
A Taxonomy of Sensor Network Architectures

D.T. Fokum, V.S. Frost, P. Mani, G.J. Minden,
J.B. Evans, and S. Muralidharan

ITTC-FY2009-TR-41420-08

July 2008

Copyright © 2008:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Technical Report

The University of Kansas



A Taxonomy of Sensor Network Architectures

D.T. Fokum a,∗,2, V.S. Frost a,∗,2, P. Mani a,2, G.J. Minden a,2,

J.B. Evans a, S. Muralidharan b,1,2

aUniversity of Kansas, Information and Telecommunication Technology Center,

Lawrence, Kansas 66049, USA

bCerner Corporation, Kansas City, Missouri USA

Abstract

Several architectures have been proposed for sensor networks. However, there is a

lack of an over-arching sensor network architecture. Here we present some of the

issues associated with existing sensor network architectures. Next we present several

sensor network architectures, including one suitable for a multi-owner environment,

classifying these architectures in terms of function and compositional elements. We

also highlight each architecture’s key attributes in order to identify their common-

alities. In making our arguments we refer to the concept of invariants, which are

components of a system that cannot be changed without losing backward compat-

ibility [1]. Our results show that while several sensor network architectures exist,

each with different attributes, these architectures share several invariants.

Key words:

Sensor Networks; Taxonomy; Sensor network architecture; Invariant

Preprint submitted to Elsevier 15 May 2008



1 Introduction

Sensor networks are an emerging application of advanced wireless networking

and computer technology. Sensor networks typically consist of a set of small

resource-constrained computers, called sensor nodes that collect data from

their environments and then transmit that data on to a base station, or other

central site. In general a wireless sensor node (WSN) would consist of a sensing

device, e.g., an electronic nose, a temperature sensor or a motion detector, a

small microprocessor, a radio and a limited energy source. It should be noted

that when a sensor node is connected to just one sensor, the sensor node is

sometimes called a sensor, which causes some confusion [2]. Base stations,

unlike wireless sensor nodes, will generally have radios, but will have available

more computing resources and a larger energy source. The base stations will

generally aggregate information from the nodes and then pass them on to

other computers for presentation [2].

Sensor networks have been identified as being key technology in monitoring

and detecting threats. These systems face critical technical challenges in pro-

viding a security and management architecture in scenarios representative of

a large class of applications. The design and architecture of sensor networks

∗ Corresponding author.
Email addresses: fokumdt@ittc.ku.edu (D.T. Fokum), frost@ittc.ku.edu

(V.S. Frost), mpradeep@ittc.ku.edu (P. Mani), gminden@ittc.ku.edu (G.J.

Minden), evans@ittc.ku.edu (J.B. Evans), satyam@ittc.ku.edu (S.

Muralidharan).
1 Present address: Cerner Corporation, Kansas City, MO USA
2 This work was supported in part by Oak Ridge National Laboratory under award

number 4000043403 as part of the ORNL-SensorNet Initiative.

2



has been studied in [3, 4] and [5], while deployment experiences are recorded

in [5–10]. However, a taxonomy for sensor network architectures still needs to

be defined. This paper makes some steps to address this deficiency; here we

classify sensor network architectures in terms of function and compositional

elements. In addition we show that these sensor network architectures all pos-

sess invariants [1], which are system elements that cannot be changed without

losing backward compatibility.

The rest of this paper is laid out as follows: In section 2 we define the at-

tributes used in our architecture comparison. Section 2 also lists some of the

issues with existing sensor networks. Section 3 presents several sensor net-

work architectures, and highlights their attributes and invariants. Included in

section 3 is a discussion of a new sensor network architecture focused on a

multi-owner environment. Section 4 summarizes the findings from Section 3.

We conclude the paper in section 5.

2 Related Work and Context for Discussion

An architecture decomposes a system into component parts. Additionally an

architecture may also define structures and functions (interfaces) to its com-

ponents. At its lowest level an architecture may define protocols and state

machines for communications [11].

A new method for designing and evaluating networking protocols and archi-

tectures is proposed in [1]. It states that all systems contain invariants, i.e.,

components that cannot be changed without losing backward compatibility;

for example IP addresses are an invariant in the current Internet. Explicit

3



invariants result from deliberate decisions to limit the flexibility of a system,

while implicit invariants are the unplanned result of deliberate design deci-

sions. A set of invariants may be evaluated using the following questions:

(1) Is the set complete?

(2) Is the set independent?

With individual invariants we also have to ask these questions:

(1) Does an invariant affect many components or just a few?

(2) Does an invariant affect many aspects of an architecture or just a few?

(3) Does an invariant affect hardware or just software?

(4) Does an invariant have security or privacy implications?

(5) Does an invariant have internal flexibility?

Evaluation on these characteristics should help us determine the quality of the

given architecture [1].

Some of the attributes that we will be using to characterize sensor networks

include whether or not the architecture is agent-based, delay-tolerant or fault-

tolerant. Whether or not the architecture supports data fusion, Internet con-

nectivity, location encoding, metadata communications, or has support for

security mechanisms. Finally, we will also evaluate architectures to see if they

are context-aware, based on standards, or have tiered architectures. We define

each of these attributes below to give some context to this discussion.

Agent-Based Incorporate an agent (piece of software) that travels between

the nodes of an architecture to perform some task autonomously, while

fulfilling the goals of the program that dispatched the agent [12].

Delay-Tolerant Used in instances where an end-to-end path may not be as-

4



sumed to exist between two nodes. Delay-tolerant networks can be concep-

tually partitioned into two parts, with a gateway serving as a link between

both parts. The gateway node is assumed to have significant storage ca-

pabilities so that data may be buffered when an end-to-end path does not

exist, and transmitted when a path becomes available [13].

Fault-tolerant Fault tolerant architectures are those which have the ability

to deal with system faults such that service failures do not result [14] and

[15].

Data Fusion Architectures that support data fusion have certain intermedi-

ate nodes within the architecture that process data from several sensors into

a more concise representation, which is then retransmitted to the sink [16].

Internet Connectivity Support This attribute is used to characterize ar-

chitectures that contain a node, or several nodes, that can be used to bridge

the connection between the global Internet and the sensor network. Justifi-

cation and examples for this architecture may be found in [6, 13,17].

Location Encoding Sensor networks supporting this attribute have the abil-

ity to store sensor readings with location information so that the two may

be correlated.

Metadata communications In sensor networks that support this attribute

data is read and stored on sensors, and the sensors forward messages (meta-

data) describing the data that was read to the sink. The metadata is then

used to query the sensor network [18].

Security Support Sensor networks supporting this attribute should provide

the following services: data confidentiality (data should not be leaked to

unauthorized users), data authentication (proof that a message was actually

sent by a given user), data integrity (proof that a given message is the same

as that which was sent), and data freshness (ensures that data is recent,

5



and could not be a replayed copy of a message) [19].

Context awareness Context-aware sensor networks are cognizant of their

environments. Applications running in context-aware sensor networks would

typically have sensors for collecting context information, a set of rules on

how to act given context, as well as a set of actuators to carry out actions

[20].

Standards Based This attribute is used to describe sensor networks that

are based on some standard, such as the Open Geospatial Consortium’s

(OGC) Sensor Web Enablement standards, or the IEEE 1451 standard. It is

important to identify this attribute, as we shall see in the following sections

that sensor networks have evolved largely free of any standardization.

Tiered architectures These architectures consist of different layers of sensor

nodes (as in [5, 9, 10,18,21,22]) or different layers of programs (as in [23]).

In this paper we will be classifying sensor networks in terms of the above

attributes, and determining which of those attributes are invariants. How-

ever, others (References [24] and [25]) have suggested alternate approaches for

evaluating sensor network architectures. In particular [24] states that sensor

network architectures be evaluated in terms of the design objectives for sen-

sor nodes. Reference [24] suggests the following architectural design attributes

for sensor nodes: small physical size, low power consumption, concurrency-

intensive operation (that is acquisition of sensor data, local processing of data

followed by simultaneous transmission of data from several nodes to a base

station), diversity in design and usage, robust operation, security and pri-

vacy, compatibility, and flexibility. Tilak et al. [25] suggest another approach

for classifying sensor networks. They state that sensor networks may also

be classified by communication models, data delivery models, and network

6



dynamics models. In making their arguments, Tilak et al. suggest that en-

ergy efficiency/system lifetime, latency, accuracy, fault-tolerance and scala-

bility metrics be used to evaluate sensor network protocols. Next they state

that sensor networks may be viewed in terms of infrastructure, network pro-

tocol and application/observer interests. Communication in a sensor network

may be classified as either application or infrastructure. Application commu-

nications arise from informing the observer about sensed data. Application

communications may be further characterized as either cooperative or non-

cooperative. With cooperative communications, sensors cooperate with other

sensors to fulfill the observer’s need; non-cooperative sensors do not cooperate.

Infrastructure communications on the other hand relate to the communica-

tions needed to configure, maintain and optimize the network. Sensor networks

can be classified by application requirements for data delivery as continuous,

event-driven, observer-initiated or hybrid. Sensor networks can also be clas-

sified in terms of network dynamics models. They may be classified either as

static sensor networks or dynamic sensor networks. In this paper we do not

classify sensor networks by any of these criteria. Instead we classify sensor

networks by the attributes defined above, while indicating which of these at-

tributes are invariants for the given architecture. In the next subsection we

begin our examination by identifying some of the problems with current sensor

network architectures.

2.1 Issues with Existing Architectures

The reader may conclude that only a limited number of sensor network ar-

chitectures exist. In fact [26] distinguishes just two possible architectures for

7



wireless sensor and actuator networks — namely semi-automated and auto-

mated architectures. In semi-automated architectures a central base station

coordinates the activities of the sensor nodes and the actuator nodes. In au-

tomated architectures a base station is not required, instead the actuators

are programmed to operate and respond to events autonomously. Rather than

limit ourselves only to two types of sensor network architectures, we contend

that the number of sensor network architectures is much richer. In this paper

we present a number of these architectures classified by function. Prior to pre-

senting these architectures we argue that there is no overall sensor network

architecture.

References [11] and [27] observe that sensor networking research is fragmented.

In particular [11] argues that research into sensor networks is impeded by “the

lack of an overall sensor network architecture” and not by any specific technical

challenge. Moreover, it argues that while complex systems have been built

by ignoring boundaries between subsystems, a sensor network architecture

should be developed to allow others to extend previous work. This sensor

network architecture will be akin to the architecture that has facilitated the

growth of the Internet. The claim is that sensor networks will thrive if there

is “a narrow waist in the architecture,” called the Sensor-net Protocol (SP) to

allow protocols to evolve. SP will be a single hop protocol, but is analogous to

IP. Below SP will be different link, MAC and physical layers, whereas above

SP will be different sensor-application protocols. It should be noted that this

sensor network architecture is slightly different from the OSI and Internet

architectures since sensor networks mainly collect, aggregate and disseminate

data, while the Internet is mainly concerned with end-to-end communication.

One final requirement of the proposed sensor network architecture is that it

8



must allow cross-layer interactions between layers for more efficient sensor

network operation [11].

Reference [27] also observes that sensor networking research is fragmented;

however, it does not go as far as reference [11]. Instead it argues that better

integration in sensor networks research may be achieved by using the following:

a “hardware abstraction for new sensor node prototypes,” “abstract model of

power consumption,” and a “protocol architecture scheme” for wireless sensor

networks. The benefits of a protocol architecture include the following: it may

facilitate the passing of packets between different layers of a protocol stack,

and it may also help organize how information should be exchanged between

different layers of the protocol stack [27].

From the discussion above it is evident that there is a lack of consensus on an

over-arching sensor network architecture. The examples that we will present

in section 3 will go towards highlighting the lack of an over-arching architec-

ture. However, we argue that while there is a lack of an architecture, some

similarities exist in sensor network architectures, in terms of their invariants

and their functions.

3 Architecture Taxonomy

In this section we present a number of sensor network architectures and classify

those architectures in terms of the attributes presented in Section 2. For each

architecture we will also classify each of its attributes in terms of invariants,

as introduced in Section 2.

9



3.1 Architecture Classification

In section 2 we discussed some issues with sensor networks and sensor net-

work research. In this subsection we classify some successful sensor network

architectures by decomposing each architecture into components.

Sensor networks have been successfully deployed to study birds on Grand Duck

Island, Maine [5,9,10]. This sensor network used a multi-level architecture with

sensor nodes performing computation and networking at its lowest level. The

sensor nodes are grouped into a sensor patch, which is linked to a gateway

node at the next level. The gateway transmits packets from the sensor patch

to one or more base stations. These base stations provide database services as

well as Internet connectivity. Finally, the last level consists of remote servers

to support analysis, visualization and web content [5]. The reader may consult

Fig. 2 in [5], Fig. 1 in [9], or Figure 1 in [10] for a system architecture diagram.

Reference [10] goes beyond the simple architecture presented in [5] to present

an architecture that organizes all the sensor nodes within a sensor patch into

a routing tree. In addition computation located within the sensor network so

as to reduce the energy consumption of the individual nodes as well as reduce

the volume of data being transmitted. Here the sensor network also has an in-

dependent verification network whose sole purpose is to generate independent

data that can be used to corroborate readings from the sensor network. The

verification network will consist of fewer, but more established sensor nodes.

In addition to presenting the basic architecture discussed above, [10] also gives

examples of sensor networks whose architectures are extensions of the basic ar-

chitecture presented in [5, 9, 10]. One of these extensions uses Tiny Diffusion,

10



a routing protocol to establish communications between sources and sinks.

With this architecture the network is aware of data naming and can apply fil-

ters. Another extension of the architecture uses the Tiny Application Sensor

Kit (TASK) with a TinyDB database. With this architecture the sensor nodes

have an SQL-variant query interpreter running on each node, and sensor nodes

receive queries in an epidemic fashion [10]. The key attribute for this family

of architectures is the tiered architecture. The Tiny Diffusion architecture has

the additional attribute of supporting data diffusion, but we deal with this

attribute at the end of the next paragraph. The tiered architecture may be

seen as an explicit invariant since it results from a decision to limit the amount

of processing that is done on the end nodes of this sensor network due to their

limited computing power.

A slightly more complex architecture uses Directed Diffusion, which estab-

lishes n-way communications between one or more data sources and sinks [28].

The communications architecture is based on directed diffusion, matching rules

and filters. Directed diffusion disseminates information in the distributed sys-

tem, while matching rules identify when data has reached its destination.

Finally filters process the data while it is en-route. This architecture can be

seen as a method for performing in-network aggregation of data in a sensor

network, thereby leading to a reduction of traffic in the sensor network [28].

The key attribute for this architecture is the support for data fusion, which

is an implicit invariant since it results from the deliberate decision made to

support communications between n sources and one sink. The task-awareness

of sensor nodes is another attribute of this architecture, where task-awareness

means sensor nodes store and interpret the data interests of other nodes.

Reference [29] can be viewed as an extension of Directed Diffusion [28]. It as-

11



sumes that nodes within a sensor network are named, and each node is within

radio range of several nodes. Communication from the sensor network to the

outside world is assumed to take place through some key nodes. Observations

refer to readings from sensors, while certain collections of observations consti-

tute an event, e.g., elephant-sighting event. Upon detection of an event data

is sent to external storage for further processing. In addition data is stored

by name within the sensor network, i.e., data-centric storage. Data-centric

storage is preferable if the sensor network is large, i.e., contains many nodes,

or if the sensor network detects many events, but not all the event types

are queried. The data centric storage is supported by a geographic hash ta-

ble (GHT), which provides a (key, value)-based memory. GHT uses Greedy

Perimeter Stateless Routing (GPSR) for routing [29]. The key attribute for

this scheme is the location encoding scheme. The implementation of the lo-

cation encoding scheme, the GHT, constitutes an explicit invariant since the

memory is deliberately limited to the (key, value) pair. Another invariant for

this architecture is connectivity with the outside world through a limited set

of nodes, which may be seen as an explicit invariant since the network is being

deliberately limited.

Wireless sensor networks are typically composed of resource-limited nodes. As

a result we need efficient algorithms to communicate in this environment. One

suggestion is to use a data handling architecture that will support efficient

spatio-temporal querying of data [30]. The design goals for this architecture

include: multi-resolution data storage, distributed communication and com-

putation load, and adaptability to correlations in sensor data. Temporal data

reduction is only done at a single node, and has no communication overhead;

once this data reduction is performed, only potentially interesting events are

12



reported to the rest of the sensor network. The DIMENSIONS architecture

assumes a clustered sensor network with location encoding; as a result some

of its attributes include a tiered architecture with location encoding support.

The invariant for this architecture would be the implementation of the location

encoding scheme.

A two-tier storage architecture (TSAR) for sensor networks, is yet another

proposed sensor network architecture. With TSAR sensors transmit metadata

rather than send actual sensor readings, since the metadata which may be a lot

smaller than the actual data itself. Design of TSAR is based on the following

principles: 1) Store locally, access globally; 2) Distinguish data from metadata;

and 3) provide data-centric query support. At each proxy tier TSAR uses an

Interval Skip Graph for storing data (The interval skip graph is an ordered,

distributed structure that allows one to locate all intervals containing a par-

ticular value or range of values.) At the sensor level TSAR implements a local

archival store and a mechanism to allow sensors to adapt to changing data

and query characteristics. The TSAR scheme was field-tested, and experimen-

tal results show that TSAR displays good performance in a multi-tier sensor

network [18]. The key attributes of this scheme are the metadata communica-

tions and the tiered architecture. The invariant for this architecture is limited

to the Interval Skip Graph, which can be seen as an implicit invariant since

the coarseness of the data intervals influences the resolution of query results.

Related to this invariant is the adaptive summarization scheme, which allows

sensor nodes to adjust the frequency of sending data updates with the proba-

bility of not being able to fulfill a query. Please consult Figure 1 in [18] for a

logical view of the TSAR architecture.

Middleware can also be incorporated into a sensor network architecture. Römer

13



et al. [31] state that sensor network middleware should be geared to support

the development, maintenance, deployment, and execution of sensing appli-

cations. In addition, they [31] state that sensor network middleware should

possess the following attributes:

• It must provide ways of putting application knowledge into the sensor net-

work,

• It should integrate communication and application-specific data processing

closely,

• Provide ways to support automatic configuration and error handling.

• Support for time and location management.

Shen et al. [32] introduce middleware called Sensor Information and Network-

ing Architecture (SINA). SINA allows sensor applications to issue queries and

commands, collect query results and monitor the sensor network. The SINA

architecture consists of hierarchical clustering — allows sensor nodes to aggre-

gate into clusters, — attribute-based naming — which allows users to query

the sensor network by some attribute, e.g., what is the average temperature

in a given quadrant, — and location awareness, which requires sensor nodes

to know their physical location, for example by using GPS. SINA [32] also

provides the following attributes:

Information abstraction , that is the sensor network is conceptually seen

as a collection of attributes of each sensor node.

Sensor Query and Tasking Language (SQTL) , which serves as an in-

terface between sensor applications and the SINA middleware.

Sensor Execution Environment (SEE) , which runs on each sensor node

and dispatches all incoming messages, examines all incoming SQTL mes-

14



sages, and performs the operations specified by each message. SEE also

handles outgoing messages.

Built-in Declarative Query Language to give users the ability to submit

a query directly instead of submitting an SQTL script.

Dyo [22] suggests middleware that can be used in sensor networks to support

data retrieval applications with mobile data collectors. This paper observes

that not very much research has been done on data collection using mobile

sinks. Consequently the paper develops a scalable, energy-efficient, distributed

spatial index that adapts to the sensor network query and data update rates.

The proposed index uses a static clustering algorithm and proactive and reac-

tive modes for index updates [22]. The key attributes of this architecture are

the tiered network architecture and the distributed spatial index for querying

of the network. The spatial index can be seen as an explicit invariant since

it now requires all queries submitted to the sensor network to now contain

information about the area of interest for the query.

Another application for sensor networks is to fuse data from several sources

using a fusion application, and present the fused data to a user. A fusion

application is continuous in nature, requires efficient transport of data from

sources to sinks, and it also requires efficient in-network processing of applica-

tion fusion functions. Ramachandran et al. [33] present a fusion architecture

for sensor networks called DFuse in [33]. Informally, the DFuse architecture

consists of the following: an application task graph — showing the data flows

and relationships amongst the fusion functions, — code for the fusion func-

tions, and a cost function that formalizes some metric for the sensor network.

Note that the fusion functions may be placed anywhere in the sensor network,

subject to the cost function being satisfied. In addition every node in the WSN

15



has a network layer that allows it to reach any node within the WSN [33]. More

formally, the two main parts of the DFuse architecture are the Fusion Module

and the Placement Module. The Fusion module performs the following tasks:

• Structure management (handles the channels used for fusion functions -

fusion channels. This management includes migrating the channels to other

nodes)

• Correlation control (handles specification and collection of data supplied to

the fusion code)

• Computation management (handles specification, application and migration

of fusion functions)

• Memory management (handles caching, prefetching and buffer manage-

ment)

• Failure and latency handling (deals with sensor failure and communication

latency. It also allows fusion functions to operate on partial data sets.)

• Status and feedback handling (handles interaction between data sources and

fusion functions.)

The main responsibility of the Placement module is to create an overlay of

the application task graph onto the physical network that best satisfies an

application-defined cost function [33]. The key attribute of this architecture is

support for data fusion, including the code that performs the fusion functions.

Thus fusion support may be seen as an explicit invariant since it deliberately

limits the user from getting fine-grained data from a sensor network. Related

to this invariant, is the fusion channel, which is itself an explicit invariant. The

fusion channel is an invariant since it provides interconnection between differ-

ent parts of the system. For a diagram summarizing the DFuse architecture,

please consult Fig. 2 in [33].

16



The last major class of sensor network architectures is based on databases.

Yao and Gehrke [34] advocate a database approach to sensor networks, since

declarative queries are suited for sensor networks. They propose using a query

proxy on each sensor node that lies between the network layer and the ap-

plication layer on that sensor node. Another reason for advocating the use of

databases is that communication is more expensive that computation in sensor

networks. Databases allow computation to be moved from nodes outside of the

network to nodes within the network. With this approach, a query optimizer

located on the sensor network’s gateway node. The query optimizer generates

a distributed query processing plan for queries generated from outside of the

network. The query plan is sent to all nodes, and the gateway node responds

to the query with the records coming back to the gateway node [34]. The key

attribute for this architecture is the tiered network architecture. In particular

the query proxy layer constitutes an invariant for this architecture. The query

proxy layer may be viewed as an implicit invariant, since all queries are now

required to be submitted to the query optimizer node in a network.

3.2 Standards-Based Sensor Networks

In the previous subsection we saw that many previous sensor networks have

been marked as one-off designs generally devoid of any standardization. Recall

from section 2.1 that there is no protocol akin to IP for sensor networks.

Recently we have seen an emerging class of sensor networks that include open

standards in their development, for example architectures based on the Open

Geospatial Consortium (OGC) Sensor Web Enablement standard [35,36].

Reference [37] makes the case for the use of standards in sensor networks, par-

17



ticularly those used for homeland security purposes. This paper states that

open, standardized sensor interfaces and sensor data formats are needed to ef-

fectively integrate, access, fuse and use sensor-derived data for homeland secu-

rity applications. The paper goes on to argue that without open, standardized

interfaces and data encoding schemes it will be impossible to integrate a wide

variety of sensors and networks. Open sensor interface standards such as the

IEEE 1451 [38] and Universal Plug and Play (UPnP) [39] standards provide

ways to interface transducers to networks. Meanwhile, Sensor Web Enable-

ment (SWE) standards offer methods for sensor system discovery and control

based on the Internet and the OGC’s geo-processing framework. In summary,

reference [37] states that the following standards are necessary for the devel-

opment of a homeland security sensor network: transducer interface standards

based on IEEE 1451 and web-based application interfaces. The key attributes

of the sensor network proposed for homeland security include hardware-based

fault tolerance [40], Internet connectivity support, location encoding, secu-

rity support, and a standards-based architecture. Of these attributes location

encoding and the standards-based architecture may be considered implicit in-

variants, since the location encoding scheme requires that data be stored with

locations encoded in a specific format, while the standards-based architecture

deliberately requires all sensor interfaces to comply with a given standard.

The OGC Sensor Web Enablement standard addresses the problem of having

isolated, custom-designed sensor networks with incompatible sensor standards.

Reference [36] introduces the sensor web enablement (SWE) specifications.

These specifications include:

• Standard constructs for accessing and exchanging observations and mea-

surements.

18



• Sensor Model Language (SensorML) Implementation, which provides an

information model that enables the discovery and tasking of sensors.

• Transducer Markup Language (TML) Implementation, which provides a

method for describing information about transducers.

• Sensor Observation Service (SOS) Implementation, which allows standard

access to observations from sensors and sensor systems.

• Sensor Planning Service (SPS) Implementation, which specifies interfaces

for a service to participate in collection feasibility plans.

• OpenGIS Sensor Alert Service, which allows users to subscribe to specific

alerts, and determines the nature of offered alerts, and the protocols used

for those alerts.

• OpenGIS Web Notification Service (WNS) Interface, which allows a client

to have asynchronous communication with other services.

• A universal method for connecting transducer interfaces and application

interfaces, such as the IEEE 1451 for smart transducers. The IEEE 1451

standard is an object-based protocol that allows sensors to be made acces-

sible to clients over a network. The IEEE 1451 standard allows sensors to

be accessible to clients across a network using Network Capable Application

Processor (NCAP), which is the point of interface between the application

and transducer interfaces.

An example of an architecture that uses the SWE standards is SensorNet [35].

This architecture uses standards from the OGC to learn the location of every

sensor and measurement and help with interoperability. Interoperability is

enhanced in this architecture by making use of web services for application

interfaces. In particular this architecture uses the ORNL SensorNet node to

host middleware that interfaces between the sensors and remote users and

19



applications. The ORNL SensorNet node is directly connected to the Internet,

and it also hosts a web server to allow for intelligent processing, as well as

any local processing of data. Another way in which this architecture tries to

facilitate interoperability is by representing sensor data using “features,” which

is an XML-like representation of data and sensor entities [35]. The key features

of a sensor network based on the OGC Sensor Web Enablement standard are

summarized in Figure 2 in [35].

The key attributes of the SensorNet architecture include fault-tolerance (each

SensorNet node is equipped with two communication links for redundancy

purposes), Internet connectivity support, location encoding, security support,

a standards-based architecture that is also tiered. Of these attributes the

location-encoding scheme is an implicit invariant, since locations must be en-

coded with a certain format. Recall that this architecture also has Internet

connectivity support; therefore, extending the argument from section 2 we

can also conclude that IP is an invariant for this architecture.

3.3 Internet-Connected Sensor Networks

While some sensor networks have possessed the ability to connect to the global

Internet, in general, Internet connectivity support has not been a major con-

sideration for sensor networks. One of the earliest references on sensor net-

works [41] argues for the use of multi-hop communications in sensor networks.

These authors go on to state that work needs to be done to investigate how

to link sensor networks to the global Internet. This statement is motivated by

the fact that many current Internet protocols do not take the need to con-

serve energy very seriously. In addition this paper states that work needs to be

20



done on evaluating where processing and storage should take place in a sensor

network [41]. For a logical view of this architecture, please consult Figure 2

in [41]. The attributes for this architecture include the tiered network archi-

tecture as well as support for conventional network services. The invariant in

this architecture appears in the gateway that serves as the interface between

the sensor network and the conventional network service. In general removal

of any functionality from the gateway node will lead to a loss in backward

compatibility of that node.

One example of a sensor network that has Internet connectivity is IrisNet

(Internet-scale Resource-Intensive Sensor Network services), which aims to

provide software components for a world-wide sensor network [6,7]. These au-

thors state that their sensor network is broader than the traditional definition

of sensor networks, and includes Internet-connected, dispersed PC-class nodes.

Such a sensor network must provide the following services:

• Planet-wide local data collection and storage.

• Real-time adaptation of collection and processing

• Data as a single queriable unit

• Support for queries posed anywhere on the Internet

• Data integrity and privacy

• Robustness

• Ease of service authorship

Under IrisNet service authors will have to figure out how to collect data, as

well as how to query the collected data. IrisNet uses a two-tier architecture

consisting of sensing agents and organizing agents. Sensing agents provide a

generic data acquisition interface for sensors, while organizing agents collect

21



and organize data to respond to a query. Each sensor agent controls one or

more senselets. Each senselet allows one to upload and control the execution

of code in a sensor. As was the case with the OGC’s Sensor Web Enablement

standards, sensor-derived data is represented in XML in IrisNet. It should

be noted that IrisNet has been deployed to monitor the Oregon coastline [6].

Please consult Figure 1 in [6] for an IrisNet architecture diagram, showing the

organizing agents and the sensing agents.

The attributes for the IrisNet architecture include the agent-based architec-

ture, Internet connectivity support, and the tiered network architecture. More-

over the invariants for this architecture include the agents, which may be seen

as explicit invariants, and IP addresses, if we extend the example on invari-

ants from section 2 to this architecture. The requirement to represent sensor-

derived data in XML may also be seen as an explicit invariant.

Another architecture that allows access to sensor networks from Internet-type

networks is the Janus architecture [17]. A prototype of the Janus architecture

has been used to connect a sensor network with hosts on a network LAN.

Janus uses an engine (This is a program running on the sink that provides an

interface to sensor network functionality. The agent uses the engine to discover

resources and functionality provided by the sensor network) running on the

sensor network’s sink as well as an agent that communicates with the engine.

The engine and the agent communicate using eXtensible Resolution Protocol

(XRP). The agent and engine exchange XRP messages to:

• Discover which sensor network resources are available;

• Send queries from the agent to the sink node on sensor network state; and

• Send information from the sink to the agent concerning the sensor network

22



state.

Janus also supports multiple access applications for sensor networks. All XRP

messages are transported between the agent and the sink node using UDP.

The use of XRP allows for expressive messages – that is XRP queries may be

interpreted – to be exchanged between agent and sink. Use of XRP also allows

for modularity in network design [17]. Figure 2 in [17] shows the extended

architecture for sensor networks that use Janus for Internet access.

The attributes for Janus include the agent-based architecture as well as the

support for Internet connectivity. The invariants for this architecture com-

prises of the agent and the engine. These components are considered invari-

ants since they enable communications between the sensor network and the

Internet. Adding functionality to one of these components without adding to

the other will result in the loss of backward compatibility.

By no means do we claim that the two examples of Internet-connected sensor

networks constitute an exhaustive list. More recently a group of researchers

has come formed an Internet Engineering Task Force (IETF) working group to

study routing over low-power and lossy networks, such as sensor networks [42].

3.4 Context-Aware Sensor Networks

A novel class of sensor networks is the group of context-aware sensor net-

works. Incorporating context into a network can have implications for energy

efficiency. For example suppose sensors are equipped with light sensors, and

it is known that temperature changes less frequently after dark. Sensors in

this sensor network can then wake up and make temperature readings less

23



frequently once night falls.

An argument for building a context aware sensor network is presented in [43].

Reference [43] argues that if each sensor node is context-aware, then the en-

tire network will be context-aware. In making this argument, these authors

assume that a context-aware sensor network (CASN) is node-centric. They

state that the goal of designing a context-aware sensor network is to prolong

the life of the network. The CASN is composed of middleware running on

sensor nodes. The middleware is composed of the following components: con-

text representation (CRP), context interpretation (CI), context aware services

(CAS), and a sensor society kernel (SSK). The CRP provides context avail-

ability, the CI interprets the context, the CAS manages services, and the SSK

allows each sensor node to act as a member of a larger society — the sensor

network. Finally, these authors suggest using a role-based local storage scheme

(RBLS) to store contexts on a sensor node [43]. Figure 2 in [43] summarizes

the architecture for a context-aware sensor network.

The key attribute for this architecture is context awareness. The middleware

on sensor nodes also hints to the fact that this architecture is tiered or layered.

The invariant in this architecture is the middleware. If any of its components

is changed, we can lose backward compatibility. For example if the context in-

terpretation module is changed it may return states that the other middleware

components do not know how to handle.

24



3.5 Agent-Based Sensor Networks

Agents can also be used in designing sensor networks, as we have already seen

from [6]. The use of agents in a sensor network architecture allows for flexibility

in that architecture since the sensor network can be quickly reprogrammed to

perform a different task.

Reference [12] makes the case for the use of mobile agents in sensor networks.

This paper observes that sensor networks are moving towards a single deploy-

ment, multiple applications paradigm; however, sensor nodes may not neces-

sarily have the capability to store all the programs needed for the different

applications. Mobile agents can be used as an option for dynamically deploying

applications to sensor networks. Some examples of use might include:

• Deploying mobile agents to a visual sensor network to collect reduced data

from some region of the WSN and query the data set for some information.

• Using mobile agents for target tracking and object recognition in a sensor

network.

According to [12], two types of sensor networks — hierarchical or flat — may

be distinguished. In hierarchical (clustered) sensor networks mobile agents

may be either deployed by a cluster head to visit all nodes within the cluster,

known as the intra-cluster method, or they may be deployed by the sink node

of a sensor network to visit all the cluster heads, known as the inter-cluster

method. In flat sensor networks the sink node can dispatch a “mother agent,”

which visits a target region of the sensor networks. Once in the sensor network

the mother agent will dispatch child agents to visit the nodes in the target

region and collect information that will either be carried directly to the sink

25



or to the mother agent.

It should be noted that mobile agents are frequently implemented in middle-

ware. This middleware may be either coarse-grained or fine-grained, where

coarse-grained agents typically have smaller code sizes with lower re-tasking

flexibility while fine-grained agents have larger code sizes with higher re-

tasking capability. In addition, having multiple agents cooperate can actually

lead to an improvement in performance of the entire WSN [12]. Figure 4 in [12]

summarizes the architecture of one type of mobile agent-based sensor network

architecture. Note that the battleship in the figure represents the mother agent

deployed by the sink node, and the arrows represent data flow to and from

the mother agent.

The agent-based architecture and support for data fusion, particularly in sen-

sor networks with mobile agents, form the set of attributes for this family

of sensor network architectures. The invariants for this architecture are the

agents.

3.6 Service-Oriented Sensor Networks

An emerging trend in sensor network architectures is the deployment of service-

oriented sensor network architectures. Architectures such as these permit the

incorporation of a diverse set of platforms and allow sensor nodes to discover

the capabilities of other nodes by querying a service repository.

Rezgui and Eltoweissy [44] introduce a service-oriented architecture for sensor-

actuator networks, called SOSANET. In proposing their architecture Rezgui

and Eltoweissy [44] argue that existing sensor network architectures are application-

26



specific. Service-oriented network architectures can address this issue by allow-

ing future sensor network designers to pick components from different sensor

networks and integrate these into a new sensor network application. Sensor-

actuator networks (SANETs) are different from ordinary sensor networks in

that they include actuators that are able to change the environment of a sensor

network. One example of a SANET can include a sensor network that has heat

sensors and fire sprinklers. If the heat sensors detect combustion, the sensors

will notify the sink, and the sprinklers can be triggered to douse the flames.

SANETs may be classified as either generic or customizable. Service-oriented

sensor-actuator networks are a type of customizable SANET.

Each node in a SOSANET exposes its capabilities as services. Each node in the

SOSANET has a service directory showing the capabilities provided by reach-

able nodes. The service directories are used to perform service-driven routing

in the SOSANET. Users get information from the SOSANET by submitting

queries to either the base station or one of the nodes in the SOSANET. The

queries may be either classified as task queries or event queries. Queries spec-

ify an event, condition, action, spatial scope, and temporal scope (ECAST)

when invoked [44].

The architecture for the SOSANET consists of a service-oriented query (SOQ)

layer, which receives queries from the service-driven routing layer, interprets

them, invokes the services necessary for the query, collects the service results,

packages the services’ results into query results, and submits the query re-

sults to the query issuer. This layer consists of a service invocation scheduling

module and an event detection module. When a query is received at a node

it is submitted to the event detection module, which checks for the existence

of a given condition. When the condition is detected, the query is submitted

27



to the service invocation scheduling module. Above the service-oriented query

layer is the service layer, which contains the implementation of all services

in the SOSANET. The architecture also includes a routing layer that delivers

queries to the SOQ layer, sends out query results from the SOQ layer, and for-

wards received queries and query results. The routing layer is composed of the

service-driven routing protocol (SDRP) and the trust-aware routing protocol

(TARP). The former routes queries from the base station to sensor network

nodes, while the latter forwards results from sensor network nodes back to the

base station [44].

It should be noted that the proposed architecture has been implemented in

TinySOA. Simulation results show that SDRP is an energy-efficient routing

protocol. TinySOA is also shown to be more energy efficient than TinyDB. In

addition TinySOA queries have a shorter response time than TinyDB queries.

Finally SANETs based on TinySOA can be more deployed more rapidly than

sensor networks based on TinyDB, since queries are automatically discov-

ered under TinySOA. Figure 1 in [44] summarizes the key components of a

SOSANET node.

The attributes for SOSANET include the service-oriented architecture as well

as the layered, or tiered, architecture. The invariant for this architecture is the

service-oriented query layer, which performs a lot of the processing necessary

to receive query results. Improper changes to this layer can result, for example,

in the query issuer not being able to interpret the query results.

Another service-oriented sensor network architecture is found in [45]. This

three-tiered service-oriented sensor network architecture has been used to in-

tegrate with RFID and monitor hazardous chemicals for a petroleum company.

28



The tiered architecture allows sensor nodes with a range of capabilities to be

integrated into a large-scale sensor network. The layers of the architecture

consist of the backend, gateway, and front-end. The back-end (application)

layer consists of the following:

• Service repository, which contains a database of all services available in the

sensor network,

• System state manager, which keeps track of the states of the sensor nodes

• Service mapper, which maps the services to different nodes

• Service invocation manager, which contacts all the nodes running a given

service and returns the results of that service invocation to the application,

and the

• Notification manager, which uses a web service to distribute event messages.

The gateway (platform abstraction) layer facilitates interoperability between

sensor platforms. In particular this architecture uses Universal Plug and Play

(UPnP) [39] as the interface between the application layer and the sensor net-

work. The gateway layer performs the following functions: message transforma-

tion — translating between packet-level proprietary sensor network messages

and UPnP arguments, — and assisting in the deployment of services to the

sensor network. One key feature of the gateway layer is the dynamic instantia-

tion of service proxies. The service proxies — which are virtual representations

of the service interfaces — are instantiated whenever a service is provided by

the sensor network and destroyed whenever the service becomes unavailable.

The front-end (device) layer incorporates the multitude of sensor networking

and RFID devices. Some of the functions provided by this layer include:

• Reliable dissemination of messages to nodes — this allows new service exe-

29



cutables to be transferred reliably to nodes

• Platform-dependent service executables

• Event detection and alarms — this allows timely detection and reporting

of special conditions to a central node, – and platform-specific networking

protocols.

This architecture was successfully deployed in a trial with an oil company,

and the architecture was shown to be feasible; however, more work needs to

be done to make the architecture more scalable. Figure 3 from [45] summarizes

the key features of this architecture.

The attributes for this architecture include the tiered architecture, which is

also service-oriented. On the other hand the invariants for this architecture

include the gateway layer and the service repository layer. For example, im-

proper changes in the service repository layer can prevent other nodes from

knowing the locations of other services, while changes in the gateway layer can

prevent the correct translation of network messages and UPnP arguments.

3.7 Secure and Fault-Tolerant Sensor Networks

Another emerging trend is sensor networks that include security and fault-

tolerance from the time of design [46] and [47]. No architecture is presented

in [47], but this paper presents a scheme for enhancing the reliability of sensor

networks. When a sink has little energy left, the sink is relocated to another

sensor node [47].

Reference [46] presents an architecture for a secure and survivable wireless sen-

sor network with heterogeneous nodes. The architecture will provide security

30



and survivability mechanisms and techniques, and security and survivabil-

ity requirements and services. Since sensor networking applications need to

be able to run continuously and reliably without interruption, survivability

needs to be factored into the development of a WSN. The security require-

ments for a sensor network are: confidentiality, authentication, integrity, and

secure management, while the survivability requirements include: reliability,

availability, and energy efficiency.

The reader is referred to [46] to obtain more details on the architecture.

It should be noted that [46] provides simulation results to show that if a

small number of powerful sensor nodes have reasonable storage, processing

and transmission capabilities when using the proposed scheme, then the WSN

can have good key connectivity, reliability and resilience. In addition the sim-

ulation results show that there is a trade off between security and survivability

in some scenarios. Figure 1 from [46] summarizes the key components of the

secure and survivable sensor network architecture.

The key attribute for the secure and survivable sensor network architecture is

security support. On the other hand the invariant here is the key management

scheme. If a new key management scheme is chosen for a set of sensor nodes

these sensor nodes can lose the ability to communicate with other sensor nodes.

3.8 Vehicle-Based Sensor Networks

In the near future, we will begin to see sensor networks deployed to vehicles

to enhance driver safety, and allow drivers to pick the best route between two

points based on road conditions. Reference [48] describes an architecture for a

31



vehicular ad hoc network that is safety-oriented. In this architecture vehicles

and roadside entities are seen as peers. The peers are organized in zones called

peer spaces, while nodes in a peer space share a common interest. Peers may

be organized into either cluster-based or peer-centered structures [48].

One protocol for vehicular ad hoc networks is Vehicular Information Trans-

fer Protocol (VITP), which is an application-layer, stateless communication

protocol analogous to HTTP [21]. The VITP architecture (infrastructure) con-

sists of VITP peers (software components running on vehicle computers), a

location encoding scheme, and additional protocol features for performance

optimization, quality assurance and privacy protection. VITP stores location

information as two-value tuples. When a vehicle needs some information, it

formulates a query and broadcasts it. The dynamic collection of VITP peers

that responds to a query is called a virtual ad hoc server (VAHS), in other

words the VAHS is based on a query and target-location area. Simulation re-

sults for VITP performance show that the Return Condition for VITP requests

is very important, since it affects the dropping rate of VITP transactions as

well as the accuracy of VITP query results [21]. Figure 3 from [21] shows how

protocols are layered in VITP.

The attributes for VITP include the tiered architecture and VITP’s support

for location encoding. The latter may be seen as an implicit invariant since all

nodes must now use the same format for representing location information.

Another example of a mobile sensor network is found in [8]. This paper dis-

cusses a mobile sensor network composed of CarTel nodes that processes het-

erogeneous data. In general mobile sensor networks allow one to cover a larger

surface area with fewer sensors. Each CarTel node consists of a mobile, embed-

32



ded computer connected to several sensors. The node runs software that func-

tions as a gateway between the node and the rest of the sensor network. The

architecture consists of a portal, which hosts CarTel applications and serves as

a sink for data sent from the mobile nodes. There is also an ICEDB (Intermit-

tently connected database), which is a delay-tolerant query processor. Finally,

there is a CafNet (Carry and forward network), which is a delay-tolerant net-

work stack. Unlike TCP, CafNet uses a message-oriented data transmission

and reception API. This allows CafNet to be used in delay-tolerant networks.

CafNet informs the sensor network applications when network connectivity

is available, then the application decides which sensor network information

needs to be sent. The CafNet communication stack consists of a Transport

Layer, a Network layer and a Mule Adaptation Layer. The CafNet network

layer supports buffering of some data [8]. Figure 2 in [8] shows the software

architecture for CarTel.

The main attributes for CarTel include the delay-tolerant network architecture

as well as the location encoding scheme. The invariant in this architecture is

CafNet, the delay-tolerant network stack, which must continue to expose the

same interfaces and services after any changes if backward compatibility is to

be maintained.

Reference [49] discusses a network in which cars communicate with each other

using TrafficView nodes to exchange data on the state of the road. According

to [49] this form of inter-vehicle communication is different from traditional

MANETs because of rapid changes in link topology, a frequently disconnected

network, data compression/aggregation, prediction of vehicle’s positions, and

energy consumption not being an issue. A TrafficView node consists of the fol-

lowing modules: a GPS/OBD module, a receive module, a validation module,

33



an aggregation module, a send module, and a display module. Two algorithms

that may be used for aggregating data (cost-based and ratio-based) in a ve-

hicular network are discussed and evaluated in [49]. The results indicate that

ratio-based aggregation works well in actual test conditions [49]. The compo-

nents of a node architecture for TrafficView are found in Figure 4 in [49].

TrafficView’s set of key attributes includes location encoding and data fusion

support. As was the case for VITP, the location encoding scheme can be seen

as an implicit invariant since all nodes must now use the same format for

representing location information.

The last class of vehicle-based sensor networks uses a system of train-based

sensors to monitor wheel bearing temperatures [50]. This sensor network uses

IEEE 802.11b for inter-car train communications, GPS information to provide

location information. Backhaul communications are provided by a 1xRTT

radio, and the train data is uploaded to a web server. Beyond the system

specifications provided above, the architectural details of this sensor network

are not available.

3.9 Habitat Monitoring Sensor Networks

As we observed in section 3.1, some of the earliest sensor networks were used

for monitoring seabirds on Grand Duck Island in Maine [5], [9] and [10]. Refer-

ence [9] indicates that a tiered architecture was developed for this monitoring.

At its lowest level are sensor nodes, which collect environmental data. The next

tier consists of a sensor network gateway, which communicates with the sensor

network and the transit network. At the next tier is the “remote base station

34



that provides WAN connectivity and data logging.” In order to provide some

degree of fault-tolerance, each tier of the sensor architecture provides persis-

tent data storage to guard against data loss. The architecture also provides

data management services ranging from simple data logging to a full-fledged

relational database service running on the base station. It is worth noting that

the habitat monitoring sensor network also includes iPaqs (known as gizmo in

the paper) to allow for remote management of the sensor network [9].

3.10 Multi-owner Sensor Network Architecture (MOSN)

There is growing literature concerning the architecture and design of sen-

sor networks [2–4], as well as the Open Geospatial Consortium Sensor Web

Enablement efforts [51] and Oak Ridge National Laboratory’s SensorNet In-

formation Architecture [52]. Several of these types of sensor networks have

already been deployed [5].

A premise of this discussion is that elements of the sensor network will be

owned by multiple organizations and communicate across administrative do-

mains. Thus, there is a need for mechanisms that facilitate access to and con-

trol of sensors across multiple organizations as well as a requirement for rapid

deployment. Ownership by a wide variety of administrative domains is briefly

mentioned in [53]. While SensorML [35] has sensor schemas that include se-

curity, user limitations and access constraints (like documentConstrainedBy),

and schemas that identify the responsible party (like operatedBy), the inte-

gration of these into an overall system remains to be explored.

The MOSN architecture extends ORNL’s SensorNet Information Architec-

35



ture and has been built upon the existing sensor network architectures (e.g.,

[6, 51, 53, 54]), to create a system based on the above concepts that facili-

tate the participation of multiple organizations in supplying needed compo-

nent/subsystem functionality. A model of MOSN has been implemented and

evaluated.

The objective of the MOSN is to develop a unified architecture that has ele-

ments owned/controlled by a variety of organizations which can communicate

across administrative domains. The MOSN architecture is general, scalable (in

size and evolution of technologies), flexible (able to mix and match technologies

based on the venue requirements), economical (based on COTS technologies),

and leverages standards where possible. The MOSN approach facilitates mul-

tiple organizations providing different services, enabling the development of a

business model based on sensor network technologies.

MOSN components are divided into three layers, as shown in Fig. 1 in [23].

These layers include the following:

• The device layer, which is composed of all the sensor nodes, as well as the

data access and management endpoints for the entire architecture.

• The repository layer, which forms a link between the lower device and the

upper application layers to allow for information dissemination. This layer

is composed of databases that store sensor data as well as databases that

store information needed to support the system.

• The application layer, which presents a unified view of the different compo-

nents of the architecture to the user.

Communication between the layers in the MOSN architecture is done by ex-

tending the Ambient Computing Environments (ACE) architecture [52, 55].

36



The device control and data flow mechanisms developed for ACE are used to

manage connections between applications and sensor nodes. The ACE control

mechanisms allow devices to be authenticated by a controlling application. In

addition ACE allows access and control of devices to be based on an estab-

lished security policy. Finally, the ACE data flow mechanism supports real

time exchange of data between applications and devices that is private and

checked for integrity. ACE supports establishing services within the environ-

ment to archive data flows, replicate data flows to multiple receivers, and play

back archived data.

We conclude this section by observing that the key attributes of the multi-

owner sensor network architecture include: Internet connectivity support, se-

curity support, a standards-based architecture that is also tiered and service-

oriented. On the other hand the invariants include the service-oriented archi-

tecture, and the standards-based architecture. Due to Internet connectivity

support, IP addresses may also be seen as an invariant for this architecture.

4 Architecture Comparison Summary

In the previous section we presented the key elements of different classes of

sensor networks, including a new sensor network architecture suitable for a

multi-owner environment. Those architectures were compared in terms of cer-

tain attributes. Table 1 summarizes the key features, while Table 2 summarizes

the invariants of the architectures presented in Section 3.

37



A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

H
ab

it
at

m
on

-

it
or

in
g

sy
s-

te
m

[5
,9

,1
0]

x
x

D
ir

ec
te

d
D

if
-

fu
si

on
[2

8]

x

D
at

a-
ce

n
tr

ic

S
to

ra
ge

[2
9]

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

38



co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

T
S
A

R
[1

8]
x

x

M
id

d
le

w
ar

e

D
es

ig
n

fo
r

In
te

gr
at

io
n

of
S
en

so
r

N
et

w
or

k
s

an
d

M
ob

il
e

D
ev

ic
es

[2
2]

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

39



co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

D
IM

E
N

S
IO

N
S

[3
0]

x
x

D
F
u
se

[3
3]

x

C
ou

ga
r

[3
4]

x
x

O
R

N
L

S
en

-

so
rN

et
[3

5,
37

]

x
x

x
x

x
x

W
IN

S
[4

1]
x

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

40



co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

Ir
is

N
et

[6
,7

]
x

x
x

J
an

u
s

[1
7]

x
x

C
A

S
N

[4
3]

x
x

M
A

D
S
N

an
d

M
A
W

S
N

[1
2]

x
x

S
O

S
A

N
E

T

[4
4]

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

41



co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

M
u
lt

ip
la

tf
or

m

W
ir

el
es

s

S
en

so
r

N
et

-

w
or

k
[4

5]

x
x

S
ec

u
re

an
d

S
u
rv

iv
ab

le

W
ir

el
es

s

S
en

so
r

N
et

-

w
or

k
s

[4
5]

x co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

42



co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

V
IT

P
[2

1]
x

x

C
ar

T
el

[8
]

x
x

T
ra

ffi
cV

ie
w

[4
9]

x

M
u
lt

i-
ow

n
er

se
n
so

r
n
et

-

w
or

k
ar

ch
i-

te
ct

u
re

[2
3]

x
x

x
x

x

co
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

43



co
n
ti

n
u
ed

fr
o
m

p
re

v
io

u
s

p
a
ge

A
ge

n
t-

b
as

ed

D
el

ay
-

T
ol

er
an

t

F
au

lt
-

T
ol

er
an

t

F
u
si

on

S
u
p
-

p
or

t

C
on

te
x
t

A
w

ar
e

In
te

rn
et

C
on

n
ec

-

ti
v
it
y

S
u
p
p
or

t

L
o
ca

ti
on

E
n
co

d
-

in
g

M
et

ad
at

a

C
om

m
s.

S
er

v
ic

e-

O
ri
en

te
d

S
ec

u
ri

ty

S
u
p
-

p
or

t

S
ta

n
d
ar

d
s

b
as

ed

T
ie

re
d

T
ab

le
1.

Su
m

m
ar

y
of

A
rc

hi
te

ct
ur

e
Fe

at
ur

es

44



Architecture Classification Invariants

Explicit Implicit

Habitat monitoring system [5, 9,

10]

Tiered architecture IP

Directed Diffusion [28] Data fusion

Data-centric Storage [29] Location encoding

scheme (GHT), Out-

side world connectivity

support

TSAR [18] Interval skip graph, in-

cluding adaptive summa-

rization scheme

Middleware Design for Integra-

tion of Sensor Networks and Mo-

bile Devices [22]

Distributed spatial index

continued on next page

45



continued from previous page

Architecture Classification Invariants

Explicit Implicit

DIMENSIONS [30] Location encoding

scheme

DFuse [33] Data fusion support, in-

cluding fusion channels

Cougar [34] Query proxy layer

ORNL SensorNet [35,37] Location encoding

scheme, IP

WINS [41] Interface code in WINS

gateway, IP

IrisNet [6, 7] Agents, XML representa-

tion of data

IP

Janus [17] XRP agent and XRP en-

gine

IP

CASN [43] CASN middleware

MADSN and MAWSN [12] Agents

SOSANET [44] Service-oriented query

layer

continued on next page46



continued from previous page

Architecture Classification Invariants

Explicit Implicit

Multiplatform Wireless Sensor

Network [45]

Gateway layer and ser-

vice repository layer

Secure and Survivable Wireless

Sensor Networks [45]

Key management scheme

VITP [21] Location encoding

scheme

CarTel [8] CafNet

TrafficView [49] Location encoding

scheme

Multi-owner sensor network ar-

chitecture [23]

Service-oriented archi-

tecture, standards-based

architecture, and IP

Table 2. Summary of Architecture Invariants

5 Conclusion

In this paper we have presented a discussion of several sensor networks. From

our discussion we have seen that there is no over-arching sensor network ar-

47



chitecture, as was previously argued in [11, 27]. However, from our review of

sensor network architectures, we see that sensor networks share many features.

In addition by examining their invariants (where invariants are components

that cannot be changed without losing backward compatibility [1]) we also see

that many architectures have several invariants in common, even if they are

quite different.

Another contribution of this paper has been a discussion of an architecture,

suitable for a multi-owner sensor network, developed at the University of

Kansas. Unlike many of the other architectures presented in this paper, this

architecture is not limited to low-powered sensor nodes, and in fact it has been

used in conjunction with devices such as motes, Sun SPOTs, gumstix comput-

ers, and full-fledged PCs. However, it lacks certain features that some of the

other architectures possessed, such as delay tolerance and context-awareness.

Sensor networks are increasingly being used to instrument our world. However,

there is no single sensor network architecture, as one might find for the Inter-

net. As was argued in [11] we conclude that sensor networks would be better

able to fulfill their purpose if there is a single over-arching architecture. Some

suggestions for developing such an architecture would be to identify and build

physical, MAC, link and network layer protocols suitable for sensor networks.

Above these layers we can build location-encoding schemes or any other ap-

plications or functionality needed by sensor network designers. Such a design

might allow better portability of code and ideas from one sensor network to

the next.

48



References

[1] B. Ahlgren, M. Brunner, L. Eggert, R. Hancock, S. Schmid, Invariants: a New

Design Methodology for Network Architectures, in: FDNA ’04: Proceedings of

the ACM SIGCOMM Workshop on Future Directions in Network Architecture,

ACM Press, New York, NY, USA, 2004, pp. 65–70.

[2] F. Zhao, L. Guibas, Wireless Sensor Networks: An Information Processing

Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[3] D. Estrin, D. Culler, K. Pister, G. Sukhatme, Connecting the Physical World

with Pervasive Networks, IEEE Pervasive Computing 1 (1) (2002) 59–69.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless Sensor

Networks: a Survey, Computer Networks 38 (4) (2002) 393–422.

[5] R. Szewczyk, J. Polastre, A. Mainwaring, D. Culler, Lessons From a Sensor

Network Expedition, in: EWSN 2004: Proceedings of the First European

Workshop on Sensor Networks, 2004.

[6] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan, IrisNet: an Architecture for

a Worldwide Sensor Web, IEEE Pervasive Computing 2 (4) (2003) 22–33.

[7] J. Campbell, P. B.

Gibbons, S. Nath, P. Pillai, S. Seshan, R. Sukthankar, IrisNet: an Internet-

scale Architecture for Multimedia Sensors, in: MULTIMEDIA ’05: Proceedings

of the 13th Annual ACM International Conference on Multimedia, ACM, New

York, NY, USA, 2005, pp. 81–88.

[8] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,

H. Balakrishnan, S. Madden, CarTel: a Distributed Mobile Sensor Computing

System, in: SenSys ’06: Proceedings of the 4th International Conference on

49



Embedded Networked Sensor Systems, ACM Press, New York, NY, USA, 2006,

pp. 125–138.

[9] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, Wireless

Sensor Networks for Habitat Monitoring, in: WSNA ’02: Proceedings of the 1st

ACM international workshop on Wireless Sensor Networks and Applications,

ACM Press, New York, NY, USA, 2002, pp. 88–97.

[10] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, D. Estrin,

Habitat Monitoring with Sensor Networks, Commun. ACM 47 (6) (2004) 34–40.

[11] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre,

S. Shenker, I. Stoica, G. Tolle, J. Zhao, Towards a Sensor Network Architecture:

Lowering the Waistline, in: HOTOS’05: Proceedings of the 10th conference on

Hot Topics in Operating Systems, USENIX Association, USENIX Association,

Berkeley, CA, USA, 2005, pp. 24–30.

[12] M. Chen, S. Gonzalez, V. C. M. Leung, Applications and Design Issues for

Mobile Agents in Wireless Sensor Networks, IEEE Wireless Communications

[see also IEEE Personal Communications] 14 (6) (2007) 20–26.

[13] K. Fall, A delay-tolerant network architecture for challenged internets,

in: SIGCOMM ’03: Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications, ACM,

New York, NY, USA, 2003, pp. 27–34.

[14] D. Hutchison, J. P. G. Sterbenz, Resilinets architecture definitions, Wiki (Feb.

6 2007).

URL http://wiki.ittc.ku.edu/resilinets wiki/index.php/Definitions

[15] R. J. Abbott, Resourceful systems for fault tolerance, reliability, and safety,

ACM Comput. Surv. 22 (1) (1990) 35–68.

50



[16] W. Chen, J. C. Hou, Handbook of Sensor Networks: Algorithms and

Architectures, John Wiley & Sons, 2005, Ch. Data Gathering and Fusion in

Sensor Networks, p. 495.

[17] A. Dunkels, R. Gold, S. A. Marti, A. Pears, M. Uddenfeldt, Janus: an

Architecture for Flexible Access to Sensor Networks, in: DIN ’05: Proceedings of

the 1st ACM Workshop on Dynamic Interconnection of Networks, ACM Press,

New York, NY, USA, 2005, pp. 48–52.

[18] P. Desnoyers, D. Ganesan, P. Shenoy, TSAR: a Two Tier Sensor Storage

Architecture Using Interval Skip Graphs, in: SenSys ’05: Proceedings of the

3rd International Conference on Embedded Networked Sensor Systems, ACM

Press, New York, NY, USA, 2005, pp. 39–50.

[19] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar, SPINS: Security

Protocols for Sensor Networks, in: MobiCom ’01: Proceedings of the 7th Annual

International Conference on Mobile Computing and Networking, ACM, New

York, NY, USA, 2001, pp. 189–199.

[20] G. Biegel, V. Cahill, A Framework for Developing Mobile, Context-aware

Applications, in: PerCom 2004: Proceedings of the Second IEEE Annual

Conference on Pervasive Computing and Communications, IEEE Computer

Society, 2004, pp. 361–365.

[21] M. D. Dikaiakos, S. Iqbal, T. Nadeem, L. Iftode, VITP: an Information Transfer

Protocol for Vehicular Computing, in: VANET ’05: Proceedings of the 2nd ACM

International Workshop on Vehicular Ad Hoc Networks, ACM Press, New York,

NY, USA, 2005, pp. 30–39.

[22] V. Dyo, Middleware Design for Integration of Sensor Network and Mobile

Devices, in: DSM ’05: Proceedings of the 2nd International Doctoral Symposium

on Middleware, ACM Press, New York, NY, USA, 2005, pp. 1–5.

51



[23] P. Mani, S. Muralidharan, V. Frost, G. Minden, D. Petr, A Unified Architecture

for Sensor Networks with Multiple Owners, in: ACM SenSys 2008, Submitted.

[24] J. Feng, F. Koushanfar, M. Potkonjak, System-Architectures for Sensor

Networks Issues, Alternatives, and Directions, in: ICCD’02: IEEE International

Conference on Computer Design, IEEE, IEEE Computer Society, Los Alamitos,

CA, USA, 2002, pp. 226–231.

[25] S. Tilak, N. B. Abu-Ghazaleh, W. Heinzelman, A Taxonomy of Wireless Micro-

sensor Network Models, SIGMOBILE Mobile Computing and Communications

Review 6 (2) (2002) 28–36.

[26] F. Martincic, L. Schwiebert, Handbook of Sensor Networks: Algorithms and

Architectures, John Wiley & Sons, Hoboken, NJ, 2005, Ch. Introduction to

Wireless Sensor Networking, pp. 25–26.

[27] V. Handziski, A. Kopke, H. Karl, A. Wolisz, A Common Wireless Sensor

Network Architecture, in: Proc. 1. GI/ITG Fachgesprach ”Sensornetze”

(Technical Report TKN-03-012 of the Telecommunications Networks Group,

Technische Universitat Berlin), Technische Universitat Berlin, Berlin, Germany,

2003, pp. 10–17.

[28] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin,

D. Ganesan, Building Efficient Wireless Sensor Networks with Low-level

Naming, in: SOSP ’01: Proceedings of the 18th ACM Symposium on Operating

Systems Principles, ACM, New York, NY, USA, 2001, pp. 146–159.

[29] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, D. Estrin, Data-centric

Storage in Sensornets, SIGCOMM Computer Communications Review 33 (1)

(2003) 137–142.

[30] D. Ganesan, D. Estrin, J. Heidemann, DIMENSIONS: Why Do we Need a

New Data Handling Architecture for Sensor Networks?, SIGCOMM Computer

52



Communication Review 33 (1) (2003) 143–148.

[31] K. Römer, O. Kasten, F. Mattern, Middleware Challenges for Wireless Sensor

Networks, SIGMOBILE Mob. Comput. Commun. Rev. 6 (4) (2002) 59–61.

[32] C.-C. Shen, C. Srisathapornphat, C. Jaikaeo, Sensor Information Networking

Architecture and Applications, IEEE Personal Communications, [see also IEEE

Wireless Communications] 8 (4) (2001) 52–59.

[33] U. Ramachandran, R. Kumar, M. Wolenetz, B. Cooper, B. Agarwalla, J. Shin,

P. Hutto, A. Paul, Dynamic Data Fusion for Future Sensor Networks, ACM

Transactions on Sensor Networks (TOSN) 2 (3) (2006) 404–443.

[34] Y. Yao, J. Gehrke, The Cougar Approach to in-network Query Processing in

Sensor Networks, SIGMOD Rec. 31 (3) (2002) 9–18.

[35] B. L. Gorman, M. Shankar, C. M. Smith, Advancing Sensor Web

Interoperability, Sensors Magazine 22 (4) (2005) 14–18.

URL http://www.sensorsmag.com/sensors/article/articleDetail.jsp?

id=185897

[36] G. Percivall, C. Reed, OGC Sensor Web Enablement Standards, Sensors and

Transducers 9 (9) (2006) 698–706.

[37] K. B. Lee, M. E. Reichardt, Open Standards for Homeland Security Sensor

Networks, IEEE Instrumentation & Measurement Magazine 8 (5) (2005) 14–

21.

[38] A Smart Transducer Interface for Sensors and Actuators, IEEE Draft Std.

(2007).

[39] UPnP Device Architecture (2006).

[40] Computational Sciences and Engineering Division, SensorNet: Concept

Definition Document, Tech. report, Oak Ridge National Laboratory (2004).

53



[41] G. J. Pottie, W. J. Kaiser, Wireless Integrated Network Sensors,

Communications of the ACM 43 (5) (2000) 51–58.

[42] J. P. Vasseur, Routing Over Low Power and Lossy Networks (roll), IETF

Working Group (Dec. 17 2007).

URL http://www.ietf.org/html.charters/roll-charter.html

[43] Q. Huaifeng, Z. Xingshe, Context Aware Sensornet, in: MPAC ’05: Proceedings

of the 3rd International Workshop on Middleware for Pervasive and Ad-hoc

Computing, ACM Press, New York, NY, USA, 2005, pp. 1–7.

[44] A. Rezgui, M. Eltoweissy, Service-Oriented Sensor-Actuator Networks, IEEE

Communications Magazine 45 (12) (2007) 92–100.

[45] M. Marin-Perianu, N. Meratnia, P. Havinga, L. M. S. D. Souza, J. Mller,

P. Spiess, S. Haller, T. Riedel, C. Decker, G. Stromberg, Decentralized

Enterprise Systems: a Multiplatform Wireless Sensor Network Approach, IEEE

Wireless Communications [see also IEEE Personal Communications] 14 (6)

(2007) 57–66.

[46] Y. Qian, K. Lu, D. Tipper, A Design for Secure and Survivable Wireless

Sensor Networks, IEEE Wireless Communications [see also IEEE Personal

Communications] 14 (5) (2007) 30–37.

[47] I. Saleh, A. Agbaria, M. Eltoweissy, In-network Fault Tolerance in Networked

Sensor Systems, in: DIWANS ’06: Proceedings of the 2006 Workshop on

Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks, ACM,

New York, NY, USA, 2006, pp. 47–54.

[48] I. Chisalita, N. Shahmehri, A Peer-to-peer Approach to Vehicular

Communication for the Support of Traffic Safety Applications, in: Proceedings

of the IEEE 5th International Conference on Intelligent Transportation

Systems, 2002, pp. 336–341.

54



[49] T. Nadeem, S. Dashtinezhad, C. Liao, L. Iftode, TrafficView: Traffic

Data Dissemination Using Car-to-Car Communication, SIGMOBILE Mobile

Computing and Communications Review 8 (3) (2004) 6–19.

[50] M. C. Edwards, J. Donefson, W. M. Zavis, A. Prabhakaran, D. C. Brabb, A. S.

Jackson, Improving Freight Rail Safety with on-board Monitoring and Control

Systems, in: Proceedings of the 2005 ASME/IEEE Joint Rail Conference, 2005,

pp. 117–122.

[51] S. Muralidharan, V. Frost, G. J. Minden, SensorNet Architecture with Multiple

Owners, Tech. Report ITTC-FY2008-TR-41420-02, University of Kansas,

Lawrence, Kansas (July 2007).

[52] G. J. Minden, J. B. Evans, A. Agah, J. W. James, L. Searl, Architecture and

Prototype of an Ambient Computational Environment: Final Report, Tech.

Report ITTC-FY2004-TR-23150-09, University of Kansas, Lawrence, Kansas

(July 2003).

[53] M. Botts, G. Percival, C. Reed, J. Davidson, OGC Sensor Web Enablement:

Overview and High Level Architecture, OGC 06-050r2, Architecture (2006).

URL http://www.opengeospatial.org/pt/06-046r2

[54] M. Botts, OpenGIS Sensor Model Language (SensorML) Implementation

Specification, Specification (2005).

URL http://portal.opengeospatial.org/files/?artifact id=13879

[55] J. Mauro, Security Model in the Ambient Computational Environment,

Master’s thesis, University of Kansas (2002).

55


