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Abstract - In many cases, one needs to estimate a target that
is obscured by the sidelobes of a very large, adjacent
scatterer. For example, the Earth's surface can ruin near-
surface rain-rate measurements obtained from an airborne
platform, or it can prevent a ground-penetrating radar from
detecting land mines located at shallow depth. In these cases,
the range sidelobes of the ground are larger than the targets
near the surface. The range sidelobes cannot be optimally
controlled because target information is not used. However,
in most situations the location and magnitude of such a large
scatterer can be predicted. In this paper, a minimum mean-
squared error (MMSE) estimator is proposed to improve the
range sidelobe problem. The MMSE estimator uses
information about the scenario to find the optimum
processing filter. Simulated results are provided to
demonstrate the effectiveness of this process.

INTRODUCTION

It is often desired that a radar detect a target located in
close proximity to a large, specular scatterer. For example,
downward-looking radars, as in [1], may need to detect
targets just above the Earth, or ground-penetrating radars may
need to detect targets buried just beneath the air-soil
interface. Typically, the approach taken to this problem is to
use as much bandwidth as possible [2-4] and to apply a
window function to the frequency spectrum of the
measurements. More signal bandwidth increases the
effective number of range bins between the target and
specular while windowing sacrifices some of that bandwidth
for reduced sidelobes.

Although increased bandwidth certainly increases the
resolution between two targets, a window function is rarely
the optimum weighting function of choice for a weakly
scattering target located in the first few sidelobes of a large
scatterer. If a priori knowledge of the statistical properties of
both targets is available, this information can be used to
calculate the optimum weighting function that should be
applied to the measurement spectrum. This optimum
weighting function is calculated using the linear minimum
mean-squared error (MMSE) estimator. Furthermore, the
weighting function can be applied as part of the processing
filter, rather than as weights on the data. In this way, the
uniquely optimum weights for each range cell can be
calculated and applied independently.

In this paper, the advantage of the MMSE estimator is
confirmed through calculation and presentation of ambiguity

functions. For two targets at different ranges from specular,
the MMSE filter is calculated and correlated with the
received spectrum as a function of range. The resulting
ambiguity functions demonstrate the advantage of using
MMSE estimation.

BACKGROUND

Strong scatterers can obscure nearby targets by their high
sidelobes. For example, the first sidelobe of a uniform
spectrum is the well-known 13 dB down from the mainlobe.
Therefore, if the scattering from an adjacent range bin is
more than 13 dB weaker than the target next to it, the weaker
target is completely obscured by the sidelobe of the stronger.
In order to alleviate this problem, windows are often applied
to the data as a weighting function to reduce sidelobes at the
cost of degraded resolution. Fig. 1 demonstrates a scattering
profile where the range sidelobes of a large specular target
dominate adjacent scatterers. In Fig. 2, a window function is
applied, degrading resolution but reducing sidelobes below
the level of some scatterers.

The measured data in the frequency domain are given by
)( fr , and the expected return from the ith range bin is given

by )( fiρ . For the matched filter, the expected return is

correlated with the measured data to get the estimate of the
scattering from the ith range bin,

ÿ= dfffr ii )()(ˆ ργ . (1)

When a weighting function is applied, the estimate becomes

ÿ= dfffrfw ii )()()(ˆ ργ . (2)

The weighting function, )( fw , is typically a window

function chosen for the desired sidelobe level. However, in
some cases, a priori information about the scattering profile
may be available. For example, in airborne rain-rate
profiling, the altitude of the airborne platform is known.
Therefore, the range of the specular return from the Earth is
known, and the expected RCS of the specular return may be
known as well. In this case, a simple window function will
not be the optimum choice for a weighting function given the
information available.
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Fig. 1:  High Range Sidelobes Obscure Weaker Scatterers 

0 100 200 300 400 500 600 700 800 900 1000
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

dB

Altitude

Solid: Sidelobes of Specular Target

Dashed: Simulated Rain Rate Profile 

Fig. 2:  Sidelobes Reduced with Weighting Function 

The optimum, linear filter is the linear minimum mean-
squared error (MMSE) estimator. Taking the received data at
discrete frequency points, a receive vector is formed given
by,

[ ]′= )()()()( 21 Mfrfrfrfr ÿ . (3)

The normalized, expected data from the ith range cell is
similarly taken at these frequencies to get,

[ ]′= )()()()( 21 Miiii ffff ρρρρ ÿ . (4)

If the complex RCS values of all range cells are given as,

[ ]′= Nγγγ ÿ21ÿ , (5)

then the MMSE weighting function is given by,

[ ] [ ]( ) 1~EE nKPPÿÿPÿÿW +′′′′= , (6)

where W contains the weightings for each range cell,P
contains the expected measurement vector for each range
cell, K n is the noise covariance matrix of the measurements,

[ ]⋅E denotes the expected value operation, and (� )~1 denotes

the pseudoinverse operation.

SIMULATIONS

The MMSE operator calculates the optimum linear
weighting, and the improvement can be seen by studying the
resulting ambiguity functions. Therefore, simulations have
been performed to that end. The simulations presented here
are for a downward, vertically looking radar with 10 range
cells. The tenth range cell is centered at zero altitude. As a
result, it contains the specular return from the Earth, and its
scattering statistics are modified accordingly. A linear FM
chirp was simulated in the frequency domain, and the
elements of the matrixP were calculated by evaluating the
response due to each frequency at multiple locations from the
first to last range cells. The correlation between the MMSE
weights and the measurements was then calculated and
plotted. The correlation between cos4 window weights and
the measurements is also shown for comparison [5]. The
magnitude of the signal spectrum was chosen to be uniform,
and the bandwidth was such that a resolution of one range
cell was obtained after weighting by the cos4 window.

Fig. 3 shows the ambiguity function for a target in the
third range cell. The scattering statistics in range cells one
through nine are the same; therefore, the MMSE estimator
uses that information to create approximately level sidelobes
in this area. In the range cell with the specular target,
however, a deep null is produced. While the cos4 window
has lower sidelobes in some areas, the MMSE weights
optimally shape the ambiguity function according to target
statistics. Therefore, not only is there a null on specular, but
that null is optimally computed for the expected scattering
statistics and noise estimates. Fig. 3 also shows three range
cells beyond the air-ground interface. Because little
scattering is expected from these range cells, the sidelobes are
allowed to increase significantly.

Next, we show that the null on the specular target still
exists when estimating the adjacent, or ninth, range cell. The
window function, however, makes no distinction according to
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Fig. 3:  Ambiguity Functions for Range Cell 
Far From Specular 
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Fig. 4:  Ambiguity Functions for Range Cell 
Adjacent to Specular 

the proximity of large scatterers, so the high first and second
sidelobes fall on the specular target. The comparison
between MMSE and cos4 for the ninth range cell, which is
adjacent to the cell containing the ground return, is shown in
Fig. 4.

Last, the MMSE weights as a function of SNR were
investigated. From (6) is can be shown that the MMSE
weights approach a scaled version of the matched filter as
SNR decreases. Fig. 5 demonstrates this result. At the
lowest SNR, the ambiguity function is seen to be the same
form as what would be obtained from the matched filter
response to a rectangular spectrum. Fig. 5 does not show,
however, that the MMSE weights are smaller in magnitude
than the matched filter by a constant value across the
spectrum.
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Fig. 5:  Ambiguity Function for Various SNR Values 

CONCLUSIONS

If statistical information is known a priori about a radar
scene, that information can be used to compute a weighting
function that is optimum for the scene. Rather than using a
window function with a specific sidelobe level and sidelobe
fall-off, the MMSE estimator forces sidelobes optimally
tailored to the scene.

The advantage of this processing has been demonstrated
through simulation. The simulations produced ambiguity
functions that have been presented and show nulls where the
specular return is located. Furthermore, the MMSE estimator
takes the relative importance of that null versus SNR into
account. This has been shown in another set of simulations
where the MMSE estimator converged to a scaled version of
the matched filter as SNR decreased.
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