
Adaptive Agents for Information Gathering from Multiple, Distributed
Information Sources

Yizhong Fan*
Susan Gauch+

*Motorola, Inc.

+Department of Electrical Engineering and Computer Science
University of Kansas

Lawrence, Kansas 66045
{fanyz@cig.mot.com; sgauch@eecs.ukans.edu}

Abstract

The expansion of information available on the Web has
been explosive. The initial approach of collecting all Web
pages into a single location and indexing them is limited in
its ability to deal with this explosion. Different search
engines provide access to different collections, requiring
users to access multiple information sources to meet their
needs. A scalable approach to information gathering from
multiple sources is described which is based on the use of
distributed information agents to route queries to the most
appropriate sources and fuse information they provide.
This paper describes an intelligent, adaptive Web search
tool that can not only locate relevant information sources
for the user, but also adapt to the frequent changes of the
dynamic Web environment. We employ a multiple agent
architecture to intelligently categorize and broker queries
to remote search engines, learn and continuously update
confidence factors for the quality of results provided by
each search engine, and automatically detect and adapt to
changes in the syntax used by the search engines. Our
work is an extension of ProFusion
(http://www.profusion.com) [Gauch 96b], a Web meta-
search engine developed at the University of Kansas which
can currently broker information from nine remote search
engines.

1. Introduction
The explosive growth of the World Wide, and the
resulting information source overload, has led to a mini-
explosion in World Wide Web search engines. Users do
not have the time to evaluate multiple search engines to
knowledgeably select the best for their uses. Nor do they
have the time to submit each query to multiple search
engines and wade through the resulting flood of good
information, duplicated information, irrelevant
information and missing documents. Similar to other
meta-search engines such as SavvySearch [Dreilinger 96]
and MetaCrawler [Selberg 95], ProFusion sends user
queries to multiple underlying search engines in parallel,
retrieves and merges the resulting urls. The initial version
of ProFusion [Gauch 96a] supported six (now nine)

underlying search engines. It categorized incoming
queries and routed each query to the best search engines
for the identified category based on hard-coded
confidence factors for each search engine in each
category. ProFusion employs an n-gram-based matching
algorithm to identify and remove duplicate urls and
creates one relevance-ranked list from the multiple
sources, normalizing the weights reported by the search
engines, adjusting them with the confidence factors for
the search engine, and then merging the results.

While an effective search tool, ProFusion had three
major problems: 1) the confidence factors were manually
calibrated, a laborious process which was done
infrequently, causing the confidence factors to become
out of date. Adding new search engines was also difficult
due to the need to manually calibrate any new information
source; 2) search engines frequently went down and/or
became slow and ProFusion did not detect this and route
queries to working and/or faster sources of information;
3) the underlying search engines frequently changed the
syntax of their results pages (which are parsed by
ProFusion) and, less frequently, the syntax of the query
string they expected. Updating ProFusion to
accommodate these syntax changes required programmer
input. To address these issues, a second generation
ProFusion was developed which employs adaptive agents
to provide higher-quality, more reliable service.

2. Background
2.1 Adaptive Autonomous Agents
Autonomous agent research is currently an extremely
active research area in artificial intelligence (AI). Agents
represent a shift in emphasis towards “behavior-based AI”
as opposed to traditional “knowledge-based AI”. As
Pattie Maes mentions in [Maes 92], the autonomous agent
approach is appropriate for the class of problems that
require a system to autonomously fulfill several goals in a
dynamic, unpredictable environment. Many of the
architectures for autonomous agents that have been

mailto:{fanyz@cig.mot.com;
mailto:sgauch@eecs.ukans.edu
http://www.profusion.com/

proposed bear characteristics in common. According to
Maes, these shared characteristics are: task-oriented
modules, task-specific solutions, de-emphasized
representations, decentralized control structure, and
learning and development.

Autonomous agents must be able to learn in order to
improve their performance and adapt to the changes.
True adaptive behavior is an inherently dynamic,
continuous process. In complex, realistic environments an
agent cannot afford to learn every fact that can possibly
be learned. Therefore, agents need to first come up with a
selection heuristics to decide what is important to learn,
and what may be ignored. However, an agent designer
needs to decide not only what an agent should learn from
the environment, but also how the agent will learn from
the environment. Several learning methods for
autonomous agents have been proposed, in particular
reinforcement learning [Sutton 91], classifier systems
[Holland 86], model builders [Drescher 91] and mixed
methods [Sutton 90].

2.2 Selected Agent-Oriented Systems for the Web
Although the area of intelligent agents for the World
Wide Web is still in its infancy, like the Web itself it is
undergoing rapid change. In this section, we will
introduce a few adaptive Web browsing or searching
agents that are related to this work. A more complete
summary appears in [Haverkamp 98].

Adaptive browsing agents for the WWW help the user
locate new information of interest to them. As the user
operates a conventional Web browser such as Netscape,
the agent tracks the user’s behavior and recommends
some links for the user to follow. In general, an adaptive
browsing agent program is a continuously running
process that operates in parallel with the user. It follows
links and looks ahead for the information inferred to be of
interest to the user, but the user is the one with absolute
control over the browsing path [Casasola 97]. Therefore,
the agents for browsing are individual assistants which
learn what a particular user’s interests are. Two examples
of such systems are Letizia [Liebermean 95] and, more
recently, WebMate [Chen 98].

Adaptive search agents for the WWW are systems
which not only search for information of interest to their
users, but also continuously change after every search to
improve the quality of their search results. Generally,
these are implemented as multi-agent systems that consist
of information filtering agents and information discovery
agents. The information filtering agents are responsible
for the personalization of the system and for keeping track
of (and adapting to) the interests of the user. The
information discovery agents are responsible for
information resource handling, adapting to those
information resources, finding and fetching the actual
information that the user is interested in. Some

representative systems are Amalthaea [Moukas 96] and
CIG Searchbots [Lesser 98].

Finally, many projects are defining and evaluating
agent-based architectures [Jennings 98], with several
specializing in fusing information from distributed
information sources. These efforts are occurring in the
database world [Arens 96] as well as text and/or
heterogeneous information sources [Bayardo 97].

3. ProFusion’s Multi-Agent Architecture
The new ProFusion multi-agent system consists of four
different types of agents, namely, a dispatch agent, a
search agent, a learning agent, and a guarding agent.
Figure 3-1 shows the control flow and
intercommunication between agents in the ProFusion
system.

The dispatch agent communicates with the user and
then dispatches queries to the search agent and the
learning agent. The search agent interacts with the
underlying search engines and is responsible for reporting
search results, confidence factors, and time-out values of
the underlying search engines to the dispatch agent, as
well as invoking the guarding agent when necessary. The
learning agent is in charge of the learning and
development of the underlying search engines, in
particular adjusting the knowledge bases (confidence
factors). The guarding agent is invoked when a search
engine is down and it is responsible for preventing the
dispatch of future queries to a non-responsive search
engine as well as detecting when the search engine is back
online.

Our multi-agent architecture demonstrates various
desirable agent characteristics [Maes 94] including: task-
oriented modules, task-specific solutions, de-emphasized
representations, decentralized control structure, and
learning and development. The search agent, learning
agent, and guarding agent each consists of a set of
identical competence modules, each of which is
responsible for one of underlying search engines (task-
oriented modules). These competence modules are self-
contained black boxes which handle all the representation,
computation, reasoning, and execution that is necessary
for its particular search engine (task-specific solutions).
Although all six competence modules for each of the
three agents are implemented using identical code, each
uses its own local configuration and knowledge files to
achieve its competence. In other words, there is no central
representation shared by the several modules. Instead,
every task-oriented module represents locally whatever it
needs to operate autonomously. The localized
representations of different modules are not related (de-
emphasized representations). Except for the dispatch
agent, all of the competence modules of the search agent,
learning agent, and guarding agent operate concurrently.
None of the modules is “in control” of other modules

 Dispatch Agent Learning Agent
 Feedback

 get get get
 confidence time-out search
 factor value results

 Search Agent Guarding Agent

 Alta Vista Excite Webcrawler
 competence competence •••••• competence
 module module module

 Query Results

 Query Results Query Results

 Alta Vista Excite Webcrawler
 Search Search •••••• Search
 Engine Engine Engine

Figure 3-1 Agent Intercommunication and Control Flow Diagram

 (decentralized control structure). Because of this
distributed operation, the new system is able to react
flexibly to changes in the environment and make the
corresponding adjustments.

4. ProFusion Agents’ Adaptation Algorithms
A second major difference between the new multi-agent
system and previous ProFusion system is the ability to
adapt. Three adaptation algorithms are implemented for
the new system to solve the three problems described in
Section 1. To review, these are: adapting to changing
search engine performance, adapting to changing search
engine’s response time, and adapting to changing search
engine’s result formats.

4.1 Adapting to Changing Search Engine
Performance
Originally, ProFusion used a hand-built, static knowledge
base which did not reflect the dynamic changing
performance of each of the underlying search engines.

There are two main problems to address with respect to
agent learning: what to learn and how to learn.

1. What to learn?
The heuristic we use here is that the search engines’
performance can be inferred from user feedback. One fact
we can learn is that if a url on the result page is chosen by
the user, generally this implies that the search engine
which contributed this url performed better on the query
than those search engines which contributed urls that were
ignored by the user. In other words, the confidence factor
for the search engine that contributed the selected url
should be higher for the query’s category than search
engines whose contributions are overlooked.

However, not all links followed by the user at any
one time are worth learning. In general, the earlier a link
on the result page is selected, the more relevant the link
is. According to a study of SavvySearch [Dreilinger 96],
on average fewer than 2 links are followed by the user per
search. Therefore, to reduce the amount of computation

and allow each user to contribute equally, our learning
process learns from only first link followed by each user.

2. How to learn?
We use classifier-based learning where the classifiers are
the 13 categories in each search engine’s knowledge
table. The confidence factor associated with each
category is the “strength” of the classifier which
represents how well a particular search engine performs
on queries in a particular category. We use the rationale
that if our confidence factors were perfect, then the top
ranked item on the results page would be the first url
followed by the user. If, instead, the user follows some
lower ranked url, then our confidence factor for the search
engine providing the url was too low compared to the
confidence factors for the search engines that provided
more highly ranked urls. Since the rank order is based on
the weight reported by the search engine multiplied by the
confidence factor (CF), increasing the CF for the
successful search engine will cause future results to be
weighted somewhat higher with respect to the
unsuccessful search engines. In a sense, ProFusion uses
collaborative feedback to continuously calibrate the
various search engines performance, much in the same
way that collaborative feedback can be used to filter Web
pages [Starr 96] or newsgroups [Konstan 97].

The adjustments to the CFs are normalized so that all
values remain within [0, 1], which may cause the CFs for
the unsuccessful search engines to be decreased. The CFs
for search engines which did not contribute any results
above the selected url remain unchanged.
4.2 Adapting to Changing Search Engine’s
Response Time
Another difficulty with the original ProFusion is that it
used a fixed time-out value when retrieving results from
remote search engines. This algorithm is devoted to solve
it. However, different search engines have different
normal response times and for a given search engine, the
response time varies with the time of day and day of the
week. In addition, ProFusion needed to adapt to avoid
temporarily unavailable search engines. Two adaptive
algorithms were employed:

1. Using a dynamically changing time-out value for each
search engine.
Each time a search is performed, the current time-out is
used for the corresponding search engine. If the search

engine fails to respond within that time, the
communication is broken and the main broker doesn’t
wait for any results. After each search, the current time-
out value for the search engine is dynamically re-
computed based on the response times for the search
engine’s previous twenty searches. In this way, the system
will always use a time-out value that reflects the current
responding speed for that search engine, which ultimately
speeds up the overall system’s responding rate. This also
allows us to provide the option of “Choose Fastest 3”
search engines to users who want quick results.

2. Automatically enabling and disabling search engines
If a search engine is detected to be not responding, then
the search engine is disabled, but it will be enabled later
once it is detected to respond again. To disable an
unresponsive search engine, the status of the search
engine is detected after each search. If the total number
of results returned from the 20 most recent searches are 0,
then we assume the corresponding search engine is
currently down. To enable a disabled search engine, the
status of the search engine is checked by the guarding
agent once an hour by running 10 simple queries which
are expected to produce search results. If no results are
retrieved, the agent will sleep for an hour before another
check starts. Otherwise, the search engine will be enabled
immediately. Before each search, the status of each
selected search engine is checked and disabled search
engines will not be used for the search.

4.3 Adapting to New and/or Changing Search
Engine’s Result Formats
The last problem we addressed with this version is that
extraction patterns were hard-coded. A dynamic pattern
extractor was built to interpret the result page formats for
each search engine. This parser identifies the repeated
items on the results page and creates the regular
expression that extracts the individual elements within
each item (e.g., url, weight, title, summary). The patterns
used are extremely general and we can parse the results
pages of all our underlying search engines with just two
basic patterns. Since the results page patterns are stored
in a separate knowledge file, all search agents are
implemented using identical code. Thus, search agents
can be more easily maintained and new search agents
added by updating/writing the knowledge file rather than
writing new code.

 Alta Vista Excite Infoseek Lycos Opentext Webcrawler
medical-
biotech.

1.000 0.515 0.967 0.456 0.602 0.817

computer
science

0.909 0.837 1.000 0.162 0.157 0.341

Table 5-1 Confidence Factors on Two Categories

5. Experiments and Results

In order to examine the effectiveness of the adaptive
multi-agent system implemented for this thesis, several
experiments were run. In particular, we aimed at testing
the efficacy of the three adaptation algorithms described
in the previous section.

5.1 Evaluating Calibration of Search Engine’s
Performance
We ran a two-week long uncontrolled experiment
designed to test the efficacy of the adaptation algorithm
on calibrating search engine performance. Basically, we
focused on whether the resulting confidence factors for
search engines converge and how fast and how well they
converge. In other words, the confidence factors
associated with each category for the different search
engines should vary less and less, converging on a
relatively constant value as more training occurs.
Initially, all the confidence factors in the six underlying
search engines’ knowledge tables were set to be 0.500.
After 13 days, the confidence factors associated with 13
categories in the six knowledge tables converged to a
fairly stable set of values.

During the experiment, a total of 1165, 1011, and 72
queries were classified into category “music”,
“recreation-and-entertainment”, and “business-and-
finance”, respectively. It took each of the above
categories 48, 79, and 54 classified queries respectively
for its associated confidence factors to start to converge.
Therefore, we can see that the actual convergence speed
for each category is about the same since it took similar
numbers of queries for each category’s associated
confidence factor to converge. Furthermore, Table 5-1
shows typical confidence values for two of the thirteen
categories. That is, the confidence factors for three search
engines converge to the high end which often range
between 0.8 and 1.0, and the confidence factors for the
other three search engines converge to the low end,
generally between 0.0 and 0.5. However, there are
variations in which search engines are at the top and
bottom for different categories. For example, for category
category “medical-and-biotechnology”, the top three
search engines are Alta Vista, Infoseek, and WebCrawler,
but for “computer science”, Infoseek, Alta Vista, and
Excite perform the best.
The knowledge tables generated by the experiment were
compared with the knowledge tables which were

previously built manually by evaluating search results on
39 queries per search engine (three queries per category).
Table 5-2 show that the confidence factors obtained by
adaptation generally agree with the ones obtained
manually. Aside from minor numeric differences, the
only major rank-order difference is that Excite performs
the best overall in the manually built version while
Infoseek takes the lead and Excite drops to the 4th position
in adaptation version. This is probably due to the fact that
the hand-built knowledge tables resulted from an
information retrieval class experiment, and the students
who were involved in the experiment used longer queries
than most normal ProFusion users do. Excite happens
toperform better on long queries because it is a concept-
based search engine. Also, when we hand made the
knowledge tables, we considered top-10 precision (the
number of relevant references in the retrieved set of 10),
but our adaptation version is more heavily influenced by
the top ranked documents. Nevertheless, we can conclude
that the knowledge tables built by adaptation correctly
reflect the underlying search engines’ performance on
different query categories. These knowledge tables are
able to change over time if search engines change their
relative quality

5.2 Evaluating Tracking of Search Engine’s
Response Time
We tested the efficacy of the adaptation algorithm on
tracking search engine’s response times for one week.
This study focused on how ProFusion system reacts when
the underlying search engine’s response time and
responding status changes. For each query submission,
the underlying search engine’s response time for the
query and ProFusion’s current time-out value for the
search engine were kept in a log file, and their averages
were calculated thereafter on a weekday and weekend
basis. Typical results are shown in Figure 5-1, which
clearly demonstrates that the agent version of ProFusion
successfully tracks the changing response time during the
day. In addition, we were also able to test the
effectiveness of the automatic enable and disable search
engines feature. During the experiment, ProFusion’s
guarding agent detected that Opentext was down at
10:05:33 am on May 29, 1997. It then immediately
disabled Opentext and didn’t enable it until it was back
on-line at 9:31:36 am on May 30, 1997. During the time
when Opentext was disabled, the guarding agent,

 No. 1 No. 2 No. 3 No. 4 No. 5 No. 6
hand-built Excite Infoseek Alta Vista Webcrawler Opentext Lycos
adaptation Infoseek Alta Vista Webcrawler Excite Lycos Opentext

Table 5-2 Search Engines’ Average Performance Rank Order

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0:0
0:0

0
1:0

0:0
0

2:0
0:0

0
3:0

0:0
0

4:0
0:0

0
5:0

0:0
0

6:0
0:0

0
7:0

0:0
0

8:0
0:0

0
9:0

0:0
0

10
:00

:00
11

:00
:00

12
:00

:00
13

:00
:00

14
:00

:00
15

:00
:00

16
:00

:00
17

:00
:00

18
:00

:00
19

:00
:00

20
:00

:00
21

:00
:00

22
:00

:00
23

:00
:00

time of the day

tim
e

in
 s

ec
on

ds

response time
timeout value

Figure 5-1 Adapting to Alta Vista’s Weekday Response Times
periodically ran queries on the actual Opentext home
page, but got the same “No server available for the search
try again later.” message until the morning of May 30th, at
which time it re-enabled Opentext. Obviously, this
indicates that our system correctly detected and adapted to
the search engines’ status.

5.3 Evaluating Adaptation to Changing Search
Engine Result Formats
We did not pay attention to whether there have actually
been any changes in the underlying search engines during
the first three months after deploying the agent-based
system. However, in this time we have not had to update
a search engine result pattern (whereas, with the previous
system, one pattern required adjustment every few
weeks). However, we did test the parsers to extract
different page formats. For example, Infoseek displays a
result item as the following:
 Agency in Real Estate
 Based in Winnipeg, Manitoba, Canada.
 43%
http://www.pangea.ca/~dtowes/agency.html (Size 5.6K)

To test our parser, we changed the format to:
Agency in Real Estate, (score: 0.43)

 Based in Winnipeg, Manitoba, Canada.
 http://www.pangea.ca/~dtowes/agency.html
 (Size 5.6K)

and:
� Agency in Real Estate

 Based in Winnipeg, Manitoba, Canada.
 [43%]
 http://www.pangea.ca/~dtowes/agency.html
 (Size 5.6K)

In these cases (and others not shown), our parser
succeeded in extracting the item. More major changes
(e.g., result items with no numeric match score) required
manual assistance to update the grammar.

6. Conclusions and Future Work

An adaptive multi-agent architecture for the ProFusion
meta-search engine has been implemented and is in daily
operation. The original ProFusion was re-designed into a
multi-agent system which is easier to extend, maintain,
and distribute. In addition, automatic adaptation
algorithms were included to the original ProFusion to
replace the hard-coded priori knowledge base. With this
adaptive multi-agent architecture, the ProFusion system is
now more competitive in the dynamic Web environment
since it automatically adjusts to changes in its
environment. On the other hand, the adaptive agent
version of ProFusion we have implemented is still a basic
model. Improvements which are left for future work are
still needed. These include targeting ProFusion to search
domain specific sites rather than general purpose search

http://www.pangea.ca/~dtowes/agency.html

engines (see http://sports.profusion.com) for fusion from
sports-related sites and http://waldo.rtec.org for fusion
from education related sites) and more intelligent post-
processing of search queries and results (query expansion
and clustering)

References
[Arens 96] Yigal Arens, Craig A. Knoblock, and Wei-

Min Shen, “Query Reformulation for Dynamic
Information Integration,” Journal of Intelligent
Information Systems, 6 (2/3), pp. 99-130.

[Bayardo 97] Roberto Bayardo, et al, “InfoSleuth: agent-
based semantic integration of information in open
and dynamic environments,” in Proc. of ACM
SIGMOD, May 1997, Tucson, Arizona, pp. 195-206.

[Casasola 97] Edgar Casasola and Susan Gauch,
“Intelligent Information Agents for the World Wide
Web,” Information and Telecommunication
Technology Center, Technical Report ITTC-FY97-
TR-11100-1, 1997.

[Chen 98] Liren Chen and Katia Sycara, “WebMate: a
Personal Agent for WWW Browsing and Searching,”
Autonomous Agents '98.

[Dreilinger 96] Daniel Dreilinger, “Experiences with
Selecting Search Engines using Meta-Search,”
December, 1996.

 [Drescher 91] Gary Drescher, “Made Up Minds: A
constructivist Approach to Artificial Intelligence,”
MIT Press, 1991.

[Gauch 96a] Susan Gauch, Guijun Wang, “Information
Fusion with ProFusion,” WebNet ’96: The First
World Conference of the Web Society, San
Francisco, CA, October 1996.

[Gauch 96b] Susan Gauch, Guijun Wang, Mario Gomez,
“ProFusion: Intelligent Fusion from Multiple,
Distributed Search Engines,” Journal of Universal
Computing, Springer-Verlog, Vol. 2 (9), September
1996.

 [Haverkamp 98] Donna Haverkamp and Susan Gauch,
“Intelligent Information Agents: Review and
Challenges for Distributed Information Sources,”
Journal of the American Society for Information
Science, 49 (4), April 1998, pp. 304-311.

 [Holland 86] John Holland, “Escaping Brittleness: the
Possibilities of General-Purpose Learning
Algorithms applied to Parallel Rule-Based Systems,”
in Machine Learning, an Artificial Intelligence
Approach, Volume II, edited by R.S. Michalski, J.G.
Carbonell and T.M. Mitchell, Morgan Kaufmann,
1986.

[Jennings 98] Nicholas R. Jennings and Michael J.
Wooldridge (Ed.), Agent Technology: Foundations,
Applications, and Markets, Springer-Verlag, 1998.

[Konstan 976] Joseph A. Konstan, Bradley N. Miller,
David Maltz, Jonathan L. Herlocker, Lee R. Gordon,
John Riedl, “GroupLens: applying collaborative

filtering to Usenet news,” Communications of the
ACM, 40 (3), March 1997, pp. 77-87.

[Lesser 98] Victor Lesser, Bryan Horling, Frank Klassner,
Anita Raja, Thomas Wagner, and Shelley XQ.
Zhang, “BIG: A Resource-Bounded Information
Gathering Agent,” To appear in the Proc. of the 15th
National Conf. on Artificial Intelligence (AAAI-98).

[Lieberman 95] Henry Lieberman, “Letizia: An Agent
That Assists Web Browsing,” International Joint
Conference on Artificial Intelligence, Montreal,
August 1995.

[Maes 92] Pattie Maes, “Modeling Adaptive Autonomous
Agents,” Artificial Life Journal, edited by C.
Langton, Vol. 1, No. 1 & 2, pp. 135-162, MIT Press,
1994.

 [Maes 94] Pattie Maes, “Learning Behavior Networks
from Experience,” In: Toward a Practice of
Autonomous Systems, Proceedings of the First
European Conference on Artificial Life, edited by
F.J. Varela & P. Bourgine, MIT Press/Bradford
Books, 1992.

[Moukas 96] Alexandros Moukas, “Amalthaea:
Information Discovery and Filtering using a
Multiagent Evolving Ecosystem,” Proceedings of the
Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology. London, UK,
1996.

[Selberg 95] Erik Selberg, Oren Etzioni, “Multi-Service
Search and Comparison Using the MetaCrawler,”
WWW4 conference, December 1995.

[Starr 96] Brian Starr, Mark Ackerman, Michael Pazzani,
“Do-I-Care: A Collaborative Web Agent,” Proc. of
ACM CHI'96 Conference, Vancouver, BC, April,
1996.

[Sutton 91] Rich Sutton, “Reinforcement Learning
Architectures for Animats,” in From Animals to
Animats, Proceedings of the First International
Conference on Simulation of Adaptive Behavior,
edited by J.-A. Meyer & S. W. Wilson, MIT
Press/Bradford Books, 1991.

[Sutton 90] Rich Sutton, “Integrated Architectures for
Learning, Planning and Reacting based on
Approximating Dynamic Programming,” in
Proceedings of the Seventh International Conference
in Machine Learning, Austin, Texas, June 1990.

http://sports.profusion.com/
http://waldo.rtec.org/

	Adaptive Agents for Information Gathering from Multiple, Distributed Information Sources
	
	+Department of Electrical Engineering and Computer Science

	Abstract
	1. Introduction
	2. Background
	2.1 Adaptive Autonomous Agents
	Autonomous agent research is currently an extreme
	Engine Engine Engine
	Figure 3-1 Agent Intercommunication and Control Flow Diagram
	Figure 5-1 Adapting to Alta Vista’s Weekday Respo
	
	
	
	
	
	
	References

