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Abstract

Exports from Asia to the United States have increased significantly in recent years, causing congestion

at ports on the Pacific coast of the United States. To alleviate this congestion, some groups want to ship

goods by rail directly from ports to inland intermodal traffic terminals. However, for such an effort

to succeed, shippers must have “visibility” into the rail shipment. In this research we seek to provide

visibility into shipments through optimal placement of sensors and network elements. We formally define

the notion of visibility and then develop models to identify and locate network elements and containers

on trains. Two models have been developed—one for use when all network elements are on the train

and the other for use when some are located trackside—to determine sensor placements and network

design. The models show that, under reasonable assumptions, sensor deployment reduces the overall

system cost; therefore, sensor networks make sense for monitoring cargo. These models also enable the

study of system trade-offs while achieving the desired level of visibility into cargo shipments.
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I. INTRODUCTION

IN recent years exports from Asia to the USA have increased significantly, resulting in bottlenecks

at certain key ports on the West Coast. Some groups involved in freight transportation have sought

to get around the bottlenecks at Pacific Coast ports by using inland ports. To this end, they seek to

offload cargo from ships directly onto trains destined for an inland intermodal traffic terminal. Once at

the terminal, the freight can be processed by Customs and then distributed within the United States.

For the success of the scheme described above, shippers need to gain “visibility” into freight and

cargo movement, particularly in intermodal ‘black holes,” where freight changes hands across modes

and carriers. Visibility will only be possible through real-time integration of sensor data with carrier,

shipper, broker, importer, exporter, and forwarder information. Unfortunately, different complex systems

are currently used in the container transport chain [1].

To achieve the objective of providing visibility into cargo shipments, trains, railcars, and containers

will be equipped with sensors and devices that communicate sensor status, sensor ID, and train location.

Breaking a sensor on a container would generate a signal that is communicated to a reader over a

network and then to train personnel and/or to an operations center as an alarm message in near real-

time. In addition, location information will be sent with the alarm so that the geographic location of

the breakage event can be identified. Shipment information from a Trade Data Exchange (TDE) [2] will

be included in the alarm so that the the rail car, container, and its contents can be identified. While

sensors will present a non-negligible initial cost, their use could allow the sensing system to demonstrate

shipment integrity. It is also expected that the use of such systems may help reduce the risk of cargo

theft, which the Federal Bureau of Investigation (FBI) estimates costs the U.S. economy $15–$30 billion

dollars every year [3].

The objective of the research presented here is to develop models to find the “best” system design

including communications network and locations for sensors in a rail-based sensor network, as well as

to guide the design of future cargo monitoring systems. These models can also be applied to determine

system trade-offs when monitoring cargo in motion.

A. Visibility

In this section we provide a formal definition of visibility. Events are recorded in the cargo monitoring

sensor network whenever an attempt is made to open, close, or tamper with a seal. The seal also generates

other events during normal operations. Informally the integrity of a cargo shipment has state. These states

will include locking the container and closing the seal, opening the seal and then the container, and
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ν(j, t, τ , TRj , Pε, Ej , Pα, Fj) =





1 if (Pr(t ≤ τ) ≥ TRj AND Pε ≥ Ej AND Pα ≤ Fj)

0 otherwise
(1)

tampering with the seal. A critical event is generated whenever the integrity of a shipment changes states.

Examples of critical events include messages indicating that seals are opened, closed, or tampered with.

Messages are also generated during normal operation of the cargo monitoring system. These messages

denote maintenance events and examples include alerts indicating an armed seal or a seal warning of a

low battery. The set of messages will also include items such as a seal incorrectly reporting a tamper

event, incorrectly being detected as missing, or an incorrect low battery report. This latter group of

events will be considered false alarms. Important aspects of visibility include the likelihood of a sensor

detecting an event at a container, the time taken by a sensor to notify decision makers of an event, and

the likelihood of a false alarm from a sensor. We define visibility as a binary variable that relates the

probability of detecting an event at a container with the time taken to report that event to the decision

maker and the probability of false alarm for that container. More formally we define a container j, as

visible if ν(j, t, τ , TRj , Pε, Ej , Pα, Fj) = 1, where the visibility function is defined as in equation (1)

and the parameters of the function are:

• An event can be detected at container j, and made known to the decision maker with a probability

Pε, that is greater than or equal to some threshold, Ej .

• The time t, taken to notify the decision maker of an event, must lie within an interval of length τ ,

with probability greater than or equal to some threshold TRj , i.e., Pr(t ≤ τ) ≥ TRj .

• The probability of false alarm at container j, Pα, must be kept less than or equal to some threshold

Fj .

The system design determines Pε, Pα, and Pr(t < τ). The combination of Pε, Pα and Pr(t < τ) can be

mapped into a visibility space.

B. Problem Statement

In this section we introduce a generalized problem statement. We may be able to achieve visibility into

a cargo shipment on a train by placing sensors, readers, and backhaul communication devices on every

container on a train (as is done today for high-value cargo, e.g., hazardous material), or by deploying

sensors on every container on the train and closely placing readers with backhaul communications
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capabilities at the trackside. However, the cost and system trade-offs for such approaches are unknown.

As a result this research is aimed at answering the following system design question:

Given a collection of containers and a collection of end-to-end information subsystems

(including sensors, seals, readers, and networks); how do we design an end-to-end system

that provides “visibility” (meeting given Ej , Fj , and TRj constraints for all containers) while

minimizing overall system cost?

In our specific rail scenario, our overall design question spawns the following issues:

1) How to map and analyze a “system” description of containers on railcars, train scenario—including

train speed and trips per time unit—and associated communications infrastructure into the visibility

space? Thus an appropriate system model needs to be developed.

2) How to assign a cost to every position in the visibility space?

3) How to use 1) and 2) to find minimum “cost” systems for providing visibility into a rail shipment?

4) How to use 1) and 2) to determine system trade-offs when seeking visibility into rail shipments?

C. Metrics

Metrics are needed to compare the “goodness” of two or more proposed system designs. In this section

we present our metrics, which include:

• System operational cost. This metric is computed per trip, and it consists of each sensor’s false

alarm cost, the cost of deploying the sensors, repeaters and readers, network, and the backhaul

communications devices, as well as the cost of reporting events. The costs of missing an event at a

given container as well as the costs of a communications failure at a sensor are also components of

this metric.

• Visibility metric. We declare that container j is visible if the sensor placed on j meets all the

system designer-imposed constraints for visibility of the container.

The rest of this paper is laid out as follows: in Section II we present a scheme for identifying containers,

sensors, and the locations that they occupy on trains. Section III introduces the parameters and variables

in our model for analysis and design of communications systems for cargo monitoring. We describe

our models for optimal sensor and communications system assignment in Section IV. Section V presents

arguments for validating our models as well as discussing model growth. In Section VI we discuss related

work. Concluding remarks are provided in Section VII.
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II. A SYSTEM DESCRIPTION FOR IDENTIFYING AND LOCATING SYSTEM ELEMENTS

Notation is needed to identify sensors and containers in models to analyze and design communications

systems and networks for monitoring cargo in motion along trusted corridors. In this section we present

one scheme for identifying containers and the locations that they occupy on a train. We focus first on

container identification and then turn our attention to indexing container and sensor locations on trains.

A. Identification

The containers that are to be placed on the train typically come in a variety of lengths ranging between

20 ft. (6.1 m) and 53 ft. (16.2 m). We propose sorting the loads by length and numbering each container

with a unique index j, that is sufficient for accessing the container’s properties, such as its length, weight,

value, and other intrinsic attributes of the container that might be necessary to solve the sensor placement

problem and identify system trade-offs. For example, suppose we have two 20 ft. (6.1 m) containers,

two 40 ft. (12.2 m) containers, and one 45 ft. (13.7 m) container, then j ranges from 1 . . . 5, with each

container bearing a unique j index. The container types can then be identified by using a function that

returns the length of a container when given an integer j, i.e., the container lengths could be stored in a

vector L, so that Lj indicates the length of container j.

Every sensor, repeater, and backhaul communications device that is to be placed on the containers is

identified with a unique index, i. This index, which starts off with value 1, is sufficient for reading the

parameters, e.g, transmission range, associated with each communications element.

B. Location

Each railcar consists of one or more permanently attached units, where a unit is a frame that can

support one or more slots [4]. Each unit is uniquely identified by an integer k, where k starts off with

value 1. The index k = 0 is reserved for the locomotive.1

Review of the Association of American Railroads Loading Capabilities Guide [5] indicates that railcars

used for intermodal transportation have at most two positions (layers) for carrying intermodal loads.

Within each position, slots are available for holding containers. For example, [5] indicates that two 20 ft.

containers can be placed in the bottom position and a 40 ft. container is placed over both 20 ft. containers

in the top position, as shown in Fig. 1.

1The issue of having to deal with several locomotives on a train is not part of this model. If more than one locomotive is

present, all the locomotives are treated as one with respect to the goals of this system.
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Fig. 1. Unit with Two 20 ft. Containers and One 40 ft. Container

In general, the first available slot in a unit, i.e., the first slot in the bottom position is marked with

index q = 0. All other slots in the bottom position have even q indices. The first slot in the top position

is always indexed with index q = 1, while all other slots in the top position will have odd indices.2

From above we see that the integer triple (j, q, k) is sufficient for identifying the unit and slot occupied

by container j. For instance, using the five container example presented in Section II-A, the integer triple

(1, 0, 2) implies that container 1 is found in slot 0 of unit 2. Similarly, (5, 1, 1) implies that container

5 is found in slot 1 of unit 1.

In this section we presented an orthogonal indexing system for containers on a train. This numbering

scheme is based on assigning containers with a unique integer j, that is used to identify containers and

to retrieve additional container attributes, an index k, that is used to identify railcars, and an integer q,

used to identify slots on a railcar.

III. PARAMETERS AND VARIABLES

In this section we use the container identification and location scheme from Section II to introduce

the parameters and variables in two models for computing the system cost metric for a cargo monitoring

system. Parameters will be given to the system designer for a specific placement problem, while the

optimization process will assign appropriate values to the variables such that the objective is attained

while satisfying any design constraints. To facilitate the presentation of the variables and parameters,

throughout this section we use the five container example shown in Fig. 2. The rest of this section is laid

out as follows: Section III-A introduces the parameters for the models. For the sake of completeness there

is a very brief discussion on container assignment parameters in Section III-A1 while the communications

system parameters are presented in Section III-A2. Section III-A3 uses probability distributions to deter-

2A review of the Association of American Railways Loading Guide [5] indicates that we will rarely have more than one

container in the top position.
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Fig. 2. Two Well-cars with Load Indices Identified

mine the likelihood of timely decision maker notification. The variables for the models are introduced in

Section III-B.

Suppose that we have a train with a locomotive and two well-cars as shown in Figure 2. Furthermore,

assume that we have two 20 ft. containers, two 40 ft. containers, and one 45 ft. container. Recall that

each container (load) is uniquely identified by an integer j, while the railcars are uniquely identified by

an index k. Assume that the containers are indexed3 such that j = 1 refers to the most expensive 20 ft.

container, while j = 2 refers to the least expensive 20 ft. container, j = 3 and j = 4 refer to the 40 ft.

containers. Finally, j = 5 is used to denote the 45 ft. container.

A. Parameters

This section introduces the parameters for models. First, we discuss the container assignment pa-

rameters, which indicate valid container assignments as well as information on container and railcar

attributes. Next, we discuss the communications systems assignment parameters. Finally, we present

some distributions to model the time taken to notify decision makers of events on a train.

1) Container Assignment Parameters: This section introduces the container assignment parameters for

our model. The length of the kth unit is represented by Uk and the length of the jth container is given

by Lj . The binary parameter yjqk indicates a given container’s location on the train, and it is defined as:

yjqk =





1 if jth container is assigned to slot q in unit k,

0 otherwise

2) Communications Systems Assignment Parameters: In this section we introduce parameters that

are necessary to address the system design, including the sensor assignment portion of the container

assignment and sensor assignment problem.

3Note that we are not required to index the containers by value. The indices could be randomly assigned as long as each

number is used exactly once.
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Suppose each of the containers has a value vj , Furthermore, suppose that each time the decision maker

receives notification of an event at a container within a time interval τj we get a savings σj (Note that

σj can be greater than vj .). These savings can be viewed as the value of a detected event to the decision

maker. We assume that all the repeaters and backhaul communications devices on the train are arranged

in a linear topology.

Backhaul communications devices in our system are used to transmit event reports from the train to

the decision maker (possibly via an operations center). We use the binary parameter Bqk to indicate when

a backhaul communications device is placed in slot q of unit k. This parameter is defined as:

Bqk =





1
if backhaul communications device is placed

in slot q of unit k,

0 otherwise

In our system, sensors have a limited transmission range, and they are interrogated by more powerful

radios called “repeaters/readers.” The repeaters can communicate with each other over longer distances

to get event reports to a backhaul communications device. We use the binary parameter Aqk to indicate

when a repeater is placed in slot q of unit k. This parameter is defined as:

Aqk =





1 if repeater is placed in slot q of unit k,

0 otherwise

There are other communications systems assignment parameters used in the optimal placement model.

These parameters are shown as follows: Table I presents train-related parameters, sensor and communica-

tions equipment-related parameters are listed in Table II, Table III presents message-related parameters,

communications system probability parameters are defined in Table IV, and all the cost parameters in

the model are listed in Table V.

3) Distributions for Decision Maker Notification: In parallel with the modeling work being described

here we have also built a Transportation Security Sensor Network (TSSN) for monitoring rail cargo in

motion [6]. In the context of this work we envision that sensors will be placed on intermodal containers

that are being shipped by rail, as shown in Fig. 3.

The sensors on the containers will allow the TSSN to detect events at shipping containers and report

those that are important to decision makers using commercial networks. Experiments have been carried

out with the prototype TSSN and empirical data has been collected [6], [7]. The empirical data will be

used to enhance the models described here.
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TABLE I

TRAIN-RELATED PARAMETERS

Parameter Comment

D Rail trip duration in hours.

dT Length of rail journey in kilometers.

ẋ Train-speed in kilometers per hour.

tf Number of trains passing a given trackside reader per hour.

tL Number of trips per locomotive per hour.

ζ Probability of event occurrence during a trip.

TABLE II

SENSOR AND COMMUNICATIONS EQUIPMENT-RELATED PARAMETERS

Parameter Comment

LTA Useful lifetime of trackside reader in hours.

LTc Useful lifetime of cellular communications device in hours.

LTs Useful lifetime of satellite communications device in hours.

FP2 Weight of sensor cost allocated to improving event detection.

FP3 Weight of sensor cost allocated to improving timely reporting or successful commu-

nications in train-mounted and trackside cases, respectively.

FP4 Weight of sensor cost allocated to reducing false alarms.

FP5 Weight of sensor cost allocated to improving sensor transmission range.

FP6 Weight of sensor cost allocated to reducing sensor read time.

TABLE III

MESSAGE-RELATED PARAMETERS

Parameter Comment

l Average message length in bytes between sensor and operations center.

λi Message generation rate for sensor i.

RTTc Communications round trip time in seconds from train to operations center over the

cellular link.

RTTs Communications round trip time in seconds from train to operations center over the

satellite link.

One of the critical metrics for TSSN performance—and also for visibility—is the time between event

occurrence and decision maker notification. Due to the proposed definition for visibility, we need to
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TABLE IV

COMMUNICATIONS SYSTEM PROBABILITY PARAMETERS

Parameter Comment

Pr(H) Probability of successfully transmitting a message from the train to the operations

center over the cellular link.

Pr(I) Probability of successfully transmitting a message from the train to the operations

center over the satellite link.

TABLE V

COST PARAMETERS

Parameter Comment

Cα Cost of one false alarm.

Cs Cost of sending one byte by satellite.

Cc Cost of sending one byte by cellular.

CA Acquisition cost of one reader/repeater.

CF Fixed cost of acquiring a sensor.

CBC Acquisition cost of one backhaul communications device (cellular).

CBS Acquisition cost of one backhaul communications device (satellite).

CHL Installation cost of one sensor/seal.

CAL Installation cost of one reader/repeater.

CAD Installation cost of one trackside reader.

CBD Installation cost of one trackside cellular communications device.

Fig. 3. Container Seal
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Fig. 4. Sequence Diagram with Messages Involved in Decision Maker Notification

create models that can predict the probability that a decision maker will be notified within a specified

time interval. Please refer to Fig. 4 for a sequence diagram showing the messages that are exchanged

within the TSSN to notify a decision maker.

In Fig. 4 the electronic seal, Mobile Rail Network (MRN) SensorNode, and MRN AlarmProcessor are

on the train. The VNOC AlarmProcessor and Virtual Network Operating Center (VNOC) AlarmReporting

services run on a server off the train. Finally, the Trade Data Exchange (TDE) is outside the shipper’s

network. As shown in Fig. 4 there are five epochs between an event taking place and decision maker

notification on a mobile phone.

We would like to generate a distribution that measures the likelihood of timely decision maker

notification of an event occurrence. It is reasonable to assume statistical independence of the epochs

shown in Fig. 4 because the time taken to break a seal and generate an alert message is independent

of the time taken to transfer a message from the MRN to the VNOC. Thus, the probability distribution

of the time from event occurrence to decision maker notification is the convolution of the probability

distributions for the five epochs listed above.

Based on our experiments we have calculated means and variances for the time taken to transmit a

message in each of the epochs listed above. These statistics are summarized in Table VI.

The time epochs shown in Fig. 4 are random. We assume that these random variables can be modeled
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TABLE VI

STATISTICS FOR TIME TAKEN IN SECONDS BETWEEN SEAL EVENTS AND DECISION MAKER NOTIFICATION FOR

SHORT-HAUL TRIAL AND EMPIRICAL DATA

Epoch Description Min. Max. Mean Median Std. Dev.

1 Event occurrence to alert generation 0.81 8.75 2.70 2.13 1.86

2 Alert generation to MRN AlarmProcessor

Service

0.01 0.08 0.02 0.01 0.01

3 One-way delay from MRN AlarmProcessor

to VNOC AlarmProcessor

0.45 2.90 1.89 1.94 0.62

4 MRN Alarm arrival at VNOC to AlarmRe-

porting Service

0.01 3.01 0.17 0.05 0.32

5 Elapsed time from VNOC AlarmReporting

Service to mobile phone

5.2 58.7 11.9 9.8 7.4

TABLE VII

ESTIMATED GAMMA DISTRIBUTION PARAMETERS FOR TIME TAKEN BETWEEN SEAL EVENTS AND DECISION MAKER

NOTIFICATION

Epoch Description α̂ θ̂

1 Event occurrence to alert generation 4.01 0.60

2 + 4 Alert generation to MRN AlarmProcessor Service and

MRN Alarm arrival at VNOC to AlarmReporting Service

1.13 0.13

3 One-way delay from MRN AlarmProcessor to VNOC Alarm-

Processor

13.95 0.14

5 Elapsed time from VNOC AlarmReporting Service to mobile

phone

10.44 1.00

using Gamma4 probability density functions. The parameters for the distributions are estimated from

the collected data and shown in Table VII, where α̂ and θ̂ represent the shape and scale parameters

respectively. Using the results from [8] we see that there is 99.9 % chance that a decision maker is

notified of an event within 4 minutes.

4This distribution assumption is based on the positive values and the asymmetric histograms of the observed data. However,

this assumption is based on a limited number of samples and additional experiments are needed to validate this claim.
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TABLE VIII

TRAIN-MOUNTED DEPLOYMENT VARIABLES

Variable Comment

α Probability of false alarm for sensor.

ε Probability of event detection by sensor.

ϕ Probability of successful end-to-end communications from sensor to operations center.

CH Acquisition cost of one sensor/seal.

Γk Cost of false alarms per railcar.

∆k Cost of missed detection per railcar.

Ξk Cost of reporting an event outside of desired deadline for container visibility.

Λk Cost of transmitting messages generated by all the sensors on a railcar.

Ψk Cost of acquiring and installing sensors on each railcar.

Υk Cost of acquiring and installing repeaters on each railcar.

Ωk Cost of acquiring and installing one backhaul communications device on each railcar.

B. Communications Systems Assignment Variables

This section presents the variables used to indicate communications system assignment in our models.

These variables are either integers or positive real numbers. Appropriate values will be assigned to these

variables such that the best objective function value is attained. First, we present the variable that is

common to the trackside and train-mounted cases. Next, we present the other variables that are unique

to each case. In general, whenever a variable or parameter is indexed by q = 0, and k = 0 it is assumed

that we will be referring to the locomotive. For example, A00 = 1 and B00 = 1 will indicate that a reader

and a backhaul communications device, respectively, are located on the locomotive. In our discussion, a

“sensor” refers to the combination of sensing and communication devices, e.g., the seal shown in Fig. 3.

The binary variable Sijqk indicates when sensor i is assigned to the jth container. This variable is defined

as:

Sijqk =





1 if sensor i is attached to jth container in slot q of unit k,

0 otherwise

1) Train-Mounted Deployment Variables: There are other variables, in addition to Sijqk, used for the

case when the sensors and related communications infrastructure are on the train. Table VIII presents

these variables and equations (2)–(9) show how the variables are computed.
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Γk = Cα

∑

∀ i,j,q

αSijqkyjqk (2)

∆k = ζ

(∑

∀ j,q

σjyjqk −
∑

∀ i,j,q

εσjSijqkyjqk

)
(3)

Ξk = ζ

(∑

∀ j,q

σjyjqk −
∑

∀ i,j,q

ϕσjSijqkyjqk

)
(4)

Λk = D(Pr(H)Cc + Pr(I)(1− Pr(H))Cs)l
∑

∀ i,j,q

λiSijqkyjqk (5)

CH = CF + εFP2 + ϕFP3 + (1− α)FP4 (6)

Ψk =
∑

∀ i,j,q

(CH + CHL)Sijqkyjqk (7)

Υk =
∑

∀ q

(CA + CAL)Aqk (8)

Ωk =
(

CBC

tL × LTc
+

CBS

tL × LTs

) ∑

∀ q

Bqk (9)

The cost of false alarms per rail car is given by equation (2). This is given by the cost of each false

alarm times the sum of probabilities of false alarm for all the sensors that are currently used. Assume

that if an event is detected and reported in a timely manner, then there is no loss to the decision maker. In

addition, assume that the probability of an event occurring at a container is independent of the probability

of a sensor detecting that event or reporting it in a timely manner. Equation (3) computes the cost of a

missed detection per railcar, which is given by the probability of event occurrence times the savings that

are lost if an event is not detected. Similarly, equation (4) computes the cost of reporting an event outside

the required deadline for container visibility. This cost is given by the probability of event occurrence

times the savings that are lost if the event is not reported in a timely manner. Equation (5) computes

the cost of transmitting messages generated by all the sensors on a railcar. This cost is given by the rail

trip duration times the mean cost of transmitting one byte times the sum of message generation rates for

all sensors in use. The unit cost of acquiring a sensor for the train-mounted deployment is captured in

equation (6). This cost is given by adding up the fixed cost of acquiring each sensor, plus the cost of

getting a sensor with specified probabilities of detection, timely reporting, and false alarm. The cost of

acquiring and installing the sensors on a railcar is given by substituting equation (6) into (7). Repeater

acquisition and installation costs per unit are computed with equation (8). Finally, equation (9) calculates

the cost of acquiring and installing a backhaul device on each rail car. We assume that the backhaul
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TABLE IX

TRACKSIDE DEPLOYMENT VARIABLES

Variable Comment

α Probability of false alarm for sensor.

ε Probability of event detection by sensor.

ρ Probability of successful communications between trackside reader and sensor.

β Rate of change of probability of unsuccessful communications with train speed.

η Probability of unsuccessful communications between trackside reader and sensor

when both are stationary.

θ Real number that specifies the minimum sensor transmission range in meters.

tRead Real number that states the maximum time in seconds available to read the sensors.

CH Acquisition cost of one sensor/seal.

Γk Cost of false alarms per railcar.

∆k Cost of missed detection per railcar.

Ξk Cost of unsuccessful communications between a trackside reader and the sensors on

a railcar.

Λk Cost for transmitting messages generated by all the sensors on a rail car.

Ψk Cost of acquiring and installing sensors on each railcar.

devices are reused for several trips, thus we amortize this cost over the expected number of trips in the

device’s lifetime.

2) Trackside Deployment Variables: The variable Sijqk, which is defined above, is also used when the

sensors are mounted on the train and the readers are at the trackside. The rest of the variables for the

trackside deployment case are defined in Table IX and equations (2), (3), (7), and (10)–(13) show how

the variables are computed.

ρ = 1− (η + ẋβ) (10)

CH = CF + εFP2 + ρFP3 + (1− α)FP4 + θFP5 +
FP6

tRead
(11)

Ξk = ζ

(∑

∀ j,q

σjyjqk −
∑

∀ i,j,q

ρσjSijqkyjqk

)
(12)

Λk =
(

dT

ẋ

)
Ccl

∑

∀ i,j,q

λiSijqkyjqk (13)
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Suppose that we are given that the probability, ρ, of successful communications from a sensor to a

reader varies with train speed according to equation (10). In the trackside case the optimization process

will determine appropriate values for α, ε, ρ (including η and β), θ, and tRead. The cost of acquiring one

sensor for the trackside case is given by equation (11). The cost, Ψk, of acquiring and installing sensors

on each railcar in the trackside case is given by substituting equation (11) into (7). The values for the Γk

and ∆k variables are computed using equations (2) and (3), respectively. As we did above we assume

that the likelihood of an event occurring at a container is independent of a sensor detecting that event or

the timely notification of that event. In this case we assume that events will get to the operations center

in a timely manner if the sensors are read by a trackside reader. The cost of trackside reader failing to

read a sensor is given by equation (12). This cost is given by the probability of an event times the cost

of a trackside reader failing to read a sensor. Equation (13) computes the cost of transmitting all the

messages generated by all the sensors on a railcar. This cost is given by the rail trip duration times the

cost of transmitting one message times the message generation rates for all the sensors on a railcar.

IV. MODEL DESCRIPTIONS

In this section we present two models for computing the cost metric for a system that uses sensors

for cargo monitoring. The models that we develop here are robust enough to handle the following sensor

deployment cases:

• A deployment of sensors and a backhaul communications device on the train. This case can be

further divided into two subcases:

– The sensors cannot engage in multihop communications. Instead, they can only communicate

with the repeaters or the backhaul communications device. We call this the hierarchical deploy-

ment case.

– The sensors can engage in multihop communications to forward messages to the backhaul

communications device. As a result, this case does not contain any dedicated repeaters. We call

this the ad hoc deployment case.

• A deployment of sensors to the train, while the readers and backhaul communications devices are

at the trackside. This case can also be split into two subcases for when the train speed is fixed and

when it is allowed to vary.

The first model, which is presented in Section IV-A, is used when the backhaul communication devices

and repeaters are placed on a train. Section IV-B presents the second model, which is used when the train’s

speed is fixed and backhaul communication devices and readers are placed trackside. Section IV-C shows
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how the trackside model can be applied in the case where the train speed is allowed to vary. The models

discussed in this section are presented using the following general optimization problem formulation:

minimize fo(x; p)

subject to fi(x; p) ≤ bi, i = 1, . . . , m

The objective function, fo(x; p), will be the system cost metric function, which depends on a vector of

variables, x, and a vector of parameters, p. The constraints of the optimization problem are defined by

the m fi equations. When necessary we provide comments relevant to the equations inline.

In Section IV-D we show how the hierarchical sensor deployment can be mapped to the ad hoc sensor

deployment case. Our analysis in the next four subsections assumes that the containers on the train are

already placed in fixed locations on the train. Thus, Section IV-E briefly mentions an optimization-based

approach which can be used to place containers on trains.

A. Train-mounted Deployment

In this subsection we present a model to minimize the system cost metric of a cargo monitoring system

when the sensors and backhaul communications device are on the train. First, we present the objective

function and then we discuss the model’s constraints, which define valid container and sensor placements.

1) Objective Function: Equation (14) computes the system cost metric over the duration of a trip:

minimize
∑

k

(Γk + ∆k + Ξk + Λk + Ψk + Υk + Ωk) (14)

The objective function sums the cost of false alarms over a rail journey, cost of missing a detection at a

given container, the cost of a sensor failing to communicate in a timely manner, the cost of communica-

tions across a rail journey, the material and installation costs of sensors and repeaters, respectively. Finally,

the last term in the sum computes the material and installation cost of the backhaul communications

device.

2) Constraints: The following constraints must be valid for any given optimal deployment of sensors

to containers on a train.

subject to
∑

∀ j,q,k

Sijqk ≤ 1 ∀ i (15)

∑

∀ i,q,k

Sijqk ≤ 1 ∀ j (16)
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Certain attributes (for example, transmission range, detection probability, and false alarm rate) of the

sensors, repeaters, and backhaul communications devices are unique to the network elements. Thus, if a

given sensor, for example, is placed on a certain container that same sensor cannot be used on another

container. Equation (15) ensures that each sensor cannot be simultaneously assigned to more than one

container, while equation (16) ensures that each container has no more than one sensor.

ϕ = Pr(t ≤ τ) (17)
∑

∀ i,q,k

ϕSijqkyjqk ≥ TRj ∀ j (18)

In equation (17) we use the probability distribution defined in Section III-A3 to look up the probability

of timely notification. Equation (18) enforces one of the visibility requirements for container j. In (18)

we require that t, the time taken by a sensor to notify a decision maker of an event, must lie within an

interval τ , with probability exceeding some threshold TRj .

∑

∀ i,q,k

εSijqkyjqk ≥ Ej ∀ j (19)

Equation (19) requires that events are detected at container j with a probability ε, that exceeds some

threshold Ej .

∑

∀ i,q,k

αSijqkyjqk ≤ Fj ∀ j (20)

Equation (20) enforces the third component of the visibility requirement. In (20) we require that the

probability of false alarm at container j, α must be kept lower than some threshold Fj . Equations (18)–

(20) ensure that only solutions in the visibility space are considered.

B. Trackside Deployment with Fixed Train Speeds

In this subsection we present a model to minimize the system cost metric of a cargo monitoring system

when the backhaul communications devices and readers are trackside. In this case the train’s speed is

fixed; however, the probability of successful communications from the sensors to the readers varies with

train speed. We intend to study the system trade-offs that exist when monitoring rail-borne cargo. This

second model facilitates exploration of the trade-off space by capturing the metrics of a different cargo

monitoring methodology, which can be compared with the metrics of the first model. As was done above,

the objective function is presented first followed by a discussion of the constraints for this model.
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1) Objective Function: Equation (21) computes the system cost metric for a trackside-based freight

monitoring system over the duration of a trip:

minimize

∑

k

(Γk + ∆k + Ξk + Λk + Ψk) +

((
CA + CAD

tf × LTA
+

CBC + CBD

tf × LTc

)
×

⌊
dT

dA

⌋)
(21)

The sum in the objective function captures the cost of false alarms over a rail journey, the savings

that are lost when a sensor either fails to detect that an event has occurred at a container, the cost of

communications across a rail journey, and the material and installation costs of sensors. Finally, the last

term captures the cost of setting up trackside readers along a given route.

2) Constraints: Equation (15) holds in this case because no sensor can be placed simultaneously on

more than one container. We also require that each container can have no more than one sensor, thus,

equation (16) is also valid in this case. In addition, equations (19) and (20) are visibility requirements,

thus they are also applicable in this case. Finally, the following constraints must also apply:

subject to

2θ − ẋtRead ≥ 0 (22)

Equation (22) says that the minimum time that a sensor is within range of a trackside reader must be

greater than the time taken to read a sensor. This constraint allows the train’s speed to be limited such

that the trackside reader has enough time to read the sensor.

2θ − ẋMaxtRead ≤ 0 (23)

Equation (23) states that sensor view time must be less than or equal to the read time if the train is

passing the trackside reader at the maximum speed at which a sensor can be read.

dA ≤ 2ẋρ
(τ − RTT)

(2− ρ)
(24)

The trackside readers are spaced according to equation (24) so that the expected time for end-to-end

communications from any sensor plus the time taken to cover the distance between trackside readers

must be less than the message reporting deadline.

C. Trackside Deployment with Variable Train Speeds

In this subsection we present a model to minimize the system cost metric of a cargo monitoring system

when the backhaul communications devices and readers are trackside and the train speed can be varied
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based on sensor parameters. In this case we are optimizing over sensor locations, train speed, and reader

separations. This change can be accommodated using equation (21) as the objective function.

Constraints: Equations (15), (16), (19), (20), (22), and (24) also hold in this case for the same reasons

advanced in Section IV-B2. On the other hand equation (23) does not hold since the train speed is not

fixed.

D. Extending the Sensor Placement Models

The presence of repeaters in any system deployment for cargo monitoring adds one more layer of

complexity. In Section IV we claimed that a deployment where the sensors can only communicate with

repeaters or a backhaul communications device on the train is related to a deployment in which the

sensors can engage in multihop communications to forward messages to the backhaul communications

device. In this section we discuss how to map the hierarchical deployment case to an ad hoc deployment.

In demonstrating this mapping we make the following assumptions:

• The sensor deployment in the hierarchical case is dense enough to have, in the ad hoc case, a fully

connected network of sensors with multihop communications capabilities.

• The visibility constraints are the same in all cases and these constraints determine which containers

get sensors.

• The probabilities of detection, timely reporting, and false alarm for the sensors do not change as we

go from the hierarchical to the ad hoc deployment case.

• Each case contains the same number of backhaul communications devices.

• The ad hoc deployment case does not contain any repeaters.

Suppose that CMHier and CMAD represent the cost metrics for the hierarchical and ad hoc deployment

cases respectively. Observe that no changes need to be made to the objective function because it simply

returns a cost metric when presented with sensor and communications infrastructure locations and their

characteristics.

Definitions: Let CH and CHL represent the acquisition and installation costs for the sensors used in the

hierarchical case, while C ′
H and C ′

HL represent the acquisition and installation costs for the sensors used in

the ad hoc case. Let JHier and JAD represent the sets of containers assigned sensors in the hierarchical and

ad hoc deployment cases respectively. Let IHier and IAD represent the sets of communications devices

(sensors, repeaters, and backhaul communications) which are assigned in the hierarchical and ad hoc

deployment cases, respectively. Furthermore, define SHier and SAD as the set of sensors in the hierarchical

and ad hoc deployment cases. BHier and BAD and RHier and RAD are the sets of backhaul communications
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Fig. 5. Example Train With Sensors Assigned

(BXX) and repeaters (RXX) for the hierarchical and ad hoc deployment cases. Then:

IHier = SHier ∪RHier ∪BHier

IAD = SAD ∪RAD ∪BAD

We claim that, given the assumptions above, the hierarchical sensor deployment case can be mapped

to the ad hoc case. This mapping is based on the assumption that sensors which were previously assigned

in the hierarchical deployment case are not moved to other containers in the ad hoc case. This mapping

is shown in equation (25).

CMAD = CMHier + Cα

∑

i∈ IAD\IHier
j ∈ JAD\JHier

∀ q,k

αSijqkyjqk − ζ
∑

i∈ IAD\IHier
j ∈ JAD\JHier

∀ q,k

σjSijqkyjqk

(
ε + ϕ

)

+ D(Pr(H)Cc + Pr(I)(1− Pr(H))Cs)l
∑

i∈ IAD\IHier
j ∈ JAD\JHier

∀ q,k

λiSijqkyjqk

+
∑

i∈ IAD
j ∈ JAD
∀ q,k

(C ′
H + C ′

HL)Sijqk −
∑

i∈ IHier
j ∈ JHier
∀ q,k

(CH + CHL)Sijqk −
∑

∀ q,k

(CA + CAL)Aqk

(25)

When proving our claim we will use the example train shown in Fig. 5 to illustrate the proof. The

train consists of a locomotive and four well cars, with each car bearing two containers. The savings

resulting from detecting an event at a container is 8,000 units. The following components are deployed

in hierarchical mode for cargo monitoring: a backhaul communications device, a repeater, and seven

sensors. The small rectangles on each of the containers in Fig. 5 indicate sensor assignments, while a

repeater is on container 6 on railcar 3, and the backhaul communications device is in the locomotive.

Finally, assume that we are given the parameter values shown in Table X.

Proof:

1) If we map the hierarchical sensor deployment case to the ad hoc deployment case, then we must

get rid of any repeaters in the deployment (Recall that the ad hoc deployment case does not contain

any repeaters.). Therefore, RAD = ∅, and any repeaters in the hierarchical case are replaced with

sensors in the ad hoc case.
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TABLE X

PARAMETERS USED IN VALIDATING MODELS

Parameter Value Comments

D 20 Rail trip duration in hours.

ζ 0.2 Probability of event occurrence during trip.

Fj 3× 10−3 Visibility requirement for probability of false alarm at a container.

Ej 0.85 Visibility requirement for probability of detection at a container.

TRj 0.85 Visibility requirement for making a timely event report to decision makers.

α 1× 10−3 Probability of false alarm for each sensor.

ε 0.90 Probability of detection for each sensor.

ϕ 0.90 Probability of timely event reporting for each sensor.

l 690 Message length in bytes.

λi 9.0× 10−2 Message generation rate for a sensor. This results in 90 messages every 1,000 hours.

Pr(H) 0.90 Probability of train being in cellular coverage.

Pr(I) 0.90 Probability of train being in satellite coverage.

Cc 5× 10−5 Cost in units of sending one byte over a cellular link.

Cs 2× 10−4 Cost in units of sending one byte over a satellite link.

CHL + CH 46 Cost to acquire and install each sensor in the hierarchical case.

C′HL + C′H 51 Cost to acquire and install each sensor in the ad hoc case.

CA + CAL 101 Cost to acquire and install each repeater.

Cα 20000 Cost per false alarm.

14.6 Amortized cost of backhaul communications device.

Using Fig. 5 as an example we assume, without loss of generality, that sensor 1 is assigned

to container 1, sensor 2 is assigned to container 2, etc. Then, in the hierarchical deployment

RHier = {6}, i.e., the repeater with id code 6 is assigned, while RAD = ∅ in the ad hoc case. In

addition, assume that in both the hierarchical and ad hoc cases BHier = BAD = {9}.

2) Since we assume that the same visibility conditions hold in both cases, then we can conclude that

the ad hoc deployment case contains at least as many sensors as the hierarchical case, with equality

being achieved if the hierarchical case did not contain any repeaters. This condition is captured

below:

|SHier|+ |RHier| ≤ |SAD| (26)

Referring to Fig. 5, the set of sensors assigned in the hierarchical case is SHier = {1, 2, 3, 4, 5, 7,

8}. The set of sensors assigned in the ad hoc case is SAD = {1, 2, 3, 4, 5, 7, 8, 10}. Thus, we see
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that the claim from equation (26) holds with equality.

3) The set of containers that that has sensors in the ad hoc deployment case, but which was not

assigned sensors in the hierarchical case is defined as:

JAD \ JHier (27)

Observe that this set is empty if no additional containers are assigned sensors in the ad hoc

deployment case. Similarly the set of communications devices used in the ad hoc deployment

case, but not in the hierarchical case is defined as:

IAD \ IHier (28)

As with the containers, this set is empty if no additional communications devices are used in the

ad hoc deployment case. Note that, since we assume that both cases contain just one backhaul

communications device while the ad hoc deployment case contains no repeaters, then equation (28)

simplifies to:

SAD \ SHier (29)

Using Fig. 5 as an example, then JAD\JHier = {6} since container 6 is the only container that has a

sensor assigned in the ad hoc deployment case, but which did not have a sensor in the hierarchical

deployment. Similarly, SAD \ SHier = {10}, since sensor 10 is the new sensor assigned in the ad

hoc case.

4) From equations (14) and (21) we observe that false alarm and communications costs increase as

additional sensors are added, while the savings lost due to missed detections and late event reports

decrease. The cost metric of the ad hoc case is the cost metric of the hierarchical case plus the false

alarm costs of any new sensors minus the costs of missed detection and untimely reporting due to

the new sensors plus any savings from detecting and reporting an event in the desired notification

window. To this sum we add the increase in communications costs for the new sensors as well

as the installation and material costs for the new sensors. Finally, we subtract the material and

installation costs of the repeaters and sensors that were included in the hierarchical deployment.

This mapping is summarized in equation (25).

Returning to the example train shown in Fig. 5 let us assume that we are given the parameter values

in Table X and that all the containers on the train have low values. Then, the cost metric for the

initial hierarchical deployment is 14,178.4 units while the cost metric for the ad hoc deployment

is 6,983.5 units. The following costs can be computed for the additional sensor in the ad hoc
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deployment: false alarm cost for the additional sensor is 20 units, additional savings in event

detection due to the new sensors is 3,600 units, savings resulting from decision maker notification

in a timely manner is 3,600 units, the additional communication cost is approximately 0.11 units,

cost of acquiring and installing the eight new sensors is 408 units, and the amount gained by not

deploying a reader is 101 units. It can be shown that 6983.5 = 14178.4 + 20 − (3600 + 3600)

+0.11 + 408− 322− 101, which confirms equation (25).

E. Container Placement

For the purposes of this research we assume that containers have been placed in fixed locations on the

train such that the aerodynamic efficiency of the train is maximized. We assume that container placement

is done using Lai et al.’s [4] method. Please consult [4] for details on the objective function and constraints

for this container placement methodology.

V. MODEL GROWTH AND VALIDATION

In this section we review model validation and the growth of the sensor placement problem with train

size. Model validation seeks to determine if a given mathematical abstraction matches a real system.

This task is generally hard to accomplish. Kleindorfer et al. [9] provides a more complete discussion

on validation of models, especially simulation models. By validating our models we can have greater

confidence in the optimization results reported by our models.

A. Model Growth and Computational Complexity

In this subsection we examine the growth of our models with different problem inputs. The optimization

models described in Section IV have been solved using the Bonmin [10] solver running on the NEOS

optimization server [11], [12]. Both models have been run for trains with 7, 14, 20, 27, and 33 containers

(this translates to 3, 6, 9, 12, and 15 units respectively). The computational complexity of our models

depends on the number of variables and constraints, with the problem becoming more complex with

more variables and constraints. The growth in the number of variables and constraints is summarized in

Fig. 6. From Fig. 6a it is clear that the train-mounted and trackside models have about the same number

of variables. Note that the trackside model with fixed train speeds has additional variables, e.g., sensor

transmission range and sensor read time, that are not found in the train mounted model. From Fig. 6b

we see that the number of constraints in all three models increases gradually with train size. This growth
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Fig. 6. Problem Growth in Number of Variables and Constraints

is partially due to the fact that there is one instance of equation (15) for every sensor and one instance

each of equations (16), (19), and (20) for each container. The rapid growth in the number of variables

motivates us to consider using heuristics to assign sensors and related communications infrastructure. In

our future work we specify a heuristic for assigning sensors to containers in fixed positions on a train. In

the rest of this paper and our future work we only consider the train-mounted and the trackside model

with fixed train speeds.

B. Model Validation

In this subsection we construct arguments for validating the train-mounted and trackside models by

studying trends in the behavior of the optimization models at the boundaries of the visibility space. For

the sake of discussion we will use an example train to illustrate our claims. We use the parameter values

from Tables X and XI in our discussion.

1) Train-Mounted Model: Suppose we have a train with 15 units and 33 containers; where 20 of the

containers have a low value, 9 have a medium value, and 4 have a high value. If the train-mounted model

achieves an optimal result, it returns the cost metric at the optimal solution as well as the final sensor

assignment.

Assume that there are initially enough sensors for each of the containers. Suppose that the visibility

conditions on the containers are relaxed such that: TRj = 0.0, Ej = 0.0, and Fj = 1.0, for some of

the containers. In addition assume that there are exactly enough sensors available to satisfy the visibility

constraints. Fig. 7a shows the slot and unit locations when only 12 of the 33 containers are visible.
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TABLE XI

ADDITIONAL PARAMETERS USED IN VALIDATING MODELS

Parameter Value Comments

σj 200, 000 Average savings resulting from event detection at high value container. Reference

[13] indicates that in 2006 the average container entering the US had a value of

66,000.

σj 100, 000 Average savings resulting from event detection at medium value container.

σj 20, 000 Average savings resulting from event detection at low value container.
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(b) Visibility vs. Cost

Fig. 7. Train-mounted Model: Sensor Locations and Cost Metric Variation with Number of Visible Containers

Fig. 7b shows the relationship between the number of visible containers and the cost metric. As we have

fewer sensors the cost metric per trip increases as more containers are not “protected” by any sensors.

As the rail trip duration is increased the cost metric per trip should increase as there is greater

opportunity for messages to be transmitted. Fig. 8a shows that as the rail trip duration is increased

the system cost metric also increases. Fig. 8b shows the relationship between the probability of event

occurrence and the system cost metric. As events become more likely, the system cost metric per trip

also increases. Figs. 7b and 8 show that the train-mounted model exhibits correct trends.

2) Trackside Model with Fixed Speeds: As stated in Sections III-B and IV-B the outputs of the trackside

model include the system cost metric, sensor locations, maximum sensor read time, and minimum sensor
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Fig. 8. Train-mounted Model: Trip Duration and Pr[Event Occurrence] versus Cost Metric
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Fig. 9. Trackside Model: Reporting Deadline versus Reader Separation and Cost Metric

transmission range. In addition we also compute reader separation given the reporting deadline and

probability of successful communications from a sensor to a trackside reader.

For the trackside model the cost metric for the entire system will increase, as was the case for the

train-mounted model, as fewer sensors are available to be used on the train. This is because more and

more of the containers are not protected by sensors. Assume that we have the same train configuration

mentioned in Section V-B1, with each container being assigned a sensor while the readers are at the

trackside.
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Fig. 10. Trackside Model: Train Speed versus Cost Metric and Sensor Transmission Range

Fig. 9 shows the effect of changes in the expected reporting deadline on reader separation and system

cost metric when the train speed is fixed at 45 km/h. Fig. 9a shows the relationship between reporting

deadline and reader separation. As the reporting deadline is reduced the trackside readers need to be

placed closer together. Since more readers are required, the cost metric increases significantly as the

reporting deadline is shortened. Fig. 9b shows the change in cost metric with the reporting deadline.

Fig. 10a shows that the cost metric decreases as the train speed is increased. As the train speed is

increased the train can cover the distance between its origin and destination in a shorter time implying

that the trackside readers can be placed further apart while satisfying the reporting deadlines. Finally,

suppose that the system specifications state that each sensor is read in at most 3 s. As the train speed

is increased equation (22) shows that the sensor transmission range must increase so that each sensor

can be read in the specified interval. Fig. 10b shows that the sensor transmission range increases as

expected. This relatively simple example shows that equation (22) correctly captures system operation

for the trackside model.

In this section we have shown that our optimization models exhibit correct trends matching a real

system. Therefore, we can have confidence in our results.

VI. RELATED WORK

In this section we provide an overview of solution techniques for mixed integer linear and mixed

integer nonlinearly constrained problems; two classes of optimization problems that we have encountered

in our modeling work.
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A. Mixed Integer Linear Programs

A mixed integer linear program (MILP) is an optimization problem where the objective function and

all of the constraints are linear functions, while some of the variables are integer-constrained [14]. Darby-

Dowman and Wilson [15] state that integer program models are generally harder to solve than linear

program models of the same size, while Bonami et al. [16] state that MILP are NP-Hard problems.

Mixed integer linear programs are either solved by branch-and-bound, branch-and-cut, or branch-and-price

methods.

When solving integer programs a tree of the entire solution space is created, the root node of the tree

is the entire state space, S, while all other nodes represent smaller partitions of the solution space. With

branch-and-bound the branching is done by selecting a variable x with a fractional value k and then

creating two sub-problems with the additional constraints x ≤ k and the other x ≥ k + 1. This is called

the Linear Programming Relaxation (LPR) At a selected node of the tree the integer program LPR is

solved. If there is no feasible solution to the problem at that node, the node is eliminated. Otherwise if

the solution of the linear programming relaxation is integer feasible and the objective function solution is

less than the previous upper bound then the objective function value for this subproblem is set as the new

upper bound for the objective function. Branching continues until the best integer feasible solution found

is shown to be optimal. With branch-and-cut at each stage in the development of the solution space tree

an equation called the cut is added to the set of constraints when carrying out the linear programming

relaxation. The cut has the added requirement that it must not exclude any integer solutions at that

node or any of its descendants; however, it may exclude integer solutions for preceding nodes. With

branch-and-price an auxiliary problem is solved to identify which columns should be added to the linear

programming relaxation. The relaxation is optimized and more columns are identified for addition to the

LPR [15].

B. Mixed Integer Nonlinear Programs

A mixed integer nonlinear program (MINLP) is an optimization problem with some integer-constrained

and continuous variables as well as nonlinear constraints and/or objective function. If all the variables are

continuous, then we have a nonlinear program. MINLPs are a superset of mixed integer linear programs,

where the reduction to MILP takes place when all of the functions in the optimization problem are linear

[14].

Mixed Integer nonlinear programs are worse than NP-Hard [14]. However convex MINLPs can be

solved using the following techniques: branch-and-bound, extended cutting plane, outer approximation,
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generalized Benders decomposition, LP/NLP-based branch-and-bound, and branch-and-cut [14], [16].

This section provides an overview of each of these techniques. More detailed explanations of the solution

methods are found in [16]. Branch-and-bound for MINLPs is done just as for mixed integer linear

programs, except that a nonlinear program is now solved at each node of the tree [14]. The extended

cutting plane method constructs a mixed integer linear program relaxation and solves it. If the solution

is not feasible, then a cutting plane of the most violated constraint at the optimal solution is added to

the relaxation and the problem is re-solved and the process is repeated [14], [16]. Outer approximation

(OA) is based on the observation that a MINLP is equivalent to a MILP of finite size. The MILP can be

generated by linearizing both the objective and constraint functions. The linearized function is then solved

and the integer solution from this step is used as a bound on the optimal value of the NLP. This process

is repeated until the upper and lower bounds of the optimal value of the non-linear program are within a

specified tolerance [16]. Generalized Benders decomposition is very similar to the outer approximation

method except that it has only one continuous variable [14]. LP/NLP-based branch-and-bound is an

extension of the OA method. It uses LPR to find an integer solution in a branch-and-bound tree and then

solves the nonlinear program to get upper bounds on the solution [14], [16]. Branch-and-cut has been

adapted to solving MINLPs [14]. This method is similar to branch-and-bound, but it adds cutting planes

at each node of the tree to strengthen the NLP relaxation [14].

VII. CONCLUSION

This paper presented two models that can be used to find the optimal cost metric for a rail-borne cargo

monitoring system. We presented the parameters and variables for our models. The models presented

in Section IV are suitable to enable quantitative evaluation of the trade-offs that can be made when

monitoring rail-borne cargo. In addition this paper has also shown that we a hierarchical deployment of

sensors can be mapped to an ad hoc sensor assignment, given that the sensors assigned in the initial case

are not moved to other containers. Finally, this paper has shown that there is a large number of variables

involved in the models for sensor assignment. As a result, future work will determine if heuristics can

yield near-optimal performance for sensor assignment.
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