

1. Let Ap < min(B;) oy

In this case, C’l(H’H) > CI(L’H) and CéH’H) > C’éH’L),
and therefore, (H,H) is a Nash equilibrium. This is
the unique Nash equilibrium, since (H,L) is not an

equilibrium (C’éH’L) < C’Z(H’H) ), and neither are (L,H)



Ap =0.7 Ap=1.1 Ap=14
S92 S92 S92
0 1 0 1 0 1
0 813,12.50 || 7.64,12.89 | 813, 12.50 || 7.64, 12.64 | 8.12, 12.50 7.64, 12.49
s |11 81I7,11.53 || 7.83,12.20 | 792, 11.53 || 7.58 ,11.95 | 7.77 , 11.53 || 7.43 , 11.80

Table 1. Variation in consumers’ surplus as Ap changes. Surplus is presented as ordered pairs C}, C3.

User 2
H L
User | H| A — —2‘]'2;{\” —pHA A — —2]‘3;}){” —pHA
2B1 A 281X
L] A - it —poeh | A= 258 - pu)
Table 2. Expected payoff function Cl(s) for user 1.
User 2
H L
User | H Az—%—gf\”—pg)\ A2—%—PL)\
LA 228 —py) | Ay — 220 —pr)

Table 3. Expected payoff function 02(5) for user 2.

(C{L’H) < C’fH’H)) or (L,L) (CI(L’L) < C{H’L)). How-
ever, this unique equilibrium s clearly not Pareto opti-
mal, since Ci(H’H) < Ci(L’L) , 1=1,2.

. Let Ap > max(Bi)%.

Now, Cl(L’L) > Cl(H’L) and CéL’L) > CQ(L’H), mak-
ing (L,L) a Nash equilibrium. This is the unique
equilibrium point, since (H,H) is not an equilibrium
(C§H’H) < Cl(L’H)) and neither are (H,L) (C’l(H’L) <
c"") or (,H) "™ < "),

- Let min(B;) paafiy < Ap < max(B;) —sale—sy

Suppose By > Bs. In this case, Cl(H,L) S Cl(L,L) and

CéH’L) > C’Z(H’H); therefore, (H,L) is a Nash equilib-
rium. Again, it is unique; by the observation above,
neither (L,L) nor (H,H) is an equilibrium, and one can

easily verify that C{L’H) < CI(H’H). By symmetry, anal-
ogous results are obtained when By < Bs.

. For the sake of completeness, we must consider the
20 /p

cases of equality: Ap = Bim,i =1,2.

In either case, there is no longer a unique equilibrium,
since more than one strategy will be equivalent in the
eyes of one of the users.

[3]

[4]

[5]
[6]
[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

The equilibria obtained in the cases 2 and 3 are both

Pareto optimal. It is easy to see that revenue is mazximized

[15]

in case 8 (since in case 2, both users choose low priority

service). e
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