
Ground-Penetrating Radar Antenna Modeling

Zhubo Huang, Kenneth Demarest, and Richard Plumb
University of Kansas, Radar Systems and Remote Sensing Laboratory

2291 Irving Hill Road, Lawrence, Kansas 66045, USA
Tel: 913/864-7395, FAX: 913/864-7789, E-mail: demarest @eecs.ukans.edu

Abstract--Detecting subsurface objects by using Ground-
Penetrating Radar (GPR) has received considerable interest in
recent years. In order to interpret radar signals from buried
objects, one must have the ability to model a large range of
objects, grounds and radar antennas, theoretically or
numerically, so that a real GPR system can be simulated.
Many investigations have been done for modeling objects
(scatterers) and grounds, but few have involved realistic
antennas. This paper presents a technique to model real GPR
antennas located above a ground in which an object is buried.
Numerical results are presented to verify this technique.

INTRODUCTION

The increasing use of ground-penetrating radar systems
has brought about the need for sophisticated GPR modeling
tools that are capable of interpreting the radar returns from
objects buried in a variety of grounds. The interpretation of
radar returns involves several research subjects, such as the
modeling of radar antennas, grounds and buried objects. The
interpretation of radar returns can be helpful for
understanding how to detect and identify buried objects with
GPR systems.

A computer code that is used to simulate the performance
of GPR systems is called a GPR simulator. In general, a
good GPR simulator is capable of correctly modeling the
characteristics of the antennas, the ground, and the scatterers.
Unfortunately, techniques that are good at modeling one
aspect of the problem are usually not well suited for others.
For example, the finite-difference time-domain technique
(FDTD) [1] is well suited for modeling dielectric spaces,
such as grounds and scatterers, but is not well suited for
modeling complex antennas. Conversely, the method of
moments (MOM) [2] is well suited for modeling complex
antennas, but not penetrable objects and real grounds. Since
accurate ground modeling is usually essential, most GPR
simulators concentrate on accurate ground-scatterer modeling
at the expense of modeling complex antennas.

This paper presents a technique that is able to model
complex antennas in the presence of real grounds and
scatterers. This technique makes use of the well-known
equivalence principle from electromagnetic, which allows
the overall GPR geometry to be divided into two sub-
geometries. Different numerical techniques can then be used
to model different aspects of the overall problem. An iterative
procedure is used to link two sub-geometries to the actual
geometry being modeled. This technique is described in the
following section, along with numerical results.

FORMULATION OF THE PROBLEM

Consider the typical GPR geometry which is shown in
Fig. 1. Here, an antenna is located above a ground in which
an object (scatterer) is buried. The antenna transmits an
incident field toward the ground. This field is partially
transmitted into the ground and then scattered by the buried
object.
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Figure 1. A typical ground-penetrating radar geometry.

Unfortunately, no one technique is well suited for
modeling this typical GPR geometry. This is because there is
an interaction between the antenna and the ground-scatterer,
which requires the technique to model both antenna and
ground-scatterer, as well as their interaction.

We can analyze this GPR geometry by using the
Schelkunoff equivalence principle [3] to split the original
geometiy into two sub-geometries. This is accomplished by
surrounding the antenna in Fig. 1 with a mathematical surface
S and removing either the interior elements or the exterior
elements, The fields generated by these removed objects are
supported by a set of equivalent electric and magnetic surface
currents that are impressed on S. In this way, the
complicated geometry can be divided into two sub-
geometries: an antenna geometry and a ground-scatterer
geometry,

Fig. 2 shows these sub-geometries. The antenna geometry
consists only of the antenna and the equivalent currents. In
this geometry, the fields inside S are identical to the fields
inside S in the original geometry, and zero outside S, The
ground-scatterer geometry consists only of the ground, the



scatterer, and the equivalent currents on S, The fields outside
S in this sub-geometry are identical to those in the original
geometry, and zero inside S. The equivalent surface currents
that must be placed on S in both sub-geometries are given by

J~=nx H (1)

M,=Exn (2)

where n is the outwardly pointing unit vector of S, J, and M,
are the electric and magnetic surface currents respectively,
and E and H are the electric and magnetic fields on S in the
original geometry, respectively, The values of these surface
currents can be determined by modeling the two sub-
separately and passing field information between them using
an iterative procedure, This procedure models the interaction
between the antenna and the ground-scatterer.
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Figure 2. The geometry of the equivalent problem.

The iterative procedure starts by modeling the antenna
geometry to get an initial estimate of surface currents on S.
Then, one can impress these surface currents on S to model
the ground-scatterer geometry. By sampling the fields on S,
one can then obtain an improved estimate of the surface
currents that includes the initial currents and the currents due
to the effect of the ground-scatterer, The next step is to model
the antenna geometry again, while impressing the new
surface currents on S. By sampling the fields on S, the
initial surface currents on S can be updated. These updated
currents are impressed on S to repeat modeling the ground-
scatterer geometry. A more accurate solution (surface
current or field) can be obtained by performing more
iterations,

Many numerical methods can be used for modeling each
sub-geometry depending on the complexity of the problem.

For example, if the antenna is simple, such as a thin wire
dipole, the FDTD method can be used for both sub-
geometries. In many GPR applications, the antenna usually
is too complicated for the FDTD method to model.
Therefore, in order to handle more complicated antennas,
one can use the MOM to model the antenna and the FDTD to
model the ground-scatterer geometry,

SIMULATION

In this section, a numerical experiment is presented to
verify this iterative technique. The geometry of the
experiment is shown in Fig. 3. Here, the radar antenna is
selected as a thin wire dipole, driven by a voltage source.
This antenna is simple enough so that the whole problem can
be solved by either the FDTD method directly or by the
iterative method. The result obtained by solving the whole
problem by using the FDTD directly can be considered as an
exact solution. Therefore, the iterative results can be
compared with the exact result to verify the iterative
technique.

In this experiment, the thin wire dipole (0.6-meter long) is
located 0.4 meters above a ground, The ground is a stratified
medium [4] with a relative dielectric constant that changes
linearly from the surface (6.0) to 1.6 meters below the
surface (8.0), with a uniform conductivity of 0.01 s/m. A
perfectly conducting cube, 0.2 meter’, is buried in the ground
0.6 meters below the ground surface. The exact solution is
obtained in a 50 x 50 x 70-cell FDTD space, in which the
ground contains 40 cells in the vertical direction and the
equivalence surface encloses 20 x 10 x 10 cells. The FDTD
cell size is 0.04 meters. The voltage source is a 6-ns-double-
peak Gaussian pulse.
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Figure 3. The geometry of the numerical experiment.

Fig. 4 shows the comparisons between the exact result
(solid line) and iterative result (dashed line) when the antenna
is excited with a voltage pulse. Here, the electric field 0.8
meters above the ground is shown. As can be seen, the
difference between the exact result and the iterative result
becomes smaller as more iterations are performed. The result
of the fourth iteration is very close to the exact result.



Fig. 5 shows the relative mean of absolute value of the
scattered-field error. Here, the error field is the difference
between the exact field and the iterative field. As can be seen
in this figure, the relative mean error becomes smaller as
more iterations are performed, indicating that the iterative
procedure is capable of correctly modeling the antenna, the
ground, and the scatterer.
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Figure 4: Electric field at one point above the ground,

CONCLUSION

In this paper we have presented an iterative technique that
is capable of modeling complex antennas, grounds, and
scatterers. This technique allows the antenna to be modeled
separately from the ground-scatterer geometry, thus allowing
different numerical techniques to model both parts of the
overall geometry,

Although the numerical results presented here used the
same numerical technique (FDTD) to model both parts of the

overall problem, this is not a restriction of the overall
technique itself.
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Figure 5: Relative mean of the error field.
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