
Implementing Web Services: Conflicts Between
Security Features and Publish/Subscribe

Communication Protocols

Edward Komp, Victor Frost, and Martin
Kuehnhausen

ITTC-FY2010-TR-41420-19

February 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Table of Contents

Table of Contents.. i
List of Figures ... i
Abstract .. 1
I. Introduction .. 1
II. Background ... 1

A. TSSN... 1
 1) Security Requirements... 2
 2) Asynchronous Communication Requirements .. 3
B. WSA-based Implementation ... 3

III. Implementation Conflicts... 3
A. Server Operations Obscured ... 4
B. Reversal of Client and Server Roles.. 5
C. Multiple Subscribers, Different Security Policies... 5

IV. Resolution.. 5
V. Conclusions... 6
Acknowledgment ... 6
References.. 6

List of Figures

Figure 1: Top-level view of the TSSN architecture.. 2

 1

Implementing Web Services: Conflicts Between Security
Features and

Publish/Subscribe Communication Protocols
Edward Komp, Victor Frost, Fellow, IEEE, and Martin Kuehnhausen, Student Member IEEE

Abstract - While on the surface the combination of software components that adhere to associated standards should
lead to rapid and successful system implementation. However, issues can arise when integrating independently defined
software subsystems. Here conflicts are discussed that arose when integrating elements from the Web Services
Architecture[1] (WSA) led by the World Wide Web Consortium[2] (W3C), specifically publish/subscribe communication
and service security. Unfortunately, the various standard components are seldom completely independent, and when
separate components are jointly deployed unanticipated interactions sometimes cause significant problems at
implementation time. The nature of the conflicts is discussed within the context of a specific system implementation the
Transportation Security Sensor Network (TSSN) and interim solutions presented.

Index Terms— Eventing, Publish/Subscribe, Security, Service-Oriented-Architecture, SOA

I. INTRODUCTION
Divide and conquer is a standard engineering practice

for large, complex systems. The system is often
repeatedly subdivided into (nearly) independent
components, allowing groups to work independently
and in parallel on subtasks. This basic principle is
fundamental to large ongoing specification efforts such
as the Web Services Architecture[1] (WSA) led by the
World Wide Web Consortium[2] (W3C).
Unfortunately, the various components are seldom
completely independent, and when separate components
are jointly deployed unanticipated interactions
sometimes cause significant problems at
implementation time.

We have experienced an example of conflict between
independently defined subsystems when jointly
deployed, in our design and implementation of the
Transportation Security Sensor Network[3] (TSSN). In
this paper we provide a brief overview of our system,
followed by a detailed description of the conflicts
between security features and the publish/subscribe
communication protocol, and finally techniques to
resolve these conflicts.

II. BACKGROUND

A. TSSN
Monitoring cargo movements along trusted corridors

requires coordinated application of sensing,
communications, as well as the integration of shipment
and other associated cargo information. To realize a
trusted corridor a Transportation Security Sensor
Network (TSSN) has been designed, implemented and
tested in the field [4] to provide the required visibility
into cargo shipments.

The system is composed of three major
geographically distributed components. The Mobile
Rail Network (MRN) consists of container seals that
communicate over a wireless network to a reader when
an event occurs, e.g., seal open, a sensornet collector
node that interfaces to the reader, processes events,
determines which events need to be communicated to a
virtual network operations center (VNOC), and the
mode of communications (e.g., GSM or satellite). The
second component is the VNOC, which accepts
messages from the MRN, obtains associated cargo
information from a remote trade data exchange and then
combines the information (e.g., nature of the event,
location of the event, and cargo manifest) into an alarm
message that is sent (by e-mail or SMS) to appropriate
decision makers. The third component is the trade data
exchange that contains the shipment information and
other associated cargo information. A goal of the effort
was to create technologies that will allow continuous
monitoring of containers by leveraging communications
networks, sensors as well as trade and logistics data
within an environment composed of multiple
enterprises, owners, and operators of the infrastructure.

 2

The resulting technologies must be open and easy to
use, enabling small and medium sized enterprises
(SMEs) to obtain the associated economic and security
benefits. Thus a standards web-based open system is
preferred. The architecture developed as part of this
effort uses existing software components in addition to
those specifically developed for the TSSN. The
infrastructure is based on W3C and OASIS Web Service
specifications; including service discovery, services are
described using Web Service Description Language
(WSDL), and Client/Server communication based on
Simple Object Access Protocol (SOAP). Figure 1
provides a top-level view of the TSSN architecture.

Figure 1

The TSSN has been tested in the field where the
VNOC was located in Lawrence, Kansas, alarms
generated on the train were sent to the MRN located in
the locomotive, which forwarded relevant alarms to the
VNOC. When the VNOC received an alarm, it
contacted the TDE located at Overland Park, Kansas. to
get the cargo information. The VNOC then combined
the sensing and the shipment information to generate the
alarm messages that were then communicated to a set of
interested parties. See [4] for a discussion of TSSN field
trials.

1) Security Requirements
Our application includes services and clients hosted

by independent businesses often exchanging sensitive
data. Therefore, robust and flexible security features
were an integral portion of our design. It was clear that
a single system wide security policy would be entirely
inadequate to satisfy our goals.

As described in the following section, the Web
Services Security[5] specifications provide support for

the range of capabilities required in our system
definition.

The Web Services Security model includes many
features that are particularly important to our
application:
• Does not rely on a single, application-wide

security policy. Each service is allowed to define
a security policy to match the sensitivity of data
exchanged and other system constraints, such as
bandwidth limitations.

• Provides a mechanism for each service to publish
its security policy in a formal standard syntax, so
that clients do not require details of service
implementation.

• Does not demand (though allows for) a single,
centralized supplier of authorization.

• Permits each easy extension of both services and
clients.

In our distributed application some services must

operate within tight processor and/or bandwidth
constraints. A general comprehensive security policy,
predicated on relatively large bandwidths among
members, probably would not fit within the operating
constraints of some services in our system. However,
even in constrained environments, it is not acceptable to
ignore security issues. The structure defined in WS-
Security (WSS) specification allows each service to
define precisely the amount of security, and
implementation guidelines, to a fine degree. The WSS
specification supports the attachment of security
constraints at a variety of levels within the service
definition including, service-wide policy, specific policy
per operation, and distinct policies for different
connections to the same service. The specification
further defines how overlapping policies are to be
integrated. This flexibility in defining the security
policy for a service allows one to precisely define the
level of security for a wide variety of services and to
address changing demands if additional capabilities
(operations) are added to an existing service.

The security policy(ies) enforced by a service can be
specified in the WSDL (Web Services Definition
Language) [6] description that formally defines a web
service interface. The security policy is a critical
aspect of a service interface that must be understood by
any potential client. In earlier system implementations

 3

this information was generally expressed by any number
of informal and ad hoc techniques, such as extra
documentation and/or direct person-to-person
communication between service provider and client.
Web Services Policy 1.5 [7] defines a formal language
to precisely define a service’s security requirements,
and to incorporate it into the web service interface
definition. This is a major advancement for facilitating
inter-operation of a service and its clients. This is
particularly important when the service author and
clients belong to independent business organizations.

2) Asynchronous Communication Requirements

A second fundamental aspect of our system is the

ability to contact a diverse group of users when specific
sensor events occur. For example, if a security lock is
compromised on a container, we may need to
immediately contact the carrier of the container, public
first responders in the area in which the event occurs, as
well as the owner of the specific container.
Asynchronous notification does not directly fit the
traditional client-server model. For many applications,
some variation of client polling can be used in place of
asynchronous notification. This approach is widely
used in web applications, for example with RSS feeds.
However, for our TSSN application, timely delivery of
alerts and alarms is critical to utility of the system.
Some portions of the TSSN network have very limited
bandwidth and possibly long communication delays,
further discouraging the usage of polling.

Fortunately, the Web Services Architecture includes

the WS-Eventing [8] specification that defines a
protocol for one Web service (“subscriber”) to register
interest in another Web service (“publisher”). In this
document we will refer to this capability as the
“publish/subscribe communication protocol”. The
publisher disseminates information to the subscriber(s)
by sending one-way messages. The specification
further defines mechanisms to dynamically add and
remove members from the subscriber list; and support
for complex publisher-subscriber topologies by
allowing an “event source (to) delegate subscription
management to another Web service”[8].

B. WSA-based Implementation
Adopting the Web Services Architecture as the basis

for the TSSN dramatically reduced the effort we needed
to both design and implement the infrastructure.
Simply asserting that all services and clients would be
WSA compliant eliminated the need to design and
provide implementation for significant portions of our
system. For example, our design simply stated that an
alarm service would provide notification of the
occurrence of an alarm condition via a publish/subscribe
protocol (using WS-Eventing). We did not need to
design the actual message protocols, and determine how
they would be realized over various transport layers; nor
address implementation issues of buffering, timeouts,
etc.

Furthermore, a variety of open source and vendor-
supplied implementations of various portions of the
WSA are available. We chose to use the open source,
Apache Axis2 [9], web services software stack in our
implementation of TSSN. This middleware
dramatically reduced the amount of code to be written
by our team. In particular, the Axis2 program suite
includes modules providing implementation for the two
specifications, WS-Security and WS-Eventing, that are
the subjects of this paper.

The Axis2 module, Rampart, is “a module based on
Apache WSS4J to provide WS-Security features”[10].
This module places handlers in the pre-dispatch phase
of Axis2 message handling, with independent
configurations for each service on the server side. In
addition, the Rampart module can automatically extract
and enforce the security policy(ies) specified in the
service definition. This feature ensures that the security
requirements of a service always match the service’s
published security policy. In addition, the service
provider is able to alter the security policy enforced for
the service operations by simply modifying its service
definition – without making source code changes.

The Axis module, Savan, is an “implementation of
WS-Eventing specification …designed as a general
publisher/subscriber tool”[11]. When any service
engages the Savan module, it provides implementation
for a number of additional operations including
Subscribe, Unsubscribe, Renew, and GetStatus.

III. IMPLEMENTATION CONFLICTS
In the design process, we did not specifically address

 4

how security issues for the publish/subscribe
communications would be handled. Security issues for
servers and clients were considered independently in the
context of the WS-Security specification and
implementation. This separation is an example of the
divide and conquer engineering practice described
earlier. The decision to consider these aspects of the
design independently was concretely supported by the
web services architecture documentation. The WS-
Eventing submission begins with the statement: “This
specification specifically relies on other Web service
specifications to provide secure, reliable, and/or
transacted message delivery and to express Web service
and client policy.” [12]

Preliminary implementation tests were encouraging.
We created a simple client/server test case. First, the
service interface was formally defined in WSDL 2.0
(Web Service Description Language)[6]. In this first
version, no security policy was defined in the WSDL for
the service; and programmers generated a successful
implementation for the service and a client based on the
formal interface definition. In the next step, a security
policy was attached to some operations defined for the
service. The service was rebuilt against the modified
WSDL definition, and immediately enforced the stated
security policy on the selected operations. The
(unmodified) client was able to access only the
operations for which no security policy was enforced.
With minor modifications to the client, to provide the
necessary security credentials demanded by the
modified service, the client was able to invoke all
service operations.

In summary, this test indicated that a service could be
implemented without regard to the service policy
demanded for its operations. In addition, different
security policies could be assigned at a very fine grain
down to different operations within the same service.

Unfortunately, when we proceeded to integrate these

concepts into the implementation of TSSN we
encountered serious unexpected difficulties. The TSSN
includes services that are also clients to other services.
For example, the VNOC alarm processor service sends
email messages containing sensor alarm notification
coupled with relevant cargo information. In order to do
so, this service must solicit information from both the
MRN and TDE services. So, the VNOC alarm

processor service also performs a client role to these
two other services. Because alarms occur
asynchronously, the MRN alarm processor uses the
publish/subscribe protocol for exchanging information
with its clients. It was very difficult to realize
independent security policies for the VNOC alarm
service and MRN alarm service for which it is a client.

This problem arises because of the interactions
between the WS-Eventing specification (for the
publish/subscribe communication) and WS-Security for
the two services. For this discussion we label a service
that is also a client to another service using the
publish/subscribe protocol, as a service with
asynchronous client.

A. Server Operations Obscured
When a service engages the Savan module to support

WS-Eventing, Savan inserts handlers into the pre-
dispatch phase of operations destined to the service, and
implicitly provides features of the WS-Eventing
specification for this service. The task of these pre-
dispatch handlers is to detect and handle operations
defined in the WS-Eventing specification. These
operations include: Subscribe, Unsubscribe, Renew,
GetStatus, however, these operations never appear in
the WSDL for the user-defined service. So, these
operations are “obscured”, that is, do not appear in the
external, WSDL definition of the user-defined service.
This has major impact on the specification and
implementation of security for these operations as
described in the following paragraph.

As demonstrated by our early test cases, using WSDL
to formally define the service interface, including the
security policy(ies) associated with its operation set, is a
very powerful abstraction. Clearly, providing a
standard, public definition of the interface promotes
interoperability. In addition, middleware tools (we use,
Apache Axis2) provide support for securing messages.
If a service (client) engages the Axis2 Rampart module,
handlers are inserted in the pre-dispatch phase to satisfy
the security policy expressed in the service WSDL. The
Rampart module automatically handles signing
messages, encrypting/decrypting messages, applying
and verifying timestamps, etc. This significantly
reduced the coding effort for servers and clients.
Perhaps, even more importantly, modification of
security policy attached to service operations may
require no modification of the service or client code,

 5

since securing messages can be handled by the
underlying Rampart module.

Since these eventing operations do not appear in the
WSDL, there is no place to express the specific security
policy for these operations. This has adverse effects for
both the publisher (service) and subscriber (client).

Although the service author cannot attach security
policy to specific WS-eventing operations in the WSDL,
it is possible to attach a security policy at the service
level. Specification at this level, attaches the same
security policy to every operation of the service.
Sometimes this is an acceptable compromise, but in
general, one wants the finer level of security control that
WS-policy provides for other services. In our
application, we require higher levels of security for an
entity requesting subscription to a sensor’s alarm events,
than to other more general status operations to
determine if a sensor is active, etc.

For a service with asynchronous client assigning a
service level security policy implicitly applies the same
policy to both the service side and client side
operations. This effectively requires this service to
utilize the security policy of the service supplying it
with asynchronous input for its own operation set. This
is completely counter to the WS-Security intention to
allow each service independently define its own security
policy.

On the client (subscriber) side, obscuring these
additional service operations also makes it difficult to
ensure that the client satisfies the security policy
enforced by the server. The service stub generator, used
to generate a framework for a client for the service
incorporates code to direct the Rampart module on the
client-side to satisfy the security policy appearing the
service WSDL for each visible operation. Since the
eventing specific operations do not appear in the service
WSDL, this behavior is not available.

On the client side, the explicit server eventing
operations are further hidden from the client author. The
client code must include an external library (provided
with the Savan module) that provides an abstract
functional interface providing the WS-Eventing
capabilities. Internally the Savan module invokes the
Subscribe (and related) operations provided by the
service. Unfortunately, Savan completely ignores
security policy required by the service it contacts.

B. Reversal of Client and Server Roles
For the delivery of asynchronous messages from

server to client, Savan effectively reverses the roles of
the participants. The server (publisher) delivers a
notification to the client (subscriber) by invoking a
client operation. The name of the client operation
corresponds to the notification type. So, for
notification, the server requests the named operation to
be performed by the client.

From the perspective of security management, the
client must enforce the appropriate security policy for
the incoming operation message. The client now
controls the level of security for the delivery of
asynchronous messages. It is much more appropriate
for the server, who is the owner of the information
being distributed, to control the level of security used
for this message transfer.

C. Multiple Subscribers, Different Security Policies
As described in the previous section, the Savan

module permits the client (subscriber) to define the
security policy for the delivery of asynchronous
messages. In addition to mis-assigning security
responsibility, this role reversal may make it (nearly)
impossible for the server to successfully deliver
notification to all clients. Multiple clients may
subscribe to a server for the same notification (a core
feature of WS-Eventing), and each could enforce a
different security policy in its implementation of the
associated notification operation. The Savan module
provides no support for delivering notification to
different subscribers with different security policies, so
special care must be taken to ensure that every client
specifies the same security policy for notification
operations.

IV. RESOLUTION
As described in section III, use of the Savan module

to implement WS-Eventing seriously restricts the
independence of security policy for servers and clients.

Initial attempts to specify security policy for
publishing services failed. The current release of Savan
for subscription support, ignores security policy
required by the service it contacts. Since these
operations are invoked below the level of the user-
written client code, there is no obvious way to ensure
that the service provider’s security requirements are

 6

satisfied. In order to satisfy the security requirements
for subscription in our system, we modified the Savan
module, and added a new method to allow the client to
transfer to Savan the service security policy.

If every subscriber to a server providing
asynchronous notification is purely a client, then many
of security policy conflicts can be resolved, though,
informally, by the server describing the security policy
it will apply to notification messages it sends; and
expect all clients to respect this agreement.
Unfortunately, this workaround significantly diminishes
many of the advantages of WS-Security related to
formally publishing security policy in the service
description (in WSDL). In our experience, both server
and client were required to embed in its implementation
details of this security policy.

In the case of more complex clients, such as a server
with asynchronous client, the challenges became more
complex. For services of this type, it is necessary to
distinguish those operations that define the interface of
this service to its clients, from the operations added to
handle the notifications sent to it. We devoted large
amounts of time to testing and debugging to eventually
generate services meeting specific security constraints
for our application. The goal of generating a solution
with a flexible and extensible set of security policies
was compromised at the critical juncture where multiple
services communicate asynchronously.

V. CONCLUSIONS
We were able to successfully field the TSSN as a set

of web services and ensured that all links satisfied our
security constraints. But to do so, we had to require that
otherwise independent services shared the same security
policy for their respective operations; and we had to
embed security policy decisions directly into the
implementation of some services. These compromises
restrict the flexibility and extensibility of TSSN.

To fully resolve these issues, we believe that aspects
of the WS-Eventing specification, and the Savan
module implementation, in particular, need to be
reviewed from the perspective of interactions with WS-
Security.

The specifications should more clearly identify who
is responsible for the definition of security policy for the
delivery of messages from publisher to subscriber. The
publisher of the information invokes an operation of the

subscribing (client) service, thereby deferring the
security policy to the operation owner, or client.
However, since the publisher is the actual owner of the
information being disseminated, it seems that it should
maintain responsibility for the service policy to enforce
when delivering messages.

In addition, the implementers of the Savan module
should review the implementation strategy for the WS-
Eventing specifications to ensure that it respects the
security policies expressed in the WSDL definition of
any service that activates the Savan module. In
addition, consideration should be be given to make all
WS-Eventing operations, such as subscribe, and renew,
explicit in the WSDL interface for each service
activating the Savan module. This is important to allow
the pusblishing service advertise (and enforce) specific
security policy for these operations.

ACKNOWLEDGMENT
This work was supported in part by Oak Ridge

National Laboratory (ORNL) Award Number
4000043403. This material is also partially based upon
work supported while V. S. Frost was serving at the
National Science Foundation.

REFERENCES
[1] David Booth, et al. “Web Services Architecture, W3C Working

Group Note.” http://www.w3.org/TR/ws-arch/, W3C 2004.
October 2009.

[2] W3C. http://www.w3.org/, W3C 2009, October 2009.
[3] Martin Kuehnhausen, “Service Oriented Architecture for

Monitoring Cargo in Motion Along Trusted Corridors,” Master’s
thesis, University of Kansas, July 2009.

[4] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N.
Oguna, L. S. Searl, E. Komp, M. Zeets, D. D. Deavours, J. B.
Evans, and G. J. Minden, "Experiences from a Transportation
Security Sensor Network Field Trial." to appear Proc. 3rd IEEE
Workshop on Enabling the Future Service-Oriented Internet-
Towards Socially-Aware Networks (EFSOI 09), Honolulu,
Hawaii, USA, Nov. 2009.

[5] Anthony Nadalin (ed.) et al. “Web Services Security: SOAP
Message Security 1.1.” http://docs.oasis-open.org/wss/v1.1/,
OASIS Open, Feb. 2006.

[6] Roberto Chinnic (ed.) et al. “Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language,”
http://www.w3.org/TR/wsdl20/, W3C 2007, October 2009.

[7] Asir S Vedamuthu (ed.) et al. “Web Services Policy 1.5 –
Framework.” http://www.w3.org/TR/2007/REC-ws-policy-
20070904/, W3C September 2007, October 2009.

[8] Don Box (ed.), et al.”Web Services Eventing (WS-Eventing),
http://www.w3.org/Submission/WS-Eventing/, W3C March
2006, October 2009.

 7

[9] “Apache Axis2/Java - Next Generation Web Services,”
http://ws.apache.org/axis2/, Apache Software Foundation 2009,
October 2009.

[10] “Securing SOAP Messages with Rampart”,
http://ws.apache.org/axis2/modules/rampart/1_0/security-
module.html, May 04, 2007.

[11] “Apache Savan/Java”, http://wso2.org/projects/savan/java.
WSO2 Inc., 2009.

[12] Don Box (ed.), et al. “Web Services Eventing (WS-Eventing):
Introduction.” http://www.w3.org/Submission/WS-Eventing/,
W3C March 2006, October 2009.

