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1. Objective

The objective of this report is to present several computer simulations to determine if
a hole in a buried concrete wall can be detected using a GPR. Numerical simulations
were performed in both two- and three-dimensional spatial domains using the KU GPR
simulator. We analyzed these simulations to find out (1) if a small hole could be detected
by a GPR and (2) what kind of simulation (2-D or 3-D) is appropriate for such kind of

application.

2. Specifications of the experiment

The geometry of the experiment to be simulated is shown in Fig. 1, according to the

basic requirements by AlliedSignal.

Ground surface

0.9m

Figure 1: Experiment geometry.



The concrete wall is buried 0.90 m beneath ground. The dimensions of the wall are
0.5 m thick, 3.0 m long and 1.22 m wide. The GPR is working at a center frequency of
300 MHz with a bandwidth of 300 MHz. The GPR is moved along the ground surface
across the center of the wall taking measurements at 0.1 m intervals on the ground
surface. A hole is assumed to be 0.04 m x 0.04 m through the wall along its thickness,
which is at 1.0 m below the top of the wall and offset 0.5 m from the center of the wall.
The relative permittivity and conductivity of the concrete wall is 8.0 and 1.0x107° S/m,
respectively. The relative permittivity and conductivity of the ground is 3.5 and

25x107 S/m, respectively.

3. Specifications of numerical simulations

The simulations were performed using the KU GPR simulator that was built using
finite-difference time-domain method (FDTD) for electromagnetic scattering analyses.
The simulations were performed in both two- and three-dimensional spatial domains.
The two-dimensional simulations generally take much less simulation time and are good
approximation for symmetric geometries.

Prior to the simulations, the FDTD cell size had to be determined for the KU GPR
simulator. For the 300 MHz GPR used in the experiment, the simulator will use a time-
domain pulse whose maximum significant frequency component is at 800 MHz. The
corresponding wavelength in the ground is 0.2 m. In order to ensure the stability of
FDTD, the cell size of the FDTD space is required to be 0.02 m, one tenth of the
minimum wavelength that is specified by the wavelength of the maximum significant
frequency.

A solution space for computer simulations was chosen to be 100 x 170 x 140 cells (2
X 2.5 x 3.5 m). The space was select to include the buried wall and sufficient surrounding
space that is required to ensure accurate results. The wall contains 25 x 150 x 61 cells
and is buried 45 cell beneath the ground. The GPR antenna is simply modeled by a
current source, which adequately models a real antenna. Note that the KU GPR simulator
can model more complex GPR antennas. The current source is a line source for two-

dimensional space or a short dipole for three-dimensional space. The time-domain



behavior of the current source is specified by a time-domain pulse, a 4-ns double peak
Gaussian pulse which yields the desired signal spectrum.

Characteristics of actual GSSI 300 MHz GPR antennas with baluns designed and
fabricated by AlliedSignal personnel were measured and are presented in Appendix A.

The results of these measurements relating to the simulation efforts were inconclusive.

4. Two-dimensional Simulations

The geometry of the two-dimensional simulation is shown in Fig. 2. The GPR
antenna is modeled by a line source. The KU GPR simulator models the GPR as it takes
measurement on the ground surface, moving perpendicular to the length of the concrete
wall and crossing at the center of the wall. At each position along the ground, the line
source launches a time-domain pulse and the returned electric fields are sampled at the

point 2 cells away from the line source.
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Figure 2: The geometry of two-dimensional simulation.

The simulation results for the wall without and with hole are shown in Fig. 3 and Fig.
4, respectively. These figures are displayed in wiggle format, where the horizontal axis
corresponds to the position on the ground surface where the GPR takes measurements,

the vertical axis is the range of radar return, and the size of wiggle represents the intensity



of radar return. This kind of wiggle plot shows radar returns of all single measurements
in one plot, which is convenient to view the changes of radar returns as the GPR moving
on the ground surface. Each curve in these figures represents a measurement at a field
measurement point on the ground surface. In order to identify the responses due to the
hole on the wall, Fig. 5 shows the difference between Fig. 3 and Fig. 4. Here, we can see

that the response from the hole is significant.
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Figure 3: Two-dimensional simulation for the wall without a hole.

In Fig. 3, there are two strong responses from the concrete wall in each curve. The
first one is mainly generated by the top face of the wall, and the second one is mainly due
to the bottom face of the wall. In order to verify above conclusion, another simulation
was performed. In this simulation, the GPR was located exactly above the wall and the
vertical extent of wall was varied from 0.1 m to 1.8 m with fixed location of the top face
of the wall. The simulation result is shown in Fig. 6. Here, we see that the first response
remains same, however, the second response has different time delays while the vertical
extent of the wall varies. This would imply that the wall (having a higher permittivity

than the background material) is acting as a waveguide, effectively guiding the waves and



the reflection from the bottom surface of the wall changes with the vertical extent of the

wall.
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Figure 4: Two-dimensional simulation for the wall with a hole.



Return electric fields due to the hole (2-D)
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Figure 5: The response due to the hole on the wall, 2-D situation.
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Figure 6: Simulated GPR responses from a variety of walls
having different vertical extents.



5. Three-dimensional Simulations

To perform three-dimensional simulations, a dipole is used to model the GPR
antenna. The simulation geometry is shown in Fig. 7. The dipole is moved on the
ground surface across the buried wall. In this case, a time-domain pulse is launched from

the dipole and return electric fields are sampled at the point two cells away from the

dipole.
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Figure 7: The geometry of three dimensional simulation.
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The simulation results for the wall without and with a hole are shown in Fig. 8 and
Fig. 9, respectively. Fig. 10 shows the difference between Fig. 8 and Fig. 9, however the
difference has been amplified by a factor of 15, which indicates that the responses from a

small hole is weak.
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Figure 8: Three-dimensional simulation for the wall without a hole.
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Figure 9: Three-dimensional simulation for the wall with a hole.



Return electric fields due to the hole (3-D)
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Figure 10: The response due the hole on the wall, 3-D situation.

6. Discussion

Both two- and three-dimensional simulations give similar results in the main part of
radar return responses, which appear at about one meter in range. For the multiple
reflections between the ground surface and the wall, which appear at about three meters
in range, the two simulations give quite different results, which is mainly due to different
dimensions of simulation space.

These simulations show that a small hole can be detected by a GPR. Two-
dimensional simulation shows stronger responses from the hole, because a hole in the
two-dimensional space presents a gap in the whole wall thickness. Three-dimensional
simulation is closer to the actual situation than two-dimensional simulation. However,
the three-dimensional simulation shows the scattered fields from the hole on the wall are
very weak. Therefore, additional post-processing of radar signal is needed in actual
experiments,

The simulation time for these two simulations are very different. In order to obtain

one curve in these wiggle plots, a complete FDTD run is required. A FDTD run for the



two-dimensional simulation takes about 3-minutes of CPU time on a Pentium-90 PC.
However, a FDTD run for the three-dimensional simulation requires about 7-hours of
CPU time. Therefore, the two- and three-dimensional simulations shown in this
document requires 42 minutes and 98 hours of CPU time, respectively. On the other
hand, during 98 hours of the whole three-dimensional simulation, we found out the
Pentium-90 PC machine had an instability problem for a long-time simulation (crashed
during the simulation). Therefore, the actual three-dimensional simulation was
performed on a Digital workstation, DEC3000/400.

In conclusion, a small hole can be detected by a GPR, two-dimensional simulation
can provide fundamental information about real experiment, and three-dimensional
simulation generates more accurate results with the cost of more computation time and

computer memory. As a suggestion, a real antenna modeling is required to get more

accurate results.

7. Processing the Raw Data

In order create an image of the wall, a signal processing technique was applied to the
two-dimensional simulated data to focus the collected measurements back to their source.
The method involved using a reverse-time algorithm similar to that of f-k migration (see
Appendix B for more details). The method used is based on an assumption commonly
known as the exploding reflector model in which the returned signals are assumed to have
originated from subsurface scatterers and propagated to the receiving antenna. An image
is them constructed by re-propagating the waves from the surface back into the ground
which was assumed to have a relative permittivity of 3.5 and a conductivity of
25%107° S/m. The waves will then add constructively where a target exists and
destructively elsewhere. Fig. 11 below shows the raw data and the image resulting from

applying this technique.
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Figure 11: Raw 2-D simulated GPR data and the focused image resulting from
the application of this technique.

As shown in the figure, the algorithm was able to focus the first hyperbola but not the
second. Since this algorithm only takes into account the background permittivity of the
ground and not the scatter when re-propagating the waves back into the ground, the
inability to focus the second hyperbola was expected. This result indicates that the
second hyperbola seen in the raw data is an effect of the wall acting as a waveguide.

In conclusion, the imaging technique was able to determine the location and give a
rough estimate of the lateral size of the wall. The relative permittivity and shape were not

apparent in the image which was expected due to the nature of the algorithm.
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Appendix A

Antenna and Balun Measurements

To evaluate the effectiveness of the antennas and the baluns the voltage standing
wave ratio (VSWR) and transmission characteristics were measured over their useful
frequencies. The VSWR of each antenna-balun combination was measured using a HP
network analyzer with the antenna placed on the surface of a sand-air interface. The
network analyzer was calibrated at the point where the cable attached to the balun. The
VSWR for each balun configuration is shown on the following two pages. The third plot
shows the transmission characteristic of the two antennas when placed opposite each
other. The configurations for both the VSWR and transmission measurements are shown

below.

Location of
calibration

Network Cable
Analyzer

Air Antenna and Balun
Sand d
& VSWR Measurement Configuration
Network
Analyzer

Antennas and Baluns

Transmission Measurement Configuration

12



300 MHz Boe-tie, balun #1

4 ! ! ! ? f

) | ; ; . ;
0 0.5 1 55, 2 2.5 3
frequency x 10°

Balun #1

K X o0

13



SWR
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Appendix B
Exploding (Radiating) Reflector Model

Assumptions made prior to data processing in order to image the reflected signals as

being signals generated by sources located in the subsurface.

A A Radar

X(t)

v

Surface

N

g ¢

- by using a very small antenna separation, the reflected signal, r(t),

Scatterer

can be seen as being generated by the scatterer and propagating at one half
the speed to the receiving antenna.

- by reversing the received signal in time, r(t) = r(-t), the signal is
introduced at the radar location and propagated back to the source at one
half the propagation speed.

- an image is created by evaluating the field at t = 0,

B.1 Development

Since the received signal, (t), is propagated back into the space as r(-t), an equivalent
current density, J(x,-t) which is equal to r(-t) at the radar location x, is introduced in the

presence of no known scatterers.

Surface

v

+ % Unknown Scatterers
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Now to obtain an image, two things must be done.
1. The current density J(x,-t) must be introduced into the space and
evaluated at locations in the subsurface.

2. The wave must be propagated at one half the speed and evaluated at a

time t =0,

B.2 Introducing J(x,-t) into a Two-dimensional Space

J(x,-t) is introduced into the space by first converting to the frequency domain

through a fourier transform and then by evaluating the differential equation shown in (2).
I(x,£) = FI(x,~t)} (1)
[V 4} e ) =-8005, ) )
Notice in equation (2) that k is restricted to being a function of y, allowing the
introduction of a layered earth.

With prior knowledge of the solution to (3), the function g,(x,y) can be obtained by a

convolution of g,(x,y) and J(x,f) or by multiplication in the spatial frequency, kx, domain
shown in (4) through (6).

[V k))& (x3) =-53() 8% 3)

{:Xz +k(y)* - kxz}go(k,x,y) =-8(y) 4)

J (x,f){ ;(2 +k(y)* - kxz}go(kx,y) =-8(y)J(x,f) (5)
gl(kxvy) =J(x, f)go (kx, y) (6)

If the polarization of the antennas are in the z direction and thus the vector J (x,f) is
also in the z direction, the electric field is obtained as being directly proportional to the

function g (x,y).

E(x,y) = —joug, (x,y) (7

L7



B.3 Wave Propagation at One-Half Speed and Evaluation at t=0

Since the fields are evaluated in the frequency domain, finding the field at a time
equal to zero is accomplished simply by taking an average of all the frequency
components without a phase shift or evaluating the inverse Fourier transform at t=0.,

By introducing J(x,-t) at twice the rate or using J(x,-2t) and keeping the propagation
speed the same, a similar effect of reducing the propagation speed is accomplished. This

is done in the inverse Fourier transform by increasing the frequency by a factor of two.

r(t) = _[R(f) exp{ j2nft }dt (8)

r(2t) = _|° R(f)exp{jdnft }dt 9)

B.4 Simulation

To verify this technique was implemented using fdtd simulated data of a buried pipe.
Figures:
1. The basic geometry.
The scattered field.
The current density at 600 MHz to be applied to g (x,y) at 2*f=1.2 GHz.
The resulting image at 1.2 GHz.
The final image (intensity).
The final image (surface).
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Fig. B-1.
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frequency: 1.2 GHz
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