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Predicting Properties of Congestion Events for a
Queueing System With fBm Traffic
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Abstract—In packet networks, congestion events tend to persist,
producing large delays and long bursts of consecutive packet loss
resulting in perceived performance degradations. The length and
rate of these events have a significant effect on network quality of
service (QoS). The packet delay resulting from these congestion
events also influences QoS. In this paper a technique for predicting
these properties of congestion events in the presence of fractional
Brownian motion (fBm) traffic is developed.

Index Terms—Internet, network congestion, networks, quality of
service.

I. INTRODUCTION

CONGESTION events in communication networks cause
packet losses, and it is well known that these losses occur

in bursts [1], [2]. Furthermore the frequency and the duration
of these congestion events significantly influence the perceived
network performance [3], [4]. The Internet Engineering Task
Force has defined measurement-based QoS metrics [5] aimed
at characterizing packet loss patterns. Measured packet traces
[1], [6] have been used to create models for the temporal depen-
dence of packet loss. These models assume a specific packet loss
process, e.g., one that transits between different states, such as
a no-loss state and a loss state. However, transforming network
traffic parameters directly into predictions of the properties of
congestion events will aid network design and provide a useful
indication of QoS. The properties to be considered here include
the rate, the duration, and the magnitude of the delay induced by
congestion events. An approach for determining the rate of con-
gestion events for some standard traffic models was presented
in [7]. In this paper the approach is extended in two directions:
1) to a fluid queueing model with a self-similar input and 2) to
include additional properties of congestion events.

In the early 1990s, researchers with Bellcore observed the
phenomena of self-similarity and long-range dependence in
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LAN traffic [8], which roughly means that the traffic “looks”
similar under different time scales and the correlation between
packets decays very slowly. This observation is inconsistent
with the short dependence assumption in traditional traffic
models, such as the Poisson process and other Markov models.
Subsequent studies [9], [10] showed that the traditional models
seem inadequate for data networks. Since then, many other
traffic models have been proposed, such as fractal point pro-
cesses [11] and multifractal models [12]. In 1994, Norros [13]
proposed a fluid queueing model with a fractional Brownian
motion (fBm) as input. A fluid model whose input is not
packetized is suitable for modeling high speed networks.
For example, Hohn et al. [14] used a fluid model to analyze
high-precision router measurement. A fBm for suitable values
of the Hurst parameter process has the properties of self-simi-
larity and long-range dependence. By analyzing the origin of
self-similarity and long-range dependence in network traffic, it
was shown in [15] that the superposition of a family of homo-
geneous ON/OFF traffic sources with heavy tailed ON and OFF
periods, with proper scaling, converges in distribution to a fBm
plus a linear component. The superposition of traffic sources
is well-suited to the network core, which has thousands of
simultaneous traffic flows. It has been observed that long-range
dependence is a property of the backbone traffic [16]. Recent
network measurements [17] also justify the applicability of
a fBm, which is a Gaussian process, as a traffic model for
aggregated network traffic. Thus we focus on the Norros model
to study the characteristics of congestion events.

The primary contribution of this paper is the development of
methodologies for predicting the expected values for the proper-
ties of congestion events in a queue with a fBm input. The struc-
ture of this paper is as follows: In Section II, a congestion event
is defined, some preliminaries on fBm, the Norros model, con-
ditioned fractional Brownian motion, and the Poisson clumping
approximation are given. In Section III, an approximation for a
congestion event is proposed to simplify the analysis. The prop-
erties of congestion events and approximation methods are dis-
cussed in Sections IV and V. Comparisons between the predic-
tions made by the proposed methodologies and simulations are
presented in Section VI. Finally, some conclusions are drawn in
Section VII.

II. PRELIMINARIES

In this section, a congestion event is defined and some pre-
liminaries on the Norros model, a fBm and a conditioned fBm
are given for the future analysis.
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Fig. 1. Example of workload process and definitions of random variables of
interest.

A. Congestion Events

Let be a queue length process. A busy period
from to is a period such that but

for . In a busy period from to , a
congestion event with a level is defined to occur at time if
is the first time that the process reaches a fixed level . The
congestion event ends at time , i.e. the first time the queue
becomes empty after . Two congestion events are shown in
Fig. 1. Given this definition of congestion the process can
reenter the level multiple times during one congestion event.
The premise of this work is that, for a large , a congestion event
as defined here results in a burst of packet losses.

Formally as in [18], let be a probability space and
be a measurable flow on which is invariant under .

Let denote the beginning of the th congestion event, such
that, .
Let and be the corresponding beginning and end of the
busy period in which the th congestion event occurs. Let

denote the set of the beginning times of congestion
events, then forms a stationary marked point process,
in which the paths of congestion events are viewed as marks. Let

be the associated Palm probability defined as

where , denotes the number of points in a Borel
set and is an indicator function. We use to represent
the expectation with respect to , and use to represent the
expectation with respect to .

The inter-congestion event time between the and the
congestion events is denoted by .

We are interested in the properties of an arbitrary congestion
event. To simplify the notation, we omit the superscripts. Then
the mean inter-congestion event time is . As shown in

Fig. 2. A queue with fractional Brownian input, A(t) = mt+
p
aB (t).

[7], (or the rate ) is a useful QoS metric. The
other metrics of an arbitrary congestion event are ,
the mean sojourn time that spends above threshold in
a congestion event; , the mean duration of a con-
gestion event, i.e., the time from to ; , the mean
duration of a busy period containing a congestion event, i.e.,
the time from to ; and which is the mean peak
queue length of a congestion event. In a study of high preci-
sion router measurements Hohn et al. [14] demonstrated that
the pairs can be used to describe a busy period
in which the queue length exceeds a congestion threshold .
The set of metrics, , , , ,

can be used to characterize the nature of congestion
events.

B. A Queueing Model With Fractional Brownian Traffic

As in [13], we use a fBm, which is a self-similar Gaussian
process with stationary increments, to model network traffic.
The definition of a fBm is given as follows.

Definition 1: [19] A standard fractional Brownian motion
(fBm) with Hurst parameter , ,
is a real-valued Gaussian process such that for ,

and
.

In this paper, it is assumed that . For ,
has the property of long range dependence, that

is, if

for , then . A fluid queue
with a fBm as input was proposed by Norros [13], Fig. 2.
A fBm, , is used to capture the self-similarity and
the long-range dependence in the input network traffic. Let

be the cumulated arrivals up to
time , where is the mean input rate (bps), stands for the

bit , and is a standard fBm with parameter
. For an input traffic modeled by , we say that the

input is determined by . At time , the queue length
can be expressed as, see [13] and the references therein,

, where is a fixed
service rate in (bps). Now can be written as

(1)
in which is the surplus rate. For the stability of the queue,
it is assumed that .

Consider a scaled , which is defined as
. We can observe that the temporal properties of the

congestion events of with a level are the same as those
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of the congestion events of with a level . There-
fore to study the properties of congestion events of a queue
with an input and a service rate , it is equivalent to
study the corresponding scaled queue length process

(2)

in which stands for the scaled surplus rate.

C. Conditioned fBm

We will use a conditioned fBm with a negative drift to study
congestion events, here a conditioned fBm is defined and some
properties are discussed.

Definition 2.2: A conditioned fBm with
parameters , and is defined as , given
that and , in which and are
fixed constants.

Proposition 2.3: Let , and . A
conditioned fBm is a Gaussian process.
For , let ,

, and let
, ,

then

(3)

(4)

Proof: The covariance matrix of ,
, , for , is

Conditioned on , and using the properties of multi-
normal random variables [20],

and are as
given in (3) and (4), respectively. Thus, for fixed , is
a normal random variable with mean , variance

.
Remark 2.4: For , a conditioned fBm

reduces to a standard Brownian motion.

D. Poisson Clumping Approximation

Following [7], the Poisson clumping approximation [21] is
used to find the inter-congestion event time. For a threshold
, the queue tail distribution, , and the mean

sojourn time of above the threshold in a congestion event,
, are applied to evaluate the mean inter-congestion

event time as

(5)

Note that for a fBm traffic can be approximated
using the results in [22]. Thus the problem reduces to finding

. By applying the Poisson clumping approximation,

Fig. 3. A busy period of Q(t) from t to t , and the approximation process
X(t). (a) A busy period of Q(t). (b) Approximation process X(t).

we assume that the congestion events are rare and the depen-
dence among the events are small. These assumptions are rea-
sonable for the case studied here. When is large, the congestion
events are rare and far apart. Although has long range de-
pendence, the dependence among congestion events are small.
We validated the Poisson clumping approximation with simula-
tions, some of which are shown in Fig. 7(a)–(c). These results
indicate that the Poisson clumping approximation can be used
to evaluate the average inter-congestion event time.

III. BUSY PERIODS CONTAINING CONGESTION EVENTS

The busy periods of a queue with a fBm input have been dis-
cussed in [23], and recently in [24], in which the busy periods
are defined as the periods that the queue is not empty. In this
paper we are interested in the periods in which congestion events
occur. Note that a busy period hereafter always means a busy
period containing a congestion event. A busy period from to

is shown in Fig. 3(a), where is the first time that the queue
reaches a level in the busy period, and is the first time that the
queue returns to 0 after . The time separates one busy period
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into two parts, and . In order to apply the Poisson
clumping approximation, it is necessary to find , which
is the mean time that the queue spends above the level in a
congestion event, Fig. 3(a). It will be demonstrated next that the
problem can be simplified by approximating in with
a process , which is a conditioned fBm with a negative drift
[Fig. 3(b)].

Proposition 3.1: Let and be the end points of a busy
period. Let be the first time that reaches a
level . Then for , can be rewritten as

(6)

(7)

Proof: From the conditions, we have that ,
and for . From (2), it can

be verified that for ,

Then based on (2), for ,

Similarly, , for
.

Remark 3.2: In , increases from 0 to the level .
Since , from (6), the increment of the fBm in
is . For the period of ,
recall that if is a constant,
is equivalent to in distribution. This is the
motivation for approximating the period of with a
conditioned fBm with a negative drift.

Define a process
, where is a conditioned fBm

with parameters , , , and

(8)

(9)

For a large , the congestion events are rare. Since “rare events
occur in the most likely way” and the most probable sample
path of found in [23] spends time increasing
from 0 to a large fixed level , we use the constants and
to represent the time and the increment of the fBm in

, respectively. At , the process starts at
, i.e., . Let be the first time that

returns to 0, that is, . To
simplify the exposition, we sometimes denote with

.
The part of a busy period of is approximated by

of , Fig. 3. Let denote the sojourn time that
spends above the level in the period of . The idea

is to approximate with , that is,

(10)

Since the process is not related to the point process , de-
fined in Section II-A, we use , which is the expectation
with respect to , to represent the expectation of .

Remark 3.3: We use of to approximate the part
of a busy period. This approximation has some inherent

shortcomings. The parameters and of are used to
represent and the corresponding increment of the fBm,
respectively. However, they cannot capture the property that

is less than and strictly positive in , i.e.,
. And for a fixed , is a constant, but

is obviously a random variable. Thus
is not equivalent to a conditioned fBm. As an approximation,

cannot exactly capture all the characteristics of a conges-
tion event. However its use simplifies the analysis and produces
useful results.

IV. MEAN SOJOURN TIME

The sojourn time , that is, the time that spends
above in , can be written as

Let denote the complement of a
standard normal distribution. Let

(11)

Then is an upper bound of , since

For , the process reduces to a standard Brownian
motion with a negative drift. By the dominated convergence
theorem, it can be verified that (for

, is a constant which is independent of ). Then
for a large , . Although the limiting result
can only be shown for , the simulation results in
Section VI demonstrate that is a good approximation for

when . Thus we approximate
with , i.e.,

(12)

Combining (5), (10) and (12), the mean inter-congestion event
time, , can be expressed as

(13)

Even though several approximations were applied to obtain
(13), the above analysis successfully predicts trends observed
from simulations. The method provides better predictions
for the inter-congestion event time than directly using the
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reciprocal of the tail probability, , as will be
discussed in Section VI.

In the following we obtain an upper bound for , which
will be used to approximate the mean duration time of a con-
gestion event, . Let

(14)

Since and
, we have

Remark 4.1: By deriving a lower bound for , it can be
illustrated that the relative difference between and ,
defined as , approaches 0 as the level

increases. Therefore for a large , can be used as an ap-
proximation for , i.e.,

(15)

The lower bound for is not presented here, but as can be
seen from the simulation results, provides a good approxi-
mation for .

V. MEAN DURATION TIME AND MEAN AMPLITUDE

A. Mean Duration of Congestion Events

As shown in Fig. 1, a congestion event starts at time and
ends at . Let denote the duration time of
a congestion event. Since the period of is approx-
imated by of and from (15), can be
expressed as

(16)

B. Mean Duration of Busy Periods

Let denote the duration of a busy period in
which a congestion event occurs. The mean duration is

. From Fig. 1, can be written
as . Recall that is
approximated with a constant , which can be evaluated with
(8). Thus, combining (16), we have

(17)

C. Mean Amplitude

The busy periods in a network router have been previously
modeled by triangles in [14], so we use a triangle to approx-
imate a busy period in Fig. 4. The triangle has a base of ,
crosses the level at and . The mean amplitude of a busy

Fig. 4. Triangle approximation of a busy period.

period, , can be approximated with the height of the
triangle . Let denote . Note that is the length
that the triangle stays above the level , we use , the
mean sojourn time of a congestion event, to approximate ,
that is, . The base is approximated with the
mean duration time of a busy period . With simple
geometry, it can be derived that

. Combining (12) and
(17), we have

(18)

VI. EVALUATION

So far we have focused on a scaled queue length process ,
given by (2). Let denote the queue length which has an
input and a service rate , the load of the queue is

. Recall that the properties of a congestion event of
with a level are equivalent to the congestion event of
with a level . On the basis of (2), given a scaled service
rate and the input parameters , we can conveniently
transform the characteristics of congestion events of to
those of .

Now we can evaluate the temporal characteristics of con-
gestion events and the corresponding busy periods. Evaluations
based on the above analysis are compared with simulation re-
sults. Fractional Brownian motions are generated with the algo-
rithm proposed in [25]. For , 20 traces of fBm are
generated, each trace has samples; for , 80 traces
are generated, each has samples.1 The parameters and
are varied to modify the long-range intensity and the scaled sur-
plus rate. The relative error of the approximations is reported,
which is defined as , where is the simulation
result, is the corresponding approximation and is the Eu-
clidean norm.

1The simulations were performed on a computer with two Intel Xeon Proces-
sors running at 2.8 GHz with 2 GB RAM. The memory capacity combined with
the numerical limitation of the algorithm in [25] limited the sample size to 2
for H 2 [0:5; 0:79], and 2 for H = 0:85.
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Fig. 5. Comparison of mean sojourn time versus b. (a) H = 0:6. (b) H = 0:7.
(c) H = 0:85.

In simulations, we use different values for , the time be-
tween consecutive samples. On one hand, we need to let be
small so that we can measure the sojourn and duration times ac-
curately; on the other hand, to collect enough congestion events,

Fig. 6. Comparison of mean sojourn time. (a) Sojourn time versus c. (b) So-
journ time versus H .

we want the whole trace ( or samples) to represent a time
series which is in the order of hours.

For a fixed simulation length when the threshold increases,
fewer and fewer congestion events occur (the events become
rare). For example, under the conditions , ,
for , there are over 50,000 congestion events, but for

, we can only collect 600 events over 80 traces. Conse-
quently, fluctuations can be noticed for large in the simulation
results, see Figs. 5(a)–(c) and 9(a).

A. Mean Sojourn Time

The comparisons between the predicted and simulated
are shown in Figs. 5 and 6. The approximation results

follow the trends as a function of the surplus rate and the
Hurst parameter , the relative errors range from 10% to
20%. The errors are partly caused by . It is observed that
overestimates , i.e., the time that the queue builds up
from 0 to in a busy period. Fluctuations, which are caused by
small sample sizes, can be observed for large [Fig. 5(a)–(c)].
Similar phenomena have been observed in network router
performance measurements, e.g., Fig. 13 in [14].
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Fig. 7. Comparison of mean inter-congestion time versus b. (a) H = 0:55.
(b) H = 0:7. (c) H = 0:85.

B. Inter-Congestion Event Time

The approximation given in (13) is compared with the simu-
lation results and another approximation method,

, the reciprocal of the tail of the queue fill probability. As
shown in Figs. 7 and 8, the approximation (13) outperforms

in most cases. We notice that for different pa-
rameter sets, may increase or decrease with respect to

Fig. 8. Comparison of mean inter-congestion time. (a) Inter-congestion time
versus c. (b) Inter-congestion time versus H , b = 2:9. (c) Inter-congestion
time versus H , b = 0:95.

. For example, when , , decreases
versus as shown in Fig. 8(b); but for , ,

increases in Fig. 8(c). In both cases, our approxima-
tion results can follow the observed trends. In Fig. 7(a)–(c), the
Poisson clumping approximation, given in (5), is validated; both
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Fig. 9. Comparison of mean duration of congestion events versus b. (a) H =

0:65. (b) H = 0:79. (c) H = 0:85.

and in (5) are measured from the sim-
ulations.

C. Mean Duration Time of Congestions

It is shown in Figs. 9 and 10 that the approximation, given
in (16), is close to the simulation results of , the
relative errors are around 10%. In all situations, as shown in

Fig. 10. Comparison of mean duration of congestion events. (a) Duration of
congestions versus c. (b) Duration of congestions versus H .

Fig. 10(a)–(b), the approximations follow the trends of the sim-
ulation results.

D. Mean Duration Time of Busy Periods

In Figs. 11 and 12, the mean durations of busy periods ob-
served from simulations are compared with the approximation
(17). We noticed that , given in (8), overestimates the mean
time that the queue increases from 0 to . Thus is
overestimated by the approximation. However, the approxima-
tion results follow the observed trends, the relative errors are
from 10% to 30%.

E. Mean Amplitude

From the simulation results, it is observed that the mean am-
plitude follows a linear trend as a function of the threshold .
As shown in Figs. 13 and 14, the approximations underesti-
mate . Based on (18), the underestimation is caused
by the overestimation of . But again the approxima-
tions follow the simulation trends, the relative errors are around
10%.

The errors in the approximations are partly from , which
overestimates the time that increases from 0 to . If we
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Fig. 11. Comparison of mean duration of busy periods versus b. (a)H = 0:65.
(b) H = 0:79. (c) H = 0:85.

have better knowledge of , the approximation results can be
improved.

To illustrate an application of the proposed methodology,
suppose that we need to choose a link capacity for a confer-
encing teleservice. The requirement of an error-free interval
for audio and video multimedia conferencing teleservices
is given as 30 minutes [26], i.e., the average inter-conges-
tion event time is 1800 seconds, .

Fig. 12. Comparison of mean duration of busy periods. (a) Duration of busy
periods versus c. (b) Duration of busy periods versus H .

Then for a fBm traffic characterized by Mbps,
bit , , the proposed method indicates

that for a congestion level of Mb, a link capacity
of 140 Mbps (traffic load ) would be required to
ensure the average congestion free interval of 30 minutes, and
in this case, , ,

, Mb.

VII. CONCLUSION

It has been recognized that the frequency and the duration
of congestion events significantly impact user-perceived perfor-
mance. Previous efforts have focused on measurement-based
approaches to determine the frequency and duration of these
events. However, for network design, techniques are needed to
predict the congestion events given the nature of traffic. This
paper provides new techniques to approximate several proper-
ties of congestion events, their rate, duration, and amplitude
given a fBm traffic. The technique to approximate the rate out-
performs the reciprocal of the tail of the queue fill probability,
i.e., , and follows the trends observed from
simulations. As in [7], the approach for predicting the rate of
congestion events can be directly extended to determine the ex-
pected rate of congestion events for an end-to-end flow that
passes through several queues. Congestion events at each queue
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Fig. 13. Comparison of mean amplitude of congestion events versus b. (a)H =

0:65. (b) H = 0:79. (c) H = 0:85.

along a path can be assumed to be independent and rare, so
an end-to-end flow will experience the sum of the congestion
events along the path. The inter-congestion event time
(or its rate , which can be easily understood by net-
work users, is a useful QoS metric for network design. The other
metrics of congestion events, such as the sojourn time above a
threshold, the duration, and the amplitude, give additional in-
sights into the nature of congestion events.

Fig. 14. Comparison of mean amplitude of congestion events. (a) Amplitude
versus c. (b) Amplitude versus H .

These results can be extended in several areas. The accuracy
of the techniques developed here can be improved. The prop-
erties of busy periods whose durations are larger than a fixed

, discussed in [24], [27], are interesting problems for further
study. Other self-similar traffic models need to be considered,
such as the Levy processes. To understand fully the impacts of
self-similar traffic on networks, these processes need to be ana-
lyzed and additional methodologies developed.
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