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l. Introduction

The game of Mancala is a two-player strategy game whose objective is to collect the most
number of stones from a board of bins into a collection (home/Mancala) bin. The game begins
with a predefined number of stones in each player’s array of bins using a predefined number of
bins on each side (including home bins). Details on the board setup, game instructions, and our
approach to studying this game follow.

Glossary of Terms

Bin — The location on the board in which stones are stored.

Capture — The ability to end a move by placing a stone in an empty bin on your side of
the board, allowing you to take that stone and all of the stones in the opponent’s bin
opposite that bin and place them into your home bin.

End Game — When one player has no stones left on his or her side of the board, that
player takes any remaining stones from the other side and places them in his or her
home bin.

Go-Again — The ability to end a move by placing a stone in your home bin.

Look-ahead — The numbers of moves used between two Mancala players.

Mancala — Each player’s home bin that is on each player’s right on their side of the
board.

Move — A player removes all of the stones from one of the holes on his side of the board,
and then, moving counter-clockwise, places one stone in each hole (including his
home hole, but not his opponent's) until all of the stones have been placed.

Win — The player with the greatest number of stones in his home when the game ends
wins.

Board
The board consists of six (6) bins on each side, and a home position on the right of the bins. The
board is laid out typically starting with four stones in each bin and home bins empty (0):



Basics of Play

A player removes all of the stones from one of the bins on his side of the board, and then,
moving counter-clockwise, places one stone in each bin (including his home bin, but not his
opponent's) until all of the stones have been placed. If the last stone placed is in his home bin,
the player goes again. If the last stone is placed in an empty bin on the player's side of the board
and if the opponent has stones in the opposite bin, then the player removes his stone and the
stones in the opposite bin and places them in his home. If the opponent has no stones in the
opposite bin, nothing occurs.

When one player has no stones on his side of the board, that player takes any remaining stones
from the other side and places them in his home. The player with the greatest number of stones
in his home wins. Keep in mind that we proved going first gives a definite advantage!

Problem Statement

To implement, test, and analyze the game of Mancala by incorporating different Artificial
Intelligence (AI) techniques to its game play. This was accomplished via insertion of the
techniques into pre-existing open source software (lacking Al) so as to evaluate overall heuristic
performance.

Implemented Solution

We implemented the historic two-player game of Mancala. Our approach incorporated variables
so that the number of starting stones per bin and other game characteristics could be altered for
analysis. This allows our resulting solution the ability to be transformed into almost any desired
variation of the Mancala family of games. In addition to being able to alter the variation of the
game, we incorporated three versions of actual game play:

1. Simulation/Batching Mode: Computer vs. Computer
2. Interaction/Testing Mode: Computer vs. Human
3. Demonstrational Mode: Human vs. Human

An approach like this allowed a simplified batch processing of the test cases (Computer vs.
Computer), while also allowing the group to test heuristics by hand (Computer vs. Human) as
well as for presentation and demonstration of heuristics (Human vs. Human). To gather the
various statistics that we present later in this report, we made use of a batch file to allow mass
simulation of games and player situations in an unattended environment. Testing and results are
discussed in later sections.

The main metrics for comparing these strategies are the number of “stones” in each Mancala
(home bin) when the game ends and the number of moves it took to complete the game. More
heuristic strategies also used are discussed in detail below. Given a game like Mancala, it is
trivial to see that Mini-max, Alpha-Beta pruning, and DFS-style searches fit very well to the
game setup. Thus, these approaches were considered into our design and incorporated into our
final build.

We chose the game of Mancala because it is well-defined, involves searching and strategy, and
has a reasonable search space for possible states. Being able to compare varying kinds of
heuristics against one another in a tournament-style fashion, as well as against each other in




differing combinations, was beneficial not only for the game of Mancala but also for related and
similar games. By running many combinations of heuristics, starting positions, and look-ahead
depths, we effectively isolated the heuristics that perform the best in various categories.
Following our analysis, we discovered a small set of dominant heuristics and played them
against each other in round-robin and tournament-style fashions to determine which heuristic
was the overall best. These results are covered in-depth later in the report.

We originally planned to incorporate a learning/evolution-based approach to the weights for the
heuristics (i.e., how much of each heuristic contributes to the utilities). In theory, the weights
would adjust themselves based on performance and eventually would converge to an optimal set
of weights for the given heuristic sequence. Due to the difficulty and time required for this, we
decided to leave this as an accomplishable addition to this project for the future. For more
difficulties and decisions made along the course of development, see the Testing and
Developmental Difficulties section.

We developed two distinct versions of Mancala: one for the Linux shell (batching and text-based
play), one graphical user interface (GUI) developed with Microsoft Visual Studio 6.0 for
Windows. Both of these solutions, their importance, use, and frameworks are discussed later in
this report. Both versions were implemented in C++.

Il. Solution Design
A. Heuristic Approaches

Overview of Heuristics

Based on the board setup, we have come up with various basic heuristics for choosing the next
move. As design and testing proceeded, it became clear which heuristics were not needed as
they were being included in other more dominant heuristics. The following seven heuristics
were deemed the most important by the team and therefore were the focus of all statistical and
strategic analysis.

HO: First valid move (furthest valid bin from my home)

H1: How far ahead of my opponent [ am

H2: How close I am to winning (> half)

H3: How close opponent is to winning (> half)

H4: Number of stones close to my home

H5: Number of stones far away from my home

H6: Number of stones in middle of board (neither close nor far from home)

As somewhat apparent in heuristics H2 and H3, if a player reaches / + half of the stones then
they are guaranteed to win. This intelligence was not included into the play of the heuristics so
as to not taint how useful they are by themselves. If the goal of this research was to develop an
unbeatable Mancala Al player, it would have been included. However, our goal was to develop
and analyze various heuristics against each other and in combination through the searching
techniques of Mini-max and Alpha-Beta pruning. Therefore, it was left out of our development
and analysis.

Heuristic Comparison
The above heuristics were run through a series of simulation games (Computer vs. Computer) to
separate out the best single heuristics, best combinations of those heuristics, and the overall best




sequence of heuristics to use for optimal results. To determine the best overall
heuristic/sequence, we first separated the best heuristics and then ran them against each other in a
round-robin tournament. Winners moved on and played other winners until the dominant
heuristic was apparent. In other words, the heuristics were used to assign utility to nodes during
the search.

Look-ahead
Represents 1-ply of adversarial game search, or the number of moves used between two Mancala players:
E.g. A look-ahead of 2:

Max makes 1 move, and Min makes 1 move, in that order, to find the best move for Max.

Via use of a batch file, we were able to run all of our comparisons in one execution. Without
getting too much into implementation details yet, each player was given a set of heuristics to use
for that particular set of games. Each player was also provided a look-ahead depth to use during
that set of games. For each execution (set of games), we were also able to provide the number of
games to play going first, and then going second. Because strategy is so important in two-player
games, Computers given the ability to move first gives them a better chance of winning. By
varying these values, all meaningful combinations of heuristics can be simulated.

Statistics

Each set of games generated various statistics about strategy and winning/losing tendencies for
the players and their respective look-ahead and heuristic array. There were two different
configurations that the batching could use: Al Computer vs. Random, or AI Computer vs. Al
Computer. The following are the statistical categories that were gathered for the AI Computer vs.
Random configuration:

HI H2 H3 H4 H5 H6 //Heuristic Array (see above Heuristics section)
Lookahead //Look-ahead Depth

Win% //Win Percentage

Win%FirstMove //Win Percentage Going First
Win%SecondMove //Win Percentage Going Second

Avg Stones //Average number of stones in Mancala at end
Avg Margin //Average stone margin in Mancalas
Win_Margin //Average Win Margin

Loss Margin //Average Loss Margin

Avg Captures //Average number of captures per game

Avg GoAgains //Average number of go-agains per game

Avg Moves //Average number of total moves per game

The following are the statistical categories that were gathered for the Al Computer vs. Al
Computer configuration. The main difference is that it keeps track of all of the above statistics
for both players:

HI H2 H3 H4 H5 H6 //Heuristic Arrays for both players
Lookahead //Look-ahead Depth for both players

Win% //Win Percentage for both players
Win%FirstMove //Win Percentage Going First for both players




Win%SecondMove //Win Percentage Going Second for both players

Avg Stones //Average number of stones in Mancala at end (both)
Avg Margin //Average stone margin in Mancalas for both players
Win_Margin //Average Win Margin for both players

Loss _Margin //Average Loss Margin for both players

Avg Captures //Average number of captures per game (both)

Avg GoAgains //Average number of go-agains per game (both)

Avg Moves //Average number of total moves per game (both)

B. Searching and State

Searching

Mini-max and Alpha-Beta pruning methods of traversing and searching the state space were
incorporated. We first developed Mini-max as our searching technique with a basic heuristic
being the most stones in our home bin. As we incorporated the look-ahead depth, we noticed
that Mini-max was taking a substantial amount of time (~20 seconds) to pick a move with look-
aheads larger than 10. As the look-ahead increased, it was observed that the computation time
involved in expanding the search space increased nearly exponentially. As a result, Alpha-Beta
pruning was used to reduce this computation time by ignoring parts of the game tree that did not
improve on the current best found move, making it a more efficient overall search. After
implementation, we noticed immediate results. Thus, the searching technique employed in our
solutions is Alpha-Beta pruning using Mini-max as the base. Below is a brief description of
these two techniques:

Mini-max

A technique used to open up the search space for the game. This algorithm returns the best move given the
best utility at the end of a search depth. The move selected is based on the assumption that the opponent is
using the same set of heuristics.

Alpha-Beta Pruning

A technique to reduce the number of nodes evaluated in the search tree by the above Mini-max algorithm.
1t stops completely evaluating a move that a player can make when at least one reply has been found that
proves the move to be worse than a previously examined move. Since it clearly doesn't benefit the player to
play that move, it need not be evaluated any further. This algorithm reduces computation time
significantly, yet does not affect the search result in any way.

As previously stated, we originally planned to incorporate the refining of our evaluation
function. We envisioned this being done by evolving the evaluation function through “breeding”
of the evaluation functions which are shown to perform the best. In essence, the weights for
each set of heuristics would be combined to form a new set of weights through “breeding”. Then
the refining process continues until they converge on values.

After reading papers on related approaches to the game, we realized that this would be an
extremely difficult task requiring a substantial amount of time and work. Because of this, we
decided to omit the breeding of weights and keep it discrete for contribution of weights. By
discrete, we mean 0O for no use and 1 for entire use. There are no fuzzy values for the weights of
heuristics, and we left it as a good future addition to the work.




To determine the move to make, the heuristics are applied and each returns a utility value that
represents how good that move is based on the current board configuration. By using
combinations of heuristics, the utility values they return get summed to give the total utility of a
move given that particular set of heuristics.

6
TotalUtility(S, ) = Y Weight(H ) * Utility(H)

i=0

To mimic human game play and to insure Computer players do not look far ahead into the game
(to keep the Computer moves interesting and not predictable), we enforced a searchable depth
limit — say a 6 move look-ahead. This acts as a time-based approach in that Human players
cannot count the number of stones in each bin, making the move time-limit usually short. By
forcing Computer players to do this, it is giving us a “good enough, soon enough” result, and
also mimics how a human actually plays the game by only being able to look ahead a few
possible moves. As will become apparent after viewing the results, with the exception of a
couple odd cases, a larger look-ahead directly translates to more ending stones and therefore
more wins.

State

The state of the board was represented concisely as a 1D array with each player’s set of bins in
regions of the array, along with the heuristic array, which move it is, and the statistics variables.
Each node in the search/game tree was represented by the board state at that point, the depth of
the node, the Mini-max move, and evaluation function information. This provided enough
information to efficiently evaluate states and compare heuristics.

lll. Testing & Development Difficulties

A. Testing

To perform the tournament-style and heuristic combinations comparison and testing, we
employed batch processing. Batching allowed many tests in an unattended environment, where
the output was computed during program execution and printed out into a results file. The
output was formatted so as to allow us to simply copy and paste them into Microsoft Excel or
Open Office and immediately sort and generate graphs from the results. It also provided us with
a very distinct way of evaluating if the games were being played correctly and if the searching
and heuristics were working as desired. There were many instances where viewing the statistical
results told us exactly what was going wrong, allowing an easy fix.

Other forms of testing were by using the Computer vs. Human GUI mode of the software. This
would allow us to make certain moves and see if the heuristic that we were playing against
would actually pick the move that its function told it to (the one giving it the best utility). The
GUI version was also a key aspect in testing and gave us an opportunity to visualize the moves
as they took place, along with the sequence of moves performed by each player for the entire
game.

It should be noted that we implemented and tested the usual variation of the game: 4 starting
stones per bin with 6 bins on each side (in addition to the single home bin per player). Another
factor/variable could have been to increase the number of starting stones per bin from 4 to, say,




6. Although the moves would be different, the heuristic calculations might return different
numbers, but all in all we would expect extremely similar results. We feel like that variable
would not increase what we would find out about the game itself or the heuristics we chose to
analyze. Thus, we left this as future work that could be done on this project. Both the
Linux/batch and Windows/GUI versions implement it so that it is easy to change. In the GUI,
this option is actually implemented so you can change the number of starting stones per bin via
the Options dialog box. For the scope of this project, we felt like this would have been overkill
but left it implemented in the GUI version so that anyone who feels intrigued could change the
number and play the game to see how the heuristics perform with a different starting number of
stones.

B. Problems Encountered

We ran into design decisions on how to represent board state, and therefore changed not only our
board representation but also our entire state representation scheme a couple of times. With a
software project increasing in size involving multiple team members, small changes in the code
became less apparent as development progressed. Without the use of a version control system,
sharing the most updated copy of the code became a challenge at times.

Early in Mini-max development, we discovered that we were thinking about the utilities in the
wrong manner. We were initially not trying to maximize our utility and minimize the opponent’s
utility, but were instead looking at the board from the wrong perspective when deciding on
moves. After some discussion this was resolved so that each agent analyzed the board using
their own point-of-view/perspective.

In addition to the time complexity of a search depth and the Mini-max-to-Alpha-Beta
performance improvement, most of the troubles were associated with getting Mini-max
originally working correctly. Slowly stepping through the program and debugging allowed us to
find out what the problems were and fix them accordingly.

IV. Statistical and Game Play Results

A. Explanation of Results

As previously described, one configuration in the batch file represented the Al Computer player
being given a set of heuristics and look-aheads to use during the set of games playing first then
playing second. The Random player simply chose a random, valid move for each of its moves
and therefore had no special heuristic or intelligence. By using a Random player, it allowed us
to compare heuristics and combinations of them against each other based on how they performed
against the Random player in 100 games starting first and 100 starting second. We ran this many
games so that it would give the percentages a chance to level out and converge to a stable
average.

The other configuration in the batch file represented both Al Computer players being provided a
set of heuristics and look-aheads to use during the set of games playing first then playing second.
This did not use a Random player at all, but instead faced heuristics against each other to see
how they performed when going up against each other. In such a case, we didn’t need to run
hundreds of games because they would play each other the same each game unless the look-
ahead values or heuristic arrays were changed.




Heuristics
HO: Chooses first valid move (going left to right)
Hl1: (My Mancala — Opponent’s Mancala)
H2: How close I am to winning
H3: How close my opponent is to winning
H4: # of stones close to my home (1/3)
H5: # of stones away from my home (1/3)
H6: # of stone in the middle (1/3)

The following statistical results and analysis is not a self-proclaimed “solution” to the game, and
we are not stating that we have “figured out” the game of Mancala completely. There are many
other ways to analyze its heuristics and strategy. We chose a subset of the plethora of heuristics
for the game: the ones we thought were most important and interesting. Although our analysis
and results are quite thorough, there is potentially much more analysis to do to determine the
optimal way to play the game and which heuristics are the most beneficial in certain game
situations. Keep this in mind when reading the following sections. See the later subsection on
Look-ahead Analysis for the results of varying the look-ahead.

B. Results for Al Computer vs. Random

The results below reflect performance and statistics relating to all possible heuristic
combinations being played against the Random player. The analysis in this section will mostly
focus on average statistics per move. Analyzing the data with respect to the opponent’s statistics
could not be done, due to the fact that the data for the player making random moves was not
tracked. The average results on a per-move basis will show the characteristics of the Al during
each move, uncovering the overall strategy of the AI. Once the average data per move is sorted,
it will be apparent which combinations of heuristics result in the best strategies. This also serves
to verify that the heuristics are performing their job correctly.

Overall Analysis

The following data was gathered from the raw analysis of P1 vs. Random (AI with heuristics vs.
Al making random moves) sorted by win percentage. Figure I contains the count of the number
of AD’s (Player 1’s) that used the particular heuristic with a particular percentage of winning.
Figure 2 shows the same data, only this time the count of the number of AI’s who used the
particular heuristic is the percentage of AI’s who used the particular heuristic with a particular
percentage of winning.
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Figure 3 shows the data from Figure I, exhibiting how more AI’s used a wide combination of
many heuristics to result in a better winning percentage. In particular, it shows how HI
(comparing one’s score with the opponent’s score) is a large contribution to winning since H1 is
used more with Al players that performed well and not as much with AI’s that won less. H2
(how close one is to winning) also contributes to success in the 98% and greater range with AI’s
losing more who don’t use H2. H3 (how close one’s opponent is to winning) was a contributor
to AI’s winning 95% of the time and above.

H4, HS5, and H6, heuristics which concentrate on the layout of the board, do contribute to
winning success when combined with other heuristics, but left by themselves do not perform
very well. In combinations by themselves, H4 performed the best; HS with H6 was next, then
H4 with HS, H4 with H6, H6, H4 with H5 and H6, and finally HS.

Figures 4 and 5 both depict charts gathered from Figure 2. Figure 4 shows, using cones, the
percentage of AI’s at each winning percent that used each heuristic. Figure 5 gives the same
results at a different viewing angle. A full cone represents 100%, and no cone represents 0%.
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Figure 4: Percentage of Al's Using Heuristic At Win %
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Figure 6 contains the data for sorted average stones per move. Figure 7 shows a simple chart
expressing the heuristics of each Al visually as a function of the average stones per move.
Looking closely at H1 and H2, the chart shows that using one or the other or both results in a
move which yields more stones on average compared to not using H1 or H2. The chart also
shows that in order to have a good stone-per-move ratio one must use H1 if not using H2, and H2
if not using H1. This is exactly what should be happening, as a player using H2 will attempt to
find the move which results in getting closest to winning (having one more than half the total
number of stones in the home bin). Similarly for H1, the player will look for the move which
puts itself farthest ahead of his opponent. This means that each move the player will be looking
for the move which results in the largest gain. This is verified in the graph where the Al with the
best average stones per move is the Al that only used H2. The next best Al used a combination
of H1, H2, and H4. This makes sense in that the player used H2 and H1, which maximize the
amount of stones in the home bin, but also H4, the move which results in a board configuration
with the most stones close to home. This could have possibly allowed the player to end the game
by clearing his side of the board, resulting in a final move which obtained a large amount of
stones. It also could have resulted in captures. It is also obvious that H3 does not play a large
role in average stones-per-move as it only relies on making moves which keep the opponent
from obtaining stones in his or her home bin.
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Figure 8 contains the data for sorted average captures per move. The accompanying chart in
Figure 9 shows the Al’s for each average capture per move. H1 and H2 are required to have a
high rate of capture; this is a side effect of their definition, which is to find the move which
results in the largest gain of stones for the player. One of the largest gains of stones is a capture
move. At a minimum a capture will result in two stones being placed into the player’s bin. The
difference between Figure 7 and Figure 9 is that the AI’s which have the best average captures
per move factor in H4, HS5, and H6. This is required since capturing requires that there be an
empty bin on the player’s side of the board. By factoring in quantities of stones in its move
decision, it allows the player to open up areas of his side of the board, resulting in capture
moves. Using H4, HS, and H6 alone will not prove successful in capturing since searching using
only those heuristics does not take into account obtaining any stones in his or her home bin. It is
worth noting that H2 alone ranked in the top 15%, whereas H1 alone barely made the top third.
For the upper 50% of the data, H3 required H2 and H4 to be successful.

Figure 10 contains the go-again per move data for each Al, and Figure 11 is its visual
representation. By themselves, H1 performed the best, then H2, then H3—all being in the top
third of the results. HI1 performs the best since it looks for moves which will result in the
greatest difference between the player and his opponent. Going again results in a minimum of
obtaining one stone with the possibility of obtaining another in the resulting turn, and the
possibility of setting up a series of moves for a capture. HI is best at this since going again
keeps the opponent’s score the same, and any subsequent scoring only increases the utility value
of H1 at each node. H2 does not find as many moves which allow it to go again because it relies
on finding moves which result in the largest gain for the player without looking at the differences
between the players’ scores. H3 ranks well in this analysis since it looks at how to keep the
opponent’s score as low as possible. One way to do this is to not let the opponent have a
move—instead, go again! Another trend in the data is that H4 is not used as much as H5 or H6
in the upper third of the data. This is because H3 keeps stones close to home. When stones are
close to home and there’s a lot of them or they’re in large piles, it is not possible to go again
since the last stone dropped will not be in the player’s home but somewhere far from it. A player
has a better chance of going again (dropping the last stone in his or her home bin) if they pick up
a large group of stones from the middle of the board or the one-third of the board farthest from
home.

Figures 12 and 13 correspond to the combined data of average captures plus average go-agains
per move for each AI. One overwhelming consistency is the use of H1 or H2 or both in order to
effectively make a capture move or go again. Heuristics H4, HS, and H6 have no bearing on the
upper 10% of the data. Alone, H1 and H2 rank very near the top and H3 falls just short of the
50% mark. H3 however makes up, in combination with H1 and/or H2, nearly 75% of the top
15%. Alone, H5 performs best since having your stones farthest from home would result in the
greatest possibility for a capture or a go-again. The majority of AI’s that used H4 fell in the
lower 50% of the data since having stones close to home does not allow for many captures and
also not very many go-agains, unless the stones in the bin are in small numbers, which is why H4
alone performs better than H6 which comes in second-to-last.
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Hl ([HX | H3 [H4 | H5 | H6 | Capiures/Move Hl ([HY| Hi| H4| H5 | H6 | Captures/Move
1 1 0 1 0|0 03226578265 1 0|10 1 1 0 0.134522296
0]1 0 1 0|0 0.223442203 1 01 1 1 1 0.184362326
1 1 0 1 0|1 0.223319829 0 1 1 010 1 0.182786683
01 0 1 1 1 0.22071398 1 1 1 ojofo 0.182080462
1 1 0 1 1 |10 0220137655 1 1 1 R 1 0.180337817
011 0 1 0|1 0219915497 1 1 1 0 1 0 0.179593313
01 O |ofo]a0 0.213366669 1 1 1 0 1 1 0.179012032
011 0|10 1 |0 0.209382219 1 0|l ofa0 1 1 0.177943552
011 0 1 1 |10 0208418721 0 1 1 0 1 1 0.177447468
1 1 0 1 1 1 0.208013231 1 01 o]joflao 0.1758455009
1 1 1 1 0|0 0.206344139 1 ool 1 0 0175733263
1 1 1 1 0|1 0.204830815 1 01 1 1 0 0.175483383
01 oo o1 0.204463464 0 1 1 0 1 0 0.174231258
1 o[ 0 1 0|0 0.19993138 1 01 010 1 0.169082806
1 1 0|0 1 |0 0.10028725 1 0] 1 0 1 1 0.164998371
01 0|0 1 1 0.198646791 1 01 0 1 0 0.161090319
1 1 0|0 |01 0.107308518 o jojojo)jo )0 0127586699
1 1 1 1 1 |10 0.197463863 ool 0 1 0 0.125124151
1 10 1 1 0|0 0.197081731 ool 1|0 |0 0.123951033
1 o0 1 1 1 0194927219 ool ojofao 0.123395306
01 1 1 0|0 0.194284306 ojof1 0|10 1 0.116683357
1 1 o |ofoq]ao 0.193322096 o jof1 1 [0 1 0.115957638
1 1 1 1 1 1 0.101891613 0|01 0 1 1 0.115306451
01 1 1 1 1 0191732076 0|01 1 1 0 0.104455287
1|0 (0|0 |00 0.191203653 0|01 1 1 1 0.09948725
1 |0 [0 1 0|1 0.191070548 o000 1 0 0.008606642
011 1 1 0|1 0.189481445 o000 1 1 0.001848401
0]1 1o o]0 0.18738235 o |ojojofao 1 0.089856213
1 1 0|0 1 1 0.187051866 ool ao 1| 0|0 0.086263239
01 1 1 1 |10 0.185980351 0|0l o 1 1 1 0.070018797
1 10 1 1 0|1 0.18391834 0|0l o 110 1 0.069139017
1l o {0 ]Jo |01 0.18507403 0|00 1 1 0 0.068313083

Figure §
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Hl HI | H3 | H4 | H5 | Hf | GoAgain/Move Hl | H2 | H3 | H4 | H5 | H6 | GoAgainMove
1 1 0 0 0 0 0482795457 1 0 0 1 1 0 036379041
1 1 1 0 0 0 0473236416 0 1 0 0 1 1 0361454699
0 1 1 0 0 0 0472536913 0 1 1 1 1 0 0359754862
1 0 1 ] 0 0 0469633622 1 ] 1 1 ] 0 0338135119
1 0 0 ] 0 0 0462487768 0 0 1 0 1 0 0337373386
1 1 1 0 1 0 0462000633 0 1 0 0 0 1 0330472043
1 1 1 0 0 1 0453777688 1 ] 1 1 0 1 03376091571
1 ] 1 ] 1 0 0452036012 1 0 1 1 1 1 0334585583
0 1 0 0 0 0 0440417647 0 1 1 1 0 0 0323084504
1 1 1 0 1 1 0443316241 0 1 1 1 1 1 0319959346
1 1 0 0 1 0 0442074895 0 1 1 1 ] 1 031884084
1 1 0 0 1 1 0438007013 1 ] 0 1 ] 1 0318308013
1 1 1 1 1 0 0431038081 1 ] 0 1 0 ] 0318101847
1 0 1 ] 1 1 0420861725 1 ] 0 1 1 1 0313421037
0 1 1 0 1 0 0426480303 0 ] 1 0 1 1 0313335304
1 1 0 0 0 1 0425574957 0 1 0 1 1 0 0308335641
1 0 0 0 1 0 0423435690 0 0 1 0 0 1 0203293411
1 1 1 1 1 1 0424376674 0 1 0 1 0 0 0271483800
0 0 1 0 0 0 0424037074 0 1 0 1 1 1 0269339641
1 1 1 1 0 0 0418786268 0 1 0 1 ] 1 0230691148
1 1 0 1 1 1 0413633000 0 ] 1 1 1 0 0247195413
1 0 1 ] 0 1 041343514 0 ] 1 1 1 1 02213583673
1 1 1 1 0 1 0406733476 0 ] 1 1 0 1 0217160204
1 1 0 1 1 0 040464032 0 ] 1 1 0 0 0214027254
] 1 1 ] 1 1 0400455118 0 0 0 0 1 1 0203175047
1 1 0 1 0 0 0304084143 0 0 0 0 1 ] 0.194776870
1 0 0 0 1 1 0302045004 0 0 0 1 1 0 0.180108084
1 1 0 1 0 1 0380033708 0 ] 0 1 0 1 0180571356
0 1 0 0 1 0 0382514936 0 ] 0 1 ] ] 0177881019
1 0 1 1 1 0 0381506169 0 ] 0 1 1 1 0.16902834
1 0 0 ] 0 1 0380802321 0 ] 0 0 ] 1 0.148201363
0 1 1 0 0 1 0378031788 0 ] 0 0 0 0 0038084772

Figure 10
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Hl HI | H3|[H4 | H5 | H6 | CapAgainMoves Hl | HI | H3 | H4 | H5 | Hf | CapAgainMoves
1 1 ojo o0 0676318453 1 [0 1 1 o]0 055521687
0|1 o|Jo 0|0 0662784316 011 0o jJo o011 0.534038407
0|1 1 (0[O0 ([0 0659919463 1 |0 [0 |1 1 |0 0550312707
1 1 1 (0[O0 ([0 0657316878 o]0 1 |0 [0 |0 054763238
1 0 J]ojJojo]ao 0653691421 011 1 1 1 |0 0545735413
1 0 1 (0o f[0f0O 0645490132 1 [0 1 1 011 0523611111
1 1 1 [0 1 |0 0641692068 1 [0 1 1 1 1 051894811
1 1 010 1 |0 0641362145 1o |01 o]0 0518033428
1 1 1 [0 [0 |1 0.634115305 011 1 1 0|0 051736881
1 1 1 1 1 |0 0628502844 011 011 1 |0 0516734362
1 1 1 1 0|10 0625630457 011 1 1 1 1 0511712322
1 1 o]0 1 1 0625038879 1 0|01 011 0.509669462
1 1 011 1 |0 0624777975 1 o |01 1 1 0.508340153
1 1 011 1 1 0.62366624 011 1 1 011 0508331283
1 1 ojJolol1 0623083475 011 0|1 o]0 0494928102
1 1 1 [0 1 1 0622328273 0]1 011 1 1 0490273621
1 1 011 0|10 062156241 ol 0 1 |0 1 |0 0482497517
1 1 1 1 1 1 0616268288 011 011 0|1 0470606645
1 0 1 [0 1 |0 0614026331 o]0 1 |0 1 1 0428841845
1 1 011 011 0612333627 0l0 1 [0 [0 |1 0411976767
1 1 1 1 011 0611566291 o]0 1 1 1 |0 033163507
1 0010 1 |0 0601188064 0|10 1 1 0|0 0337978280
011 1 [0 1 |0 0600711363 o]0 1 1 011 0333117932
1 0 1 [0 1 1 0594860096 o]0 1 1 1 1 0321070925
011 010 1 |0 0501807175 ocjol0]0 1 1 0295024349
1 0 1 [0 [0 |1 0584517045 oo lo |0 1 |0 0.203473521
01 1 [0 1 1 0577902585 ojolol1 0|0 0.264144258
1 0|00 1 1 0569980347 ool o|1 1 |0 0257622969
1 D J]o0o]Joj]J0]1 0563876351 oo |01 011 0.249730373
0|1 1 |0 [0 |1 0560838471 ocjo 01 1 1 0239047137
D11 0|10 1 1 0560101491 ojJo oo fo0o[|1 0238057777
1 0 1 1 1 |0 0556080352 ojojlojlofl0o]0 0185671471
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C. Round-Robin Results for Al Computer vs. Al Computer

The results below reflect performance and statistics relating to heuristic combinations being
played against other heuristic combinations. This is the round-robin portion of the results where
the results below describe the tournament and games of it. It is not important, in this section, to
perform analysis of average statistic per move, since the trends of the heuristics on an average
per move basis were already discovered in the analysis of AI’s versus an opponent making
random moves (see the previous section). Figure numbers start back at 1 for this section.

The data/analysis in this section pertains to round-robin results for all possible AI’s given all
possible combinations of heuristics used in the evaluation function. With six heuristics being
used, this results in 63 possible Al’s, given an Al must use at least one heuristic. Each Al played
two matches versus the other 62 Al’s—one match as the player given the first turn and one
match as the player given the second turn. Ultimately each Al played 124 games.

One important distinction between the results of this data and that of the analysis of AI’s versus
an opponent making random moves, is that these are results of games where the moves of one Al
versus another Al will never change if all initial variables of the game remain the same. This is
why it is only necessary to play two matches against each opponent since the matches only vary
in the aspect of which Al is given the first move. This also explains why an Al who performed
well against an AI who made random moves may not perform well against an Al that performs
moves based on heuristic evaluation.

Since each Al only has the possibility of playing 124 distinct matches, this only provides a small
subset of the total possible distinct matches that an AI might experience when playing an
opponent which makes moves based on decisions other than the given heuristics analyzed in this
research—such as making random moves. Even the analysis of an Al versus a random player
only looked at 800 distinct matches—four tests of each Al playing 200 total matches (100
matches given the first move and 100 matches given the second move). These are minuscule
observations given the size of the search space and the given number of possible paths/moves
each Al could choose.

There is reason to believe that a predictable Al, given heuristics, might never be able to visit
every possible node in the search space, even versus a random opponent, since it could be shown
that the Al can limit the actions/options of the opposing player merely because its own moves
may take away/add to the opponent’s choices. Using heuristics would limit the available options
of a player, making him or her follow a given direction through the search space. The question
becomes: will the player’s moves, due to the heuristics, allow the player to reach a state in the
search space that will result in the player’s win? The data should help in making this
determination.

To help simplify the analysis, the use of the various heuristics ultimately creates 63 uniquely
defined AI’s, as was stated above. The heuristics each Al uses can be divided into two parts—
heuristics H4, HS5, and H6, which deal with quantities of stones in various parts of the board
(attempting to utilize a strategy of stone location), and heuristics H1, H2, and H3, which deal
with blanket strategies of keeping ahead of the opponent or keeping the opponent from winning.
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This means that there are seven AI’s who use distinct combinations of H1, H2, and H3. Utilizing
the other combinations of H4, HS, and H6, gives the complete field of AI’s.

The raw data from the results gathered for the Al round-robin matches will now be presented.
The table in Figure I is composed of data which has definite similarities. It is very apparent that
an Al which uses H2 and H3 along with combinations of H4, HS5, or H6, is the same as an Al
which only uses H1 with combinations of H4, H5, or H6. This makes sense because H1 is
essentially a conjunction of H2 and H3. H2 maximizes how close a player is to winning
(essentially finding the move which results in obtaining the most stones), H3 minimizes this for
the opposing player, and combining the two strategies results in H1: find the move with the
greatest margin over the opponent. H1 finds the difference in scores and makes a move based on
the test outcome; whereas, H2 finds the maximum score the player could obtain, H3 finds the
minimum score the opponent could obtain, and combining the two results in the maximum
difference between these two values.

This simplifies the amount of possible distinct AI’s which must be analyzed for effectiveness.
The total combination of AI’s using heuristics H1, H2, or H3 is only seven for a total of 56 AI’s.
This now becomes six combinations for a total of 48 Al’s—a reduction of eight. Figure 2 is
color coded to indicate identical AI’s.

It is inefficient to analyze the success of AI’s which do not use H1, H2, or H3. This excludes the
seven Al’s which just use combinations of H4, HS, and H6. Figure 3 shows these AI’s removed.
It is also not successful to just use H3 without any combination of H1 or H2 since H3 only deals
with making moves which keep the opponent’s score low—not an effective way to win the game
when it requires the player to have the most stones. This excludes another eight AI’s which are
removed from Figure 4.

The raw data with respect to a player’s win percentage indicates that H2, by itself without being
combined in some what with H1 or H3, is not very effective. This follows logically since it will
not be a successful strategy to concentrate on the move which will give the player the largest
increase in score alone, but a move which takes into account how the opponent is doing also.
This makes another eight possibilities which do not have to be considered. Figure 5 removes
these.

Analysis of the remaining AI’s which just used H6 with a combination of H1, H2, or H3, shows
that the only combinations where using H6 by itself performed better than just using a
combination of H1, H2, and H3, was the Al that used H1 and H2, and the AI that used H1, H2,
and H3. There are three of these cases. Since two of theses Al’s were already covered above by
the recognition that H1 is the same as H2 used with H3, this is only a reduction of two more AI’s

(Figure 6).
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With every combination of AI’s using H1, H2, and H3, with no other heuristics, adding H4 by
itself caused the Al to perform worse. There are five of these cases. Two are covered with the
Al pairs that perform the same, making a reduction of four distinct AI’s. This follows logically,
when it’s assumed that a good Al player is one that will make many captures and go-agains
during the game, which H4 by itself (choosing a move with more stones close to home) does not
accommodate very well. It’s also noticeable that AI’s (H1) and (H2 with H3) perform worse in
every instance when any combination of heuristics H4, HS5, or H6 are added (10 cases), thus
reducing the set by five more distinct Al’s (Figure 7).

Figure 7 shows the two AI’s who performed exactly the same, as discussed earlier. For the sake
of clarity, removing the Al which uses H2 and H3 makes the resulting AI’s have one large
distinction—they all contain H1 as a heuristic. Figure 7 also shows that the Al who used H1 and
H3 performed best when those were the only heuristics used. This means that all other
combinations of AI’s which used H1 and H3 exclusively, with combinations of H4, HS, and H6,
can be removed—a reduction of six distinct AI’s. Figure 8 shows the remaining AI’s.

The data does not show that since the AI who uses H1 is the same as the Al that uses H2 and H3
together, their domains combine to form the same Al—a third instance of the first two.
Meaning, their search domains, when exclusive, cover the exact same nodes; however, when the
heuristics are combined, they appear to reduce or expand the search domain so that the AI’s
move choices are different. Moreover, if H4, H5, and H6 are not used, the Al which uses H1,
H2, and H3 performs exactly the same as the Al using just H1 and the Al using just H2 and H3.
Figure 8 shows the color coded AI’s which performed the same, reducing the number of distinct
AT’s by one more. It also shows that there are four distinct AI’s left which used different
combinations of H1, H2, and H3. Figure 9 shows the best combinations of H4, HS5, and H6 with
those AI’s. One need only look at the AI’s which performed best for the distinct sets of HI, H2,
and H3. Since the AI which used H1, H2, and H3 only performed better when some
combination of H4, H5, and H6 were used, we can not only eliminate that Al, but also the Al
which used just H1, since that Al is exactly the same as the Al that only used H1, H2, and H3.

This results in three AI’s (H1, H3), (H1, H2, H4, HS), and (H1, H2, H3, H4, HS), the best Al out
of each distinct set of AI’s as discussed above. (H1, H3) only had a 75% win percentage, which
is by far not the best out of the other possible AI’s. It also only had a 97% win percentage when
given the first move compared to other AI’s that were left out that had 100% win percentages
when given the first move. This is the best AI which used just H1 and H3 with other
combinations of H4, H5, and H6.

To conclude, we added another combination of an AI which used H1 and H2; this was (H1, H2),
and can be seen in Figure 10. As important as it is to performance measures to be able to win,
there is also value in being able to not lose. The “not lose” percentage statistic is not the same as
the win percentage statistic when ties are allowed in a match, which is possible in Mancala. The
“not lose” value is calculated using the tie percent, which can be derived from the win
percentages of Player 1 and Player 2. If they do not add up to 100%, then the rest of the games
had to end in a tie. Overall, (H1, H2, H3, H4) was able to win more matches, but (H1, H2) was
able to lose less matches. These four AI’s represent the best AI’s from each distinct set out of all
combinations of AI’s.
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H1 H2 |H3 H4 RS HE P1%Win% |(H1 HZ H3 H4 HS HE P1YWin% H1 H2 H3 H4 HZ HE P1Win% H1 H2 H3 H4 H: HE P1Win%

o 1 1 0 0 0074594 11 0 0 0 0 075 o1 1 0 0 0074149 1 0 0 0 0 0 07419
o 1 1 0 1 00725581 1 1. 0 0 0 1 07581 1 0 0 0 0 0 07419 1.0 1 0 0 0 075
o 1 1 0 1 1 085323 1 1. 0 0 1 0 07097 1.0 1 0 0 0 075 1, 1. 0 0 0 0 075
o 1 1 1 0 0 03629 11 0 0 1 1 0.EB93% 1,0 1 0 1 0 07258 1 1. 0 0 0 1 07581
o 1 1 1 0 1 053226 1.1 0 1 0 0 05306 1.0 1 0 1 1 0706 1.1 0 0 1 0 0709
g 1 1 1 1 0 054032 1.1 4 1 0 1 07057 1.0 1 1 0 1 06694 1.1 40 0 1 1 06935
o 1 1 1 1 1 045181 110 1 1 0 07681 1.0 1 1 1 0 05857 11 0 1 0 1 0.70%
1. 0 0 0 0 0074194 110 1 1 1 0E774 10 1 1 1 1 05645 1 1. 0 1 1 0 0.7BR1
1T 0 0 0 1 0 07253 11 1 0 0 0 074189 1 1. 0 0 0 0 074 101 0 1 1 1 0E774
1T 0 0o 0 1 1 0B5323 1 1 1 0 0 1 07581 1 1. 0 0 0 1 07581 1 1 1 0 0 0 07419
1 0 0 1 0 0 03529 11 1 0 1 0 0706 1 1. 0 0 1 0 0.7097 11 1 00 1 07581
1 0 0 1 0 1 053226 11 1 0 1 1 07419 11 0 0 1 1 0.BY3% 171 1 0 1 0 07016
1 0 0 1 1 0 054035 11 1 1 00 o7 1.1 0 1 0 1 0709 11 10 1 1 07419
1 0 0 1 1 1 045161 101 1 1 0 1 05452 1.1 4 1 1 0 07661 101 1 1 0 1 06452
1.0 1. 0 0 0 0.75 11 1 1 1 0 07823 110 1 1 1 0E774 11 1 1 1 0 07823
1.0 1 0 1 007253 11 1 1 1 1 0F4s 11 1 0 0 0 07419 L A B N A N
1.0 1 0 1 1 070181 1 1 1 00 1 07581 Figure 8
1.0 1 1 0 0 045357 11 1 0 1 0 07016
1.0 1 1 0 1 0.BBY3% 11 1 0 1 1 07419 HT H2 H3 H4 H& HE P1Win%%
1.0 1 1 1 0 058581 11 1 1 0 1 0B452 1,0 1 0 0 0 075
1.0 1 1 1 1 056452 117 1 1 1 0 07823 1.1 0 1 1 0 078681
Figure 6 111 1 1 1 87419 101 1 1 1 0 07823

Figure 7 Figure 9
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Figure 11 shows all of the AI’s sorted by win percentage. After logically digging through the
data and observing consistencies among various Al’s, the results of Figure 10 should be the basis
upon which further AI development is made.

H1 [H2 H3 H4 HS HE | P1Win% Win%FirsthMove Win%SecondMove | AvgTie% | AwvgMot_Lose%

1. 001 0 0 O 075 0967741935 0532258065 0.03225  0.75822530B5
1.1 0 1 1 0 0766129 1 0532258065 0.01613  0.7582253065
11 1 1 1 0] 0732258 1 0564516129 0.02418)  0.806451613
1.1 0 0 0 O 0.75 1 0.5 0.05645  0.806451613
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D. Single Heuristic Effectiveness

The results below reflect performances and statistics of single heuristics (one at a time) playing
against the Random player, and then playing against other heuristics. The associated charts and
graphs are shown along with the statistics.

H1, H2, and H3 perform significantly better than H4, H5, and H6:

H1 | H2 | H3 | H4 | H5 | H6 | Win% | Win%PFirstMove | Win%SecondMove

0 0 0 0 0 1 52.13% 50.00% 54.25%
0 0 0 0 1 0 51.63% 55.50% 47.75%
0 0 0 1 0 0 65.63% 64.50% 66.75%

0 0 1 1 1 51.75% 56.25% 47.25%
1 1 1 0 0 0 | 100.00% 100.00% 100.00%
0 0 1 0 0 0 | 100.00% 100.00% 100.00%

1 0 0 0 0 98.88% 99.00% 98.75%
1 0 0 0 0 0 | 100.00% 100.00% 100.00%

Instances where H1 win% isn’t 100% are the following:

H1 | H2 | H3 | H4 | H5 | H6 | Win% | Win%FirstMove | Win%SecondMove
1 0 0 0 0 1 | 99.88% 100.00% 99.75%
1 0 1 1 0 0 | 99.88% 100.00% 99.75%
1 1 1 0 0 1 | 99.88% 100.00% 99.75%
1 1 0 0 1 1 | 99.88% 100.00% 99.75%

Regardless of combination, heuristic sets with H1 in them win 100% when going first!

Best Single Heuristic: Heuristic 1

By utilizing such a deep look-ahead (nine steps), this heuristic can very accurately calculate the
move that will maximize the number of stones captured. It also displayed an average of 38
stones in a game with a win margin of 29. The first three heuristics we used are based on the
single most important aspect of winning: having more stones than your opponent by the end of
the game. Since we have seen that maximizing the number of stones captured is the most
effective strategy against a random player, we can conclude that doing so will always result in a
win. This is mainly because random has at best a 1/6 chance of choosing the move that will
maximize its own number of stones.

Worst Single Heuristic: Heuristic 5

Heuristic 5 attempts to search out the course of action that will result in it ending with the most
stones in the first two bins. H5 would seem effective for capturing and going again, since it
would open up the middle/end of the board for captures, and large stacks of stones far from
home/within striking distance of going again; but would seem like a bad heuristic since keeping
your stones far from home allows the opportunity for the opponent to make large captures.
However, there seems to be no inherent advantage to this. The greatest disadvantage of this
particular heuristic is that it overtly sets itself up for devastating captures, as the highest volume
of stones are passing through that area of the opponents board. With no way to foresee or even
understand stone loss, this heuristic just can’t stand up to the rest.
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E. Heuristic Combination Effectiveness

The results below reflect performances and statistics of heuristics combinations (using multiple
at a time combining into overall utility) playing against other combinations. The associated
charts and graphs are shown along with the statistics.

Best 5 heuristic combinations:

Hl1 | H2 | H3 | H4 | H5 | H6 | Win% | Win%FirstMove | Win%SecondMove | Avg Stones
1 0 1 0 0 0 | 100.00% 100.00% 100.00% 38.98375
1 1 1 0 0 0 | 100.00% 100.00% 100.00% 38.69125
1 1 1 1 0 1 | 100.00% 100.00% 100.00% 38.68375
1 1 1 1 0 0 | 100.00% 100.00% 100.00% 38.66875
1 0 0 0 0 0 | 100.00% 100.00% 100.00% 38.6675

Noticeably lacking from any of the top five heuristics is H5, which is expected as it is by far the
worst of all the individual heuristics. Also notable is the inclusion of H1 in all of the top five,
and H3 in the top four. H3 was the second best of the single heuristics, and chooses the move
that keeps your opponent the furthest from securing more than half the available stones. Similar
in nature is H2, which also makes a sizable and similarly understandable showing in the top five.
H4 tended to increase the number of captures when combined with one of the first three
heuristics, which is why we would say it appears in some of the best configurations. We would
guess that H6 produced some kind of balance in the system which increased overall stone count.

Worst 5 heuristic combinations:

H1l | H2 | H3 | H4 | HS | H6 | Win% | Win%FirstMove | Win%SecondMove | Avg_Stones
0 0 0 0 1 1 |51.63% 55.50% 47.75% 24.84875
0 0 0 1 1 1 | 51.75% 56.25% 47.25% 24.2925
0 0 0 0 0 1 |52.13% 50.00% 54.25% 24.56
0 0 0 1 0 1 | 52.88% 52.25% 53.50% 24.485
0 0 0 1 1 0 ] 56.50% 59.25% 53.75% 25.06

Noticeably lacking from the worst five combinations is any mention of the first three heuristics.
The lowest win percentage of any combination containing the first three heuristics is 97%. There
is a dead even distribution of each of the heuristics throughout these combinations. However, we
notice that HS is not only the worst single heuristic, but in the overall worst combination as well.
Somewhat surprising is the fact that the combination of all three heuristics here is the second
worst combination on average. What this says is that there is no real advantage to merely trying
to keep stones on your side of the board. H4, which is the best of these heuristics, shows an
increase in first move win percentage when used, even with H5. This means that it has some
potential, or at least more than any of the others, which seem more decisively detrimental to
success.

F. Look-ahead Analysis
The results below reflect performances and statistics of keeping the look-ahead static, varying it,
and how the look-ahead effected computation time.
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Hl | H2 | H3 | H4 | HS | H6 | H1 | H2 | H3 | H4 | HS | H6 | P1Lookahead | P2Lookahead | P1Win% | P2Win%
1 0 0 0 0 0 1 0 0 0 0 0 3 3 0.5 0.5
0 1 0 0 0 0 0 1 0 0 0 0 3 3 0.5 0.5
0 0 1 0 0 0 0 0 1 0 0 0 3 3 0.5 0.5
1 0 0 0 0 0 1 0 0 0 0 0 3 4 0.5 0.5
0 1 0 0 0 0 0 1 0 0 0 0 3 4 0 1
0 0 1 0 0 0 0 0 1 0 0 0 3 4 0.5 0
1 0 0 0 0 0 1 0 0 0 0 0 3 5 0 1
0 1 0 0 0 0 0 1 0 0 0 0 3 5 0.5 0.5
0 0 1 0 0 0 0 0 1 0 0 0 3 5 0 0.5
1 0 0 0 0 0 1 0 0 0 0 0 3 6 0 1
0 1 0 0 0 0 0 1 0 0 0 0 3 6 1 0
0 0 1 0 0 0 0 0 1 0 0 0 3 6 0 1
1 0 0 0 0 0 1 0 0 0 0 0 3 7 0.5 0.5
0 1 0 0 0 0 0 1 0 0 0 0 3 7 0 0.5
0 0 1 0 0 0 0 0 1 0 0 0 3 7 0.5 0
1 0 0 0 0 0 1 0 0 0 0 0 3 8 0 1
0 1 0 0 0 0 0 1 0 0 0 0 3 8 0 1
0 0 1 0 0 0 0 0 1 0 0 0 3 8 0 1
1 0 0 0 0 0 1 0 0 0 0 0 3 9 0 1
0 1 0 0 0 0 0 1 0 0 0 0 3 9 0 1
0 0 1 0 0 0 0 0 1 0 0 0 3 9 0 1
1 0 0 0 0 0 1 0 0 0 0 0 3 10 0 1
0 1 0 0 0 0 0 1 0 0 0 0 3 10 0 1
0 0 1 0 0 0 0 0 1 0 0 0 3 10 0 0.5
1 0 0 0 0 0 1 0 0 0 0 0 3 11 0 0.5
0 1 0 0 0 0 0 1 0 0 0 0 3 11 0 1
0 0 1 0 0 0 0 0 1 0 0 0 3 11 0 1

The look-ahead is the key into looking into the future, in that we can force the opponent to go
down the right section of the tree by choosing a move that will generate the best utility for “me”
(assumes that the opponent is using the same set of heuristics). Therefore, the smaller the look-
ahead, the less that player looks into the future, and the less likely it is to predict a favorable
move for itself. This allows weaker heuristics to perform closer to superior ones if they are
given a larger look-ahead than the superior heuristic. A larger look-ahead implies a longer
search time for a move, but ultimately guarantees a better end result. Summarily, the right
combination of heuristics and a large enough look-ahead creates a very formidable Al player.

From the data acquired (see chart on next page), it was observed that when the two players have
the same value of look-ahead, and playing with the same heuristics, there is always a tie (both
win when going first). This is because they can both predict the future with the same accuracy.
However, we observe a significant improvement in performance for Player 2 as its look-ahead
value increases. There are a few ties recorded, and out of 27 games played, there is only one
recorded instance of full win percentage for Player 1 and 14 for Player 2. The losses and ties
could be attributed to other factors, such as which player had the first move in the game.
Overall, there is a clear advantage in the value of the higher look-ahead value.
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V. Conclusions and Future Work

A. Research Summary

In this work we incorporated various Al techniques, including Mini-max, Alpha-Beta pruning,
heuristics, and look-ahead via search. In summary, we implemented a batch version and GUI
version of our intelligent Mancala program. Using these programs we analyzed how different
heuristics and combinations of heuristics fare against one another in route to distinguishing those
that perform extremely well and others that are inferior. To simulate games, we batched
hundreds of games where the Computer players would play Random, and then Computer players
played other Computer players. By incorporating different combinations and changing variables,
we effectively found patterns in the statistics that point toward successful or unsuccessful
heuristic combinations. Our goals of comparing Mancala heuristics, singling out the “best” ones,
and observing how game values can drastically change the winner were accomplished. We feel
like this work was a success, and feel confident about our findings.

The game of Mancala proved to be an interesting application of the above algorithms and
concepts, and also turned out to be extremely useful and fun to work on. Throughout the
development process, we learned various aspects of the algorithms we were using and truly how
effective they can be (Alpha-Beta pruning in particular). Although the analysis was quite
thorough, there is plenty of room for extremely detailed heuristic and strategy analysis. We feel
our work could be used for further research and development for Mancala and related games.
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B. Suggestions for Improvement / Advancement

The following are simple improvements that could be done to make it better and more robust.
These specific topics are beyond the scope of this report, but we include them to show that the
presented work could be used for further development and research with the Mancala family of
games.

Optimize code for time and space efficiency

Using large look-aheads takes time to search and expand the game tree, so making the code more
efficient will allow larger look-aheads to complete in less time than they do now. As with any
program that is recursive and opens a state space, efficiency in time and space is key to
performance. This would be a good extension to this work.

Make heuristic contribution (weight) vary between certain fuzzy range [0..1]

Allowing “part of” each heuristic to contribute to the total utility would allow us to find out the
optimal set of weights for our set of heuristics. The evaluation function results could be bred in a
way to mathematically combine each two sets of weights to form a new set of weights that
resulted from “breeding” the previous two sets. This extension would actually be quite easy to
implement given our current structure, and would be an excellent addition. In fact, our entire
architecture was designed in such a way to make additions easy; thus, it along with many other
things could be easily inserted.

Implement a learning or genetic approach to find best/optimal set of weights

This was discussed in the previous extension. This would most likely occur using our current
batch processing approach to keep knowledge of weights and situations at each step/state. The
learning approach would more than likely be reinforcement due to how we could evaluate how
“good” the set of weights or the weight adjustment was by seeing how close it got us to winning
(I + half) or if it resulted in a substantial amount of stones down the road. This addition
wouldn’t be too difficult to add and would provide another level of AI. The learning, testing,
and running time would take quite a while and thus could be an entire study in itself. A genetic
algorithm approach could also be done using weights as the focus, while also introducing on
reproduction, crossover, and mutation. This is also very difficult in that very few people have
done this for this game, and we are unsure on how effective or useful it would be for a game like
Mancala.

Develop more/better heuristics

The game of Mancala has many heuristics. During our research we saw and thought of a total of
25 heuristics. We narrowed the list down to 6 or 7 based on their empirically-found importance
or if one heuristic inherently encompassed another (and thus that heuristic wouldn’t be as useful
to test). We mainly tested heuristic performance to find the best single heuristic and best
combination of heuristics, as well as tried to determine if board position was important. Look-
ahead analysis was also performed. There could be more heuristics and even better ones than
included in this report, but more research and testing would be required.

Make board configurations expandable (number of bins on each side, etc.)

Our current game allows us to adjust the number of starting stones per bin in both the GUI and
batch versions. A good extension would be to allow the game boards to have a dynamic number
of bins on each side. Ours is hard-coded at 6 bins per side (excluding the home bins). An
extension like this would require quite a bit more analysis, as well as making the entire program
dynamic (search method(s), heuristics, etc). Although it might be time-consuming, developing
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an architecture that would allow this would greatly increase the amount of research and statistical
analysis that could be accomplished.

Analyze different, specific board configurations

We analyzed heuristics and tried to determine the best board position and look-ahead, but we
didn’t analyze specific board situations. Are certain board configurations optimal for utility? Do
certain moves at certain situations guarantee a large win/capture? Does board configuration
matter in the long run, or can simple heuristics do just as good as or better than making sure the
stones on the board are in a specific manner? With more research, these and more questions
could be answered; a “solution” to Mancala depends on it.

Use different or extend search methods

We started off with Mini-max and then focused on Alpha-Beta pruning due to the decrease in
search time it provided. Other approaches such as DFS-ID, A*, or other search techniques might
increase performance and/or provide an easier way to look at the states and evaluate them. We
also used recursion to expand the state space, but a non-recursive solution could provide better
performance.

Source Code
All source code for this research, including the Linux batch and Windows GUI versions, are
available at the following website:

https://www.cresis.ku.edu/~cgifford/mancala.html

If this source code is used to extend this work, or used as a basis for other work, please
acknowledge this by referencing this report.
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