
This paper has been submitted to CIKM '97 (pending).

A Corpus Analysis Approach for

Automatic Query Expansion*

Susan Gauch and Jianying Wang
Electrical Engineering and Computer Science

415 Snow Hall
University of Kansas
Lawrence, KS 66045

sgauch@eecs.ukans.edu

ABSTRACT

Searching online text collections can be both rewarding and frustrating. While
valuable information can be found, typically many irrelevant documents are also
retrieved and many relevant ones are missed. Terminology mismatches between
the user's query and document contents are a main cause of retrieval failures.
Expanding a user's query with related words can improve search performance, but
finding and using related words is an open problem.

This research uses corpus analysis techniques to automatically discover similar
words directly from the contents of the untagged databases. Using these similarities,
user queries are automatically expanded, resulting in conceptual retrieval rather
than requiring exact word matches between queries and documents. This work has
been extended to multi-database collections where each sub-database has a
collection-specific similarity matrix associated with it. If the best matrix is selected,
substantial search improvements are possible. However, automatically selecting the
appropriate matrix for a particular query remains under investigation.

* This work was funded by the University of Kansas General Research Fund and National Science
Foundation Awards CDA-9401021 and IRI-9409263.

1. INTRODUCTION

The goal of information retrieval is to identify documents which best match users
information needs. At first glance, this seems very simple - merely identify
documents (efficiently) which contain the words which are also contained in the
user's query. However, the average query submitted by users to World Wide Web
search engines is only two words long [Croft et al, 1995], which makes it difficult to
identify relevant documents. There are likely to be many relevant documents
available which are missed because they do not contain the exact words used in the
query.

Automatically adding related words to a query can increase the number of relevant
documents identified by increasing the number of words which are used for
matching. This is one way to provide conceptual retrieval, rather than pure string
matching. The user's initial query terms are taken as representatives of the concepts
in which they are interested. Then, query expansion adds other terms related to the
same concepts, providing a richer representation of the user's query. Our earlier
work showed that an expert system which automatically reformulated Boolean
queries by including terms from an online thesaurus was, indeed, able to improve
search results [Gauch & Smith, 1993]. But, where are the expansion terms to come
from? There are three main sources for related words which vary in their level of
specificity: 1) query specific; 2) corpus specific; and 3) language specific.

Query specific terms can be identified by locating new terms in a subset of the
documents retrieved by a specific query. This is the approach taken by relevance
feedback systems, where related terms come from the contents of user-identified
relevant documents. This has been shown to be quite effective [Harman, 1992], but
it requires the users to indicate which documents are relevant. More recently,
search improvements are being achieved [Xu & Croft, 1996] without the need for
user relevance judgments. Local analysis of the top N retrieved documents, where
N varies from 20 to 100 based on the database being searched, has been found to
increase performance over 23% on the TREC3 and TREC4 corpora. The main
drawback to these approaches is that there is a reasonable amount of computation
that takes place after the user submits his query, which can be a problem for
interactive systems.

Corpus specific terms are found by analyzing the contents of a particular full-text
database to identify terms used in similar ways. It may be hand-built [Gauch &
Smith, 1991], a time-consuming and ad hoc process, or created automatically.
Traditional automatic thesaurus construction techniques grouped words together
based on their occurrence patterns at a document level [Crouch & Yang, 1992; Qui &
Frei, 1993], i.e., words which often occur together in documents are assumed to be
similar. Other approaches look inside documents to consider finer-grained word
usage patterns. Some incorporate syntactic analysis [Grefenstette, 1992]. Most,
however, look for co-occurrence patterns of words [Schütze & Pedersen, 1994] or
noun phrases [Jing & Croft, 1994] within windows of a fixed size (measured in terms

of n words). Significant search improvements have been achieved with these
systems (7.8% and 3.4% on TREC3 and TREC4 respectively [Xu & Croft, 1996]; 5% on
TIPSTER Category B [Schütze & Petersen, 1994]; 18-30% on smaller corpora [Qui &
Frei, 1993]). These approaches are computationally intensive, but the computations
are all done once per database. The only component done on a per query basis is the
actual query expansion itself.

Language specific terms may be found from generally available online thesauri
which are not tailored for any particular text collection. [Liddy & Myaeng, 1993] use
the Longman's Dictionary of Contemporary English, a semantically coded
dictionary. [Voorhees, 1994] used WordNet [Miller, 1990], a manually-constructed
network of lexical relationships. Because of ambiguity, this type of thesaurus is
difficult to use because they include multiple meanings for most words. Selecting
the correct meaning for expansion can be difficult. Small improvements (1%
[Voorhees, 1994]) are possible with longer queries which provide clues for which
word senses are involved, but expanding shorter queries actually degraded
performance. In addition, a general thesaurus may not be applicable for more
specialized collections which may have their own distinct sublanguages.

We have adopted a corpus-specific approach for locating related terms. We are
particularly interested in these techniques because the main calculations are done a
priori, before the user queries arrive. Also, because the information is built from
the specific text collection, the related terms are automatically tuned for the
particular database being searched. Finally, since our approach is entirely statistical
is should, in principle, be applicable to databases in different languages, although we
have not tested this, be . Our approach differs from those presented above in that it
does not depend on term co-occurrence, per se. This will be further explained in
Section 2.

2. CORPUS ANALYSIS TECHNIQUE

We have modified a corpus linguistics approach [Finch & Chater, 1992] that creates a
matrix of term-term similarities. For words to be considered similar, they need not
actually co-occur, however, they must occur in similar contexts. For example, we
could deduce that "color" and "colour" were highly similar words because they are
used in similar contexts, even though they are not likely to both appear in the same
document. This approach is similar to others in that word usage within a given
window is recorded. However, our window size is much smaller because we take
into account the position of the words within the window, not just the words
themselves. The fact that the word "the" appears immediately prior to a word w
carries much more information about w (i.e., it is a noun or an adjective) than just
the fact that the word "the" appears within a 7 word window of w. Thus, although
we do not do explicit parsing of the text, we do get a quasi-syntactic categorization.

2.1 Similarity Calculation

The first step is to identify a set of words, the target words, whose pairwise
similarities are to be calculated. Then, for each target word, we construct a context
vector which summarizes information about word occurrences around the target
word. This context vector is a concatenation of sub-vectors, one position vector for
each position in the window (called the context positions). For example, in a
window of size 5, there are 4 context positions: -2 (2 positions before the target
word), -1(immediately before the target word), +1 (immediately after the target
word) and +2 (2 positions after the target word). Each position vector is has one
element for each context words, the words whose appearance in the window
surrounding the target words is recorded. Generally, the context words are the n
most frequent words in the database. Thus, each target word has an associated
context vector of dimension Np*Nc , where Npis the number of context positions
and Nc is the number of context words. From these context vectors, a Nt x Nt
similarity matrix is calculated, where Ntis the number of target words.

Initially, the counts from all instances of a word form wi are summed so that the
entry in the corresponding context word position in the vector is the sum of the
occurrences of that context word in that position for the corresponding target word
form; it is the joint frequency of the context word. Consider an example in which
there are only five context words, {"a", "black", "dog", "the, "very"} and two
sentences containing the target word "dog" and we only observe the preceding two
positions and the following two positions:

(1) The black dog barked very loudly.

(2) A brown dog barked very loudly.

Sentence Context
Position

Observed
Word

Context Vector

1 -2 "The" (0, 0, 0, 1, 0) 4th context word
-1 "black" (0, 1, 0, 0, 0) 2nd context word
+1 "barked" (0, 0, 0, 0, 0) not a context word
+2 "very" (0, 0, 0, 0, 1) 5th context word

Table 1. The context vectors for each of the 4 context positions around the occurrence of
the target word "dog" in sentence 1.

The context vector for "dog" in sentence 1 is formed by concatenating the context
vectors for each of the 4 context positions:

(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Similarly, the context vector for "dog" in sentence 2 would be:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

and the combined vector for the word "dog" would be:

(1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2)

After the context vectors for each target word are created, the raw occurrence
numbers are replaced by mutual information values [Church & Hanks, 1990] as
follows:

 MI(cw) = log 2

Nfcw

fc f w

+1



 




MI(cw) expresses the mutual information value for the context word c appearing
with the target word w. The mutual information is large whenever a context word
appears at a much higher frequency, fcw, in the neighborhood of a target word than
would be predicted from the overall frequencies in the corpus, fc and fw. The
formula adds 1 to the frequency ratio, so that a 0 (zero) occurrence corresponds to 0
mutual information. When the mutual information vectors are computed for a
number of words, they can be compared to see which words have similar contexts.
The comparison we chose is the inner product, or cosine measure, which can vary
between -1.0 and +1.0 [Myaeng & Li, 1992].

Finally, to make the identification of the most highly similar terms to a given term
more efficient, an auxiliary file is produced from the similarity matrix. It stores, for
each target word, a list of words and their similarity values for all words with
similarity above a given threshold. This similarity list is sorted in decreasing order
by similarity value.

3. EVALUATION

To incorporate the results of the corpus analysis into an existing retrieval engine,
SMART was modified to allow it to expand queries based on the similarity matrices,
search the database with the expanded queries, and return the top 1000 documents
for each query. The retrieval runs used SMART's lnc weights for the documents
and the modified ltc weights for the queries. We experimented with different
databases, different similarity calculation parameters and different expansion
techniques.

3.1 Collections and Query Sets

Experiments are carried out on 3 collections: 1) TREC4 Category B (0.38 GBs) which is
comprised of the Wall Street Journal (WSJ) and the San Jose Mercury (SJM) with 48
queries; 2) WSJ (0.25 GBs) with 45 queries from TREC4 and 45 queries from TREC5;
and 3) the Cystic Fibrosis database (4.9 MB), a collection of 1,239 papers cystic fibrosis
related papers from MEDLINE (Shaw et al, 1991).

3.2 Similarity Matrix Calculation Experiments with the TREC 4 Category B corpus

3.2.1 Tuning the Parameters
The goal of the first set of experiments was to tune the similarity calculation
algorithm. There are four main parameters to evaluate: 1) the number of context
words; 2) the number of context positions (i.e., the window size); 3) the amount of
the corpus to process (i.e., the sample size); and 4) the number (and location) of the
target words. Using a fixed target list, we initially did a series of experiments
studying the number of context words, the window size and the sample database
size [Gauch & Wang, 1996]. For each combination of the three factors, we evaluated
a range of different similarity thresholds for expansion, and Table 2 reports the best
performing threshold and the associated 11-pt average. These tests were carried out
on the TREC 4 category B collection.

 Sample size 10% (38 MB)
Window Size

Context words
5 7 9

150 (0.39, 0.1823) (0.37, 0.1834) (0.30, 0.1830)
200 (0.39, 0.1825) (0.34, 0.1831) (0.27, 0.1815)
250 (0.37, 0.1850) (0.30, 0.1830) (0.27, 0.1826)

 Sample size 20% (76 MB)
Window Size

Context words
5 7 9

150 (0.50, 0.1813) (0.45, 0.1840) (0.40, 0.1860)
200 (0.45, 0.1834) (0.38, 0.1887) (0.34, 0.1873)
250 (0.45, 0.1811) (0.38, 0.1852) (0.32, 0.1861)

 Sample size 30% (114 MB)
Window Size

Context words
5 7 9

150 (0.80, 0.1791) (0.70, 0.1791) (0.60, 0.1792)
200 (0.70, 0.1791) (0.60, 0.1796) (0.40, 0.1804)
250 (0.60, 0.1799) (0.45, 0.1795) (0.45, 0.1799)

Table 2. Experimental results for context words, window size and sample size on the
TREC 4 category B collection. Note: unexpanded queries yield an 11-pt average of
0.1791.

As we expected, adjusting the parameters one by one produced only modest
improvements, if any. However, analyzing the parameter settings individually was
the first step to finding a combination of the parameters that work well. From these
experiments, we concluded that a window size of 7, 200 context words, and a sample
size of 20% (76 MB) provided the best fixed point in a highly multi-dimensional
space with respect to results and efficiency.

3.2.2 Other Factors
We also ran a few small tests to check on the effectiveness of adding stemming and
to confirm our belief that the positional information captured in the context vectors
contributes to the quality of the results.

Calc. Method as described with stemming
no position
vectors (200)

no position
vectors (1200)

11-pt average 0.1887 (+5.4) 0.1880 (+5.0) 0.1382 (-22.8) 0.1727 (-3.6)

Table 3. The average 11-pt average for different matrix calculation techniques (TREC4
Category B collection: 20% sample, window size 7, 200 context words, 4000 target words,
expansion threshold of 0.38).

From Table 3, we see that stemming the corpus before calculating the word (or, in
this case, stem) similarities has a slight negative effect on the result, so we chose not
to stem. If we ignore the positional information and create one 200 element context
vector for the target word which records word occurrences anywhere in the window
(rather than using the position vectors which record occurrences separately for each
context position), we get a marked decrease in performance. To make a stronger case
for the worth of the positional information we capture, if we use a context vector of
length 1200 (which is the size of the 6 200-element position vectors concatenated) we
still see a decrease in the retrieval results, albeit not as dramatic.

3.3 Similarity Matrix Calculation Experiments with the Wall Street Journal corpus

The TREC4 Category B corpus consists of two sub-collections: the Wall Street
Journal (WSJ) and San Jose Mercury News (SJM). To avoid possible confusion in
the similarity matrix due to differing word usage in the sub-collections, we
conducted further experiments on the WSJ sub-collection alone. In particular, we
re-examined the effect of sample size and extended our analysis to consider the
number and location of the selected target words. Based on the results in Section
3.2, a window size of 7 and context word size of 200 are used in all of the following
experiments. A more complete description of the experimental results appears in
[Gauch & Wang, 1997]

3.3.1 Sample Selection
In Table 4, the average of 11-pt averages for different size of sample databases is
presented. The trend seems that the performance is better as the size of sample
database increases. The 11-pt average tends to be stable when the size of sample
database is above 20%.

Sample Size 5% (12.5 MB) 10% (25 MB) 20% (50 MB) 30% (75 MB)
first run (1, 0.1938) (3, 0.2007) (2, 0.2020) (2, 0.1989)
second run (0, 0.1885) (4, 0.2002) (3, 0.1982) (2, 0.2015)
third run (6, 0.2005) (2, 0.1944) (2, 0.2010) (3, 0.2035)
Average 0.1943 (+3.1) 0.1984 (+5.3) 0.2004 (+6.3) 0.2013 (+6.8)
Std. Dev. 0.0049 0.0029 0.0016 0.0018

Table 4. The 11-pt averages for different sample sizes (3 samples per size) from the WSJ
database.

The 20% (50 MB) sample performs almost as well as the 30% (75 MB) sample, so it is
used in subsequent tests. In addition, by selecting different samples of the same size,
we were able to gauge the sensitivity of the results to the particular sample chosen.
The 20% sample size seems to be the least sensitive to the actual sample chosen, as
measured by the standard deviation.

3.3.2 Target Word Selection
Having fixed the sample size, the last parameter in the calculation algorithm is the
target word lists. This is perhaps the most crucial decision, since if a word is not in
the target list it cannot be expanded if it appears in a query. Also, if the word is not
in the target list, it cannot be added as a result of expanding a query. Fixing the
number of target words at 4,000, we experimented with the selection of the target
words based on their frequency. Consider a frequency ordered list for the sample.
Words 1 through 200 would be the context words and, for offset 0, words 201
through 4,200 would be the target words. Other offsets slid the target words down
the frequency list, selecting 4,000 words whose frequency in the sample decreased as
the offset increased. In all cases, the 4,000 target words selected from the frequency
list were augmented with any missing, non-stopped query words. This was done to
ensure that all important query words would be in the target word list.

From Table 5, we see that offset 0 provided the best performance. Intuitively, the
benefit of using relatively frequent non-stopwords as possible expansion terms can
be explained because adding a common synonym for a query term is likely to be of
more benefit than adding a rare synonym for a query term.

Offset 0 2000 4000 6000 8000
11-pt average 0.2003 (+6.3) 0.1885 (+0) 0.1916 (+1.6) 0.1946 (+3.2) 0.1901 (+0.8)

Table 5. 11-pt average for different target word frequency list location for 4000+ target
words (WSJ database).

After we found the optimal target word location, we want to know how many target
words are enough. Table 6 shows the average of 11-pt average for different numbers
of target words (all using offset 0). Surprisingly, 4000+ target words give the best
performance, with the added benefit of dramatically lower computation demands

since creating the similarity matrix is O(Nt 2) where Nt is the number of target
words. We interpret this result to mean that adding lower frequency words to the
target list adds more noise than value.

Target Words 4000+ 6000+ 8000+
first run 0.2049 (+8.7) 0.2006 (+6.4) 0.1993 (+5.7)
second run 0.1952 (+3.6) 0.1957 (+3.8) 0.1935 (+2.7)
third run 0.2015 (+6.9) 0.1988 (+5.5) 0.2017 (+7.0)
Average 0.2005(+6.4) 0.1984(+5.2) 0.1982(+5.1)

Table 6. 11-pt average for different sizes of target word lists (WSJ database).

3.3.3 Representative Results
To give a feel for the types of similarity information generated by this approach, we
will present some representative results. Some similarities seem intuitively correct,
others less so. However, the proof of the validity of this approach is not a
qualitative examination of the similarity matrix, but rather the quantitative search
improvements presented in the next section.

accord agreement (0.553) pact (0.509) arrangement (0.424 treaty (0.383) talks
(0.348) merger (0.346 settlement (0.333) transaction (0.331) bill (0.322) ...

acquire sell (0.459) buy (0.435) provide (0.380) eliminate (0.374) convert (0.373)
acquired (0.368) build (0.361) purchase (0.357) receive (0.350) ...

acquiring acquire (0.335) buying (0.2799) joining (0.277) expanding (0.273) issuing
(0.2731) making (0.2703 selling (0.2556) using (0.250) sell (0.234) ...

analyst economist (0.568) trader (0.501) strategist (0.460) consultant (0.428)
official (0.391) spokesman (0.354) specialist (0.352) adviser (0.348) ...

The above excerpts illustrate that, due to the influence of positional information in
the similarity calculation, words tend to group along parts of speech. For example,
the similarity list for acquire contains the buy and sell whereas the similarity list for
acquiring contains buying and selling. In addition, various forms of the same word
appear together, e.g., acquire and acquiring, which may explain why stemming
provided no improvement in Section 3.2.2. We get a partial stemming effect
automatically.

3.4 Query Expansion Experiments with the Wall Street Journal corpus

3.4.1 Query Expansion Technique
Having tuned the similarity calculation parameters, we then investigated how to
best make use of the information in the similarity lists for query expansion. In early
work [Gauch & Chong, 1995], expanding using a similarity threshold alone seems
very sensitive to the threshold chosen. Slight changes in the threshold could
dramatically affect the number of words used to expand a given query word. We
therefore experimented with expansion techniques which capped the number of

words used to expand a given word alone and in combination with thresholds
[Gauch and Wang, 1997]. In all, we tested four different query expansion methods:

1) for each query word which appears in the target list, add all words in the
similarity list above some threshold.

2) for each query word which appears in the target list, add a fixed number of
words from the similarity list. (If there are fewer than that number in the
similarity list, add as many as there are).

3) add a threshold to method 2, i.e., add at most the fixed number of words,
but only add those words which are above some threshold.

4) add a higher threshold to method 3, i.e., add all words above a high
threshold, but at most a fixed number of words above a lower threshold.

We found that Method 4 (with a lower threshold of 0.24 and a higher threshold of
0.46) provided the best performance. It also makes intuitive sense: all words which
are clearly similar to the query word (i.e., above the higher threshold) are added.
However, at most a small number of words (3, to be exact) which are somewhat
similar (i.e., above the lower threshold but not above the higher one) are added.

Method One Two Three Four
11-pt average
(normalized)

0.1895 (+0.5) 0.2003 (+6.3) 0.2020 (+7.2) 0.2049 (+8.7)

11-pt average
(not normalized)

0.1877 (-0.4) 0.1905 (+1.1) 0.1917 (+1.7) 0.1828 (-3.0)

Table 7. 11-pt average for different query expansion methods (WSJ database).

3.4.2 Effect of Normalization
The experiments in the previous section dealt with different methods of identifying
the expansion words for each query term. However, once the words have been
chosen by one of the four methods discussed, the weights on the expansion words
(and adjustments, if any, to the weight of the original query term) have yet to be
determined. Our initial approach was to treat the original query term as a concept
which had a weight of 1.0. Then, when expansion words were added to the concept,
they were given a weight equal to their value in the similarity list for the query
word. All the weights for that concept (i.e., the original query term plus all
expansion words) were then re-normalized to sum to 1.0. This was done so that the
query would not be re-balanced to give more weight to a concept merely because it
had many synonyms. To verify that normalization was necessary, we expanded
queries with each of the four methods and reran the queries without normalizing
the weights. Table 7 shows that normalization is extremely important for all of the
expansion methods.

Consider Topic 203 in TREC 4. Expansion without normalization, yields

what is the economic 1.000 {political 0.5660} {military 0.4851} impact 1.000 {effect 0.5324} {role
0.3981} of recycling 1.000 {food 0.2403} {machinery 0.2254} tires 1.000 {cars 0.2783} {gas 0.2283}?

whereas with normalization we get

what is the economic 0.4875 {political 0.2759} {military 0.2365} impact 0.5180 {effect 0.2758}
{role 0.2062} of recycling 0.6823 {food 0.1639} {machinery 0.1538} tires 0.6637 {cars 0.1847} {gas
0.1515}?

Because of the high similarity values of the words added by expansion, the
"economic" and "impact" concepts get much higher weights without normalization
relative to the more important concepts of "recycling" and "tires".

4. VALIDATING THE RESULTS

We performed two types of validation experiments. In the first, we used the most
promising similarity matrix calculations and query expansion techniques for the
Wall Street Journal corpus using 45 new queries from TREC5. This resulted in an
overall 11 point average of 0.1325 compared to a baseline of 0.1231, an improvement
of 7.6%.

The TIPSTER collections tend to contain diverse papers which are written in
general English. Our second validation experiment used an entirely different type
of corpus to show that the results were applicable across a broad range of collections.
We believe that this approach is likely to be of most benefit to corpora within
specialized sub-domains. The word usage in such sub-domains tends to have
specialized words and specialized word usages which our technique can exploit. To
confirm that this approach is particularly well-suited to smaller, more specialized
corpora which are by and large written in their own sub-languages, we tested our
approach on the Cystic Fibrosis database (Shaw et al, 1991), a collection of all papers
(1,239) indexed by the term CYSTIC FIBROSIS in MEDLINE (1974-1979). Running
the similarity calculation as determined in Section 2, and Method 4 for query
expansion (higher threshold 0.7; lower threshold 0.5) yielded the following results:

Relevance
Score

>= 1 >= 2 >= 3 >= 4 >= 5 6

11-pt avg.
(no exp)

0.2905 0.3130 0.3313 0.3373 0.3252 0.2834

11-pt avg.
(expand)

0.3732
(+28.5)

0.4000
(+27.8)

0.4161
(+25.6)

0.4205
(+24.7)

0.3784
(+16.4)

0.3023
(+6.7)

Table 8. 11-pt average for different cumulative relevance scores (Cystic Fibrosis
collection).

The Cystic Fibrosis file has relevance scores of 0 (not relevant), 1 (somewhat
relevant), or 2 (highly relevant) from each of three judges. The relevance scores in
Table 8 represent the sums of the scores of all three judges. The first column of the
table (>=1) shows the results if we consider documents with a cumulative score of 1
or more to be relevant, etc. We see a monotonically decreasing improvement in
retrieval (from a 28.5% gain to a 6.7% gain) as we narrow our interpretation of

relevance by requiring documents to have a higher cumulative score. This makes
intuitive sense - expanding the queries is likely to find a broad selection of
somewhat relevant documents. Still, with an average improvement of 21.6% across
all relevance judgment values, this method seems to work extremely well a small,
specialized corpus.

CONCLUSIONS AND FUTURE WORK

Our goal is to develop automatic query expansion in order to provide conceptual
retrieval. We have implemented an analysis technique which takes word order
into account to automatically identify similar words from an untagged corpus. We
extensively tested and tuned this technique on databases from the TIPSTER
collection. Then, we investigated how to best make use of the similarity
information during query expansion in a single database, coming up with a two-
tiered approach which add all highly similar words and up to a small, fixed number
of somewhat similar words. This approach was able to improve the query results on
both the large, broad Wall Street Journal corpus and the small, specialized Cystic
Fibrosis corpus. This work is currently being extended to multi-database collections,
specifically the seven databases that comprise the TREC5 Category A collection.
Initial results show that creating a similarity matrix for each of the sub-collections
can dramatically improve performance (up to 23%), if the best similarity matrix for
each query is selected for expansion. However, we have yet to develop an technique
for identifying the most appropriate matrix for a given query a priori.

BIBLIOGRAPHY

Buckley, C. (1985). Implementation of the SMART Information Retrieval System.
Technical Report 85-686, Computer Science Department, Cornell University,
Ithaca, New York.

Church, K. W., & Hanks, P. (1990). Word Association Norms, Mutual Information
and Lexicography. Computational Linguistics, 16(1), pp. 22-29.

Croft, W.B., Cook, R. & Wilder, D. (1995). Providing Government Information on
the Internet: Experiences with THOMAS. In Digital Libraries Conference DL '95,
pp. 19-24.

Crouch, C. & Yang, B. (1992). Experiments in Automatic Statistical Thesaurus
Construction. In Proc. 15th Ann. International ACM SIGIR Conf., Copenhagen,
Denmark, ACM Press, pp. 77-88.

Finch, S., & Chater, N. (1992). Bootstrapping Syntactic Categories Using Statistical
Methods. In W. Daelemans & D. Powers (Ed.), In 1st SHOE Workshop, Tilburg,
The Netherlands, pp. 229-235.

Gauch, S. & Chong, M. (1995) Automatic Word Similarity Detection for TREC 4
Query Expansion. In 4th Text Retrieval Conf. (TREC-4), NIST #500-236,
Gaithersburg, MD, pp. 527-536.

Gauch, S., & Smith, J.B. (1993). An Expert System for Automatic Query
Reformulation. J. of the Amer. Society of Inf. Sci., 44 (3), pp. 124-136.

Gauch, S., & Smith, J.B. (1991). Search Improvement via Automatic Query
Reformulation. ACM Trans. on Information Systems, 9 (3), pp. 249-280.

Gauch, S. & Wang, J. (1996) Automatic Word Similarity Detection for TREC 5 Query
Expansion. In 5th Text Retrieval Conf. (TREC-5). Gaithersburg, MD, (to appear).

Gauch, S. & Wang, J. (1997). Tuning a Corpus Analysis Approach for Automatic
Query Expansion. Information and Telecommunication Technology Center
Technical Report: ITTC-FY97-TR-11100-2. University of Kansas.

Grefenstette, G. (1992). Use of Syntactic Context to Produce Term Association Lists
for Text Retrieval. In Proc. 15th Ann. International ACM SIGIR Conf.,
Copenhagen, Denmark, ACM Press, pp. 89-97.

Harman, D. (1992). Relevance Feedback Revisited. In Proc. 15th Ann. International
ACM SIGIR Conf., Copenhagen, Denmark, ACM Press, pp. 1-10.

Liddy, E.D., & Myaeng, S.H. (1993). DR-LINK's Linguistic-Conceptual Approach to
Document Detection, In 1st Text Retrieval Conf. (TREC-1), NIST #500-207, pp.
113-129.

Myaeng, S. H., & Li, M. (1992). Building Term Clusters by Acquiring Lexical
Semantics from a Corpus. In Y. Yesha (Ed.), CIKM-92, Baltimore, MD, ISMM, pp.
130-137.

Qiu, Y. & Frei, H.P. (1993). Concept Based Query Expansion. In Proc. 16th Ann.
International ACM SIGIR Conf., Pittsburgh, PA, ACM Press. pp. 160-169.

Schütze, H. & Pedersen, J. (1994). A Cooccurrence-Based Thesaurus and two
Applications to Information Retrieval. In Intelligent Multimedia Information
Retrieval Systems RIAO '94, New York, NY, pp. 266-274.

Shaw, W.M., Jr., Wood, J.B., Wood, R.E. & Tibbo, H.R. (1991). The Cystic Fibrosis
Database: Content and Reserach Opportunities. Library and Information Science
Research, 12, pp. 347-366.

Voorhees, E.M. (1994). Query Expansion Using Lexical-Semantic Relations, In 13th
Ann. International ACM SIGIR Conf., Dublin, Ireland, ACM Press, pp. 61-69.

Xu, J. & Croft, W.B. (1996). Query Expansion Using Local and Global Document
Analysis, In 15th Ann. International ACM SIGIR Conf., Zurich, Switzerland,
ACM Press, pp. 4-11.

