
This paper has been submitted to the Journal of Universal Computer Science.

ProFusion*: Intelligent Fusion from Multiple, Distributed Search Engines1

Susan Gauch
(Department of Electrical Engineering and Computer Science

The University of Kansas
sgauch@eecs.ukans.edu)

Guijun Wang
(Department of Electrical Engineering and Computer Science

The University of Kansas
gwang@eecs.ukans.edu)

Mario Gomez
(Department of Electrical Engineering and Computer Science

The University of Kansas
mgomez@eecs.ukans.edu)

*http://www.designlab.ukans.edu/ProFusion.html

Abstract: The explosive growth of the World Wide Web, and the
resulting information overload, has led to a mini-explosion in World
Wide Web search engines. This mini-explosion, in turn, led to the
development of ProFusion, a meta search engine. Educators, like other
users, do not have the time to evaluate multiple search engines to
knowledgeably select the best for their uses. Nor do they have the time
to submit each query to multiple search engines and wade through the
resulting flood of good information, duplicated information,
irrelevant information, and missing documents. ProFusion sends user
queries to multiple underlying search engines in parallel, retrieves and
merges the resulting URLs. It identifies and removes duplicates and
creates one relevance-ranked list. If desired, the actual documents can
be pre-fetched to remove yet more duplicates and broken links.
ProFusion's performance has been compared to the individual search
engines and other meta searchers, demonstrating its ability to retrieve
more relevant information and present fewer duplicates pages. The
system can automatically analyze queries to identify its topic(s) and,
based on that analysis, select the most appropriate search engines for
the query.

Categories: Information Systems

1This paper is an extension of "Information Fusion with ProFusion", Susan Gauch
and Guijun Wang, WebNet '96: The First World Conference of the Web Society,
San Francisco, CA, October 1996.

This paper has been submitted to the Journal of Universal Computer Science.

1 Introduction

There are a huge number of documents on the World Wide Web, making it
very difficult to locate information that is relevant to a user's interest. Search tools
such as InfoSeek [InfoSeek 1996] and Lycos [Lycos 1996] index huge collections of
Web documents, allowing users to search the World Wide Web via keyword-based
queries. Given a query, such search tools search their individual index and present
the user with a list of items that are potentially relevant, generally presented in
ranked order. However large the indexes are, still each search tool indexes only a
subset of all documents available on WWW. As more and more search tools
become available, each covering a different, overlapping subset of Web documents,
it becomes increasingly difficult to choose the right one to use for a specific
information need. ProFusion has been developed to help users deal with this
problem.

2 Related Work

There are several different approaches to managing the proliferation of Web
search engines. One solution is to use a large Web page that lists several search
engines and allows users to query one search engine at a time. One example of this
approach is All-in-One Search Page [Cross, 1996], another is the Washington
Researcher's Search Engine Reference Page [WR 1996]. Unfortunately, users still
have to choose one search engine to which to submit their search.

Another approach is to use intelligent agents to bring back documents that are
relevant to a user's interest. Such agents [Balabanovic et al. 1995][Knoblock et al.
1994] provide personal assistance to a user. For example, [Balabanovic et al. 1995]
describes an adaptive agent that can bring back Web pages of a user's interest daily.
The user gives relevance feedback to the agent by evaluating Web pages that were
brought back. The agent them makes adjustment for future searches on relevant
Web pages. However, these agents [Balabanovic et al. 1995][Knoblock et al. 1994]
gather information from only their own search index, which may limit the amount
of information they have access to.

A different approach is the meta search method which builds on top of other
search engines. Queries are submitted to the meta search engine which in turn
sends the query to multiple single search engines. When retrieved items are
returned by the underlying search engines, it further processes these items and
presents relevant items to the user. ProFusion [Gauch 1996], developed at the
University of Kansas, is one such search engine.

The idea of using a single user interface for multiple distributed information
retrieval systems is not new. Initially, this work concentrated on providing access to
distributed, heterogeneous database management systems [Arens et al. 1993]. More
recently, meta searchers for the WWW have been developed. For example,

This paper has been submitted to the Journal of Universal Computer Science.

SavvySearch [Dreilinger 1996] selects the most promising search engines
automatically and then sends the user's query to the selected search engines (usually
2 or 3) in parallel. SavvySearch does very little post-processing. For example, the
resulting document lists are not merged. MetaCrawler [Selberg and Etzioni
1995][Selberg and Etzioni 1996], on the other hand, sends out user's query to all
search engines it handles and collates search results from all search engines. What
distinguishes ProFusion from others is that it uses sophisticated yet computationally
efficient post-processing.

3 ProFusion

3.1 General Architecture

ProFusion accepts a single query from the user and sends it to multiple search
engines in parallel. The current implementation of ProFusion supports the
following search engines: Alta Vista [DEC 1996], Excite [Excite 1996], InfoSeek
[InfoSeek 1996], Lycos [Lycos 1996], Open Text [Open Text 1996], and WebCrawler
[GNN 1996]. By default, ProFusion will send a query to Alta Vista, Excite, and
InfoSeek, but the user may select any or all of the supported search engines. If the
user prefers, the system will analyze the user’s query, classifying it into a topic or
multiple topics. Based on this analysis, the system will automatically pick the top
three search engines that perform best on this topic or these topics. However the
search engines are selected, the search results they return are then further processed
by ProFusion. The post-processing includes merging the results to produce a single
ranked list, removing duplicates and dead references, and pre-fetching documents
for faster viewing and further analysis2.

3.2 User Interface

ProFusion queries are simple to form; they are merely a few words describing
a concept. Online help is available via a Help button that leads users to a page
explaining the query syntax, including sample queries. Users need only enter a
query and press the "Search" button, however there are several options available
which give the user more control over their search. The first option specifies
whether or not the user wants to have a short summary displayed for each retrieved
item. The benefit of displaying retrieved items without a summary is that a user
can more quickly scan retrieved items by title. The second option allows users to
manually select the search engine(s) to which their query is sent, or to have the
system choose automatically (described in Section 3.1). If the user is selecting the
search engines, they may choose any number of search engines from one to all six.
When “Automatic Pick Best 3” is selected, the system to selects the best three search
engines based on the words in the query.

2Note: Some of the more computationally expensive features (e.g., pre-fetching and broken link removal) are only
available through the private ProFusion interface. They may be added as options on the public page.

This paper has been submitted to the Journal of Universal Computer Science.

3.3 Duplicate Removal

Since the underlying search engines overlap in the Web pages they index, it is
highly likely that they will return some of the same pages in response to a given
query. ProFusion attempts to remove these duplicated pages, using a few simple
rules. The simplest case is when the identical URL has been returned by multiple
search engines. Clearly, if two items have exactly the same URL, they are duplicates.
More complex rules are necessary to handle the case where the identical page is
referenced by slight variations on the same address. For example, the URLs is
"http://server/" and is "http://server/index.html" reference the identical page.
Handling the previous two cases removes approximately 10 - 20% of the retrieved
URLs. However, duplicates may also occur because multiple copies of the same page
may exist at different locations. Thus, if two items have different URLs but the
same title, they might be duplicates. In this case, we break a URL into three parts:
protocol, server, and path. We then use n-gram method to test the similarity of two
paths. If they are sufficiently similar, we consider them as duplicates. This appears
to work very well in practice, removing an additional 10 - 20% of the URLs, but runs
the risk that the URLs point to different versions of the same document, where one
is more up-to-date than the other. To avoid this risk, we could retrieve the
potential duplicates in whole or in part, and then compare the two documents.
However, this would increase network traffic and might be substantially slower.
This capability has been developed, but has not been added to the public version of
ProFusion due to response time and network traffic concerns.

3.4 Merge Algorithms

How to best merge individual ranked lists is an open question in searching
distributed information collections [Voorhees et al. 1994]. Callan [Callan et al. 1995]
evaluated merging techniques based on rank order, raw scores, normalized statistics,
and weighted scores. He found that the weighted score merge is computationally
simple yet as effective as a more expensive normalized statistics merge. Therefore,
in ProFusion, we use a weighted score merging algorithm which is based on two
factors: the value of the query-document match reported by the search engine and
the estimated accuracy of that search engine.

For a search engine i, we calculated its confidence factor, CFi, by evaluating its
performance on a set of over 25 queries. The CFi reflects the number of total
relevant documents in top 10 hits and the ranking accuracy for those relevant
documents. Based on the results, the search engines were assigned CFis ranging
from 0.75 to 0.85. More work needs to be done to systematically calculate and update
the CFis, particularly developing CFis which vary for a given search engine based on
the domain of the query.

This paper has been submitted to the Journal of Universal Computer Science.

When a set of documents is returned by search engine i, we calculate the
match factor for each document d, Mdi, by normalizing all scores in the retrieval set
to fall between 0 and 1. We do this by dividing all values by the match value
reported for the top ranking document. If the match values reported by the search
engine fall between 0 and 1, they are unchanged. Then, we calculate the relevance
weight for each document d, Rdi, by multiplying its match factor, Mdi, by the search
engines confidence factor, CFi. The document's final rank is then determined by
merging the sorted documents lists based on their relevance weights, Rdi.
Duplicates are identified during the merging process. When duplicates are
removed, the surviving unique document's weight is set to the maximum Rd i
value of all the copies.

3.5 Search Result Presentation

The merge process described in the previous section yields a single sorted list
of items, each composed of a URL, a title, a relevance weight, and a short summary.
These items are then displayed to the user in sorted order, with or without the
summary, depending on user's preference.

3.6 Other Implementation Details

ProFusion is written in Perl and is portable to any Unix platform. It contains
one Perl module for each search engine (currently six) which forms syntactically
correct queries and parses the search results to extract each item's information.
Other modules handle the user interface, the document post-processing, and
document fetching. Due to it's modular nature, it is easy to extend ProFusion to
additional search engines.

ProFusion's main process creates multiple parallel sub-processes, and each
sub-process sends a search request to one search engine and extracts information
from the results returned by the search engine. The main process begins post-
processing when all sub-processes terminate by returning their results or by timing
out (60 seconds in the current prototype).

4 Intelligent Search Engine Selection

A recent extension to ProFusion allows it to automatically select the best three
search engines for a given query, based on the query's domain. Different search
engines perform differently in different topics, and users don't have the knowledge
nor the time to know which search engines work best for specific queries. Our
system automatically identifies the topic(s) in a user's query, selects the search
engines which have been shown to do best on this/these topic(s), and submits the
queries to those search engines. This operation is done quickly, with no user
feedback required, and has been shown to improve the quality of the search results.

This paper has been submitted to the Journal of Universal Computer Science.

To do this, we created a knowledge base which: 1) contains a taxonomy which
reflects the contents of the Web; 2) associates words with specific topics; 3) associates
search engines with specific topics.

4.1 Selecting the Taxonomy

The first step in being able to classify queries is to select a taxonomy from
which to build the knowledge base. This taxonomy must reflect the breadth of
topics available on the Internet today. Since it is representative of users' interests,
we used the list of newsgroups on the Internet for the classification process. The
first task was to select, from the newsgroup names, a set of categories. To do this, we
parsed the newsgroup names (e.g., rec.arts.movies.reviews) into individual tokens
(rec, arts, movies, reviews) which form a hierarchy of topics and sub-topics. From
this list of tokens, we extracted approximately 4000 unique terms. For each term, we
calculated how many times it occurred in the list of newsgroup names. For
instance, "science" appears 25 times, "engineering" 25 times, and "recreation" 73
times in the newsgroup list (i.e., they have 25, 25, 73 sub-newsgroups respectively).
This data was combined with our everyday knowledge of the world to select the
final categories. For instance, society, law, and government are closely related to
each other. Hence, they are merged into one category. The resulting set of 13
categories was:

- Science and Engineering
- Computer Science
- Travel
- Medical and Biotechnology
- Business and Finance
- Social and Religion
- Society, Law and Government
- Animals and Environment
- History
- Recreation and Entertainment
- Art
- Music
- Food

4.2 Creating the Dictionary

For each category, it is necessary to have a set of associated terms. These terms
are used to map from the user queries to the appropriate categorie(s). We used the
4,000 terms extracted from the newsgroup names above for this purpose,
automatically associating the terms to the categories using the topic-sub-topic
hierarchy. The current dictionary should be improved so that more words in more
queries can be accurately assigned to categories. One approach would be to expand
the number of words in the dictionary This can be done by including words from
the actual newsgroup articles. Another approach would be to make better use of the

This paper has been submitted to the Journal of Universal Computer Science.

existing dictionary words. This can be done by incorporating stemming on query
words and dictionary words to increase the number of matches.

4.3 Calibrating the Search Engines

The next step in the process of building the knowlege base was to calibrate the
effectiveness of each of the 6 search engines on queries in each of the 13 different
categories. To do this, we submitted 48 different queries (approximately 4 per
category) to each of the 6 underlying search engines. For each query, we examined
the top 10 retrieved documents, classifying it as relevant or irrelevant. Then, we
calculated the performance of each search engine on each query using the following
formula:

iN
i =1

10
∑

10
*

R

10

















÷ 0. 2929

where Ni = 0 if document i is irrelevant, 1/i otherwise.
R is the number of relevant documents in the set of 10.

This formula is the product of two factors, rank order factor and precision,
normalized to yield numbers in [0,1]. The rank order factor takes into account the
position in the retrieval set of the relevant documents, rewarding those which
present the relevant documents near the top of the list. In contrast, precision is a
measure of the number of relevant documents in the retrieved set of 10, regardless
of position.

If the rank order factor is used alone, it is too heavily biased for position in
the list over the total number of relevant documents in the set. For example, if the
first document of the top 10 documents retrieved by a search engine is the only
relevant document, then the rank order factor would be 1/10 = 0.10. In contrast, if 7
relevant documents are retrieved in positions 4 through 10, the rank order factor
would be (0+0+0+1/4+...+1/10)/10 = 0.11, which seems to poorly reflect the relative
quality of the two search results. However, precision alone fails to differentiate
between two search engines which each retrieve 5 relevant documents, but the first
places them in positions 1 through 5 whereas the second places them in positions 6
through 10. To balance both criteria (number and position of relevant documents),
we use a measure which is the product of the rank order factor and precision.

Finally, an average score for search engine was calculated for each category by
averaging the scores for each query in that category. This average score is the search
engine's quality of result with regard to a query in this topic. These scores range
from a high of 0.767 (Alta Vista on Food) to a low of 0.011 (OpenText on History).
The same search engine did not consistently perform the best across all categories.

This paper has been submitted to the Journal of Universal Computer Science.

For example, the queries on Art did best with WebCrawler, InfoSeek and OpenText
whereas the queries on Animals and Environment did best with Lycos, InfoSeek
and Excite, and queries on Food do best when directed to AltaVista, Lycos and
WebCrawler.

4.4 Selecting the Search Engines

A user's query is classified via a two-level dictionary look-up. The dictionary
of words and the related categories used in the prototype were stored in two separate
files. The dictionary file is used to map from words to the categories in which they
belong. The category file is used to map from categories to the scores of the 6 search
engines on those categories. These files contain sorted, fixed length records which
are accessed via binary search.

Each query may be associated with multiple categories. The query may contain
several words from different categories and/or the individual words may
themselves be associated with multiple categories. To select the best search engines
for a given query, the system keeps an accumulator for each of the six search
engines. When a word's categories are identified, the six search engine performance
scores for each category are added to the scores buckets respectively. When all words
are handled, we select the three buckets with the highest accumulated scores. Their
scores are normalized by dividing by the maximum of the three values. If no word
in the query is in the dictionary, then we use a default set of three search engines,
those which produce the best average results over all categories.

4.5 Merging Search Results

The three normalized scores for the goodness of match between the chosen
search engines and the query, described in the previous section, are used during
search result merging. The goal is to rank documents higher when they come from
search engines that have, in the past, been particularly good for queries in this
category. Normally, during merging, the relevance weight for a given document is
the product of the (normalized) scores returned by the search engine and the
confidence factor for the given search engine (see section 3.4). When AutoPick is
used, this value is further multiplied by the goodness of match score between the
query and the search engine. If the default three search engines are selected, weights
of 1.0 are used for all three, which leaves the regular relevance weights unchanged.

5 Performance Evaluation

5.1 Manual Pick ProFusion

We invited every student in our Spring 1996 Information Retrieval class to select a
query he/she was interested in. They then were asked to perform a search on that
query using each of 9 search engines: the six underlying search engines used by

This paper has been submitted to the Journal of Universal Computer Science.

ProFusion (Alta Vista, Excite, InfoSeek, Lycos, Open Text, WebCrawler); ProFusion;
and two other meta search engines (MetaCrawler and SavvySearch). Each
participant provided relevance judgments for the top 20 retrieved items from each
search engine, noting which were broken links and which were duplicates. The
performance of each of the search engines was then compared by accumulating the
information on the number of relevant documents, the number of irrelevant
documents, the number of broken links, the number of duplicates, the number of
unique relevance documents, and the precision. Here, precision = number of
unique relevant documents divided by total number of documents retrieved (20
documents in this evaluation). The following is a summary of the results from the
12 independent queries, evaluated by the top 20 retrieved documents (total 240
documents evaluated for each search engine).

�
�

Total Total Total Total Total Average

Search
Engines

number
of

relevant

number
of

irrelevan
t

Broken
links

number
of unique
relevant

number
of

duplicate
relevant

Precision
number
unique
/ 240

Single Search Engines
Alta
Vista

108 101 31 99 9 0.41

Excite 129 104 7 122 7 0.51
InfoSeek 99 125 16 87 12 0.36

Lycos 119 104 17 93 26 0.39
Open
Text

72 136 32 54 18 0.23

WebCra
wler

92 130 18 73 19 0.30

Meta Search Engines
MetaCra

wler
98 118 24 85 13 0.35

SavvySea
rch

127 84 29 112 15 0.47

ProFusion
Manual

Pick
All 6

142 85 13 134 8 0.56

Auto
Pick

Best 3

170 51 19 166 4 0.69

Table 1: Performance Comparison

This paper has been submitted to the Journal of Universal Computer Science.

From this table, we see that the Manual Pick version of ProFusion
outperformed all other search engines on the user selected queries. The only search
engine to do better was the Automatic Pick version of ProFusion, which will be
discussed in the next paragraph. Automatic Pick ProFusion returned the most
relevant documents and hence the best average precision. We attribute this
performance to our sophisticated yet efficient merging algorithm, combined with
the removal of duplicates. When more of the documents in the top 20 are unique,
there is a better chance that more of them are relevant. ProFusion did a better job in
duplicate removal than SavvySearch and MetaCrawler. ProFusion has 8 duplicates
among 142 relevant documents (5.6%), whereas SavvySearch has 15 duplicates
among 127 relevant documents (11.8%) and MetaCrawler has 13 duplicates among
98 relevant documents (13.3%). Similar numbers were observed for duplicates
among irrelevant retrieved documents. Surprisingly, the number of duplicates
retrieved by many of the individual search engines was higher than those of the
meta-search engines. Many times, the same document is accessible from multiple
URLs and thus is multiply indexed by the individual search engines. The
percentage of broken links retrieved by ProFusion was also lower than any system
except Excite.

5.2 Automatic Pick ProFusion

Automatic Pick ProFusion did dramatically better than the Manual Pick
version, with 170 relevant documents (by far the most of any system) and only 4
duplicates (by far the least of any system). One measure of quality, however, was
poorer. The number of broken links increased from 13 (second best overall) to 19
(just better than the average of 20.6). Manual Pick always included Excite, which
decreased the overall number of broken links in its merged set due to its low
number of broken links retrieved from Excite. In contrast, the AutoPick version did
not always select Excite, so it did not always benefit by averaging in Excite's superior
broken link performance.

We believe that this small experiment demonstrates that merging results
from the "best of the best" can do better than merging results from all possible
contributors. Our student subjects in this experiment tended to query on science or
computer science topics, and a more thorough experiment with queries from a
wider range interests needs to be done to validate these results. However, we
believe that the quality of the search engines varies by topic, making it desirable to
select the best search engines for individual queries rather than sending a query to
all search engines or a fixed subset. Selecting a subset of the search engines also
places less demand on Internet resources.

This paper has been submitted to the Journal of Universal Computer Science.

6 Future Work

Enhancements that are underway include analyzing the retrieved documents
to improve the ranking, improving the speed of broken link removal, and
incorporating user preferences in the ranking process (e.g., do they prefer content-
bearing pages which contain mostly text or summary pages which primarily contain
links to further pages). The AutoPick process can be improved in two ways: 1)
increase the number of words in the dictionary so that query categories are more
accurately identified. 2) incorporate learning into the search engine evaluation on
different topics. Search engines may change, and we need a way to automatically
keep the our table of which search engines are best for which categories up to date.

New capabilities are also being planned. In particular, we plan to add the
ability to automatically rerun searches on a periodic basis, presenting only new or
updated URLs to the user. This will provide a personal search
assistant/information filtering capability.

References

[Arens et al. 1993] Arens, Y., Chee, C., Hsu, C., Knoblock, A.: "Retrieving and
Integrating Data From Multiple Information Sources"; Journal on Intelligent and
Cooperative Information Systems, 2, 2 (1993), 127-158.

[Balabanovic et al. 1995] Balabanovic, M., Shoham, Y., Yun, Y.: "An Adaptive Agent
for Automated Web Browsing"; Journal of Image Representation and Visual
Communication 6, 4 (1995).

[Callan et al. 1995] Callan, J., Zhihong L., Croft, W.B.: "Searching Distributed
Collections With Inference Networks"; 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Seattle, WA
(1995), 21-28.

[C r o s s 1 9 9 6] C r o s s , W . : A l l - i n - O n e H o m e P a g e , U R L :
<http://www.albany.net/allinone/>, (1996).

[DEC 1996] Digital Equipment Corporation, Alta Vista Home Page, URL:
<http://altavista.digital.com/>, (1996).

[Dreilinger 96] Dreilinger, D.: SavvySearch Home Page, URL:
<http://www.cs.colostate.edu/~dreiling/smartform.html>, (1996).

[Excite 1996] Excite Inc., Excite Home Page, URL: <http://www.excite.com/>, (1996).

[G a u c h 1 9 9 6] G a u c h , S . : P r o F u s i o n H o m e P a g e , U R L :
<http://www.designlab.ukans.edu/ProFusion.html>, (1996).

This paper has been submitted to the Journal of Universal Computer Science.

[GNN 1996] Global Network Navigator Inc., WebCrawler Home Page, URL:
<http://www.webcrawler.com/>, (1996).

[InfoSeek] InfoSeek Corp., InfoSeek Home Page, URL: <http://www.infoseek.com/>,
(1996).

[Knoblock et al. 1994] Knoblock, A., Arens, Y., Hsu, C.: "Cooperating Agents for
Information Retrieval"; Proceedings of the Second International Conference on
Cooperative Information Systems, Toronto, Canada (1994).

[Lycos 1996] Lycos Inc., Lycos Home Page, URL: <http://www.lycos.com/>, (1996).

[Open Text 1996] Open Text Inc., Open Text Home Page, URL:
<http://www.opentext.com/omw/f-omw.html>, (1996).

[Selberg and Etzioni 1995] Selberg, E., Etzioni, O.: "Multi-Service Search and
Comparison Using the MetaCrawler"; WWW4 Conference, Boston, MA (1995).

[Selberg and Etzioni 1996] MetaCrawler Home Page, URL:
<http://www.cs.washington.edu:8080/>, (1996).

[Sun 1996] Sun Microsystems, Inc., Multithreaded Query Page, URL:
<http://www.sun.com/cgi-bin/show?search/mtquery/index.body>, (1996).

[Voorhees et al. 1994] Voorhees, E.M., Gupta, N.K. and Johnson-Laird, B.: "The
Collection Fusion Problem"; in The Third Text REtrieval Conference (TREC-3),
Gaithersburg, MD (1994), 95-104.

[WR 1996] Washington Researchers Ltd., Washington Researcher's Search Engines
R e f e r e n c e P a g e , U R L :
<http://www.researchers.com/pub/busintel/searcheng.html>, (1996).

Acknowledgments

This work was funded by the University of Kansas General Research Fund
and National Science Foundation Awards CDA-9401021 and IRI-9409263.

