
1

Abstract
Many high performance distributed applications use
only a small fraction of their available bandwidth. A
common cause of this problem is not a flaw in the
application design, but rather improperly tuned net-
work settings. Proper tuning techniques, such as set-
ting the correct TCP buffers and using parallel
streams, are well known in the networking commu-
nity, but outside the networking community they are
infrequently applied. In this paper, we describe a
service that makes the task of network tuning trivial
for application developers and users. Widespread
use of this service should virtually eliminate a com-
mon stumbling block for high performance distrib-
uted applications.

1.0 Introduction
Internet backbone speeds have increased considerably in

the last few years due to projects like Internet II and NGI.
At the same time, projects like NTON [25] and SuperNet
[34] are providing a preview of the near future of wide area
networks. Unfortunately, distributed applications often do
not take full advantage of these new high-speed networks.
This is largely due to the fact that the applications use the
default parameters for TCP, which have been consciously
designed to sacrifice optimal throughput in exchange for
fair sharing of bandwidth on congested networks. In order
to overcome this limitation, distributed applications
running over high-speed wide-area networks need to
become “network-aware” [32][36], which means that they
need to adjust their networking parameters and resource
demands to the current network conditions.

There exists a large body of work showing that good
performance can be achieved using the proper tuning
techniques. The most important technique is the use of the
optimal TCP buffer size, and techniques for determining the
optimal value for the TCP buffer size are described in [35].
Another important technique is to use parallel sockets, as
described in [31]. Using a combination of these techniques,
applications should be able to utilize all the available
network bandwidth, which is demonstrated in [4], [1], and
[16].

However, determining the correct tuning parameters can
be quite difficult, especially for users or developers who are
not network experts. The optimal TCP buffer size and
number of parallel streams are different for every network
path, vary over time, and vary depending on the
configuration of the end hosts. There are several tools that
help determine these values, such as iperf [14], pchar [26],
pipechar [27], netspec [23], and nettest [22], but none of
these include a client API, and all require some level of
network expertise to use. Another tool is NWS [38], which
applications can use to determine upper bounds on
throughput from the network, but it does not tell the
applications how to achieve that throughput. Other groups
are addressing this problem at the kernel level, such as the
web100 project [37], Linux 2.4 [17], and others [9], as
described below. Still others are addressing this within the
application. The autoftp file transfer service from NCSA
[19] attempts to determine and set the optimal TCP buffer
size for each connection.

In this paper we describe a service which provides
clients with the correct tuning parameters for a given
network path. We call this service Enable, because it
enables applications to optimize their use of the network
and achieve the highest possible throughput. The goal of
the Enable service is to eliminate what has been called the
“wizard gap” [21]. The wizard gap is the difference

Enabling Network-Aware Applications

Brian L. Tierney, Dan Gunter, Jason Lee, Martin Stoufer

Computing Sciences Directorate
Lawrence Berkeley National Laboratory

University of California, Berkeley, CA, 94720

Joseph B. Evans
Information & Telecommunication Technology Center

 University of Kansas, Lawrence, KS 66045

This paper published in the proceedings of the Tenth IEEE
International Symposium on High Performance Distributed
Computing, August, 2001, San Francisco, CA.

2

between the network performance that a network “wizard”
can achieve by doing the proper tuning, compared to the
performance of an untuned application. The Enable service
can act as that wizard. Enable hides the details of gathering
the data from multiple network monitoring tools behind an
intuitive, easy to use interface. From the application
developer’s perspective, Enable provides advice on the
correct tuning parameters without requiring knowledge
about how these are obtained. Thus, the selected algorithms
and tools for computing these parameters can be changed
transparently to the application. This frees the distributed
application developer from needing to understand the wide
variety of available monitoring tools.

The Enable service works as follows: An Enable server
is co-located on every system that is serving large data files
to the wide-area network (e.g.: an FTP or HTTP server).
The Enable service is then configured to monitor the
network links to a set of client hosts from the perspective of
that data server. Network monitoring results are stored in a
database, and can be queried by network-aware distributed
components at any time. The Enable service runs the
network tests on some pre-configured time interval (e.g.:
every 6 hours, or whenever a new client connects). The
Enable service API makes it very easy for application or
middleware developers to determine the optimal network
parameters. To take advantage of the Enable tuning service,
distributed applications must be modified to be support
network tuning such as the ability to set the TCP buffer size
[35] or the ability to create and use multiple data streams to
transfer data in parallel.

The network tuning parameters that the Enable service is
initially concentrating on are those required by large bulk
data transfer applications, such as the various “Data Grid”
[5] projects. These include the Particle Physics Data Grid
[28], GriPhyn [10], the Earth Systems Grid [7], and the EU
DataGrid [12]. These projects all require the efficient
transfer of very large scientific data files across the
network. We are not yet addressing the tuning requirements
of other types of applications, such as latency-sensitive
applications.

2.0 Background
TCP uses what it calls the “congestion window” to

determine how many packets can be sent at one time. The
larger the congestion window size, the higher the
throughput. The TCP “slow start” and “congestion
avoidance” algorithms determine the size of the congestion
window [20]. The maximum congestion window is related
to the amount of buffer space that the kernel allocates for
each socket. For each socket, there is a default value for the
buffer size, which can be changed by the program using a
system library call just before opening the socket.

The buffer size must be adjusted for both the send and
receive ends of the socket. To get maximal throughput it is
critical to use optimal TCP send and receive socket buffer
sizes for the link you are using. If the buffers are too small,
the TCP congestion window will never fully open up. If the
buffers are too large, the sender can overrun the receiver,
and the TCP window will shut down. The optimal TCP
window size is the bandwidth delay product for the link.
For more information, see section 5, and [30] and [36].

As network throughput speeds have increased in recent
years, operating systems have gradually changed the
default buffer size from common values of 8 kilobytes to as
much as 64 kilobytes. However, this is still far too small
today’s high speed networks.

For example, several there are several hosts which are
part of the Particle Physics Data Grid [28] with 1000 BT
network interfaces and are connected via an OC12 (622
Mbit/sec) WAN, with typical round-trip network latencies
of about 50 ms. For this type of network, the bandwidth
delay product, and hence the TCP buffer, should be roughly
3.75 MBytes. Using a default TCP buffer of 64 KB, the
maximum utilization of the pipe will only be about 2%
under ideal conditions. Furthermore, 10 Gbit/sec ethernet
and OC192 WAN’s (9.6 Gbit/sec) are just becoming
available, which will require TCP buffer sizes in of roughly
62 MBytes per connection to fully utilize the link!
(However, typical workstations today can, at best, drive the
network at about 1 Gbit/sec, so TCP buffers requirements
of this size are still a couple years away)

As the awareness of the importance of TCP buffer
tuning has increased, several data transfer tools now
include the ability for the user to set this value. For example
the gsiftp [1][11], bbftp [3], SRB [2], HPSS [13], and DPSS
[36] all provide this ability. Additionally, some systems,
such as DPSS and gsiftp, also support the ability for users
to request parallel data streams. The psockets library from
the University of Illinois makes it easy for applications
developers to add parallel sockets to their applications [31].

Figure 1 shows the advantage of using tuned TCP
buffers and parallel streams in the gsiftp program for a 100
MByte data transfers between Lawrence Berkeley National
Lab in Berkeley, CA, and CERN in Geneva, Switzerland.
The round trip time (RTT) on the connection was measured
with ping to be 180 ms and the bottleneck link was
measured with pipechar to be 45 Mbit/sec. With different
tuning parameters, actual measured transfer speeds spanned
more than an order of magnitude. Tuned TCP buffers alone
provided a 9x performance increase, and parallel sockets
alone yielded a 12x performance improvement. Using
parallel streams with tuned TCP buffers we were able to
saturate the network. This combination of techniques
provided a 15x performance increase, which was an

3

additional 40% improvement over just tuned buffers and a
26% improvement over just parallel streams.

The use of parallel streams provides an increase over
optimally tuned single stream TCP because TCP is rather
sensitive to any loss or congestion, and slows down
whenever any loss is detected. Our testing has shown that it
is extremely rare that a TCP stream keep its congestion
window at the optimal bandwidth delay product size for
very long. The use of multiple streams allows one to utilize
a greater fraction of the network. Note that this may be
considered a “rude” thing to do, depending on how
congested the network is and whether or not you are
slowing down others by doing this.

However, as with all systems that provide the ability to
tune the TCP buffer size or the number of parallel streams,
the gsiftp user must set these values by hand, and
determining what values to use is not simple. In general,
using large TCP buffers and parallel streams improves
throughput, so it may be tempting for users or developers to
simply use big buffers and a some parallel streams by
default. However this is not a good idea. Besides wasting
operating system resources, under certain circumstances
overly large TCP buffers or too many parallel streams can
significantly decrease performance, as shown in the Tables
1 and 2.

Table 1 shows the result of tests between two 333 MHz
Sun Ultra 1 hosts running Solaris 2.7, connected by a
gigabit Ethernet LAN with a 1500 byte MTU (maximum
transmission unit). Note that setting the TCP buffer too
large results in a large performance loss. This is because
when the buffers are too large, the sender can overrun the
receiver, and the TCP window will shut down. Not all
operating systems have this behavior (e.g.: Linux does not),
but this reemphasizes that taking the simple approach of
just setting large buffers everywhere is not a good idea.

Table 2 shows the result of tests between a Sun Ultra 1
(333 Mhz) sender and a 450 MHz Pentium II Linux 2.2
receiver also over a OC-12 WAN with a 1500 byte MTU. In
this case we see a large performance penalty using parallel
data streams. This is because a 450 MHz PII processor is
not powerful enough to handle load from the gigabit
network interface card. It requires most of the CPU just to
read one stream, and multiple streams just step on each
other.

The Enable service makes it easy for applications to use
the correct settings and avoid these types of problems.

3.0 Related Work
There are a number of tools to help determine the

optimal TCP parameters for a given network path. For
example, one can run a series of iperf tests with a range
buffer sizes and numbers of parallel data streams to
determine the optimal values. Other tools such as pchar
[26], pipechar [27], and pathrate [6] can be used to
estimate the bandwidth and latency characteristics of the
network, providing information needed to estimate the
optimal TCP buffer size. However, these tools do not
include a client API, and require some level of network
expertise to use. The Enable service can be used to run any
of these tools, collect and store the results, and make the
results available to network-aware applications.

Additionally, there are some other projects that are also
working on eliminating the “wizard gap”. The web100
project is developing a version of the Linux kernel which
will perform dynamic, transparent, automatic TCP tuning
for user level processes. If successful, this has the potential
to eliminate the TCP buffer tuning issue. Fisk and Feng [9],
have also demonstrated promising results with Linux kernel

0

5

10

15

20

25

30

no tuning tuned TCP
buffers

10 parallel
streams,
no tuning

tuned TCP
buffers, 3

parallel
streams

T
h

ro
u

g
h

p
u

t
(M

b
it

s/
se

c)

Figure 1: gsiftp results using tuned TCP buffers
and parallel streams

Table 1 : Sender overruns receiver

TCP Buffer
Size (MB)

Throughput
(Mbits/sec)

0.125 246

1 195

4 105

8 32

Table 2 : Parallel streams

Number of
Streams

Total
Throughput
(Mbits/sec)

1 250

2 100

4 50

4

modifications that autotune the TCP buffer size by
estimating link bottleneck bandwidth for each socket
connection.

The Linux 2.4 kernel also includes an option for TCP
buffer autotuning, and initial testing shows that this helps
quite a bit, but is still not as good as hand tuning (see the
results section below). Unfortunately the developers of this
code are not part of the IETF or any TCP research
community, and any solution they come up with is not
likely to be standardized or adopted very quickly.

Therefore, while there is some hope that automatic TCP
buffer tuning will be built into some operating systems in
the future, it will probably not be built into most operating
systems in the near future.

4.0 The Enable Service
The Enable service has three distinct components. First,

there is the Enable Server, which keeps an up-to-date record
of network parameters between itself and other hosts. The
second component is a protocol for clients to communicate
with the servers. Finally, there is a simple API that makes
querying the Enable Servers trivial for application
developers. A primary design goal for the Enable service
was ease of installation, configuration, and use.

The architecture of Enable is shown in Figure 2. The
simplicity of the design is its strength. An Enable Server is
installed on every data server host, such as an FTP server,
and that Enable server is responsible only for determining
the optimal network parameters between clients and itself.
Other monitoring systems, such as NWS, can be configured
to monitor an arbitrary mesh, or “clique” of hosts. This
design, while very powerful, makes these systems more
complicated to deploy and configure, as it requires software
to be installed on every host in the clique. We have decided
to sacrifice this functionality for ease of deployment and
configuration. In return, we avoid the problems of

centralized coordination and location of the Enable servers,
as they are always co-located with the data server.

The following section describes the functionality and
implementation of the Enable Service.

4.1 Functionality
The Enable Server will periodically run tests between

itself and a number of “client hosts”. These client hosts may
have been read at start-up from a configuration file,
manually added using an API or command-line utility, or
automatically added by monitoring log files from the data
server, such as HTTP or FTP logs. The results of the
network tests will be stored in a database. The selection and
scheduling of tests for each client is dynamically
configurable.

Clients can query the Enable server, which is listening
on a well-known port, for network parameters, also called
“network advice”. The protocol for doing this is XML-RPC
[39], a standard XML-based protocol that performs remote
procedure calls over HTTP. Use of a standard protocol
means that third parties can easily interface with Enable
without using the Enable API or libraries.

There is a simple API that clients can use to query the
Enable Server. For example:

tcp_buffer_size =
EnableGetBufferSize(ftp_hostname)

returns the optimal buffer size between itself and the
FTP server host, and:

net_info =
EnableGetNetInfo(ftp_hostname)

returns the result of all network tests for that network
path. One could also wrap an application in a script that
called the Enable Server, and then set the buffer size via a
command line argument. For example, we have written a
script that automatically finds and sets the “-B” flag (which
sets the TCP receive buffer) for the ncftpget FTP client
program [24].

Currently the Enable server supported network tests are
ping, pipechar, pchar, and iperf, but only ping and pipechar
are run by default.

Since the network tests are run periodically, there is the
possibility that one of the tests will be run during some
unusual network problem, and the results of this test will
not lead to useful results for tuning applications. Therefore,
a trimmed mean, in which the top and bottom 10% of
values are discarded before calculating the mean of the
most recent N values (N is configurable, default is 10), is
reported to the client.

In order to more quickly detect a long-term shift in
network behavior, the mean and standard deviation of the
last N values if also calculated. If three successive values
are farther than 2.5 standard deviations from the mean, it is

Figure 2: Enable Service Architecture

network

Client Host

Data Server
 (e.g. FTP)

results
DB

Enable
Service

Data Server Host

results
DBData Server

 (e.g. FTP)

Enable
Service

Data Server Host

Client Host

Client Host

Network tests are run between
servers and clients (but not
between clients), e.g.: ping,
pipechar, pchar, iperf

Enable data base: contains results
of all tests from the server host to
all its clients.

5

assumed that the network behavior has changed, and the
older N-3 values are discarded. This approach is based on
the assumption that the distribution of test results closely
approximates a normal distribution. More testing is needed
to validate this method for handling data fluctuations.

4.2 Use-case
In this section we illustrate the use of the Enable service

with a simple use-case in a Data Grid application. In the EU
DataGrid project [8], huge volumes of high-energy physics
data must be replicated at several sites around the world.
For example, five sites may wish to create a replica of a
particular set a data that is stored on an data server at CERN
in Geneva, Switzerland. In this project, gsiftp, a data
transfer utility based on FTP that provides TCP buffer
tuning and parallel stream support is used to transfer data
between CERN and each of the other sites.

In this environment, there is a large variability in delay
and bandwidth to each of the replication sites, as shown in
Figure 3. Note that no statically configured TCP buffer size
will work well for all the clients: a buffer of 256 KBytes
will penalize clients A, B and E while a buffer of 1-2
MBytes will penalize A, C, and D (due to effects shown in
Table 1). Data Grid file transfer tools such as gsiftp allow
the users to specify a buffer size. However this solution is
far from optimal, as it requires too much knowledge and
work on the part of the users. Instead, the gsiftp client can
be wrapped in a script that uses the Enable service find the
optimal TCP buffer size for each path.

4.3 Implementation
The Enable server is implemented using the Python

language [29], and uses XML-RPC [39] for client-server
communication. The use of Python with XML-RPC greatly
simplified the development of the server, as Python
includes very powerful built in modules for threads, queues,
databases, regular expressions, configuration file parsing;
almost everything required by this service. XML-RPC was

chosen over SOAP [33] because the current SOAP
implementations are still evolving, and because XML-RPC
is simpler and provides everything we need.

The server uses a thread pool of worker threads for
running the network tests, and a scheduler thread to feed
jobs to the workers. By limiting the number of worker
threads it is easy to limit the amount of load generated by
the testing. There is also a thread for scanning log files (e.g.
FTP logs) for new hosts to monitor. We have developed
client APIs for the python, Java, and C languages.

Enable was designed for the easy addition of new tests,
and each test is realized by a class instance in Enable.
Enable requires only 3 specific methods in the new class be
implemented: “init”, “can_I_run” (is it safe to start this
test), and “run”.

We have tested an Enable server that was configured to
monitor 500 hosts, running each test every 4 hours using 8
worker threads, on a 500 MHz PIII Linux host. While
running tests, the Enable server consumed at most 9% of
the CPU, and used an average of only 130 Kbits/sec of
network bandwidth. (By default, 10 ping tests are run in
parallel, and use 12 Kbits/sec each, and only 1 pipechar can
run at a time, which generates only about 100 Kbits/sec of
network traffic). There are still some scalability issues to
address, as discussed in the section on future work below.

5.0 Results
To test the results of the Enable service, we used iperf as

a client/server pair over four different network paths: LBL
(Berkeley, CA) to CERN (Geneva, Switzerland); LBL to
ISI (Arlington, VA) over SuperNet; LBL to the University
of Kansas (Lawrence, KS), and ANL (Chicago, IL) to SRI
in Menlo Park, CA. Characteristics of these network paths
are summarized in Table 3. iperf was chosen for testing
because it is a simple tool that only performs network
transfers, thus ensuring that we are only measuring network
performance, and not some combination of network, disk,
and application performance.

The results are shown in Table 4. All testing used Linux
2.4 as a sending host. The first row is the results with no
tuning (with the default TCP buffers set to 64 KBytes, and
Linux 2.4 autotuning disabled). The second row shows
results for the Linux 2.4 autotuning option, with autotuning

Figure 3: Data Grid Use Case

45 Mbits/sec
180 ms RTT

buffer = 1000KB

100 Mbits/sec
100 ms RTT

buffer = 1250KB

100 Mbits/sec
13 ms RTT

buffer = 170KB

200 Mbits/sec
20 ms RTT

buffer = 500KB

site A

site B site C site D

site E

100 Mbits/sec
20 ms RTT

buffer =
250KB

Enable
Server

Data Server

Table 3 Test network path characteristics.

Path
Round Trip
Time (RTT)

Bottleneck Link
Bandwidth

LBL-CERN 180 ms 45 Mbits/sec

LBL-ISI East 80 ms 1000 Mbits/sec

LBL-ANL 60 ms 45 Mbits/sec

LBL-KU 50 ms 45 Mbits/sec

6

parameters set to allow up to 4 MByte TCP buffers. The
third row is hand-tuned iperf, meaning that iperf was run
with a range of TCP buffer settings, and the setting which
gave the maximum throughput is shown here. The fourth
row is the result from iperf using the TCP buffer size value
returned by the Enable service, which used ping and
pipechar to estimate the optimal TCP buffer size using the
following standard formula, as described in [35]:

optimal TCP buffer = RTT x (speed of
bottleneck link)

 The Enable server runs a ping test, sending a 1500 byte
packet 5 times. The round trip time is estimated to be the
average time for ping packets 2-5. The Enable server also
runs pipechar with the -bot option, which gives the speed of
the bottleneck hop in the network path between the Enable
server host and the client.

From this table one can see that Linux 2.4 autotuning
helps considerably, but not as much as hand tuning and
Enable tuning. Hand-tuned and Enable-tuned clients both
had nearly identical results. Note that when doing this type
of testing on production networks, the variability of the
results is very high, and these numbers are all just rough
estimates. However the overall improvements from tuning
are quite clear.

6.0 Scalability Issues
We are currently addressing a number of scalability

issues that arise when running active network test tools.

6.1 Aggregation for Measurement Efficiency
In order to scale the Enable service to networks with

many clients, measurements need to be aggregated to avoid
redundant tests for hosts on the same subnet. Aggregation
involves the abstraction of a set of individual pairwise
performance behaviors by a single performance
characteristic. This is a widely used method to improve the
scalability of routing and quality of service schemes.
Unfortunately, there is a fundamental trade-off between
precision and scalability in any such aggregation technique.
The Enable service is implementing several schemes,
discussed below, which may be selected based on the
preferred policy.

The default, and likely most precise, approach is to
measure each pairwise path with a reasonably high rate of

repetition. The approaches that follow attempt to improve
efficiency while maintaining a reasonable level of
precision.

A fairly conservative policy is to measure all clients at
least once to insure precision. This approach allows a
reasonably reliable database of paths and bottlenecks to be
developed. By measuring the pairwise behavior at least
once, some network pathologies can be avoided. For
example, two clients might appear to be on the same subnet,
but one might be directly connected via Ethernet, while the
other is connected via a (relatively slow) dialup server. The
bottleneck in the former case would likely be somewhere in
the wide area network, while the dialup link would be the
constraint in the latter case. Direct measurement would
clearly identify the differing bottleneck locations.

Once the performance of a client/server pair is measured
and a bottleneck link is identified, a table of clients and
bottlenecks can be created. The Enable service then
suppresses additional redundant testing to clients with the
same bottleneck link, and sets a time after which further
pairwise testing might be performed. Tests to one of the
clients behind the bottleneck can still be performed more
frequently to update the state of the constraining link.

An example appears in Table 5. In this example, it can
be seen that the bottleneck for clients 129.237.116.6 and
129.237.127.152 is the same, that is, 164.113.232.202.
Occasional testing to one of 129.237.116.6 or
129.237.127.152, but not both, would be performed to
update the state of the performance constraint.

The Enable service also implements more aggressive,
less precise schemes for aggregation of measurements.

A simple approach is to base the decision on the
bottleneck characteristics. Tools such as pipechar provide

Table 4 . Experimental throughput using four tuning methods.

Tuning Method LBL-CERN LBL-ISI east LBL-ANL LBL-KU

No Tuning 2 Mbits/sec 5 Mbits/sec 5 Mbits/sec 6 Mbits/sec

Linux 2.4 Autotuning 6 Mbits/sec 110 Mbits/sec 12 Mbits/sec 9 Mbits/sec

Hand Tuning 18 Mbits/sec 266 Mbits/sec 17 Mbits/sec 27 Mbits/sec

Enable Tuning 18 Mbits/sec 264 Mbits/sec 16 Mbits/sec 26 Mbits/sec

Table 5 Bottlenecks to Clients

Client Bottleneck Router

129.237.116.6 164.113.232.202

129.237.127.152 164.113.232.202

131.243.2.12 131.243.128.100

131.243.2.91 131.243.128.100

192.195.6.68 144.232.0.171

7

both bottleneck identification and traceroute information
from server to client. If pipechar indicates that a host is
behind a known bottleneck with particular characteristics
(perhaps below a certain bandwidth threshold), any
subsequent clients appearing behind that bottleneck might
receive like treatment. For example, if the bottleneck is
below T1 rates, it might be assumed that all other clients
behind that bottleneck, as determined by traceroute, are
limited by that particular link and that no additional tests
are necessary within a certain time frame.

Another scheme is based upon identification of subnets.
In particular, a client sharing an IP address prefix with
another client already in the table gets similar treatment.
The extent of the client network might be based on routing
advertisements, and determined by querying a Looking
Glass [18] server. This obviously abstracts away the
internal details of the client networks in favor of simplicity.

The choice of aggregation policies can be determined
when the service is configured.

6.2 Measurement Frequency
Sophisticated mechanisms for controlling the test

frequency are also needed to provide scalability.
The Enable service can base these decisions on the

measurements themselves and on the client requests. In
particular, the measurements on a particular path will likely
be correlated in time. The degree of time correlation can be
used to determine the valid period for a particular
measurement, and hence the time at which testing should be
resumed. This can also be combined with the client requests
(specifically the size of transfer requested) to determine if
additional measurements need to be derived from the
transfer itself and the parameters need to be updated
accordingly.

In addition, it is necessary that the service implement an
aging and purging mechanism to remove old clients so that
the database size does not increase monotonically.

6.3 Other Scaling Issues
There are other ways in which scalability can be

improved. For example, the Enable service should have the
ability to monitor the load that all its tests are placing on the
network, to ensure that its total load does not exceed some
predefined threshold. The Enable architecture allows a
single server to implement this in a straightforward fashion.
Future work might investigate ways in which Enable
servers on the same network might coordinate to control
testing loads on shared paths.

7.0 Future Work
A great deal of work remains to be done on the Enable

service. The next scheduled addition is the ability to give
advice on the number of parallel streams to use. Our tests

have shown that the optimal number of streams depends on
a number of factors, including host load / processing power,
and congestion of the network. The Enable server will base
it’s estimate on both the client library’s estimate of the host
CPU speed and the server’s network testing results.

We also plan to do more detailed analysis of the results
of the various network tests, so that we can detect
anomalies and make better TCP window estimates. When
we can accurately identify results that lie outside the realm
of normal measurement error, we might throw out the
value, flag the result as a “temporary anomaly”, generate a
email message to a network administrator, and so on.

Another issue we need to address is that of asymmetric
paths. Internet routing data as shown that as many as 20%
paths are asymmetric, especially very long paths [15]. Any
measurements or tuning based on round-trip time on an
asynchronous path may be meaningless. We want to
explore this issue further.

The other future work that we have planned is to add
support for providing network Quality of Service (QoS)
advice. There are many predictions that soon networks will
support various levels of QoS, and applications will be able
to request a given QoS level depending on application
requirements. We envision that the decision of which QoS
level to request will be even more difficult than determining
the optimal TCP buffer setting, and we believe the Enable
service has the potential to help applications with this
decision.

8.0 Conclusions
Network tuning is critical for applications to fully utilize

high-speed networks, yet determining the proper tuning
parameters can be quite difficult, especially for users who
are not network “wizards”. The Enable service described
here can help applications achieve the same performance as
hand-tuned applications. We believe the most valuable use
of the Enable Service will be in Data Grid applications,
where by installing an Enable Server on each Data Grid file
server, applications can easily maximize their throughput to
or from those servers.

The Enable server and client libraries are available for
download at http://www-didc.lbl.gov/ENABLE/.

9.0 Acknowledgments
This work was supported by the Director, Office of

Science. Office of Advanced Scientific Computing
Research. Mathematical, Information, and Computational
Sciences Division under U.S. Department of Energy. The
LBNL work is under Contract No. DE-AC03-76SF00098,
and the University of Kansas work is under Contract No.
DE-FC03-99ER25399. This is report no. LBNL-47611.

8

10.0 References
[1] Allcock B., Bester, J., Bresnahan, J., Chervenak, A., Fos-

ter, I., Kesselman, C., Meder, S., Nefedova, V., Quesnel,
D., Tuecke, S., “Secure, Efficient Data Transport and Rep-
lica Management for High-Performance Data-Intensive
Computing”, http://www.globus.org/

[2] Baru, C., R. Moore, A. Rajasekar, M. Wan, “The SDSC
Storage Resource Broker,” Proc. CASCON'98 Conference,
Nov.30-Dec.3, 1998, Toronto, Canada.

[3] bbftp: http://ccweb.in2p3.fr/bbftp/

[4] Bethel, W., B. Tierney, J. Lee, D. Gunter, S. Lau, “Using
High-Speed WANs and Network Data Caches to Enable
Remote and Distributed Visualization”, Proceeding of the
IEEE Supercomputing 2000 Conference, Nov. 2000.

[5] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and
Tuecke, S. “The Data Grid: Towards an Architecture for
the Distributed Management and Analysis of Large Scien-
tific Data Sets”. Journal of Network and Computer Appli-
cations, 2000.

[6] Dovrolis, C., Ramanathan P., Moore. D., “What Do Packet-
Dispersion Techniques Measure?”, Proceedings of the
2001 Infocom, Anchorage AK, April 2001.

[7] Earth Systems Grid Project: http://www.scd.ucar.edu/
css/esg/

[8] EU DataGrid Project, http://www.eu-datagrid.org/

[9] Fisk, M., Feng, W., “Dynamic Adjustment of TCP Window
Sizes”, LANL Report: LA-UR 00-3221.

[10] GriPhyN Project: http://www.griphyn.org/

[11] “GridFTP: Universal Data Transfer for the Grid”, White
Paper, http://www.globus.org/datagrid/

[12] Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H.
and Stockinger, K., Data Management in an International
Data Grid Project. In Proc. 1st IEEE/ACM International
Workshop on Grid Computing, 2000, Springer Verlag
Press. Bangalore, India, December 2000.
http://www.cern.ch/grid/

[13] HPSS, “Basics of the High Performance Storage System”,
http://www.sdsc.edu/projects/HPSS/

[14] iperf: http://dast.nlanr.net/Projects/Iperf/index.html

[15] Kalidindi, S., Zekauskas, M., “Surveyor: An Infrastructure
for Internet Performance Measurements”, Proceedings of
INET ‘99, http://www.isoc.org/inet99/4h/4h_2.htm

[16] Lee, J., D. Gunter, B. Tierney, W. Allock, J. Bester, J. Bre-
snahan, S. Tuecke, “Applied Techniques for High Band-
width Data Transfers across Wide Area Networks”, Dec.
2000, http://www-didc.lbl.gov/publications.html

[17] Linux 2.4 autotuning: http://www.linuxhq.com/ker-
nel/v2.4/doc/networking/ip-sysctl.txt.html

[18] Looking Glass: http://www.traceroute.org/

[19] Lui J., and Ferguson, J., “Automatic TCP socket buffer
tuning”, in Supercomputing 2000 Research Gems, Nov.
2000, http://dast.nlanr.net/Features/Autobuf/.

[20] Jacobson, V., “Congestion Avoidance and Control,” Pro-
ceedings of ACM SIGCOMM ‘88, August 1988.

[21] Mathis, M., “Pushing Up Performance for Everyone”, Talk
Slides, http://www.ncne.nlanr.net/news/workshop/1999/
991205/Talks/mathis_991205_Pushing_Up_Performance/

[22] Nettest: “Secure Network Testing and Monitoring”,
http://www-itg.lbl.gov/nettest/

[23] “NetSpec: A Tool for Network Experimentation and Mea-
surement”, Information & Telecommunication Technology
Center, University of Kansas,
http://www.ittc.ukans.edu/netspec/

[24] NCFTP: http://www.ncftp.org/

[25] National Transparent Optical Network (NTON);
http://www.ntonc.org/

[26] pchar: http://www.employees.org/~bmah/Software/pchar/

[27] Jin, G., Yang, G., Crowley, B., Agarwal, D., “Network
Characterization Service”, Proceedings of the IEEE High
Performance Distributed Computing conference, August
2001, http://www-didc.lbl.gov/NCS/

[28] Particle Physics Data Grid: http://www.ppdg.org/

[29] python: http://www.python.org/

[30] Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer
Tuning,” Computer Communication Review, ACM SIG-
COMM, volume 28, number 4, Oct. 1998.

[31] Sivakumar, H, S. Bailey, R. L. Grossman, “PSockets: The
Case for Application-level Network Striping for Data
Intensive Applications using High Speed Wide Area Net-
works”, Proceedings of IEEE Supercomputing 2000, Nov.,
2000. http://www.ncdm.uic.edu/html/psockets.html

[32] Steenkiste, P., “Adaptation Models for Network-Aware
Distributed Computations,” 3rd Workshop on Communi-
cation, Architecture, and Applications for Network-based
Parallel Computing, Orlando, January, 1999.

[33] http://www.w3.org/TR/SOAP/

[34] SuperNet Network Testbed Projects: http://www.ngi-super-
net.org/

[35] Tierney, B. “TCP Tuning Guide for Distributed Applica-
tion on Wide Area Networks”, Usenix ;login, Feb. 2001
(http://www-didc.lbl.gov/tcp-wan.html).

[36] Tierney, B. Lee, J., Crowley, B., Holding, M., Hylton, J.,
Drake, F., “A Network-Aware Distributed Storage Cache
for Data Intensive Environments”, Proceeding of IEEE
High Performance Distributed Computing conference
(HPDC-8), August 1999, LBNL-42896.

[37] “The WEB100 Project, Facilitating Effective and Trans-
parent Network Use”, http://www.web100.org/

[38] Wolski, R., N. Spring, J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing,” Future Generation Comput-
ing Systems, 1999. http://nws.npaci.edu/NWS/.

[39] XML-RPC: http://www.xmlrpc.org/

