
To appear in: ACM Transactions on Information Systems.

A Corpus Analysis Approach for

Automatic Query Expansion and its

Extension to Multiple Databases1

Susan Gauch, Jianying Wang and Satya Mahesh Rachakonda
Electrical Engineering and Computer Science

University of Kansas

ABSTRACT

Searching online text collections can be both rewarding and frustrating. While
valuable information can be found, typically many irrelevant documents are also
retrieved and many relevant ones are missed. Terminology mismatches between
the user's query and document contents are a main cause of retrieval failures.
Expanding a user's query with related words can improve search performance, but
finding and using related words is an open problem.

This research uses corpus analysis techniques to automatically discover similar
words directly from the contents of the databases which are not tagged with part-of-
speech labels. Using these similarities, user queries are automatically expanded,
resulting in conceptual retrieval rather than requiring exact word matches between
queries and documents. We are able to achieve a 7.6% improvement for TREC5
queries and up to a 28.5% improvement on the narrow-domain Cystic Fibrosis
collection. This work has been extended to multi-database collections where each
sub-database has a collection-specific similarity matrix associated with it. If the best
matrix is selected, substantial search improvements are possible. Various
techniques to select the appropriate matrix for a particular query are analyzed and a
4.8% improvement in the results is validated.

1This is an extended version of a paper presented at the Conference on Information and Knowledge Management,
Nov. 1997 (CIKM '97).

1. INTRODUCTION

The goal of information retrieval is to identify documents which best match users
information needs. At first glance, this seems very simple - merely identify
documents (efficiently) which contain the words which are also contained in the
user's query. However, the average query submitted by users to World Wide Web
search engines is only two words long [Croft et al, 1995], which makes it difficult to
identify relevant documents. There are likely to be many relevant documents
available which are missed because they do not contain the exact words used in the
query.

Automatically adding related words to a query can increase the number of relevant
documents identified by increasing the number of words which are used for
matching. This is one way to provide conceptual retrieval, rather than pure string
matching. The user's initial query terms are taken as representatives of the concepts
in which they are interested. Then, query expansion adds other terms related to the
same concepts, providing a richer representation of the user's query. Our earlier
work showed that an expert system which automatically reformulated Boolean
queries by including terms from an online thesaurus was, indeed, able to improve
search results [Gauch & Smith, 1993]. But, where are the expansion terms to come
from? There are three main sources for related words which vary in their level of
specificity: 1) query specific; 2) corpus specific; and 3) language specific.

Query specific terms can be identified by locating new terms in a subset of the
documents retrieved by a specific query. This is the approach taken by relevance
feedback systems, where related terms come from the contents of user-identified
relevant documents. This has been shown to be quite effective [Harman, 1992], but
it requires the users to indicate which documents are relevant. More recently,
search improvements are being achieved [Xu & Croft, 1996] without the need for
user relevance judgments. Local analysis of the top N retrieved documents, where
N varies from 20 to 100 based on the database being searched, has been found to
increase performance over 23% on the TREC3 and TREC4 corpora. The main
drawback to these approaches is that there is a reasonable amount of computation
that takes place after the user submits his query, which can be a problem for
interactive systems.

Corpus specific terms are found by analyzing the contents of a particular full-text
database to identify terms used in similar ways. It may be hand-built [Gauch &
Smith, 1991], a time-consuming and ad hoc process, or created automatically.
Traditional automatic thesaurus construction techniques grouped words together
based on their occurrence patterns at a document level [Crouch & Yang, 1992; Qiu &
Frei, 1993], i.e., words which often occur together in documents are assumed to be
similar. These thesauri can then be used for automatic or manual query expansion.
A related approach, Latent Semantic Indexing [Deerwester et al, 1990], does singluar
value decomposition on the term-document occurrence patterns to reduce the

indexing space into a smaller number of "semantic" factors. Documents, and
queries, are then represented and matched based on these factors.

Based on studies that show that the more often words can be substituted into the
same context, the more similar they are in meaning [Mill & Charles, 1991], other
approaches look at word usage within documents. While not a new idea [Sparck
Jones, 1971], modern computers make this approach feasible. While some
incorporate syntactic analysis [Grefenstette, 1992], most look for co-occurrence
patterns of words [Schütze & Pedersen, 1994] or noun phrases [Jing & Croft, 1994]
within windows of a fixed size (measured in terms of n words). Varying search
improvements have been achieved with these systems (7.8% and 3.4% on TREC3
and TREC4 respectively [Xu & Croft, 1996]; 5% on TIPSTER Category B [Schütze &
Pedersen, 1994]; 18-30% on smaller corpora [Qiu & Frei, 1993]). These approaches are
computationally intensive, but the computations are done once per database. The
only component done on a per query basis is the actual query expansion itself. Also,
because the information is built from the specific text collection, the related terms
are automatically tuned for the particular database being searched. On weakness of
corpus specific approaches is that they cannot determine term relationships which
occur between words which are used in the corpus and those which are used by a
different community (e.g., the Congressional Record uniformly uses the term
"senior citizen" whereas users might use the term "elderly" in their queries).

Language specific terms may be found from generally available online thesauri
which are not tailored for any particular text collection. [Liddy & Myaeng, 1993] use
the Longman's Dictionary of Contemporary English, a semantically coded
dictionary. [Voorhees, 1994] used WordNet [Miller, 1990], a manually-constructed
network of lexical relationships. Because of ambiguity, this type of thesaurus is
difficult to use because it includes multiple meanings for most words. Selecting the
correct meaning for expansion can be difficult. Small improvements (1%
[Voorhees, 1994]) are possible with longer queries which provide clues for which
word senses are involved, but expanding shorter queries actually degraded
performance. In addition, a general thesaurus may not be applicable for more
specialized collections which may have their own distinct sublanguages.

We have adopted a corpus-specific approach for locating related terms. We are
particularly interested in these techniques because the main calculations are done a
priori, before the user queries arrive. Similar to [Schütze & Pedersen, 1994] and [Jing
& Croft, 1994], we use fine-grained information about word contexts to create an
association thesaurus. In contrast, our windows are an order of magnitude smaller
and we consider the order of occurrence of the words within the window (see
Section 2). Using this approach, we are able to achieve a 7.6% improvement for
TREC5 queries and up to a 28.5% improvement on the narrow-domain Cystic
Fibrosis collection (see Section 4). Section 5 considers the extension of this approach
to multiple databases.

2. CORPUS ANALYSIS TECHNIQUE

We have modified a corpus linguistics approach [Finch & Chater, 1992] that creates a
matrix of term-term similarities. For words to be considered similar, they need not
actually co-occur, however, they must occur in similar contexts. For example, we
could deduce that "color" and "colour" were highly similar words because they are
used in similar contexts, even though they are not likely to both appear in the same
document. This approach is similar to others in that word usage within a given
window is recorded. However, our window size is much smaller because we take
into account the position of the words within the window, not just the words
themselves. In addition, we use the highest frequency words as context words,
which are generally removed as stopwords by other approaches. These words occur
most frequently, and thus provide more statistical information in smaller samples.
In addition, they provide ad hoc part-of-speech information. The fact that the word
"the" appears immediately prior to a word w carries much more information about
w (i.e., it is a noun or an adjective) than just the fact that the word "the" appears
within a 7 word window of w. Thus, although we do not do explicit parsing of the
text, we do get a quasi-syntactic categorization.

2.1 Similarity Calculation

The first step is to identify a set of words, the target words, whose pairwise
similarities are to be calculated. Then, for each target word, we construct a context
vector which summarizes information about word occurrences around the target
word. This context vector is a concatenation of sub-vectors, one position vector for
each position in the window (called the context positions). For example, in a
window of size 5, there are 4 context positions: -2 (2 positions before the target
word), -1(immediately before the target word), +1 (immediately after the target
word) and +2 (2 positions after the target word). Each position vector has one
element for each context word, the words whose appearance in the window
surrounding the target words is recorded. Generally, the context words are the most
frequent words in the database.

Initially, the counts from all instances of a word form wi are summed so that the
entry in the corresponding context word position in the vector is the sum of the
occurrences of that context word in that position for the corresponding target word
form; it is the joint frequency of the context word. Consider an example in which
there are only five context words, {"a", "black", "dog", "the, "very"} and two
sentences containing the target word "dog" and we only observe the preceding two
positions and the following two positions:

(1) The black dog barked very loudly.

(2) A brown dog barked very loudly.

Sentence Context
Position

Observed
Word

Word's Position
in Context Vector

Context Sub-Vector

1 -2 "The" 4 (0, 0, 0, 1, 0)
-1 "black" 2 (0, 1, 0, 0, 0)
+1 "barked" N/A (0, 0, 0, 0, 0)
+2 "very" 5 (0, 0, 0, 0, 1)

Table 1. The context sub-vectors for each of the 4 context positions around the occurrence
of the target word "dog" in sentence 1.

The context vector for "dog" in sentence 1 is formed by concatenating the context
sub-vectors for each of the 4 context positions:

(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Similarly, the context vector for "dog" in sentence 2 would be:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

and the combined vector for the word "dog" would be formed by adding the context
vectors for all occurrences together to form:

(1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2)

After the context vectors for each target word are created, the raw occurrence
numbers are replaced by mutual information values [Church & Hanks, 1990] as
follows:

 MI(cw) = log 2

f cw

fc f w

+1

MI(cw) expresses the mutual information value for the context word c appearing
with the target word w. The mutual information is large whenever a context word
appears at a much higher frequency, fcw, in the neighborhood of a target word than
would be predicted from the overall frequencies in the corpus, fc and fw. The
formula adds 1 to the frequency ratio, so that a 0 (zero) occurrence corresponds to 0
mutual information. When the mutual information vectors are computed for a
number of words, they can be compared to see which words have similar contexts.
The comparison we chose is the normalized inner product, or cosine measure,
which can vary between -1.0 and +1.0 [Myaeng & Li, 1992].

Finally, to make the identification of the most highly similar terms to a given term
more efficient, an auxiliary file is produced from the similarity matrix. It stores, for
each target word, a list of words and their similarity values for all words with
similarity above a given threshold. This similarity list is sorted in decreasing order
by similarity value.

2.2 Efficiency Concerns

The time efficiency of building the context vectors is O(Ns) where Ns is the number
of word instances in the sample. However, computation time is dominated by
building the similarity matrix from the context vectors which is O(Nt 2) where Nt is
the number of target words. The space needed to store the context vectors is O(Nt
*Nc), which is independent of the sample size.

3. EVALUATION

To incorporate the results of the corpus analysis into an existing retrieval engine,
SMART was modified to allow it to expand queries based on the similarity matrices,
search the database with the expanded queries, and return the top 1000 documents
for each query. The retrieval runs using normalized term weights for document
terms (lnc) and the unnormalized weights for the query terms (ltc). We
experimented with different databases, different similarity calculation parameters
and different expansion techniques.

3.1 Collections and Query Sets

Experiments are carried out on 3 collections: 1) TREC4 Category B (0.38 GBs) which is
comprised of the Wall Street Journal (WSJ) and the San Jose Mercury (SJM) with 48
queries; 2) WSJ (0.25 GBs) with 45 short, ad hoc queries from TREC4 and 45 short, ad
hoc queries from TREC5; and 3) the Cystic Fibrosis database (4.9 MB), a collection of
1,239 papers cystic fibrosis related papers from MEDLINE with 100 associated queries
[Shaw et al, 1991].

3.2 Similarity Matrix Calculation Experiments with the TREC 4 Category B corpus

3.2.1 Tuning the Parameters
The goal of the first set of experiments was to tune the similarity calculation
algorithm. There are four main parameters to evaluate: 1) the number of context
words; 2) the number of context positions (i.e., the window size); 3) the amount of
the corpus to process (i.e., the sample size); and 4) the number (and location) of the
target words. Using a fixed target list, we initially did a series of experiments
studying the number of context words, the window size and the sample database
size [Gauch & Wang, 1996]. We expanded each query with all words above a fixed
similarity threshold. For each combination of the three factors, we evaluated a
range of different similarity thresholds, and Table 2 reports the best performing
threshold and the associated 11-pt average. These tests were carried out on the
TREC 4 category B collection using all 48 queries.

 Sample size 10% (38 MB)
Window Size

Context words
5 7 9

150 (0.39, 0.1823) (0.37, 0.1834) (0.30, 0.1830)
200 (0.39, 0.1825) (0.34, 0.1831) (0.27, 0.1815)
250 (0.37, 0.1850) (0.30, 0.1830) (0.27, 0.1826)

 Sample size 20% (76 MB)
Window Size

Context words
5 7 9

150 (0.50, 0.1813) (0.45, 0.1840) (0.40, 0.1860)
200 (0.45, 0.1834) (0.38, 0.1887) (0.34, 0.1873)
250 (0.45, 0.1811) (0.38, 0.1852) (0.32, 0.1861)

 Sample size 30% (114 MB)
Window Size

Context words
5 7 9

150 (0.80, 0.1791) (0.70, 0.1791) (0.60, 0.1792)
200 (0.70, 0.1791) (0.60, 0.1796) (0.40, 0.1804)
250 (0.60, 0.1799) (0.45, 0.1795) (0.45, 0.1799)

Table 2. Experimental results for context words, window size and sample size on the
TREC 4 category B collection. Baseline: unexpanded queries yield an 11-pt average of
0.1791.

As we expected, adjusting the parameters one by one produced only modest
improvements, if any. However, analyzing the parameter settings individually was
the first step to finding a combination of the parameters that work well. From these
experiments, we concluded that a window size of 7, 200 context words, and a sample
size of 20% (76 MB) provided the best fixed point in a highly multi-dimensional
space with respect to results and efficiency. We were surprised to note that the
larger 30% (114 MB) actually degraded performance. We are not sure what causes
this effect, however larger samples may be more susceptible to the effects of
ambiguity since they are more likely to include rare uses for a particular target word
as well as the common uses, degrading the context vectors.

3.2.2 Other Factors
We also ran a few small tests to check on the effectiveness of adding stemming and
to confirm our belief that the positional information captured in the context vectors
contributes to the quality of the results.

Calc. Method as described with stemming
no position
vectors (200)

no position
vectors (1200)

11-pt average 0.1887 (+5.4) 0.1880 (-5.0) 0.1382 (-22.8) 0.1727 (-3.6)

Table 3. The average 11-pt average for different matrix calculation techniques (TREC4
Category B collection: 20% sample, window size 7, 200 context words, 4000 target words,
expansion threshold of 0.38). Baseline: 0.1791.

From Table 3, we see that stemming the corpus before calculating the word (or, in
this case, stem) similarities has a slight negative effect on the result, so we chose not
to stem. If we ignore the positional information and create one 200 element context
vector for the target word which records word occurrences anywhere in the window
(rather than using the position vectors which record occurrences separately for each
context position), we get a marked decrease in performance. To make a stronger case
for the worth of the positional information we capture, if we use a context vector of
length 1200 (which is the size of the 6 200-element position vectors concatenated) we
still see a decrease in the retrieval results, albeit not as dramatic.

3.3 Similarity Matrix Calculation Experiments with the Wall Street Journal corpus

The TREC4 Category B corpus consists of two sub-collections: the Wall Street
Journal (WSJ) and San Jose Mercury News (SJM). To avoid possible confusion in
the similarity matrix due to differing word usage in the sub-collections, we
conducted further experiments on the WSJ sub-collection alone. In particular, we
re-examined the effect of sample size and extended our analysis to consider the
number and location of the selected target words. Based on the results in Section
3.2, a window size of 7 and context word size of 200 are used in all of the following
experiments. A more complete description of the experimental results appears in
[Gauch & Wang, 1997]

3.3.1 Sample Selection
In Table 4, the average of 11-pt averages for different size of sample databases is
presented. The trend seems to be that the performance is better as the size of sample
database increases. The 11-pt average tends to be stable when the size of sample
database is above 20%.

Sample Size 5% (12.5 MB) 10% (25 MB) 20% (50 MB) 30% (75 MB)
first run 0.1938 0.2007 0.2020 0.1989
second run 0.1885 0.2002 0.1982 0.2015
third run 0.2005 (0.1944 0.2010 0.2035
Average 0.1943 (+3.1) 0.1984 (+5.3) 0.2004 (+6.3) 0.2013 (+6.8)
Std. Dev. 0.0049 0.0029 0.0016 0.0018

Table 4. The 11-pt averages for different sample sizes (3 samples per size) from the
WSJ database. Baseline: 0.1884.

The 20% (50 MB) sample performs almost as well as the 30% (75 MB) sample, so it is
used in subsequent tests. In addition, by selecting different samples of the same size,
we were able to gauge the sensitivity of the results to the particular sample chosen.
The 20% sample size seems to be the least sensitive to the actual sample chosen, as
measured by the standard deviation.

3.3.2 Target Word Selection
Having fixed the sample size, the last parameter in the calculation algorithm is the
target word lists. This is perhaps the most crucial decision, since if a word is not in

the target list it cannot be expanded if it appears in a query. Also, if the word is not
in the target list, it cannot be added as a result of expanding a query. Fixing the
number of target words at 4,000, we experimented with the selection of the target
words based on their frequency. Consider a frequency ordered list for the sample.
Words 1 through 200 would be the context words and, for offset 0, words 201
through 4,200 would be the target words. Other offsets slid the target words down
the frequency list, selecting 4,000 words whose frequency in the sample decreased as
the offset increased. In all cases, the 4,000 target words selected from the frequency
list were augmented with any missing, non-stopped query words. This was done to
ensure that all important query words would be in the target word list.

From Table 5, we see that offset 0 provided the best performance. Intuitively, the
benefit of using relatively frequent non-stopwords as possible expansion terms can
be explained because adding a common synonym for a query term is likely to be of
more benefit than adding a rare synonym for a query term.

Offset 0 2000 4000 6000 8000
11-pt average 0.2003 (+6.3) 0.1885 (+0) 0.1916 (+1.6) 0.1946 (+3.2) 0.1901 (+0.8)

Table 5. 11-pt average for different target word frequency list location for 4000+ target
words (WSJ database).

After we found the optimal target word location, we want to know how many target
words are enough. Table 6 shows the average of 11-pt average for different numbers
of target words (all using offset 0). Surprisingly, 4000+ target words give the best
performance, with the added benefit of dramatically lower computation demands.
We interpret this result to mean that adding lower frequency words to the target list
adds more noise than value, possibly because we have insufficient information
about the lower frequency words to produce accurate .

Target Words 4000+ 6000+ 8000+
first run 0.2049 (+8.7) 0.2006 (+6.4) 0.1993 (+5.7)
second run 0.1952 (+3.6) 0.1957 (+3.8) 0.1935 (+2.7)
third run 0.2015 (+6.9) 0.1988 (+5.5) 0.2017 (+7.0)
Average 0.2005(+6.4) 0.1984(+5.2) 0.1982(+5.1)

Table 6. 11-pt average for different sizes of target word lists (WSJ database).

3.3.3 Representative Results
To give a feel for the types of similarity information generated by this approach, we
will present some representative results. Some similarities seem intuitively correct,
others less so. However, the proof of the validity of this approach is not a
qualitative examination of the similarity matrix, but rather the quantitative search
improvements presented in the next section.

accord agreement (0.553) pact (0.509) arrangement (0.424) treaty (0.383) talks
(0.348) merger (0.346) settlement (0.333) transaction (0.331) bill (0.322) ...

acquire sell (0.459) buy (0.435) provide (0.380) eliminate (0.374) convert (0.373)
acquired (0.368) build (0.361) purchase (0.357) receive (0.350) ...

acquiring acquire (0.335) buying (0.2799) joining (0.277) expanding (0.273) issuing
(0.2731) making (0.2703 selling (0.2556) using (0.250) sell (0.234) ...

analyst economist (0.568) trader (0.501) strategist (0.460) consultant (0.428)
official (0.391) spokesman (0.354) specialist (0.352) adviser (0.348) ...

The above excerpts illustrate that, due to the influence of positional information in
the similarity calculation, words tend to group along parts of speech. For example,
the similarity list for acquire contains the buy and sell whereas the similarity list for
acquiring contains buying and selling. In addition, various forms of the same word
appear together, e.g., acquire and acquiring, which may explain why stemming
provided no improvement in Section 3.2.2. We get a partial stemming effect
automatically.

3.4 Query Expansion Experiments with the Wall Street Journal corpus

3.4.1 Query Expansion Technique
Having tuned the similarity calculation parameters, we then investigated how to
best make use of the information in the similarity lists for query expansion. In early
work [Gauch & Chong, 1995], expanding using a similarity threshold alone seems
very sensitive to the threshold chosen. Slight changes in the threshold could
dramatically affect the number of words used to expand a given query word. We
therefore experimented with expansion techniques which capped the number of
words used to expand a given word alone and in combination with thresholds
[Gauch and Wang, 1997]. In all, we tested four different query expansion methods:

1) for each query word which appears in the target list, add all words in the
similarity list above some threshold.

2) for each query word which appears in the target list, add a fixed number of
words from the similarity list. (If there are fewer than that number in the
similarity list, add as many as there are).

3) add a threshold to method 2, i.e., add at most the fixed number of words,
but only add those words which are above some threshold.

4) add a higher threshold to method 3, i.e., add all words above a high
threshold, but at most a fixed number of words above a lower threshold.

We found that Method 4 (with a lower threshold of 0.24 and a higher threshold of
0.46) provided the best performance. It also makes intuitive sense: all words which
are clearly similar to the query word (i.e., above the higher threshold) are added.
However, at most a small number of words (3, to be exact) which are somewhat
similar (i.e., above the lower threshold but not above the higher one) are added.

Method One Two Three Four
11-pt average
(normalized)

0.1895 (+0.5) 0.2003 (+6.3) 0.2020 (+7.2) 0.2049 (+8.7)

11-pt average
(not normalized)

0.1877 (-0.4) 0.1905 (+1.1) 0.1917 (+1.7) 0.1828 (-3.0)

Table 7. 11-pt average for different query expansion methods (WSJ database).

3.4.2 Effect of Normalization
The experiments in the previous section dealt with different methods of identifying
the expansion words for each query term. However, once the words have been
chosen by one of the four methods discussed, the weights on the expansion words
(and adjustments, if any, to the weight of the original query term) have yet to be
determined. Our initial approach was to treat the original query term as a concept
which had a weight of 1.0. Then, when expansion words were added to the concept,
they were given a weight equal to their value in the similarity list for the query
word. All the weights for that concept (i.e., the original query term plus all
expansion words) were then re-normalized to sum to 1.0. This was done so that the
query would not be re-balanced to give more weight to a concept merely because it
had many synonyms. To verify that normalization was necessary, we expanded
queries with each of the four methods and reran the queries without normalizing
the weights. Table 7 shows that normalization is extremely important for all of the
expansion methods.

Consider Topic 203 in TREC 4. Expansion without normalization, yields

what is the economic 1.000 {political 0.5660} {military 0.4851} impact 1.000 {effect 0.5324} {role
0.3981} of recycling 1.000 {food 0.2403} {machinery 0.2254} tires 1.000 {cars 0.2783} {gas 0.2283}?

whereas with normalization we get

what is the economic 0.4875 {political 0.2759} {military 0.2365} impact 0.5180 {effect 0.2758}
{role 0.2062} of recycling 0.6823 {food 0.1639} {machinery 0.1538} tires 0.6637 {cars 0.1847} {gas
0.1515}?

Because of the high similarity values of the words added by expansion, the
"economic" and "impact" concepts get much higher weights without normalization
relative to the more important concepts of "recycling" and "tires".

4. VALIDATING THE RESULTS

We performed two types of validation experiments. In the first, we used the most
promising similarity matrix calculations and query expansion techniques for the
Wall Street Journal corpus using 45 new queries from TREC5. This resulted in an
overall 11 point average of 0.1325 compared to a baseline of 0.1231, an improvement
of 7.6%.

The TIPSTER collections tend to contain diverse papers which are written in
general English. Our second validation experiment used an entirely different type
of corpus to show that the results were applicable across a broad range of collections.
We believe that this approach is likely to be of most benefit to corpora within
specialized sub-domains. The word usage in such sub-domains tends to have
specialized words and specialized word usages which our technique can exploit. To
confirm that this approach is particularly well-suited to smaller, more specialized
corpora which are by and large written in their own sub-languages, we tested our
approach on the Cystic Fibrosis database (Shaw et al, 1991), a collection of all papers
(1,239) indexed by the term CYSTIC FIBROSIS in MEDLINE (1974-1979). Running
the similarity calculation as determined in Section 2, and Method 4 for query
expansion (higher threshold 0.7; lower threshold 0.5) yielded the following results:

Relevance
Score

>= 1 >= 2 >= 3 >= 4 >= 5 6

11-pt avg.
(no exp)

0.2905 0.3130 0.3313 0.3373 0.3252 0.2834

11-pt avg.
(expand)

0.3732
(+28.5)

0.4000
(+27.8)

0.4161
(+25.6)

0.4205
(+24.7)

0.3784
(+16.4)

0.3023
(+6.7)

Table 8. 11-pt average for different cumulative relevance scores (Cystic Fibrosis
collection).

The Cystic Fibrosis file has relevance scores of 0 (not relevant), 1 (somewhat
relevant), or 2 (highly relevant) from each of three judges. The relevance scores in
Table 8 represent the sums of the scores of all three judges. The first column of the
table (>=1) shows the results if we consider documents with a cumulative score of 1
or more to be relevant, etc. We see a monotonically decreasing improvement in
retrieval (from a 28.5% gain to a 6.7% gain) as we narrow our interpretation of
relevance by requiring documents to have a higher cumulative score. This makes
intuitive sense - expanding the queries is likely to find a broad selection of
somewhat relevant documents. Still, with an average improvement of 21.6% across
all relevance judgment values, this method seems to work extremely well in a
small, specialized corpus.

5. APPLYING THE APPROACH TO MULTIPLE DATABASES

5.1 Effect of Multi-databases

In a multi-database environment, each of the databases may have a different
domain of interests, resulting in different word usage and different word
similarities. This means that it is critical to choose the similarity matrix which
provides the most appropriate query expansion words. In this section, we
summarize a series of experiments aimed at improving search quality by
automatically selecting an appropriate matrix where several different candidates
exist.

Our experiments for TREC4 [Gauch & Chong, 1995] showed that analyzing the two
databases in Category B separately performed better than treating the corpus as one
large database. To extend that work, we created a similarity matrix for each of the
seven databases in the TREC 5 Category A collection (AP, CR, FR88, FR94, FT, WSJ,
and ZIFF). For comparison, we created a single similarity matrix from a sample
taken across all the seven databases. We expanded each query by each of the seven
matrices, in turn, and submitted the resulting queries to the entire collection. Table
9 summarizes the results.

matrix
selected

single matrix best average worst

11-pt avg. 0.1009 (-5.6) 0.1365 (+27.7) 0.1020 (-4.6) 0.0716 (-33.0)
avg. rank N/A 0.0 3.0 6.0

Table 9. 11-pt average for different similarity matrices (TREC5 Category A collection).
Note: the best and worst matrices were manually selected after the queries were run.
Baseline: 0.1069.

Examining the results, we rank ordered the matrices for each query based on the 11-
pt average produced for the expanded query it created. When the best matrix is used
to expand each query, performance increases dramatically (23%). However, when
the worst matrix is used, performance decreases just as dramatically (-29%). Clearly,
selecting the correct matrix in a multi-database collection is of crucial importance.
However, avoiding the issue by creating one matrix for the entire collection is not
viable. The differing word usages cloud the issue, and the resulting matrix causes a
slight degradation (-1.9%).

5.2 Automatically Selecting the Similarity Matrix

We next turned our attention to the issue of automatically selecting an appropriate
matrix to expand a query. There are essentially three types of information available
on which to base the similarity matrix selection:

1. Examination of result set returned by running the query on the collection
of all databases, paying attention to the contributions of the various
component databases in the composite retrieval set.

2. Usage of word frequency information obtained directly from each of the
databases.

3. Examination of the contents of the similarity matrices themselves.

Different algorithms based on the above three categories are explored singly and in
combination.

5.2.1 Experimental Technique
The following experiments were conducted using TREC queries 251 - 275. The most
promising method was then validated using TREC queries 276 - 300. To evaluate
the performance of a particular selection technique, we pre-calculated, for each of

the 25 test queries, the 11-point average obtained when the query was expanded with
each of the seven candidate matrices in turn. Based on those results, we then
assigned, for each query, a rank order to each similarity matrix from 0..6 where 0 is
the best matrix and 6 is the worst matrix. For each technique evaluated, we
examined the rank order of the similarity matrix chosen by that technique and
averaged the rank orders over all queries. This value is called the DataBase
Selection Average (DBSA). An optimal algorithm would select the best matrix in all
cases and produce an average rank over all queries (i.e., DBSA) of 0.0. Randomness
would select an average matrix overall, with a rank order of 3.0. The goal of our
experiments is to find a technique which produces the lowest DBSA. These
experiments are discussed in more detail in [Gauch & Rachakonda, 1997].

5.2.1 Experiments based on Examination of the Retrieval Set
The initial queries are sent directly without any modifications/expansion to the
collection of all the seven databases under consideration. The result set contains a
rank ordered list of the identifiers of the best-matching documents from which the
corresponding sub-database can be determined. In each case, the similarity matrix
derived from the database which contributed the most to the retrieval set was
selected. Several methods were evaluated, each with a variety of normalization
factors. All the four methods were evaluated with a limit on how many documents
from the result set were considered. Results from the following methods are
summarized in Table 10.

[Method 1.1] Number of documents returned.

[Method 1.4] Number of documents normalized by number of documents in the
database.

[Method 1.5] Average rank of documents returned.

[Method 1.8] Average rank of documents normalized by number of documents in
the database.

Maximum
retrieval set

rank considered

Number
documents
returned

Number
normalized
by number of
doc't in DB

Avg. rank of
documents
returned

Avg. rank
normalized
by number of
doc't in DB

10 2.88 3.02 2.76 2.92
20 2.84 2.76 2.68 2.88
30 2.72 2.76 2.68 2.88
40 2.64 2.60 2.68 2.54
50 2.64 2.62 2.36 2.72

100 2.64 2.44 2.32 2.62
150 2.44 2.48 2.36 2.58
200 2.32 2.54 2.60 2.62
500 2.76 2.68 2.78 2.80
1000 2.80 2.88 2.96 2.88

Table 10. Database Selection Average (DBSA) for methods based on examination of
the retrieval set.

It appears that normalization does not help, which is not surprising. We are
interested in getting the largest amount of relevant information regardless of the
size of the database that contains it.

[Method 1.9] Combination of number of documents with average rank of
documents normalized. Finally, we evaluated a method that combined the
number of documents with the an average rank as follows:

Score m
volume

p
rank

= ×

 ÷ ×

1000

1

The influence of each factor was varied by varying the values for m and p.
However, m + p always totaled 100%. The number of documents, n, is normalized
by the total size of the retrieval set to produce a number between 0 and 1. Results
are presented in Table 11.

 m - p n = 50 n = 100 n = 150
 0% - 100% 2.36 2.32 2.36
20% - 80% 2.32 2.28 2.32
40% - 60% 2.28 2.28 2.36
50% - 50% 2.36 2.32 2.36
60% - 40% 2.44 2.36 2.42
80% - 20% 2.62 2.44 2.42
100% - 0% 2.64 2.64 2.44

Table 11. Database Selection Average (DBSA) for method 1.9 combining number of
retrieved documents with average rank.

This produces the best results so far, consistently selecting, on average, a matrix for
expansion that is one better than randomness would predict. However, there is a
serious drawback to this technique in that queries must be run twice: the original
query must be submitted to generate a result set used to identify a promising
similarity matrix and then the expanded query is submitted.

5.2.2 Experiments Based on Word Frequency Information
The techniques in this section revolve around using information about the
frequency of the query words in the different component databases. The selection
methods evaluated are described below. In each case, the similarity matrix derived
from the database with the maximum score is selected. The results are summarized
in Table 13.

[Method 2.1] Absolute sum of query word frequencies in the database.

[Method 2.2] Sum of query word frequencies normalized by the frequency of the
most frequent word in the database.

[Method 2.3] Sum of query word frequencies each normalized to its own total
frequency in all databases. This method allows each query word an equal
weight in the database selection process. This corrects a problem with
methods 2.1 and 2.2 in which rare words contribute only slightly to the
database selection process.

[Method 2.5] Absolute sum of query word frequencies multiplied by idf.

Method DBSA
[2.1] Sum of query word frequencies (absolute) 2.52
[2.2] Sum of query word frequencies normalized to maximum word
frequency in DB. 3.16
[2.3] Sum of query word frequencies with each word normalized to it’s sum
of individual frequencies over all DBs. 2.19
[2.5] Sum of query word frequencies weighed by idf 2.32

Table 13. Database Selection Average (DBSA) for methods based on word frequencies.

We see the most promising result so far, Method 2.3, which normalizes the
individual query words so that each contributes equally to the database selection
algorithm. However, this method is not practical in general since it relies on
knowledge of the frequencies of the query words in each of the component
databases, information that is usually not available.

5.2.3 Experiments based on Similarity Matrix Contents
The final source of information upon which to base the similarity matrix selection
is not information about the database itself (via retrieval sets as in Section 5.2.1 or
frequency lists as in Section 5.2.2) but rather through use of the information

contained in the similarity matrices themselves. A wide variety of algorithms were
evaluated in this category, among them the following:

[Method 3.1] Number of words above a high threshold. For each query word, add
the number of all words in the similarity matrix above a given threshold. A
fairly high threshold is needed to avoid being overly influenced by one query
word with many slightly similar words. Best results (DBSA = 2.06) are found
with a Higher Threshold near 0.46 [Gauch and Rachakonda, 1997].

[Method 3.2] Maximum number of words above a lower threshold. By adding a cap
on the maximum number of words a single query word can add, a lower
threshold may be used successfully. Best results are obtained with a threshold
of 0.35 and maximum of 3 - 5 words [Gauch and Rachakonda, 1997].

[Method 3.3] Combination of all words above a higher threshold with a maximum
number above a lower threshold. Following the promising results of using
the Higher Threshold and Lower Thresholds independently, we combined
them. We achieved the first DBSA below 2.0 (1.96) which occurred at a
Higher Threshold of 0.50, a Lower Threshold of 0.32 and maximum number
of words of 4. These results are presented in Table 14.

High = 0.46 High = 0.48 High = 0.50
 Low m = 3 m = 4 m = 5 m = 3 m = 4 m = 5 m = 3 m = 4 m = 5
0.32 2.12 2.12 2.12 2.32 2.12 2.08 2.08 1.96 2.08
0.35 2.12 2.08 2.08 2.12 2.08 2.08 2.08 2.08 2.08
0.37 2.14 2.14 2.14 2.12 2.08 2.12 2.12 2.24 2.24

Table 14. Database Selection Average (DBSA) for method 3.3 based on adding all
words above a Higher Threshold and a maximum number above a Lower Threshold.

This method turns out to be the best that we have been able to find. We analyzed
the experimental data more (in order to determine parameter settings for future
use) to determine the effect of individual factors. This data is summarized in Table
15.

Effect of Higher Similarity Threshold on DBSA
Higher Threshold value 0.46 0.48 0.50
Average DBSA 2.1288 2.1244 2.1067
Effect of Lower Similarity Threshold on DBSA
Lower Threshold value 0.32 0.35 0.37
Average DBSA 2.1111 2.0889 2.1489
Effect of Number of Words added on DBSA
Number of Word added 3 4 5
Average DBSA 2.1356 2.1000 2.1133

Table 15. Effect of Higher and Lower Thresholds and Number or Words on DBSA.

Thus the best setting of parameters for this method so far are: a Higher Threshold of
0.50, a Lower Threshold of 0.35 and a maximum words of 4.

[Method 3.5] Sum of similarities for all words above a high threshold. Rather than
just count the number of words above a given threshold, the similarity
values themselves are summed. The best results (2.24) were obtained with a
threshold of 0.50 [Gauch and Rachakonda, 1997]..

[Method 3.6] Sum of similarities of for a maximum number of words above a low
threshold. The best results (2.24) were obtained with a threshold of 0.30 and
a maximum number of words of 3 or 4 [Gauch and Rachakonda, 1997]..

[Method 3.7] Combination of the sums of similarities for all words above a higher
threshold and a maximum number of words above a lower threshold. The
best results (2.08) occurred at a higher threshold of 0.50, a lower threshold of
0.30 and maximum number of words of 4. These results are presented in
Table 16.

High = 0.48 High = 0.50 High = 0.52
 Low m = 3 m = 4 m = 5 m = 3 m = 4 m = 5 m = 3 m = 4 m = 5
0.25 2.24 2.26 2.24 2.28 2.42 2.36 2.28 2.32 2.32
0.30 2.12 2.12 2.14 2.12 2.08 2.10 2.12 2.14 2.14
0.35 2.18 2.18 2.22 2.24 2.24 2.24 2.28 2.42 2.42

Table 16. DBSA for Method 3.7 based on combination of Higher and Lower Similarity
Thresholds.

5.2.4 Consolidated Results

Finally, we summarize the results for all methods discussed in this section in Table
17. For methods with multiple parameters, we present the results achieved by the
best parameter settings.

Method Used DBSA 11-point
Average

% improvement
over baseline

Baseline:
Unexpanded

N/A 0.1069 N/A

Single Matrix N/A 0.1009 -5.61
Worst Matrix 6.00 0.0716 -33.02
Average Matrix 3.00 0.1020 -4.58
Best Matrix 0.00 0.1365 +27.69
Method 1.1 2.32 0.1084 +14.03
Method 1.4 2.44 0.1045 -2.25
Method 1.5 2.32 0.1099 +2.81
Method 1.8 2.54 0.0994 -7.02
Method 1.9 2.28 0.1107 +3.55
Method 2.1 2.52 0.1006 -5.89
Method 2.2 3.16 0.0789 -26.19
Method 2.3 2.19 0.1132 +5.89
Method 2.5 2.32 0.1101 +2.99
Method 3.1 2.06 0.1136 +5.90
Method 3.2 2.08 0.1121 +4.86
Method 3.3 1.96 0.1196 +11.88
Method 3.5 2.32 0.1097 +2.62
Method 3.6 2.24 0.1114 +4.21
Method 3.7 2.08 0.1128 +5.5.2

Table 17. Consolidation of the best results for methods 1.1 - 3.7.

5.2.5 Validation of Results

The best method discovered through our series of experiments was method 3.3
which uses a combination of higher and lower thresholds. It produced a DBSA of
1.96 which resulted in a solid 11.88% improvement over the baseline matrix which
is created by sampling all databases at 20% and creating a single matrix. We
validated our results by applying this technique to a different collection of queries,
TREC queries 276-300 (baseline: 0.1089). A DBSA of 1.92 was achieved which
translated into an increase of 4.78% was achieved. While the 11-point average
improvement found was not as strong as in the training set, the DBSA was
comparable or slightly better. It seems that the similarity selection algorithm was
working at least as well, but that the queries in the testing set were perhaps less
amenable to improvement by expansion.

6. CONCLUSIONS AND FUTURE WORK

Our goal is to develop automatic query expansion in order to provide conceptual
retrieval. We have implemented an analysis technique which takes word order
into account to automatically identify similar words from an untagged corpus. We
extensively tested and tuned this technique on databases from the TIPSTER
collection. Then, we investigated how to best make use of the similarity
information during query expansion in a single database, coming up with a two-
tiered approach which add all highly similar words and up to a small, fixed number
of somewhat similar words. This approach was able to improve the query results on
both the large, broad Wall Street Journal corpus (7.6%) and the small, specialized
Cystic Fibrosis corpus (6.7% - 28.5%). This work has been extended to multi-database
collections, specifically the seven databases that comprise the TREC5 Category A
collection. Our results show that creating a similarity matrix for each of the sub-
collections can improve performance (5 - 10%) when the similarity matrix for
expanding each query is automatically selected. Techniques which examine the
similarity matrices themselves work as well or better than other techniques and
have the benefit of not requiring queries to be run twice or having access to
information about word frequencies in possibly remote databases.

In future, we wish to investigate the scope of the applicability of the similarity
matrices. In particular, we need to investigate when a similarity matrix produced
from one corpus be used to expand queries sent to a related corpus. Also, we need to
consider the applicability of this approach to dynamic collections. We expect that
the amount of data added will not affect performance (we only sample a small
percentage of the larger collections as it is), but the ability to efficiently add
information about new, important terms and new relationships between terms over
time requires study.

BIBLIOGRAPHY

Buckley, C. (1985). Implementation of the SMART Information Retrieval System.
Technical Report 85-686, Computer Science Department, Cornell University,
Ithaca, New York.

Church, K. W., & Hanks, P. (1990). Word Association Norms, Mutual Information
and Lexicography. Computational Linguistics, 16(1), pp. 22-29.

Croft, W.B., Cook, R. & Wilder, D. (1995). Providing Government Information on
the Internet: Experiences with THOMAS. In Digital Libraries Conference DL '95,
pp. 19-24.

Crouch, C. & Yang, B. (1992). Experiments in Automatic Statistical Thesaurus
Construction. In Proc. 15th Ann. International ACM SIGIR Conf., Copenhagen,
Denmark, ACM Press, pp. 77-88.

Deerwester, S., Dumai, S.T., Furnas, G.W., Landauer, T.K., Harshman, R. (1990).
Indexing by Latent Semantic Analysis, J. of the Amer. Society of Inf. Sci., 41 (6),
pp. 391-407.

Finch, S., & Chater, N. (1992). Bootstrapping Syntactic Categories Using Statistical
Methods. In W. Daelemans & D. Powers (Ed.), In 1st SHOE Workshop, Tilburg,
The Netherlands, pp. 229-235.

Gauch, S. & Chong, M. (1995) Automatic Word Similarity Detection for TREC 4
Query Expansion. In 4th Text Retrieval Conf. (TREC-4), NIST #500-236,
Gaithersburg, MD, pp. 527-536.

Gauch, S. & Rachakonda, S. (1997). Experiments in Automatic Similarity Matrix
Selection for Query Expansion. Information and Telecommunication
Technology Center Technical Report: ITTC-FY97-TR-11100-3. University of
Kansas.

Gauch, S., & Smith, J.B. (1993). An Expert System for Automatic Query
Reformulation. J. of the Amer. Society of Inf. Sci., 44 (3), pp. 124-136.

Gauch, S., & Smith, J.B. (1991). Search Improvement via Automatic Query
Reformulation. ACM Trans. on Information Systems, 9 (3), pp. 249-280.

Gauch, S. & Wang, J. (1996). Automatic Word Similarity Detection for TREC 5 Query
Expansion. In 5th Text Retrieval Conf. (TREC-5). Gaithersburg, MD, (to appear).

Gauch, S. & Wang, J. (1997). Tuning a Corpus Analysis Approach for Automatic
Query Expansion. Information and Telecommunication Technology Center
Technical Report: ITTC-FY97-TR-11100-2. University of Kansas.

Grefenstette, G. (1992). Use of Syntactic Context to Produce Term Association Lists
for Text Retrieval. In Proc. 15th Ann. International ACM SIGIR Conf.,
Copenhagen, Denmark, ACM Press, pp. 89-97.

Harman, D. (1992). Relevance Feedback Revisited. In Proc. 15th Ann. International
ACM SIGIR Conf., Copenhagen, Denmark, ACM Press, pp. 1-10.

Jing, Y. & Croft, W.B. (1994). An Association Thesaurus for Information Retrieval,
In Intelligent Multimedia Information Retrieval Systems RIAO '94, New York,
NY, pp. 146-160.

Liddy, E.D. & Myaeng, S.H. (1993). DR-LINK's Linguistic-Conceptual Approach to
Document Detection, In 1st Text Retrieval Conf. (TREC-1), NIST #500-207, pp.
113-129.

Miller, G. A., Charles, W. G. (1991). Contextual Correlates of Semantic Similarity, In
Language and Cognitive Processes, 6 (1), pp. 1-28.

Myaeng, S. H., & Li, M. (1992). Building Term Clusters by Acquiring Lexical
Semantics from a Corpus. In Y. Yesha (Ed.), CIKM-92, Baltimore, MD, ISMM, pp.
130-137.

Qiu, Y. & Frei, H.P. (1993). Concept Based Query Expansion. In Proc. 16th Ann.
International ACM SIGIR Conf., Pittsburgh, PA, ACM Press. pp. 160-169.

Schütze, H. & Pedersen, J. (1994). A Cooccurrence-Based Thesaurus and two
Applications to Information Retrieval. In Intelligent Multimedia Information
Retrieval Systems RIAO '94, New York, NY, pp. 266-274.

Shaw, W.M., Jr., Wood, J.B., Wood, R.E. & Tibbo, H.R. (1991). The Cystic Fibrosis
Database: Content and Reserach Opportunities. Library and Information Science
Research, 12, pp. 347-366.

Sparck Jones, K. (1971). Automatic Keyword Classification fo Information Retrieval,
Butterworths, London.

Voorhees, E.M. (1994). Query Expansion Using Lexical-Semantic Relations, In 13th
Ann. International ACM SIGIR Conf., Dublin, Ireland, ACM Press, pp. 61-69.

Xu, J. & Croft, W.B. (1996). Query Expansion Using Local and Global Document
Analysis, In 15th Ann. International ACM SIGIR Conf., Zurich, Switzerland,
ACM Press, pp. 4-11.

