
A Consistent Labeling Algorithm
for the Frequency/Code Assignments in a

Rapidly Deployable Radio Network
(RDRN)

Technical Report

Written by

Shane M. Haas

Supervisor

Dr. David Petr

Telecommunications and Information Sciences Laboratory

Department of Electrical Engineering and Computer Science

University of Kansas,

Lawrence, Kansas, USA 66045

Tel.: (913) 864-7757

email: shaas@tisl.ukans.edu

January 1994

Abstract

The Rapidly Deployable Radio Network (RDRN) is an Advanced Research

Projects Agency (ARPA) grant awarded to the University of Kansas's Telecom-

munications and Information Sciences Laboratory (TISL). The goal of this
project is to develop a portable high speed wireless communications network
that could easily be deployed in a time of battle or emergency.

One of the major obstacles facing a decentralized wireless network is its
topological con�guration. This network consists of a collection of asynchronous
transfer mode (ATM) switch nodes that are capable of forming multiple radio

links with one another. Since these beams can be unintentionally received
by another node, interference may occur. To provide e�ective communication
throughout the network, an algorithm must carefully establish links between
nodes. The con�guration algorithm must also ensure that the network is fully
connected.

By modeling RDRN as a consistent labeling (U;L; T;R) model [HAR79]
a tree search is used to �nd the non-interfering network con�gurations. This
does not, however, guarantee full network communication. A connectivity
matrix is created showing direct node communications. Another tree search
is then used to �nd communication classes of this matrix. In this manner,

network connectivity may be tested.
This report documents the ideas and methods that contributed to the above

algorithms.

Contents

1 Summary 1

2 The Consistent Labeling Problem 1

2.1 An Overview : 1

2.2 Solving the Consistent Labeling Problem : : : : : : : : : : : : 2

2.2.1 The Tree Search : 2

2.2.2 Computational Time : : : : : : : : : : : : : : : : : : : 3

3 Preliminary Investigations 4

3.1 Preliminary Network Constraints : : : : : : : : : : : : : : : : 4
3.2 Early Connecting Algorithms : : : : : : : : : : : : : : : : : : 4

3.3 The Consistent Labeling Problem : : : : : : : : : : : : : : : : 5
3.3.1 Representing a Network : : : : : : : : : : : : : : : : : 5
3.3.2 Finding Con�gurations : : : : : : : : : : : : : : : : : : 6

4 Network Connectivity 6

4.1 The Connectivity Matrix : 6
4.2 Communication Classes : 6

5 Applying the Consistency Labeling Problem to RDRN 7

5.1 The Network Application : 7

5.2 Conventions and Notations : 8
5.3 Constraints in RDRN : 8
5.4 The RDRN Example : 9
5.5 Finding Non-Interfering Network Con�gurations : : : : : : : : 15

6 The Beamform Algorithms 15

6.1 An Overview : 15

6.2 Command Line Interface : 16

6.2.1 De�ning node coordinates : : : : : : : : : : : : : : : : 16
6.2.2 Creating the (U;L; T;R) Model : : : : : : : : : : : : : 16

6.3 Finding Acceptable Network Con�gurations : : : : : : : : : : 17
6.4 The Graphic User Interface : : : : : : : : : : : : : : : : : : : 19

7 Improving E�ciency 20

7.1 Direct and Indirect Constraints : : : : : : : : : : : : : : : : : 20

7.2 Critical Links : 21

7.3 Another Language : 21

i

A Summary of the Beamform Algorithms 21

A.1 GPS Manipulating Algorithms : : : : : : : : : : : : : : : : : 21

A.2 GUI Algorithms : 22

A.3 Network Geometry Algorithms : : : : : : : : : : : : : : : : : : 23

A.4 Conversion Algorithms : 24

A.5 Connectivity Algorithms : 24

A.6 Consistent Labeling Algorithms : : : : : : : : : : : : : : : : : 25

A.7 Miscellaneous : 26

ii

1 Summary

The Rapidly Deployable Radio Network (RDRN) is an Advanced Research

Projects Agency (ARPA) grant awarded to the University of Kansas's Telecom-

munications and Information Sciences Laboratory (TISL). The goal of this

project is to develop a portable high speed wireless communications network

that could easily be deployed in a time of battle or emergency.

One of the major obstacles facing a decentralized wireless network is its

topological con�guration. This network consists of a collection of asynchronous

transfer mode (ATM) switch nodes that are capable of forming multiple radio

links with one another. Since these beams can be unintentionally received

by another node, interference may occur. To provide e�ective communication
throughout the network, an algorithm must carefully establish links between
nodes. The con�guration algorithm must also ensure that the network is fully

connected.
By modeling RDRN as a consistent labeling (U;L; T;R) model [HAR79]

a tree search is used to �nd the non-interfering network con�gurations. This
does not, however, guarantee full network communication. A connectivity
matrix is created showing direct node communications. Another tree search

is then used to �nd communication classes of this matrix. In this manner,
network connectivity may be tested.

This report documents the ideas and methods that contributed to the above
algorithms.

2 The Consistent Labeling Problem

2.1 An Overview

Let U be a set of units and L be a set of possible labels for these units. Units
are objects requiring identi�cation by names or labels. They can be anything
from boolean expressions to radio links, whose corresponding labels would be

f0; 1g and frequency pairs.

Consider a matrix of N columns that provides a relationship between N

units that restrict each other. This is often called the unit constraint relation

T , where T � UN . For example, let U = fu1; u2; u3g and L = fl1; l2g. If the
units u1 and u2 constrain each other and u1 also constrains u3, then

T =

u1 u2

u1 u3

!

Another matrix, R, is formed by combining the matrix T and the vector

1

L. This matrix contains all of the labels permitted for each N -tuple in T ,

R � (UxL)N . It is called the unit-label constraint relation because it consists

of all allowable 2N -tuples of unit label pairs. For our example, if u1 cannot

have the same label as u2, and u1 must have the same label as u3, then

R =

0
BBB@

u1 l1 u2 l2
u1 l2 u2 l1
u1 l1 u3 l1
u1 l2 u3 l2

1
CCCA

Taken collectively, these four variables are called the real world model or

(U;L; T;R) model. A labeling of all units in U is called consistent to the model
if for all N -tuples in T when the labeling is applied, the 2N -tuple formed is a
member of R. In other words, the labeling fl1; � � � ; lPg is a consistent labeling
of units fu1; � � � ; uPg if for all fi1; � � � ; iNg � f1; � � � ; Pg such that (ui1; � � � ; uiN)
is a member of T creates a 2N -tuple (ui1; li1; � � � ; uiN ; liN) that is a member
of R. [HAR79]

The consistent labeling problem consists of �nding all labelings for units
in U that are permitted by the (U;L; T;R) model. In the previous example,
one consistent labeling of units fu1; u2; u3g would be fl1; l2; l1g. To verify this,

apply the de�nition of a consistent labeling. By labeling the units in the �rst
2-tuple of T , (u1; u2), with their proposed labels, the 4-tuple (u1; l1; u2; l2) is
formed. Since this is a member of R, the next 2-tuple in T is examined. By
labeling (u1; u3) with their proposed labeling (l1; l1), the 4-tuple (u1; l1; u3; l1)
is produced. This too is a member of R. Because all N -tuples in T were

checked, the labeling fl1; l2; l1g is concluded to be a consistent labeling of units
fu1; u2; u3g with respect to the (T;R) model (the U and L are not noted to
emphasize the constraining relations). The other consistent labeling solution
for units fu1; u2; u3g would be fl2; l1; l2g.

The consistent labeling problem is just another way of representing direct

and indirect relationships among a group of objects. The (U;L; T;R) model

is a nice representation of a complicated problem. Once in this form, several

methods are capable of �nding solutions.

2.2 Solving the Consistent Labeling Problem

2.2.1 The Tree Search

A variety of techniques exist to �nd all of these labelings. One such method is

the tree search. This algorithm takes the �rst unit appearing in T and assigns
to it the �rst label permitted. It then restricts R to those 2N -tuples that do

2

not con
ict with this unit-label pair. If the restricted R, R0, contains a single-

valued consistent labeling of all units in T , then a solution has been found.

Otherwise, the procedure continues with the next unit in T and assigns to it

its �rst permitted labeling. If at any point R0 is empty, the routine backtracks

and chooses the next label permitted.

For solving the above example, the tree search would �rst assign u1 with

its �rst labeling of l1. Then it would restrict R to those 2N -tuples that either

had u1 paired with l1 or did not involve u1. The matrix formed would be

R0 =

u1 l1 u2 l2
u1 l1 u3 l1

!

The resulting R0 is a single-valued consistent labeling since each N -tuple in T

has a labeling in R0 and each unit appearing in R0 has only one label associ-
ated with it. The particular solution found within this R0 for fu1; u2; u3g is

fl1; l2; l1g.
To �nd all solutions, the procedure then assigns l2 to u1. The resulting R

0

is also a single-valued consistent labeling.

R0 =

u1 l2 u2 l1
u1 l2 u3 l2

!

The solution from this R0 is fl2; l1; l2g. Since there are no more labels for the
�rst unit,u1, the tree search stops.

Notice this simple example required only one unit-label assignment. For
more complicated problems, further unit-label pairs must be �xed before either
a single-valued consistent labeling occurs or R0 is the empty set. When either

occurs the last unit that was assigned a label is given the next label that it

can receive. If there are no more labels for this unit then the previous unit is
given its next label. This continues until the �rst unit has no more possible
labels left.

2.2.2 Computational Time

The time required to �nd consistent labeling solutions from a real world model

is exponential. Consider the general case when each unit appearing in R is
allowed each label in L. For the worst case scenario, the tree search would

eventually assign each label in L to each individual unit in R. Thus the total
number of permutations created is the number of labels in L raised to the

number of units in R

tmax = n(L)n(R)

3

Thus, increasing the number of units in R exponentially increases the compu-

tational time of the tree search.

3 Preliminary Investigations

3.1 Preliminary Network Constraints

The �rst con�guration of RDRN followed four rules. First, if two communi-

cation links are formed between three nodes, then the angle could not be less

than a speci�ed acute angle. Second, near linear consecutive links should also

be avoided. Consecutive links are those links that share a common node. If
either of these rules are broken, interference has the potential to occur. The
third rule de�nes the concept of a linking radius. A node can only form a
communication link with another node within a given distance or transmis-
sion radius. Fourth, above all else, full network communication must exist. In

other words, a node must have a path to every other node.
These rules started as the basis for the con�guration problem. Soon, ad-

ditional constraints were added. The �rst two rules were applied to non-
consecutive links. A maximum number of frequencies was then imposed. Other
desirable constraints are to minimize the number of links, to decentralize the

network, to limit total links per node, and to minimize the number of frequen-
cies used.

3.2 Early Connecting Algorithms

The �rst attempt at satisfying the above constraints was a forward searching
algorithm. The connecting procedure started on any node and detected the

nearest neighboring node within the linking radius. A link was formed with
this node using the �rst send/receive frequency pair. The procedure then re-
peated itself until all nodes within each others link radii were connected. While

connecting the network, if the link just formed interfered with the preceding

link then the next send/receive frequency pair was used. Likewise, if the new
link was formed with a node that had no other unconnected switches within

its linking radius, the procedure moved to the previous node after making the
connection.

Further revisions of this algorithm included a desirability factor that de-

termined the next node to be connected. Distance from the node and from
the geographical center of the network were the main criteria for this factor.

In addition, the idea of changing previously created links was explored.

4

Even though this was not implemented into code, it has the same idea of

the tree search. The �rst link is chosen and assigned the �rst frequency pair. If

the second link does not interfere with the �rst link then it also receives the �rst

frequency pair, otherwise it receives the second pair. Furthermore, previously

created links would be changed when all frequency pairs were exhausted for the

current link. This is another way of solving the network interference problem;

however, it might not be as e�cient as the consistent labeling approach because

it must continually keep track of interfering links. The consistent labeling

approach separates the two ideas of interference and the tree search.

3.3 The Consistent Labeling Problem

3.3.1 Representing a Network

The application of the consistent labeling problem to a network was puzzling
at �rst. Basic questions arose regarding what was to be de�ned as units
and labels. Initially, the nodes and links were units and labels, respectively.
This was based on the edge-labeling problem presented by Haralick. Later,

however, links were considered units and the frequencies that composed them
were labels. Even this representation needed further re�ning since each label
consisted of two frequencies.

Constraining these units was the next concern. At �rst, all consecutive
links were members of T . Based on this, R then was the collection of all
permitted frequency labelings of links that shared a common node. Though

this representation included the maximum links per node constraint, it was
discarded since it did not take into consideration non-consecutive links and
because each central node could have a di�erent number of possible links
radiating from it. To accommodate this, interference was considered in terms
of pairs of links. Thus, T consisted of all pairs of links that could interfere

with each other. Similarly, R contained all the permutations of labelings that
did not cause interference between the pairs.

The next problem resolved was assigning frequency labelings to potentially

interfering links. This in itself is a challenge since a variety of topological
arrangements of nodes can exist. When creating R, the matrix that takes

frequencies into consideration, it was �rst assumed that there was a general
assigning rule that applied to all situations. This assumption was later found

to be false since each pair of potentially interfering links is arranged in a
di�erent manner. More on the consistent labeling application to RDRN will

be discussed in a later section.

5

3.3.2 Finding Con�gurations

Haralick introduces a class of look-ahead operators used to decrease the tree

search time for consistent labeling problems. The �KP operator is one such

operator. It was not found to signi�cantly improve tree search performance

due to the complexity of network constraints; therefore, a tree search that

did not use the �KP operator was developed to solve the consistent labeling

problem.

4 Network Connectivity

The most important criteria of an acceptable network con�guration is full

network connectivity. This means that each node must have a path to every
other node. By converting the network into a pseudo-stochastic matrix, called
a connectivity matrix and then applying techniques to classify states of a
stochastic matrix, network connectivity may be tested.[HAA94]

4.1 The Connectivity Matrix

The connectivity matrix is based on the idea of a stochastic matrix. A stochas-
tic matrix (M) contains a process's probabilities of transitioning between
states. The probability that the system will move from state i to state j

is de�ned by the matrix entry mij. Similarly, a connectivity matrix (C) shows

which nodes can directly communicate with each other. If node i has a direct
communication link with node j then matrix entries cij and cji both receive
the value of one. All non-communicating pairs receive a value of zero.

4.2 Communication Classes

A recursive tree search is used to determine which nodes can communicate
both directly and indirectly. This procedure starts by creating a list of nodes

that are directly accessible from a given node. For each node in the list, it

determines which nodes can be directly reached from it. This continues until

all the nodes that can be reached from the �rst node have been found. This

set of nodes forms a communication class. The network is fully connected if it
contains only one communication class. This guarantees that every node can

be reached from an arbitrary node.

6

5 Applying the Consistency Labeling Prob-

lem to RDRN

5.1 The Network Application

For a network application, U consists of all links that could exist between

nodes. For each node, all nodes within a speci�ed maximum connecting dis-

tance, known as the linking radius, are found. These combinations of pairs are

placed in the column vector U . All frequency/code permutation pairs and the

20 40 60 80

10

20

30

40

50

60

70

80

90

1

2
3

4

5
6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

Network of ATM Switch Nodes

Distance Units

D
is

ta
nc

e
U

ni
ts

Figure 1: A plot of all the possible links of a 30 node network with a linking
radius of 30 distance units. These links are the units of a (U;L; T;R) model.

option of zero, or no link, constitute L. The unit constraint relation, T � UN ,

consists of those pairs of units that mutually constrain one another. If two
links have the potential of interfering with each other, then they are a pairs

in T . The unit-label constraint relation, R � (UxL)N , contains all permitted
labelings of the pairs within T . For RDRN, R contains all frequency/code

labelings for the pairs of nodes in T that would not cause interference between

them. The consistent labeling problem is to �nd all permitted labelings of the
units in U that are allowable by T and R.

7

5.2 Conventions and Notations

To implement this algorithm, certain conventions must be adopted. First,

each node receives an integer index value dependent upon its x-coordinate.

Numbering ascends from one to positive in�nity.

Second, a link is represented by the notation, n1000n2, where n1 and n2

are the index values of the connected nodes. Also note that this is an ordered

pairing with n1 < n2. If n1 sends data to n2 on frequency/code f1 and receives

information from n2 on frequency/code f2, then the link n1000n2 has the

frequency/code label f1777f2. If a link does not exist, a frequency/code label

of 0 is assigned. These conventions are used to allow easy manipulation.

5.3 Constraints in RDRN

Creating the consistent labeling model for RDRN requires the examination
of several rules or constraints. The �rst restriction placed on the network
is nodes can only form links within their given transmission radius. This
limitation in
uences the creation of the unit vector U . Second, two links will
constrain each other if the transmission pattern from a node in the �rst link
can be received by a node in the second link or vice versa. An example of

this is shown in Figure 2. The unit constraint relation T is created on this
principle. Third, if two links constrain each other, frequency/code labels must

Node 1

Node 2

Node 3

could interfere with Link 2.

Transmitting Pattern of Node 1

Receiving Pattern of Node4

Node 4

Link 1

Link 2

of Node 1 from Link 1. Likewise, Node 1 falls within

the receiving pattern of Node 4; therefore, Link 1

Condition of Interference: Link 1 Interferes with Link 2
Link 1 will interfere with Link 2 if and only if a transmitting pattern from

a node in Link 1 can be received by a node in Link 2.

Node 4 from Link 2 falls within the transmitting pattern

Figure 2: Link 1 Could Interfere With Link 2

be assigned in such a way to avoid interference. The unit label constraint

8

relation R contains all of these permitted link/labeling 4-tuples. The rules

for these assignments are in Figure 3. Finally, network connectivity must be

ensured in all con�gurations.

10002 30004

Link 2Link 1

f1777f2 f3777f4

f1 ~= f4

f1 ~= f3

f2 ~= f4

f2 ~= f3

if node 1 could interfere with node 3

if node 1 could interfere with node 4

if node 2 could interfere with node 3

if node 2 could interfere with node 4

If node 1 could interfere with node 3 then the node 1’s transmitting frequency, f1, must

f3 ~= f2

f3 ~= f1

f4 ~= f2

f4 ~= f1

if node 3 could interfere with node 1

if node 3 could interfere with node 2

if node 4 could interfere with node 1

if node 4 could interfere with node 2

not equal node 3’s receiving frequency, f4. Through similar arguments the following
constraints are developed.

The Rule for Assigning Non-Interfering Frequency Labels
In the below diagram two links consisting of four nodes are shown. From this configuration

eight different rules are developed. Even though two non-consecutive links are shown,

(Units)

(Frequency Labels)

the rules apply for a links with a common node. In this case, node 2 is identical to node 3.

Figure 3: The Rule for Assinging Non-Interfering Frequency Pairs

5.4 The RDRN Example

Consider the following example. A network consists of 5 nodes whose (x; y)

coordinates are stored in the matrix GPS.

GPS =

9

2.0558 1.8853

3.3753 3.2836

5.0886 4.9969

6.1870 7.2534

6.5066 7.0450

2 3 4 5 6
2

3

4

5

6

7

1

2

3

4
5

Network of ATM Switch Nodes

Distance Units

D
is

ta
nc

e
U

ni
ts

Figure 4: Plot of a Sample RDRN Network

If nodes are allowed to make connections within 2.9 distance units, the

following U is created.

U =

10002

20003

30004

30005

40005

If a maximum of three frequencies is available, then seven frequency/code pairs

can be created including the value of no link or 0.

10

L =

0

17772

17773

27771

27773

37771

37772

The unit constraint relation T contains pairs of interfering links. This

occurs six times in this network. The links 10002 and 30005 are one pair
that could interfere if frequency labelings were assigned arbitrarily. Because

−2 0 2 4 6 8 10

0

2

4

6

8

10

12

1

2

3

45

Plot of Beam Patterns

Distance Units

D
is

ta
nc

e
U

ni
ts

Figure 5: Link 30005 will interference with Link 10002

the transmitting pattern from node 5 can be received by node 1, link 30005

interferes with link 10002. In Figure 5 a pair of dashed lines emanates from
each node. The triangle de�ned by these lines (the third side not shown)

de�nes the "receivable area for the nodes transmission. Notice, however, that
link 10002 does not interfere with 30005 since the beam patterns from its nodes

cannot reach node 5. The pair 30004 and 30005 in Figure 6 provides another

example of constraining links. Node 4's transmitting pattern is received by

the antenna intended to capture node 5's beam.

11

0 2 4 6 8 10 12
0

2

4

6

8

10

12

1

2

3

4 5

Plot of Beam Patterns

Distance Units

D
is

ta
nc

e
U

ni
ts

Figure 6: Link 30004 and Link 30005 Mutually Interfere

Several parameters provide a wide range of control over the network. For
this example, an interference multiplier (distance multiplier de�ning distance
of interference relative to the distance between nodes) of 3, a beamwidth angle
of 30o will create a T containing all the pairs of links that could interfere.

T =

10002 20003

10002 30004

10002 30005

20003 30004

20003 30005

30004 30005

In addition to T , two more matrices must be introduced to show how each

links' nodes interfere with each other. The matrices X1 and X2 accomplish

this. Each row in X1 describes exactly which transmitting beam pattern from

the �rst link (from the left column of T) can be received by a node from the

second link (from the right column of T) for each pairing in T . The second
matrix, X2, shows which transmitting patterns from nodes in the second link

can be received by nodes from the �rst link. The four columns of Xi, where i

is the primary link, mean the following: the �rst column shows if the pattern

12

from the �rst node of the primary link can be received by the �rst node of the

secondary link, the second column shows if the pattern from the �rst node of

the primary link can be received by the second node of the secondary link, the

third column shows if the pattern from the second node of the primary link

can be received by the �rst node of the secondary link, and the fourth column

shows if the pattern from the second node of the primary link can be received

by the the second node the the secondary link. So to generate X1, the link in

the left column of T is considered the primary link, and the link in the right

column is the secondary link. Likewise, to generate X2, the link in the second

column of T is considered the primary link. In short, if a row of T was 10002

and 30004, then the resulting X1 has the format

X1 = (1w3 1w4 2w3 2w4)

where 1w3; 1w4, etc., are boolean values indicating interference. Likewise, X2

has the format
X2 = (3w1 3w2 4w1 4w2)

In this network example, X1 and X2 are

X1 =

0 1 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 1 0 0

0 1 1 0

X2 =

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 1 1 0

For example, if the pair 30004 and 30005 is examined, X1 shows that the

pattern from node 3 intended for node 4 can be received by node 5 of the
link 30005. In addition, the beam from node 4 intended for node 3 of the link

30004 can be received by node 3 of the link 30005. This last statement means

13

that node 3 will not be able to distinguish signals coming from nodes 4 and

5 if they are both sending on the same frequency. X2 shows a similar picture

from the second link's point of view.

The unit-label constraint relation R contains those permitted labelings for

each pair in T . Determining these labelings requires X1 and X2. The rules

for assigning non-interfering frequency pairs are given in Figure 3. In this

example, R is a matrix of 198 rows and 4 columns. A portion of R is shown

below.

R =

10002 0 20003 0

10002 0 20003 17772

10002 0 20003 17773

10002 0 20003 27771

10002 0 20003 27773

10002 0 20003 37771

10002 0 20003 37772

10002 17772 20003 0

10002 17772 20003 27771

10002 17772 20003 27773

10002 17772 20003 37771

10002 17773 20003 0

10002 17773 20003 27771

10002 17773 20003 37771

10002 17773 20003 37772

10002 27771 20003 0

10002 27771 20003 17772

10002 27771 20003 17773

10002 27771 20003 37772

10002 27773 20003 0

10002 27773 20003 17772

10002 27773 20003 37771

10002 27773 20003 37772

10002 37771 20003 0

10002 37771 20003 17772

10002 37771 20003 17773

10002 37771 20003 27773

10002 37772 20003 0

10002 37772 20003 17773

14

10002 37772 20003 27771

10002 37772 20003 27773

With these matrices, a (U;L; T;R) model of a network is created. The next

step is to �nd all the consistent labelings of all units in U with respect to T

and R. In addition, each of the non-interfering con�gurations must be checked

for connectivity.

5.5 Finding Non-Interfering Network Con�gurations

Using the tree search and the connectivity test, 48 di�erent network con�gu-

rations were found for those links in T . If a link in U does not appear in T ,
then it is unrestricted; therefore, it may have any frequency/code pair label as

long as it contributes to a connected network. One of the solutions is displayed
below.

CL =

10002 27771

20003 37772

30004 17773

30005 0

In this example, link 10002 has the frequency/code label 27771, and 20003
operates on the send-receive pair of 37772. Notice that link 30005 has a label
of 0. This means that it does not exist.

6 The Beamform Algorithms

6.1 An Overview

Over seventy MATLAB functions and script �les constitute the beamform al-
gorithms. They have been tested using Version 4.2a MATLAB on a DEC

Alpha 3000. The functions' purposes range from geometric utilities to special-

ized tree searches. The following subsections provide a summary of the main
procedures needed to �nd minimally interfering network con�gurations. A

brief description of all the function and scripts are presented in the appendix.
Three basic steps are required to solve this interference topology problem:

1. De�ning node coordinates

2. Creating the (U;L; T;R) Model

15

3. Finding acceptable network con�gurations

These steps can be entered as text commands, selected from a graphic user

interface, or a combination of both. All commands have online help accessed

by typing help then the command name.

6.2 Command Line Interface

6.2.1 De�ning node coordinates

The GPS matrix can be created in several ways. The coordinates can be en-

tered into the matrix directly with the left column containing the x-coordinate

and the right column contains the y-coordinate. Random node locations may
also be incorporated into the GPS matrix through the following procedures:

MakeGPS Creates, sorts, graphs, and labels random GPS coordinates

AddRandPt Adds a bounded uniform random point to GPS

Other useful GPS manipulating tools are

DeleteNode Removes a node from the GPS matrix

SortGPS Sorts GPS matrix by ascending x-coordinates

In addition, several graphical utilities allow easy viewing and manipulation of
the GPS matrix.

LabelGPS Displays index labels on nodes

PlotGPS Plots and labels the nodes in GPS

gAddGPS Graphically adds a node to the GPS matrix

6.2.2 Creating the (U;L; T;R) Model

Many functions exist to create and manipulate the (U;L; T;R) model; how-

ever, the main function, MakeULTR2, is the most important. This function
requires two inputs: the GPS coordinate matrix and a con�guration vector

(Config). The con�guration is a row vector that contains �ve parameters.
The �rst is the linking radius. This is the maximum distance for which a

communication link may be formed. The second is the maximum number of

frequencies allowed for the network. The third is the interference multiplier.
This value multiplied by a link's actual length will determine the range of in-

terference created by the link. Basing the interference multiplier on actual link

16

length implicitly assumes adaptive power control in the transmitter. The last

two parameters are the beam and receiving beamwidth. These are the entire

angles across the transmitting patterns. In summary, the Config variable has

the following format:

Config = (Rlink Fmax Imult Twidth Rwidth)

The full syntax of the command is

[U,L,T,R,X1,X2] = MakeULTR2(GPS,Config)

The (U;L; T;R) model is critical for the tree search procedure.

6.3 Finding Acceptable Network Con�gurations

The main procedure to �nd all the fully connected non-interfering network is

SolveModel. This is a recursive tree search procedure that will return all
acceptable con�gurations. The syntax for this command is the following:

NetTot = SolveModel(NetTot,u,U,L,T,R,NetSize)

The variables U ,L,T , and R are the real world model. NetSize is the total
number of nodes in the network. This variable is required for the connectivity

test. The input u is a unit that can receive the labels in L. When starting
the algorithm use T (1; 1) as the starting unit. NetTot are all previously found
acceptable network con�gurations.

Once the real world model has been created the following command will
�nd all acceptable network con�gurations.

NetTot = SolveModel([],T(1,1),U,L,T,R,NetSize)

The output variable NetTot contains all the acceptable con�gurations among
the constrained links appearing in T . A portion of NetTot from the previous

RDRN example is shown below.

NetTot =

Columns 1 through 6

10002 17772 10002 17772 10002 17772

20003 27771 20003 27771 20003 27773

30004 0 30004 17773 30004 0

17

30005 17773 30005 0 30005 37771

Columns 7 through 12

10002 17772 10002 17772 10002 17772

20003 27773 20003 37771 20003 37771

30004 37771 30004 0 30004 0

30005 0 30005 17773 30005 27773

Columns 13 through 18

10002 17772 10002 17772 10002 17773

20003 37771 20003 37771 20003 27771

30004 17773 30004 27773 30004 0

30005 0 30005 0 30005 17772

Each unit in T ,receives its own row. A useful utility to select a consistent label-

ing from NetTot is SelectCL. For example, to select the fourth con�guration,
type

CL = SelectCL(NetTot,4)

at the MATLAB prompt.
The function DrawNet2 will graphically display a network con�guration

in a �gure window. To display the selected con�guration CL type

DrawNet2(GPS,U,CL,FMap2)

at the command prompt. The last variable is a color map that contains the
decimal percentages of red, green, and blue colors for each individual frequency.

For example, if L is composed of three frequencies then an appropriate color

map that assigns black to no link, red to f1, green to f2, and blue to f3, would

be

FMap2 =

0 0 0

1.0000 0 0

0 1.0000 0

0 0 1.0000

18

6.4 The Graphic User Interface

In addition to the typing commands at the prompt, the beamform algorithms

may be operated from a GUI. To initiate the GUI type RDRNControl at

Figure 7: The Graphic User Interface for the Beamform Algorithms

the prompt. This will bring up seven "�gure" windows (see Figure 7. Figure

window one is the GPS coordinate controls. Nodes may be added or deleted

from GPS graphically by using these controls and the main plot of the ATM
nodes in window number 5. Window number two contains the link query con-

trols. This allows the user to select a link from U by clicking on its midpoint,
or de�ning a link by clicking on two nodes. To use the Select Link option of the

query window U must have already been created. Since links are constrained

19

in pairs, two links may be examined simultaneously. Statistics such as length,

node position, and angle between links are shown in this window. When a

link is selected or de�ned, a plot appears in window number three showing

its transmitting patterns. The length of the pattern is determined by the link

length multiplied by the interference multiplier. The receiving pattern is iden-

tical to the transmitting pattern except it has in�nite length. By selecting or

de�ning two links, potential interference may be observed visually. The fourth

window contains the con�guration and model controls. Each component of the

real world model may be selected individually or consecutively. This window

also starts the tree search to �nd all acceptable network con�gurations. Figure

window �ve is the main plot of the ATM nodes. Whenever graphical input

is required, it must be selected from this window. Window six contains the
network display controls. Once con�gurations have been found, they may be

displayed individually or all at once. To display all con�gurations select the
button in the middle of the window. Starting with the �rst, con�gurations
will be displayed in window seven by pressing any key in the MATLAB com-
mand window. Note: to cancel any command accessed through the GUI, press
control-c at the MATLAB command prompt.

7 Improving E�ciency

The following are ideas that could increase the e�ciency of creating the (U;L; T;R)
model and the tree search used to �nd network con�gurations.

7.1 Direct and Indirect Constraints

Using an idea similar to the connectivity matrix, a network consisting of a
large number of constraints may be subdivided into several smaller problems.

Each one of these smaller consistent labeling problems then can be solved

individually. By combining the resulting label solutions, a con�guration for
the full network is found.

After T is created, each row or constraint may be represented as an element

in a square matrix. The size of this matrix is determined by the number of

constrained links in T . Each link in T may be given a positive index. If link i
constrains link j, as determined in T , then the (i; j) and (j; i) elements of this

relation matrix will contain a one; otherwise, they will be zero. The same tree
search that �nds communication classes can then determine which links will

constrain each other indirectly. These smaller collections of constraints can

then be used to create a smaller (U;L; T;R) model. After �nding labelings

20

for each of the smaller models, the solutions are combined to form consistent

labeling solutions for the original larger problem. These �nal solutions must

then be checked for connectivity, since connectivity is a constraint placed on

the entire network.

This method can increase the e�ciency since the computational time of

a tree search is exponential. By solving smaller models the speed is greatly

increased; however, for complicated networks where each link indirectly con-

strains every other link, this method will not decrease the tree search time.

At this point in time, this idea has not been implemented into code.

7.2 Critical Links

It is sometimes necessary for certain links to exist to ensure full network con-

nectivity. These critical links can be identi�ed using the connectivity test.
With this information, 4-tuples from R can be removed that have critical
links labeled as zero. This will increase the performance of the tree search by
eliminating bad link con�gurations from R.

7.3 Another Language

Speed is one of the disadvantages of using MATLAB to execute the beamform
code. Since it must interpret every script and function �le before it is executed,
processing time is slow. By converting the algorithms into a faster language

or using more of MATLAB's built in functions, the computational time may
be greatly decreased.

A Summary of the Beamform Algorithms

Each command has online help that gives a brief description of the function

and its syntax. For more detailed information about a procedure, read the

comments at the beginning of each �le.

A.1 GPS Manipulating Algorithms

The following commands add, delete, label, sort, and plot nodes of the RDRN
network.

AddRandPt Adds a uniform random point to GPS

DeleteNode Removes a node from GPS

21

GPSBox Loads the GUI Box for GPS control

LabelGPS Graphically labels nodes with their index value

MakeGPS Creates, sorts, and graphs a random GPS matrix

PlotGPS Plots and labels GPS coordinates.

SortGPS Sorts nodes based on x-coordinate

gAddGPS Graphically adds a node to GPS

A.2 GUI Algorithms

These functions and scripts provide a graphical interface and allow graphical

inputs and displays.

ClearLinkGUI Clears a link from the query control box

Con�gBox Loads con�guration control box

De�neLinkGUI De�nes a link by selecting two nodes

DisplayBox Loads the display control box

DrawAllU Displays all the links contained in U

DrawLink Displays a link with one color

DrawLink2 Displays a link using a color for each frequency

DrawNet Displays a network con�guration using DrawLink

DrawNet2 Displays a network con�guration using DrawLink2

DrawPat Displays the beam pattern of a node

GPSBox Loads the GPS control box

LabelGPS Graphically labels nodes with their index value

PlotGPS Plots and labels GPS coordinates

QueryBox Loads the link query box

RDRNControl Loads and sets defaults for GUI controls

22

SelectLinkGUI Selects a link in U by its midpoint

SetCon�gGUI Sets Config variable based on the the con�guration controls

SetTotGUI Sets the Total Con�gurations Found on the display controls

ShowCon�gGUI Displays selected or all network con�gurations

ZoomBox Loads box that shows link patterns

gAddGPS Graphically adds a node to GPS

gSelectLink Graphically �nds the nearest link

gSelectNode Graphically �nds the nearest node

A.3 Network Geometry Algorithms

These functions determine the geometric relationships between links, nodes,
points, and lines.

Ang Calculates the angle between three pts

Dist Calculates the distance between two points

FarDist Calculates the distance between the farthest nodes in two links

IntRange2 Determines if two links are in each other's interference range

LinkAngle Determines the angle between two links

LinkInter Determines the point where two links intersect

LinkLength Determines the length of a link

LinkLine Calculates the line representation of a link

LinkMid Determines the midpoint of a link

MidDist Calculates the distance between midpoints of two links

PDist Calculates the perpendicular distance from a line to a point

23

A.4 Conversion Algorithms

These functions convert one format or unit to another.

Deg2Rad Converts degrees to radians

Freq2Color Converts a frequency pair into their color representation

Freq2Label Converts a frequency pair into their proper label in L

Label2Freq Converts a label into the frequencies that it represents

Link2Node Converts a link back to its corresponding nodes

Node2Coord Converts a node back to its coordinates

Node2Link Creates a unit or link given two nodes

Rad2Deg Converts radians to degrees

A.5 Connectivity Algorithms

These functions convert a network con�guration into a connectivity matrix. A

tree search can then determine communication classes of this matrix.

AddToClass Adds a group of states to a class

AdjState Determines direct communications

CL2Mat Converts a labeling into a connectivity matrix

CanAccess Determines which nodes are accessible from a given node

CanComm Finds communicating states of a stochastic matrix

FindClass Finds communication classes of a stochastic matrix

IsOneClass Determines if the network is fully connected

RemoveOneState Auxiliary procedure used to direct the classi�cation tree
search

24

A.6 Consistent Labeling Algorithms

These functions create, manipulate, and solve the model for the RDRN con-

sistent labeling problem.

AreCL Determines if a proposed group of labelings is consistent to T and R

CLAdd Adds a single labeling to a cumulative group of labelings

CLabel Converts a single valued R to a consistent labeling solution

FindV Used to �nd next unit for consideration in the tree search

IS Determines if the labeling is single valued

IsCL Determines if one proposed labeling is consistent with T and R

IsTInR Determines if all members of T are in R

IsULPair Determines if a unit-label pair occurs in R

LabelLeft Determines how many labels are left for a unit in R

MakeL2 Creates a set of frequency pair labels (L)

MakeR2 Creates the unit-label constraint relation (R)

MakeT2 Creates the unit constraint relation (T)

MakeU Creates all possible links (U)

MakeULTR2 Creates a Haralick (U;L; T;R) model of a network

RemoveOneLabel Auxiliary procedure used to direct the tree search

RestrictR Creates R0

SelectCL Selects a single consistent labeling from a collection of solutions

SolveModel Finds all acceptable network con�gurations from a (U;L; T;R)
model of the network

UnitOfR Finds the units remaining in R

UintOfT Finds the units remaining in T

25

A.7 Miscellaneous

These are functions that did not �t into any other category.

IsElement Searches a matrix for a speci�ed element

IsMember Searches a matrix for a particular row

References

[HAR79] Haralick, Robert M. and Shapiro, Linda G.,"The Consistent La-

beling Problem", IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, April 1979.

[HAA94] Haas, Shane M.,"Simulations and Applications of Markov Chains",

August 1994.

26

