
Training a Hierarchical Classifier Using
Inter-Document Relationships

Susan Gauch, Aravind Chandramouli,
and Shankar Ranganathan

ITTC-FY2007-TR-31020-01

August 2006

Copyright © 2006:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
National Science Foundation

Technical Report

The University of Kansas

 1

Abstract
Concept hierarchies, also called taxonomies or directories, are widely used on the

World Wide Web to organize and present large collections of Web pages. They were

originally developed to help users locate relevant information by browsing. More

recently, conceptual search engines such as KeyConcept have been developed that

retrieve documents based upon the concepts they discuss in addition to the keywords they

contain. Both applications require that documents be classified into appropriate concepts

in a conceptual hierarchy. Most classification approaches use flat classifiers that treat

each concept as independent, even when the concept space is hierarchically structured.

In contrast, hierarchical text classification exploits the structural relationships between

the concepts. In this paper, we explore the effectiveness of hierarchical classification for

a large concept hierarchy. Since the quality of the classification is dependent on the

quality and quantity of the training data, we evaluate the use of documents selected from

subconcepts to address the sparseness of training data for the top-level classifiers and the

use of document relationships to identify the most representative training documents. By

selecting training documents using structural and similarity relationships, we achieve a

statistically significant improvement of 39.8% (from 54.5% to 76.2%) in the accuracy of

our classifier over that of the flat classifier for a large, 3-level concept hierarchy.

Categories and Subject Descriptors: H.3.1 [Content Analysis and Indexing]; I 2.6

[Learning]

General Terms: Algorithms

Additional Key Words and Phrases: Hierarchical Text Categorization, Classifier

Training

Training a Hierarchical Classifier Using
Inter-Document Relationships

Susan Gauch, Aravind Chandramouli,
and Shankar Ranganathan

ITTC-FY2007-TR-31020-01

August 2006

Copyright © 2006:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7612
All rights reserved.

Project Sponsor:
National Science Foundation

Technical Report

The University of Kansas

 2

1 Introduction
1.1 Motivation

As the amount of information on the World Wide Web grows, the task of finding

relevant information becomes more difficult. Typical search engines provide many

irrelevant results, primarily due to the ambiguity of natural language [Krovetz & Croft

1992] combined with the short length of most Internet searches. For example, the query

‘salsa’ returns the same results to a person searching for a recipe as to one searching for

details about the dance form.

To overcome this problem, the KeyConcept search engine [Ravindran & Gauch

2004] indexes documents by keywords and concepts. This allows the users to restrict

their search results to only those documents that match their concepts of interest. In order

to be able to retrieve by concept efficiently, documents are indexed by their best

matching concepts selected from a pre-existing concept hierarchy. Currently, during

indexing, we use a flat classifier to assign newly arriving documents to concepts. This

classifier does not take the hierarchical relationships between concepts into account, but

rather treats each concept as independent. However, recent work has utilized known

hierarchical structure to decompose the problem into a smaller set of problems

corresponding to hierarchical splits in the tree [Koller & Sahami 1997]. One first learns

to distinguish among concepts at the top level, and then the lower level distinctions are

learned only within the appropriate top level of the tree. Earlier studies show the

increases in accuracy and efficiency for this approach on small concept hierarchies (2

levels, 150 concepts) [Dumais & Chen 2000], but only recently have researchers been

looking at the performance of classifiers on large, hierarchical concept spaces. Yang

 3

[2003] looks at the scalability of flat classification algorithms in terms of efficiency and,

in this paper, we demonstrate that hierarchical classification also provided improved

accuracy over flat classification for larger, deeper concept hierarchies.

Any classifier’s accuracy is affected by the quantity of the documents for each

concept used to train the classifiers. We investigate the effect of the amount of training

information on the classifier accuracy. However, in addition to the quantity of

information, the quality of the training documents is also important. Concept hierarchies

tend to have few documents attached at the upper levels. We compare approaches to

selecting training documents for the higher-level classifiers by selecting documents from

the subconcept training collections. Finally, we evaluate the use of calculating the

centroid of the documents in a concept and choosing the documents based on their

distance from the centroid to identify the most representative documents for training on

each concept.

1.2 Objectives

Our objectives are summarized as follows:

• Develop a top-down, level-based hierarchical classifier and compare it to a flat

classifier for a large concept hierarchy.

• Evaluate the criteria for training set selection for hierarchical text classification.

In particular, evaluate the number of training documents used per concept, the use

of training documents selected from subconcepts, and the effect of centroid

distances to select training documents.

 4

1.3 Outline of Paper

The paper is organized as follows: Section 2 discusses work related to text

classification including hierarchical techniques. Section 3 details the classifiers used for

our experiments. Section 4 discusses our training data, that is, the Open Directory

Project collection. Section 5 presents the experiments with the flat classifier. Section 6

discusses our experiments on the hierarchical classifier to validate our approach and

analyzes the results. Finally, Section 7 gives the conclusions and points the way to future

work.

2 Related Work

2.1 Text Classification

Text classification organizes information by associating a document with the best

matching concept(s) from a set of concepts. Classification, requires a predefined set of

concepts, also called classes categories, and information describing what types of

documents belong in each concept. In general, this knowledge takes the form of a set of

documents that have been manually classified into each concept. Classification usually

occurs in two phases: the training phase in which the classifier learns which features best

represent each concept and the classification phase during which new, unclassified

documents are placed into the best matching concepts. During training, features are

extracted from the training documents and these features are used to represent the

concept. During classification, features are extracted from the new document and these

features are compared to the concept features to identify the best matches.

There has been a tremendous amount of research into classification in general,

and text classification in particular. The various approaches differ in how the concepts

 5

and documents are represented, how the features are extracted and weighted, and how the

similarity between the documents and concepts is calculated. Although neural networks

[Weiner et al.1995; Ng et al. 1997; Ruiz & Srinivasan 1999], rule-based trees [Lu et al.

1999] have all been used as the basis for classification, the vector space model, including

Latent Semantic Indexing [Cai & Hofmann 2003], and the probabilistic model have been

most widely used, so they will be discussed in more detail.

Probabilistic classifiers use the training documents to calculate probability

estimates for each word in the training collection. These estimates represent the

probability that, if a new document contains a given word, that document belongs to the

particular concept. During classification, words are extracted from the document to be

classified and the probability that the document belongs to each concept is calculated.

Early work studied pure naïve Bayes classifiers that consider a document as feature

vectors of binary, or Bernoulli, variables [Lewis & Ringuette 1994]. These, however,

cannot utilize the within-document term frequencies. To improve classification

performance, multinomial naïve Bayes classifiers that incorporate this information have

been implemented. McCallum and Nigam [1998] compared the performance of the

Bernoulli and multinomial Bayes classifiers using text corpora from five different

sources. The results indicate that the Bernoulli model performs better on smaller

vocabularies while the multinomial model performs better with a larger vocabulary.

There are many vector space approaches to text classification. With the vector

space model, the training documents and documents to be classified are represented as

multi-dimensional vectors in which each dimension represents a unique term in the

training document collection [Salton & McGill, 1983]. The approaches differ in how the

 6

weights for the terms are calculated, how the concept vectors are created, and how the

document vectors and concept vectors are compared. One of the most popular

approaches is to calculate the term weights using a variant of tf*idf, the term frequency in

the document multiplied by the inverse document frequency, a measure of the rarity of

the term in the training collection as a whole.

One simple, effective approach is Rocchio classification [Rocchio, 1971] in which

the training documents are used to create a single, representative vector for each concept.

During classification, the vector for the similarity between the document to be classified

and the vectors for each concept is calculated (typically using the cosine similarity

metric), and the document is classified into the most similar concept(s). In contrast, with

the k-Nearest Neighbor (k-NN) algorithm [Dasarathy, 1991], a vector is created for each

training document and, during classification, the vector for the document to be classified

is compared to the vectors for all training documents. The top k most similar training

documents each provide a single vote for their associated concept, and the document is

classified into the concept(s) with the most votes. More recently, Support Vector

Machine (SVM) classifiers [Vapnik 2000] have been applied to text classification

[Joachims 1998, Dumais 1998]. These classifiers begin with the training document

vectors used by k-NN, but they map these vectors to a higher dimensional space in which

the new features are chosen so that they allow the data points in the new space to be

linearly separable.

More recently, Guo et al. [2003] developed a new classification approach called

kNN-Model that combines k-NN and Rocchio. Similar to Rocchio, this approach

calculates the generalized vector for each concept (i.e., the centroid of the training

 7

documents). However, similar to k-NN, it also represents each concept by the k training

document for that concept closest to the centroid. This hybrid classifier was compared

with a basic k-NN classifier, a Rocchio classifier, and an SVM based classifier. They

used the same ModApte version of Reuters 21578 for evaluation. Although they did not

perform significance testing, they found that their hybrid k-NN/Rocchio approach

performed slightly better than the Rocchio classifier which, in turn, was slightly better

than the k-NN classifier. Although their hybrid classifier was outperformed by the SVM

classifier, it was considerably more efficient.

Yang and Liu [1999] compared the performance of a variety of classifiers, i.e.,

SVM, k-NN, Linear Least Square Fit [Yang & Pedersen 1997], Neural Networks, and

multinomial naïve Bayes. These classifiers were tested on the ModApte version of the

Reuters 21578 test collection. After preprocessing, this test collection contained 90

categories, 7,769 training documents, and 3,019 test documents. They found that both

SVM and k-NN significantly outperformed the other classifiers and that the naïve Bayes

classifier significantly underperformed all other classifiers.

As you can see from the above summary, classifiers have performed with varying

relative accuracies in different studies. In general, Rocchio, k-NN, Naïve Bayes, and

SVM have been the most effective and most widely used. In Section 5, we compare

these classifiers and select the best as the baseline against which our hierarchical

classifier is compared.

2.2 Hierarchical Text Classification

There are basically two approaches used to assign documents to concepts within a

hierarchical concept space, namely the big-bang approach and the top-down level based

 8

approach [Sun et al. 2003]. The big bang approach, used by Labrou and Finn [1999],

Sasaki and Kita [1998], and Wang et al. [2001], essentially flattens the concept hierarchy

and uses a single classifier to assign documents to the best matching category in one step.

The predefined concepts are treated in isolation and no use is made of the structure

defining the relationships among them. It is essentially flat classification applied to a

hierarchical concept space.

McCallum et al. [1998] developed the hierarchical shrinkage model to exploit the

hierarchical relationships inside a flat classifier. They make use of a naïve Bayes

classifier on three hierarchical collections - the science category of the Yahoo hierarchy,

the newsgroup dataset, and the industry sector hierarchy. They make use of a technique

called “shrinkage” that smoothes the parameter estimates for a child node using a linear

interpolation with all its ancestor nodes. They have shown that this technique improves

classification accuracy for a two-level hierarchy containing 80 classes. The biggest

improvement occurs when the training data per category is sparse, and the hierarchy has a

large number of categories. Baker et al. [1999] also use a similar approach called the

hierarchical probabilistic model for topic detection and tracking. They address the

problem of sparse data within new classes discovered by topic detection by using data

from their siblings in the hierarchy.

In contrast to the hierarchical shrinkage and probabilistic models, Toutanova et al.

[2001] use an extended hierarchical mixture model to improve classification for small

training sets. They also performed an in-depth comparison of models for automatically

generating precise hierarchies for large data sets such as the Web based on minimal

training. Another approach is the hierarchical generative model by Gaussier et al. [2002]

 9

for improved classification accuracy by providing a better estimation of word occurrence

statistics in leaf nodes using its ancestor nodes in the hierarchy.

In contrast to a classification approach that tries to make a single decision, the

top-down level based approach, used by Koller and Sahami [1997], D’ Alessio et al.

[2000], Dumais and Chen [2000], and Pulijala and Gauch [2004], constructs one or more

classifiers at each concept level, and each of these classifiers works as a flat classifier on

a subset of the concept space. This hierarchical approach exploits the structure of the

concept space during classification.

The basic insight behind hierarchical classification is that concepts that are higher

in the hierarchy are farther apart than concepts that are close together further down the

hierarchy. Therefore, even when it is difficult to find the precise topic of a document,

e.g., color printers, it may be easy to decide whether it is about ‘agriculture’ or about

‘computers’. Building on this intuition, hierarchical classification approaches the

problem using a divide and conquer strategy. In the above example, we have one

classifier that classifies documents based on whether they belong to ‘agriculture’ or

‘computers’. The task for further classifying within each of these wider concepts is done

by separate classifiers within ‘agriculture’ or ‘computers’ respectively. The following are

some motivations for taking hierarchical structure into account [D’Alessio et al. 2000]

• The flattened classifier loses the intuition that concepts that are close to each

other in hierarchy have more in common with each other, in general, than

concepts that are spatially far apart. These classifiers are computationally

simple, but they lose accuracy because the concepts are treated independently

and relationship among the concepts is not exploited.

 10

• Text classification in hierarchical setting provides an effective solution for

dealing with very large problems. By treating problem hierarchically, the

problem can be decomposed into several problems each involving a smaller

number of concepts. Moreover, decomposing a problem can lead to more

accurate specialized classifiers.

The test document starts at the root of the tree and is compared to concepts at the

first level. The document is assigned to the best matching level-1 concept and is then

compared to all subconcepts of that concept. We can use features from both the current

level as well as its children to train this classifier. This process continues until the

document reaches a leaf or an internal concept below which the document cannot be

further classified. One of the obvious problems with top-down approach is that a

misclassification at a parent concept may force a document to be mis-routed before it can

be classified into child concepts.

3 Approach

Encouraged by promising results with smaller concept hierarchies [Dumais &

Chen 2000], we explore the applicability of a hierarchical classification for our large

concept hierarchy and compare it to our original flat classifier. Because the quality of

classification is dependent on the quantity and quality of the training documents, we

evaluate a variety of training strategies for the hierarchical classifier. In particular, we

investigate techniques for dealing with the sparseness of training data for the top-level

classifiers. These classifiers are particularly important because a wrong decision by the

first classifier directs the document to be classified to the incorrect next level classifiers.

Our approach is to supplement the training collection for high level concepts with

 11

documents chosen from their subconcept training sets. We look at a variety of

approaches for selecting these supplemental documents, specifically looking at the

contribution of child and grandchild training documents, selecting documents from a pool

with and without regard to the subconcept structure, and using centroid distances to

identify the most representative training documents.

In Section 3.1, we briefly describe the different classifiers evaluated to select the

flat classifier used as our baseline. Section 3.2 describes how the hierarchical classifier is

constructed from the flat classifier. Section 3.3 describes our approach to training

document selection for the hierarchical classifier.

3.1 Flat Classifiers

As described in Section 2.1, the Rocchio algorithm [Rocchio, 1971], naïve Bayes

[Ferguson, 1973], k-NN [Dasarathy, 1991], and Support Vector Machines [Vapnik, 2000]

have been shown to perform well for text classification. We compared these high-

performing classifiers on our large collection of concepts:

• Rocchio algorithm (local implementation)

• naïve Bayes, k-NN (Rainbow [McCallum, 1996])

• Support Vector Machines (LIBSVM [Chang & Lin, 2001])

Since the Rocchio algorithm is a local implementation, we describe it in detail.

Our Rocchio formula is identical to that used in the Rainbow package, and produces

identical results, but our local implementation creates an inverted index and is thus much

faster. The other classifier implementations are described briefly, and interested readers

are referred to [McCallum, 1996, Chang & Lin, 2001] for details.

 12

For the Rocchio algorithm, the terms are extracted from the training set and the

weight of term i in document j is calculated as shown in Eq. 1:

wtij =ln(tfic+1) * idfi (1)

where

tfic = the total frequency of term i in all training documents for concept c

idfi = the inverse document frequency for term i

 = log
idf

N

where

N= the number of training documents

dfi = the number of documents that contain the term i

Then, the concept vector is formed by adding the weights of each word in the

training documents for that concept. Thus, the weight of each word i in a concept c is the

sum of the weights of word i in documents j, where j is a training document for concept c.

This equation is shown in Eq. 2.

∑=
j

ijic wtwt (2)

Because not all training documents are the same length, the concepts vary

somewhat in the amount of training data. To compensate for this, the term weights in

each concept vector are normalized by the vector magnitude, creating unit length vectors.

Eq. 3 shows the calculation of nwtic, the normalized weight of term i in concept c.

∑
=

i
icic

ic
ic wtwt

wtnwt
*

 (3)

 13

During the classification phase, a weighted term vector is generated for the

document to be classified in a similar manner. We weight the terms in the document

using ln (tf+1) * idf and this weight is normalized using the normalization factor

described above. The classifier compares this vector to the vectors for each of the

concepts using the cosine similarity measure [Salton & McGill 1983]. The results are

then sorted to produce a rank-ordered list of matching concepts.

LIBSVM [Chang & Lin, 2001] supports multi-class classification and provides a

fast SVM implementation used for text classification [Basu et al. 2003]. Though, it

provides support for a variety of kernel functions, we chose to use the linear kernel as it

has been shown to work well for text classification [Dumais & Chen, 2000]. The

regularization parameter C plays a major role in the classification accuracy of SVM, and

this parameter is chosen by performing cross-validation on the training set. The details

are described in section 5.1.

The rainbow toolkit [McCallum, 1996] supports classification using k-NN and

naïve Bayes. The k-NN algorithm implemented in rainbow makes use of a distance-

weighted k-NN, and the performance of the algorithm is governed by the choice of k.

The value of k is chosen by performing cross-validation on the training set, and the

details are described in section 5.1. For, the naïve Bayes classifier, we use a multinomial

mixture model, and we do not perform feature selection for any of the classifiers.

3.2 The Hierarchical Classifier

Based on encouraging preliminary experiments [Pulijala & Gauch 2004], we built

a hierarchical classifier for the concept hierarchy. To do this, we first constructed a set of

classifiers, one at each level, using the best classifier obtained as a result of flat classifier

 14

experiments described in Section 5.1. We first classify each test document using the

level I classifier and then, based on the top result, reclassify the document using the

appropriate level II classifier to find the best level II match. The document is then

classified by the top matching level III classifier, and so on, until the bottom of the

hierarchy is reached. In our experiments, we built and tested a classifier for a 3-level

concept hierarchy that matched documents to the best matching leaf concept. The best-

matching higher-level concepts are implicitly identified as the parents and grandparents

of the final concept.

3.3 Training Document Selection

The Web has grown to cover such a wide range of topics that concept hierarchies

built to organize the content are very large. As we consider the problem of classifying

Web documents into large concept hierarchies, we need to carefully select training

documents for the classifiers. Since the top-level concepts have few associated training

documents, it is difficult to train classifiers for these concepts. We therefore investigate

ways of populating their training collections with documents selected from their

subconcepts. We look at the impact of the distribution of the selected documents across

the subconcept space on the classification accuracy. We evaluate a variety of approaches

for selecting the subconcept documents, those that select from a pool of all such

documents and those that select the subclass documents paying attention to the

subconcept structure.

With any large set of concepts, the boundaries between the concepts are fuzzy. If

used for training, documents near the boundaries will add noise and confuse the

classifier. We want to eliminate outlier documents, and the words they contain, from the

 15

representative vector for the concept. Thus, we explore the use of calculating the

centroids of the candidate training documents for each concept and using the distance of

the documents from the centroid in order to identify the most representative training

documents for that concept, and evaluate the effect this has on classifier accuracy. The

CLUTO Clustering Toolkit [CLUTO 2003] - Release 2.1 is used to calculate the centroid

of the candidate training documents. The following clustering parameters were used:

• Clustering Method: Partitional Clustering - using bisections.

• Similarity Function: Cosine Function

• Particular clustering criterion function used in finding cluster: I2

where, I2 is given by :

In the above equation, k is the total number of clusters, S is the total objects to be

clustered, Si is the set of objects assigned to the ith cluster, v and u represent two objects,

and sim(v, u) is the similarity between two objects. We assume that all training

documents for a given concept belong to a single cluster, and the vcluster [CLUTO 2003]

function and the z-scores [CLUTO 2003] option are used to calculate the centroid and the

distance of the documents from the centroid.

4 Experimental Design

We wish to compare the accuracy of a flat classifier with that produced by a

hierarchical classifier in which training documents are selected in a variety of ways.

 16

Section 5 outlines our experimental results using flat classification and Section 6

describes a series of experiments on our hierarchical classifier.

4.1 Test Collection

Because, the Open Directory Project hierarchy [ODP 2004] is readily available

for download, it was chosen as the source for classification tree. It is becoming a widely

used, informal standard and has been used for hierarchical classification experiments

[Dhillon et al. 2002, Dekel et al. 2004]. As of December 2004, the Open Directory had

more than 590,000 concepts created by over 66,000 editors. With such a fine granularity,

subtle differences between certain concepts may be apparent to a human but

indistinguishable to a classification algorithm. In order to capture broader differences

between documents, documents are classified into concepts from the top three levels

only, although training data from the top four levels was used in some experiments. A

part of the ODP hierarchy is shown in Figure 1.

Arts

Root

Games

Music Design Comics

Doc 1
Doc 2
Doc 3

.

.

.
Doc n

Doc 1
Doc 2
Doc 3

.

.

.
Doc n

Doc 1
Doc 2
Doc 3

.

.

.
Doc n

Doc 1
Doc 2
Doc 3

.

.

.
Doc n

Doc 1
Doc 2
Doc 3

.

.

.
Doc n

 Figure 1. Part of the ODP Hierarchy

 17

Experiments with training set sizes reported in [Gauch et al. 2004] showed that

the classifier performed at its peak when trained using 30 documents per concept.

Because we wished to evaluate our algorithm on a truly large hierarchy, we made a local

copy of the ODP collection that contained all of the first 4 levels of the hierarchy and

downloaded a maximum of 100 associated documents for each concept. We then pruned

out any level III concepts, and their child subconcepts, that had fewer than 31 training

documents (30 for training, 1 for testing). This created a subset of the ODP that

contained all 15 level I concepts, 358 level II concepts, 1,211 level III concepts and

10,132 level IV concepts.

For testing purposes, we randomly selected 1 document from each of 1,000

different level III concepts that were withheld from training. Since we know the concept

from which each document was selected, we can evaluate the accuracy of our classifier

against “truth” by measuring how often the classifier assigns the test documents to the

concepts from which they originally came.

5 Flat Classification Experiments

This section describes our experiments to with flat classifiers. Experiment 0

establishes the accuracy of the baseline against which the hierarchical classifier will be

compared. We first compare Rocchio, k-Nearest Neighbors, Support Vector Machines

(SVM), and naïve Bayes on our dataset. The best performing classifier is then used for

the experiments with the hierarchical classifier. Experiment 1 shows the effect of using

the centroid distances to select the training documents for the flat classifier chosen from

experiment 0.

5.1 Experiment 0: Determining the Flat Classifier Baseline

 18

We first establish a baseline level of performance with the flat classifier built

using the Rocchio classifier, k-NN, SVM and naïve Bayes as described in section 3.1.

Since automatic classification algorithms are often asked to place documents in a single

concept, all evaluations were made comparing the accuracy of the top-ranked result only.

We performed a five-fold cross-validation on the training set to determine the best

choice of parameters for k-NN and linear SVM. The values k ∈ {1, 10, 20, 30, 40, 50,

60} for the k-NN classifier and C ∈ {0.01, 0.1, 1, 10, 100} for the SVM classifier were

tried. The best performing parameter is used for these algorithms and the results obtained

are shown in Table 1.

 Rocchio k-NN
k=40

SVM
C= 0.01

Naïve Bayes

Accuracy 54.45% 24.24% 0.18% 27.27%

Table 1: Accuracy of the different flat classifiers on the test collection

The results in Table 1 show that the Rocchio classifier performed the best and the

SVM classifier performed the worst, while naïve Bayes was slightly more accurate than

k-NN. Since most studies find that SVM outperforms other classifiers, these results are

somewhat surprising. We believe that the poor performance of SVM is due to the high

dimensionality of the data set. Because there are so many concepts, and so many training

documents, our vectors contain an average of 10,859 features per concept. Based on

these results, we use the Rocchio classifier as our baseline for the rest of the experiments.

5.2 Experiment 1: Using Centroid Distances to Select the Training Set for Flat

Classification

The goal of this experiment is to see if centroid distances can be used to select a

better set of training documents and thereby improve the accuracy of the flat classifier.

Rather than randomly selecting documents from each concept’s associated documents,

 19

we calculated the centroid of the document collection and used the distance of the

centroid from the documents to identify the documents that might best represent the

concepts. First, for each concept, we calculated the centroid for the set of all associated

non-test documents. We then evaluated a variety of approaches by which to select the

training documents for each concept. The first approach concentrates on using the

documents that have the most in common and the other two approaches use the

documents that provide the best breadth of coverage.

• Method A: We choose 30 documents that are closest to the centroid.

• Method B: We choose 30 documents that are farthest from the centroid.

• Method C: We choose 30 documents that are farthest from each other.

Selection Algorithm Accuracy Improvement
Over Baseline

Baseline (Random) 54.5% ---

Close to Centroid 55.7% 1.2%

Far from Centroid 54.9% 0.5%

Far from Each Other 44.4% (10.1)%

Table 2: Accuracy of the flat classifier trained on documents selected using centroid

distances

The results presented in Table 2 show that selecting documents closest to the

centroid from each concept yields the highest accuracy, 55.7%, a 1.2% improvement over

the baseline. This provides only a modest increase in accuracy, leading us to explore the

use of hierarchical classification for larger potential gains.

 20

6 Hierarchical Classification Experiments

This section describes our experiments with the hierarchical classifier. Section

6.1 describes a series of experiments that pools the associated documents for a concept

with those from child and grandchild concepts. The training documents for each concept

are then selected from this pool of documents with and without considering centroid

distances. The distribution of the training documents across the concepts and

subconcepts is not taken into consideration. Section 6.2 describes a different training

document selection algorithm that selects documents uniformly across the subconcepts of

the concept being trained. Based on the results obtained from the above experiments, we

created a generic training algorithm for classifiers. This is outlined in section 6.3 along

with the validation performed of this algorithm on a new set of test documents collected

by randomly choosing one document that has not been used for either training or testing

in the previous experiments from each of the level III concept. For each of the

experiments described, we built a level I classifier, 15 level II classifiers, and 358

classifiers for level III that were used to assign documents to one of 1,211 level III

concepts.

6.1 Using Pooled Documents For Training

In this section, we describe a set of experiments that select training documents

from collections of candidate documents that are pooled together. The candidate

document pools always contain each concept’s associated documents. Because the

number of documents associated with the for the level I and level II concepts is very low,

we then evaluate the effects of adding the documents associated with subconcepts to the

pool of candidate documents. We compare selecting the training documents from the

 21

pool randomly with calculating the centroid of the documents in the pool and selecting

those closest to the centroid. The effect of each algorithm on the classification accuracy

for levels I, II and III is evaluated by Experiments 2, 3, and 4 respectively.

6.1.1 Experiment 2 Level I Classification Accuracy

This experiment evaluates the level I classification accuracy when the classifier is

trained using pooled collections of level I documents only, levels I and II pooled together

and levels I, II, and III pooled together. Each pool is created by combining all associated

documents. We then select 10 through 90 documents for training, either randomly or

selecting the documents closest to the centroid.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

10 20 30 40 50 60 90

Number of documents

%
 A

cc
ur

ac
y

Level I - Random
Level I - Centroid
Level I using Level I and II - Random
Level I using Level I and II - Centroid
Level I using Level I, II and III - Random
Level I using Level I, II and III - Centroid

 Figure 2. Level I decision accuracy

 22

Figure 2 shows the classification accuracy for the level I classifier trained in a

variety of ways. For all methods, the performance peaks with 30 or 40 training

documents. When trained on the associated level 1 documents alone because of the

sparseness of the training data, the classifier performs very poorly (13.6% random

selection, 15.8% selecting near the centroid). Training improves as the candidate pool

increases, performing best when documents from levels I, II, and III are pooled. With

this pool, the highest accuracy for randomly-selected documents is 63.6% when trained

using 40 documents. This is a 307% improvement (48.8% absolute) over documents

selected randomly from the level I pool alone.

When we select the 30 documents closest to the centroid, we see a further

improvement to 81.6% accuracy, a 396% improvement (63% absolute) when compared

to selecting the 30 documents closest to the centroid from the level I documents alone.

From these results, we conclude that we get the most accurate level I decision when we

train the classifiers on documents pooled from levels I, II, and III from which we select

the 30 documents closest to the centroid.

One surprising observation is that, as the number of training documents increases

beyond 30 or 40 per concept, the accuracy decreases. We attribute this to the fact that

choosing documents close to the centroid selects the best representative documents and

that, as documents are added, more peripheral documents are included. Even when

centroid distances are not used, adding extra documents increases the size of the

vocabulary (i.e., features) used to represent the concept and the resulting increase in noise

decreases the accuracy and increases the vocabulary overlaps between concepts.

6.1.2 Experiment 3 Level II Classification Accuracy

 23

Experiment 3 essentially reproduces Experiment 2 for level II classification.

Thus, it investigates the effect of centroid distances on a set of candidate training

documents created by pooling documents at levels II and III.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

10 20 30 40 50 60

Number of documents

%
 A

cc
ur

ac
y Level II - Random

Level II - Centroid
Level II using Level II and III - Random
Level II using Level II and III - Centroid

 Figure 3. Level II Decision Accuracy
With our best level I classifier, 816 (81.6% of the 1000) test documents were sent

to the correct level II classifier. Figure 3 shows the accuracy of the level II classification

for these 816 test documents. From this figure, we see that the classifier is more accurate

when trained on pooled level II and III documents rather than on level II documents

alone. 78.1% versus 87.3%. Thus, including level III documents in the training of level II

concepts improves the accuracy of the level II classifiers, even though most level II

concepts have over 30 training documents of their own.

We also observe that the accuracy for training documents selected near the

centroid is higher then documents selected at random. In particular, the maximum

 24

accuracy for a randomly selected training set is 78.4% observed when 50 documents are

used for training. However, when documents closest to the centroid are used to train the

classifier, the best accuracy of 87.3% with 40 training documents. Thus, there is an

improvement of 11.3% (8.9% absolute) when centroid distance is used to choose the

training documents. Given that 184 documents were misclassified by the level I

classifier, this produces an overall cumulative accuracy of 71.3% after 2 levels, i.e., 713

of the 1,000 test documents are assigned to the correct level II concept.

6.1.3 Experiment 4 Level III Classification Accuracy

At the end of the experiments for level II, out of 1000 initial test documents 713

have correctly identified their level II concept. Since all test documents are drawn from

level III, the last step is to measure how many of these documents ultimately make it to

their true concepts. All level III concepts contain at least 31 associated documents.

Thus, we expect to be able to train them successfully using only their own documents,

without augmenting the training collection with documents associated with child

concepts. To validate this, we train the level III classifiers using 10 through 60 training

documents selected randomly and by their closeness to the centroid.

 25

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60

Number of documents

%
 A

cc
ur

ac
y

Level III - Random
Level III - Centroid

Figure 4. Level III decision accuracy using only documents from level III.

Of the 713 documents that made it to the correct level III classifier, the randomly

trained level III classifier assigns 552 to their correct concept. This means that the level

III classifier is 77.4% accurate (55.2% cumulative accuracy). In contrast, when the level

III classifier is trained with the 30 documents closest to the centroid, 654 documents are

assigned to the correct concept. Thus, the level III classifiers are 91.7% accurate (65.4%

cumulative accuracy) when centroid distance is used to identify the training documents, a

relative improvement of 18.5% (14.3% absolute) over the randomly trained classifiers.

6.2 Using Distributed Documents for Training

The experiments conducted in section 6.1 selected training documents from a set

of candidates formed by pooling documents associated with a given concept and its

subconcepts. The documents selected were chosen based on their distance from the

centroid of the pooled training documents. However, this algorithm did not take into

 26

account the distribution of the selected documents across the subconcept space. This set

of experiments evaluates the use of the hierarchical structure during the selection of the

training documents. By selecting a specific number of documents per concept or

subconcept, the training set should be representative of the breadth of the concept. Based

on the results in the previous experiments, we select the subconcept representatives as

those nearest the centroid in all experiments reported here.

6.2.1 Experiment 5 Level I Classification Accuracy

For the crucial level I decision, we conduct three different experiments using

documents from just level I, levels I and II, and levels I, II and III to train the classifier.

We vary the number of documents selected per concept from 1 through 4. In each of the

following experiments, the number of documents used for training varies. Because the

number of documents per concept is varied between 1 and 4 documents per concept, as

more levels are used for training, more subconcepts are added, and thus more training

documents.

 27

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Number of documents

%
 A

cc
ur

ac
y

Using documents from Level I
Using documents upto Level II
Using documents upto Level III

Figure 5. Level I decision using documents closest to the centroid from each concept

From Figure 5, we see that we achieve the best accuracy, 91.2%, when we select

the 2 training documents nearest the centroid for each concept and its subconcepts down

to level III. This compares favorably with earlier work [Pulijala & Gauch 2004] on the

same collection that achieved a maximum accuracy of 79% at level I when selecting

documents at random for each concept/subconcept.

Interestingly, when only level I documents are used, this is the same approach as

reported in Figure 2, with far fewer documents selected for training. However, the

accuracy is almost identical, just under 20%, when only 1 document is used for training

as compared to up to 40 documents in Experiment 2. Since the experimental results in

Experiments 2 through 5 show a drop off in accuracy as more documents are added, we

attribute the improved performance of the classifier to the inclusion of subconcept and

 28

sub-subconcept representative documents rather than due to the increase in number of

documents total. In fact, as the number of total training documents used increases by

including more representative documents per concept from 1 to 4, we see little change in

the accuracy of the classifier. There appears to be a slight peak with 2 documents per

concept, then a decrease as more documents are added. We attribute this decrease to the

inclusion of noise and increase in overlap between concepts.

6.2.2 Experiment 6 Level II Classification Accuracy

Experiment 6 essentially reproduces Experiment 5 for level II classification.

Thus, it investigates the effect of selecting the set of training documents evenly across the

subconcept space, using centroid distances to identify the training documents nearest the

centroid for each concept. We report the accuracy on the 912 documents that were

classified correctly at level I using the most accurate training method, i.e., 2 documents

per concept closest to the centroid and all concepts down to level III. Figure 5 shows the

Level II classification accuracy obtained by training the classifiers on documents from

level II concepts alone versus using documents from levels II augmented with the

appropriate level III subconcepts.

 29

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Number of documents

%
 A

cc
ur

ac
y

Using documents from Level II
Using documents upto Level III

Figure 6. Level II decision using documents closest to the centroid from each
concept

It is clear from Figure 6 that we observe higher accuracy when we use documents

from levels II and III compared with that achieved training the level II concepts on

documents from level II alone. We achieve the highest accuracy of 92.9% when using 2

documents per concept. Given that 88 documents were misclassified by the level I

classifier, this produces an overall cumulative accuracy of 84.8% after 2 levels, i.e., 848

of the 1,000 test documents are assigned to the correct level II concept. This compares

favorably with a cumulative accuracy of 71.3% when the representative documents are

chosen at random [Pulijala & Gauch 2004].

6.2.3 Experiment 7 Level III Classification Accuracy

In this experiment we train the level III classifiers using only data from level III

and then by using data from level III as well as level IV. We include level IV documents

in this experiment to see if the inclusion of training documents from subconcepts can

 30

improve the level III classifiers. In both the above cases, we select the documents that

are closest to the centroid and vary the number of documents to find the combination that

gives us the best observed accuracy.

86

87

88

89

90

91

92

93

94

1 2 3 4

Number of documents

%
 A

cc
ur

ac
y

Using documents upto Level IV
Using documents from Level III

Figure 7 Level III decision using documents closest to centroid from each concept

From Figure 7, we can see that there is not much difference in the accuracy of the

level III classifiers when documents from the subconcepts are included. In fact, we

observe higher accuracy (93.2%) when the classifiers are trained on level III documents

alone compared to when level IV documents are also used (92.4%). Given that 152

documents were misclassified by the level I and II classifiers, this produces an overall

cumulative accuracy of 79.1% after 3 levels, i.e., 791 of the 1,000 test documents are

assigned to the correct level III concept. This compares favorably with a cumulative

accuracy of 70.1% when the representative documents are chosen at random [Pulijala &

Gauch 2004].

 31

6.3 Validation

Based on the results from sections 6.1 and 6.2, we devised a simple training

algorithm for our hierarchical classifier. We train the classifier for each concept by

selecting two training documents from each concept and subconcept down to level III.

To validate this straightforward training algorithm, we classify 400 new documents that

the classifier has not seen before. We again compare the results of using the documents

closest to the centroid to train the classifier versus training the classifier using two

randomly selected documents per concept. The results are given in Figure 7.

0

10

20

30

40

50

60

70

80

90

100

I II III

Level

%
 A

cc
ur

ac
y

Random
Documents closest to centroid

 Figure 8. Cumulative Classification Accuracy on Validation Documents

In Figure 8, we observe that selecting the documents closest to the centroid

improves the level I classifier’s accuracy from 79.7% to 89% and the level II accuracy

from 72.6% to 83.4%. The cumulative level III accuracy is 76.2% when the documents

closest to the centroid are selected versus 69.8% for random selection. We performed a

 32

two-tailed t-test with alpha value=0.05. We achieve a statistically significant

improvement (p = 3.23E-05) of 9.1% (6.4% absolute) in our hierarchical classifier.

6.4 Discussion

Table 3 summarizes the results from our experiments. The flat classifier trained

on randomly selected documents produces an accuracy of 54.5%, which is our baseline.

Using centroid distances to select training documents for the flat classifier produces a

minor improvement to 55.7%. Hierarchical classification provides nearly the same

accuracy at 55.2% when training documents are pooled from all three levels. This is

further increased when we select the 30 documents closest to the centroid (40 for level II

classifiers) for training. By requiring that the selected training documents be distributed

evenly across the subconcept space, the accuracy further improves to 70.1% when they

are selected randomly for each concept and 79.1% when the documents selected are

closest to the centroid.

We validated our selection criteria using a new set of testing documents,

confirming that we can achieve high accuracy, 76.2% on a large concept hierarchy using

hierarchical classification. When the documents selected for each subconcept are closest

to the centroid, we see a statistically significant improvement compared to when they are

selected randomly.

Selection Algorithm Accuracy

Flat classifier, pooled, (random) 54.5%

Flat classifier, pooled, (centroid) 55.7%

Hierarchical classifier, pooled (random) 55.2%

 33

Hierarchical classifier, pooled (centroid) 65.4%

Hierarchical classifier, distributed (random) 70.1%

Hierarchical classifier, distributed (centroid) 79.1%

Hierarchical classifier, distributed (random)
Validation

69.8%

Hierarchical classifier, distributed (centroid)
Validation

76.2%

Table 3. Results Summary

7 Conclusions

In this paper, we compare a flat classification approach to hierarchical

classification for a large, three-level concept hierarchy. We present a study of training

algorithms for hierarchical classification that evaluates the use of subconcept documents

for training high-level concepts. In particular, we evaluate the use of pooling the

documents and selecting documents from the pool at random versus selecting the

documents nearest the centroid from the pool. We also investigate a training document

selection algorithm that selects the training documents evenly across the subconcept

space.

We conclude that, hierarchical classification is much more accurate than flat

classification, 79.1% versus 55.7% in the best case for each. We also found that

calculating the centroid of the candidate documents and selecting those near the centroid

improved classification accuracy in all experiments. The relative improvements ranged

from a minimum of 2.2% when training the flat classifier using pooled documents to a

maximum of 18.5% when training the hierarchical classifier using pooled documents.

We found that, when training the top-level hierarchical classifiers, including documents

 34

from subconcepts provides a large improvement in the accuracy. The most dramatic

improvement occurs with the level I classifier when it is trained on pooled documents

nearest the centroid. When it is trained on only its associated documents, the classifier

achieves a very poor 15.9% accuracy. However, when selecting from pooled documents

from levels I through III nearest the centroid, the accuracy jumps to 81.6%. Finally, we

found that selecting the training documents so that they are distributed evenly across the

subconcept spaces, rather then from a pool of all candidate documents, further improves

the level I accuracy improved to 91.2%.

The ultimate evaluation, though, is how often the level III test documents are

assigned to the correct concept. The best case for flat classification was 55.7%, whereas

using pooling and distribution to select the training documents, the hierarchical classifier

achieved an accuracy of 79.1%. This is a tremendous improvement of 42% (23.4%

absolute). These results were validated with a new set of test documents and a similar

accuracy of 76.2% was obtained.

In the future, we would like to explore the use of Support Vector Machines as the

classifier for the hierarchical classifier. Although it performed poorly on a large dataset

with a large number of concepts, the accuracy might improve when used level by level,

since each classifier needs to decide between a much smaller number of concepts. The

smaller number of concepts, combined with feature selection, may allow SVM to further

improve our hierarchical classifier.

One drawback to our current hierarchical classifier is that it has no way to recover

from an incorrect level I decision. The flat classifier can naturally assign documents to

multiple categories and, although many applications require the assignment of a

 35

document to a single category, we are working on improving our hierarchical classifier to

allow it to do soft categorization. We are developing a more sophisticated algorithm that

simultaneously explores more than one branch in the conceptual hierarchy. In addition to

potentially improving accuracy, this could also allow documents to be classified into

more than one concept.

References

BAKER, L.D., HOFMANN, T., MCCALLUM, A., AND YANG, Y. A hierarchical

probabilistic model for novelty detection in text.

http://www.cs.umass.edu/~mccallum/papers/tdt-nips99s.ps

BASU, A., WATTERS, C. R., AND SHEPHERD, M. A. 2003. Support Vector

Machines for Text Categorization. In Proceedings of the 36th Hawaii International

Conference on System Sciences (January), 103.

CAI, L. AND HOFMANN, T. 2003. Text Categorization by Boosting Automatically

Extracted Concepts. In Proceedings of the 26th ACM-SIGIR International Conference on

Research and Development in Information Retrieval (July/August), 182-189.

CHANG, C. AND LIN, C. 2001. LIBSVM. A library for support vector machines.

Website: http://www.csie.ntu.edu.tw/~cjlin/libsvm

CLUTO. 2003. Cluto. Website: http://www-users.cs.umn.edu/~karypis/cluto/index.html

DASARATHY, B. V. 1991. Nearest Neighbor (NN) norms: NN Pattern Classification

Techniques. McGraw-Hill Computer Science Series. IEEE Computer Society Press,

Las Alamitos, California.

 36

DEKEL, O., Keshet, J., AND SINGER, Y. 2004. Large margin hierarchical

classification. Proceedings of the twenty-first international conference on Machine

learning (July), 27.

DHILLON, I. S., MALLELA, S., AND KUMAR, R. 2002. Enhanced word clustering

for hierarchical text classification, Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining (March), 191-200.

DUMAIS, S. 1998. Using SVMs for text categorization. In IEEE Intelligent Systems

Magazine, Trends and Controversies, Marti Hearst, ed., 13(4) (July/August).

DUMAIS, S., AND CHEN, H. 2000. Hierarchical classification of Web content. In Proc.

Of the 23rd ACM International Conference on Research and Development in Information

Retrieval, 256-263.

 D’ALESSIO, S., MURRAY, K. SCHIAFFINO, R., AND KERSHENBAUM, A. 2000.

The effect of using hierarchical classifiers in text categorization. In Proceedings Of the

6th International Conference “Recherched’Information Assistee par Ordinateur”, 302-

313.

 FERGUSON, T.S. 1973. A bayesian analysis of some nonparametric problems.

Annals of Statistics, 209-230.

 GAUCH, S., MADRID, J. M., INDURI, S., RAVINDRAN, D., AND

CHADALAVADA, S. 2004. KeyConcept : A Conceptual Search Engine. Information

and Telecommunication Technology Center, Technical Report : ITTC-FY2004-TR-8646-

37, University of Kansas.

 37

GAUSSIER, E.. GOUTTE, C., POPAT, K., AND CHEN, F. 2002. A Hierarchical

Model for Clustering and Categorising Documents. In Proceedings of the European

Colloquium on IR Research (March), 299.

GUO, G., WANG, H., BELL, D., BI, Y., AND GREER, Y. 2003. Using kNN Model-

based Approach for Automatic Text Categorization, In Proc. of ODBASE'03, the 2nd

International Conference on Ontologies, Database and Applications of Semantics, LNCS

2888, 986-996.

 JOACHIMS, T. 1998. Text Categorization with Support Vector Machines: Learning

with many relevant features. In Proceedings of the 10th European Conference on

Machine Learning(ECML), 137-142.

KOLLER, D., AND SAHAMI, M. 1997. Hierarchically classifying documents using very

few words. In Proceedings of the 14th International Conference on Machine Learning,

(July), 170-178.

KROVETZ, R., AND CROFT, B. W. 1992. Lexical Ambiguity and Information

Retrieval. ACM Transactions on Information Systems, 10(2), (April), 115-141.

LABROU, Y., AND FININ, T. 1999. Yahoo! As An Ontology – Using Yahoo! Concepts

To Describe Documents. In Proceedings of the 8th International Conference On

Information Knowledge Management (CIKM) (November), 180-187.

LEWIS, D. D., AND RINGUETTE, M. 1994. Comparison of two learning algorithms

for text categorization. In Proceedings of the Third Annual Symposium on Document

analysis and Information Retrieval (SDAIR’ 94) , 81-93.

 38

LU, F., JOHNSTEN, T., RAGHAVAN, V., AND TRAYLOR, D. 1999. Enhancing

Internet Search Engines to Achieve Concept-based Retrieval. In Proceeding of

Inforum'99.

MCCALLUM, A. K. 1996. Bow: A toolkit for statistical language modeling, text

retrieval, classification and clustering. Website: http://www.cs.cmu.edu/~mccallum/bow

MCCALLUM, A., AND NIGAM, K. 1998 A Comparison of Event Models for Naive

Bayes Text Classification, In AAAI-98 Workshop on Learning for Text Categorization,

41-48.

MCCALLUM, A., ROSENFELD, R., MITCHELL, T., AND NG, A. 1998. Improving

text classification by shrinkage in a hierarchy of classes. In Proceedings of the Fifteenth

International Conference on Machine Learning, 359-367.

 NG, H. T., GOH, W. B., AND LOW, K.L. 1997. Feature selection, perceptron learning,

and a usability case study for text categorization. In 20th Ann Int ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’ 97) (July), 67-73.

ODP. 2004. Open Directory Project. Website: http://dmoz.org

PULIJALA, A., AND GAUCH, S. 2004. Hierarchical Text Classification. International

Conference on Cybernetics and Information Technologies, Systems and Applications:

CITSA (July).

 RAVINDRAN, D., AND GAUCH, S. 2004. Exploiting Hierarchical Relationships in

Conceptual Search, Proceedings of the 9th International Conference On Information

Knowledge Management (CIKM), (November), 238-239.

 39

 ROCCHIO, J. 1971. Relevant feedback in information retrieval. In G. Salton (ed.). The

smart retrieval system - experiments in automatic document processing, Englewood

Cliffs, NJ.

RUIZ, M., AND SRINIVASAN, P. 1999. Hierarchical Neural Networks For Text

Categorization. In Proceedings of the 22nd Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (August), 281-282.

 SALTON, G., AND MCGILL, M. J. 1983. Introduction to Modern Information

Retrieval. McGraw-Hill, New York, NY.

SASAKI, M., AND KITA, K. 1998. Rule-based text categorization using hierarchical

concepts. In Proceedings of the IEEE Conference on Systems, Man, and Cybernetics,

2827-2830

 SUN, A., LIM, E., AND NG, W. 2003. Performance Measurement Framework for

Hierarchical Text Classification. Journal of the American Society for Information

Science and Technology, 54(11), 1014-1028.

TOUTANOVA, K., CHEN, F., POPAT, K., AND HOFMANN, T. 2001. Text

Classification in a Hierarchical Mixture Model for Small Training Sets. In Proceedings

of the 10th International Conference on Information and Knowledge Management

(November),105-113.

VAPNIK, V. 2000. The Nature of Statistical Learning Theory, 2nd Edition, Springer,

New York.

WANG, K., ZHOU, S., AND HE, Y. 2001. Hierarchical classification of real life

documents. In Proceedings of the 1st SIAM International Conference on Data Mining.

 40

WIENER, E.D., PEDERSEN, J. O., AND WEIGEND, A.S. 1995. A neural network

approach to topic spotting. In Proceedings of {SDAIR}-95, 4th Annual Symposium on

Document Analysis and Information Retrieval, 317-332.

 YANG, Y., AND PEDERSEN, J. P. 1997. Feature selection in statistical learning of text

categorization. In The Fourteenth International Conference on Machine Learning

(July), 412-420.

 YANG, Y. AND LIU, X. 1999. A re-examination of text categorization methods, In

Proceedings of the SIGIR 1999 (August), 42-49.

YANG, Y. 2003. A scalability analysis of classifiers in text categorization. In

Proceedings of SIGIR-03, 26th ACM International Conference on Research and

Development in Information Retrieval (July), 96-103.

