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Abstract - An active networking architecture provides the
infrastructure for applications to inject user programs into the
nodes of the network. This enables customization of the network
nodes so that application-specific services can be downloaded
into the network in the form of new protocols. In this paper, we
look at the different kinds of services that applications require
from the network. We study these services to identify common
characteristics so that services can be grouped into classes of
protocols. We argue that this study permits us to develop a
methodology that helps in rapidly designing and deploying new
protocols.

I.  INTRODUCTION

Traditional networks have the drawback that the
intermediate nodes are closed systems whose functions are
rigidly built into the embedded software. Therefore,
development and deployment of new protocols in such
networks requires a long standardization process. The range
of services provided by the network is also limited because
the network cannot anticipate and provision for all needs of
all possible applications. The inflexibility of the current
network architecture severely inhibits protocol innovation.

Active networking [1][2] offers a different paradigm that
enables programming intermediate nodes in the network. In
an earlier paper [3], we defined a network to be active if it
allows applications to inject customized programs into the
network to modify the behavior of the network nodes. This
allows applications to customize the network processing and
adapt it to the application’s immediate requirements. This
enables new protocols and new services to be introduced into
the network without the need for network-wide
standardization. To understand the advantages and drawbacks
of an active networking environment, we constructed a
prototype active network implementation [4] that serves as a
vehicle for deploying new protocols and study the
performance of the components of the prototype. In this
paper, we address the issue of the actual development of new
protocols for the active network. The goal is to develop a
methodology for introducing new protocols in an active
network and study the performance of the sample protocols.

The remainder of the paper is organized as follows. The
next section describes the problem motivation. Section 3
briefly touches on the concept of active networking and the
essential components of an active network. Section 4

develops the concept of protocol classes. Section 5 describes
some of the problems of wireless networks and suggests
solutions in the form of new protocols based on the protocol
classes defined in the previous section. Some experimental
scenarios and performance of the new protocols are shown in
Section 6. The paper concludes with an overview of related
research and a summary.

II. BACKGROUND AND MOTIVATION

In recent times, substantial research has focused on
performing application related processing inside the network.
Research on booster protocols [5] attempts to selectively add
protocol stubs or "boosters" in the network on a per-
application basis. Boosters are protocol modules that
implement a proprietary protocol and are statically
configured into the protocol stacks of the network nodes or
the end systems. The protocol modules can be combined with
other protocol modules dynamically to provide on-the-fly
customization of the network. Another example of
application-specific processing inside the network is the
research on active or adaptive caching strategies being
developed by [6]. Client requests are sent to a cache that
actively decides whether to respond to the request directly or
pass the request along to other caches or the origin server
based on its knowledge of the network state.

New standards developed for video send MPEG coded
video in layered form. By prioritizing the layers, it is possible
to maintain real-time connectivity in times of network
congestion by dropping packets containing the lower priority
layers. Similar strategies are being used for audio transport
wherein the signal components are separated based on their
level of contribution to the original sound. Signal components
that do not contribute heavily are placed in lower priority
packets that are specially marked for discard if congestion
occurs. In the Wireless ATM Voice/Data project [7] at the
University of Kansas, two or more voice packets are
compounded and sent as one voice packet reducing the
bandwidth by the factor of the compounding. Thus we see
that in all the examples, the application tells the network in a
limited way how to handle its data.

Other research focuses on the advantages of putting
processing in the network that was traditionally performed at
the end hosts. In the Distributed Sensor Data Mixing project
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[8] at Lancaster University, remote sensors such as
microphones and antennas, collect data and transmit them to
receivers on the network. Instead of having each receiver
perform its own mixing of the transmitted data, some of the
mixing is done within the network on the input signals that
pass through the network node at approximately the same
time. If the mixed signal is smaller than the sum of its
constituents, then it reduces bandwidth requirements and the
processing to be done at the receiver. These efforts attempt to
create new network protocols to handle application-specific
processing. However, in traditional networks, design and
deployment of new protocol standards take time. Active
networking provides a platform for introducing and testing
new protocols into the network without a long standardization
process. Active networking prototypes developed at MIT [9],
University of Kansas [4] and Georgia Institute of Technology
[22] have actually implemented some of the ideas mentioned
above as new protocols in their prototypes. This
experimentation suggests that protocols are nothing but
services provided by the nodes of the active network. In an
active network, applications have the ability to access these
services and customize them for their needs.

Our goal in this paper is to identify and classify protocols
based on functionality that a network generally needs to
provide to applications. Such taxonomy enables us to create
protocol classes for services that an application is apt to
demand from the network. Essentially, these classes describe
properties of the protocols that implement the services that
applications need. Currently, the taxonomy contains protocols
and classes that are generally prevalent in current networks.
Even so this study is important because a thorough study of
these classes will eventually lead to a better understanding of
the manner in which protocols must be designed and
deployed in active networks,

III. ACTIVE NETWORKING CONCEPTS

Traditional networking implementations follow a layered
model that provides a well-defined protocol stack. Many
implementations, for performance purposes, embed the
networking implementation across network interfaces, the
operating system, runtime system, and/or the application.
Most implementations provide a fixed protocol stack that is
determined by a long standardization process often taking
many years and is fixed when the final system is constructed.
The time delay from the conceptualization of a protocol to its
actual deployment in the network is usually an extraordinarily
long process. Active networking offers a technology where
the application can not only determine the protocol functions
as necessary at the endpoints, but one in which applications
can inject new protocols into the network for the network to
execute on behalf of the application. The protocols presented
in this paper are developed on the prototype implementation
of an active network architecture built here at the University
of Kansas. The details of the architecture are described in [4].

In this paper, we cover only those aspects of the architecture
as are necessary for the understanding the concepts.

A.  SmartPackets

In an active network, data packets are information entities.
These entities, called SmartPackets, contain a destination
address, user data, and methods that are executed locally at
any node in the active network. Since architectures like the x-
kernel [10] and Horus [11] allow us to compose complex
protocol stacks from single-function protocols, we can think
of SmartPackets as carrying customized protocols that have
to be fitted in with protocol modules at the network nodes.
The code in the SmartPacket can be in any executable format
and it is executed at the node if the node has the correct
processing environment. In our implementation, the code of
the SmartPacket is a Java [12] class that describes the
methods that act on the user data.

B. Active Nodes

Nodes in an active network are called active nodes
because they are programmable elements that allow
applications to execute user-defined programs at the nodes.
Active nodes perform the functions of receiving, scheduling,
executing, monitoring and forwarding SmartPackets. When a
SmartPacket arrives at an active node, it is scheduled for
execution. A separate environment is required for each
invocation to prevent undesirable interactions and malicious
access to node resources. Active nodes export a set of
resources and primitives that can be used by user programs.
Active nodes also enforce constraints on the actions that can
be performed by user code. Thus an active node enforces a
time limit on the execution of SmartPackets to prevent
runaway user programs and on the total memory that can be
requested by a SmartPacket. User code has restricted access
to certain internal information such as the routing tables,
buffer space information and available link bandwidth on the
node’s interfaces. Users can utilize this information to
develop application specific strategies to combat congestion
or implement a custom routing policy. SmartPackets are also
allowed to leave behind information in the form of small state
for trailing SmartPackets to utilize.

IV. PROTOCOL CLASSES IN ACTIVE NETWORKS

The implementation the prototype active network has
enabled us to develop and test new protocols. We have
implemented new protocols for routing (a beacon routing
protocol based on the geographical routing concept [13]),
caching (smart HTTP) and mail transfer (smart SMTP). We
have also developed [4] active versions of ping and traceroute
that are efficient as well as intelligent. We have closely
followed the experiments conducted on prototype active
networking platforms at MIT [9] and Georgia Tech [22]. The
experimental protocols described in the above studies were
developed specifically for a chosen application. But a closer
study of these protocols indicates that while each protocol



seems  application-specific, it generally  possesses
characteristics that are common to some other protocols. All
such protocols can collectively form a class. Classification
enables us to isolate properties shared by members of a class.
This facilitates rapid design of new protocols and their
seamless introduction into the network.

Consider the example of a new protocol being developed
that gets identified as belonging to one of several pre-defined
classes. If all active nodes advertise the protocol classes that
they support, then we are assured that the new protocol will
run on the active nodes that support the protocol class. We
can quickly build a prototype of the protocol using the
interfaces and the node primitives defined for the class and
start experimentation. The development and deployment
times for the new protocol are thus vastly reduced. The
experimental results and performance measurements obtained
from the prototype are then used to fine-tune the protocol.
Grouping protocols into classes allows us to develop a
methodology for designing new protocols and for using
existing protocols. At this stage, we have identified the
following key issues to consider while developing a
methodology for each class: (1) architecture for deployment,
(2) common interfaces, and (3) node primitives required. The
architecture refers to the placement (location) of the protocol
services in the nodes of the active network. The structure of
the SmartPacket and its design make up the interface while
the node primitives describe the requirements of the protocol
before it executes at an active node. It is important to find out
if there is a topology for the distribution of a protocol inside
the active network that is the most efficient. For example,
protocols designed to match data rates on either side of a
wireless gateway have to be deployed at the wireless gateway
itself. During the design phase, one might discover that the
protocol has to be deployed at select nodes that possess
certain characteristics. If so, is there a way by which such
nodes can be dynamically identified?

The grouping of protocols into classes helps in identifying
common interfaces. We can then define a structure for the
SmartPackets that implement protocols belonging to the
particular class. Clearly, this enables rapid prototyping.
Protocols of the same class generally require the same set of
services from an active node. For example, protocols
belonging to the bridging class require buffer space because
the protocols combine packets and sometimes they have to
hold a packet from one of the streams while packets from the
other stream(s) arrive. It is therefore useful to identify the
common services required for the class and the primitives
that an active node must provide for SmartPackets to avail of
those services. We have identified the following classes of
protocols: filtering, combining, transcoding, security
management, network management, routing control and
supplementary services. We discuss their features in detail
and outline a methodology to develop protocols belonging to
each of the classes.

A. Filtering Class

The filtering protocol class encompasses all those
protocols that perform packet dropping or employ some other
kind of bandwidth reduction technique on an independent
per-packet basis. We see that compression protocols and the
transmission of layered MPEG falls in this category.
Protocols belonging to the filtering class are primarily
developed to reduce bandwidth requirements of the
application data. Bandwidth reduction techniques are always
required whenever there is a severe rate mismatch. This
typically occurs at interfaces where there is an order of
magnitude difference in the speeds on opposite sides of the
interface e.g. the interface between wired and wireless
networks. In such cases, it is obvious that the protocols have
to be deployed at the interface gateway and therefore it must
be included in the topology.

Applications identify nodes for deploying the filtering code
by using SmartPackets that "sniff out" the nodes within a set
of nodes at which a rate mismatch occurs. Alternately, the
connection path is primed by installing the protocol at all
nodes on the path to tackle any congestion problems. Since
protocols of this class are designed primarily to reduce
bandwidth requirements, the active node must supply
primitives: (1) to find out available bandwidth over a given
interface; (2) to find the bandwidth capacity of all interfaces;
and (3) management of small state involves providing
primitives for the creation of, the storage of information to
and the retrieval of information from the small state.

B.  Combining Class

The class of combining protocols has the property of
combining packets that may come from the same stream or
from different streams. The Wireless ATM Voice/Data
project [7] combines two or more packets from the same
stream to form a single packet that is forwarded to the next
hop. This is not a member of the filtering class because
packets from the same stream are being combined. The
Sensor Data Mixing project [8] is another example because it
combines different streams into one. Research on caching
techniques also falls in this category because caching
combines common requests from separate streams as one
consolidated request and then multicasts the reply back to the
requesting parties. Protocols belonging to the bridging class
are best deployed close to the sources of the data streams to
enable early mixing of the data streams since the mixing
process generally reduces the bandwidth of the resultant data
stream. This process is the inverse of multicasting and some
of the architectural issues of multicasting seem to be relevant
here. Combining is computation-intensive and therefore
active nodes deploying such a protocol must have sufficient
processing power. They must also have sufficient memory
storage because combining sometimes involves storing
packets from one stream until packets from the other arrive at
the node. Therefore the interfaces that active nodes have to
provide for this class of protocols are (1) to find memory



available for the SmartPacket; (2) management of small state;
and (3) cloning/duplication of SmartPackets for multicasting.

C. Transcoding Class

Protocols that transform user data into another form within
the network belong to the class of transcoding protocols.
Examples of such protocols include encryption protocols and
image conversion protocols. These protocols are CPU-
intensive and therefore require nodes with sufficient
computing resources. Encryption protocols are generally
deployed only at the end-points of a connection As
mentioned before, protocols of this class are primarily
processing functions and therefore the primitives desired are
(1) available memory; and (2) computing resources.

D. Security Management Class

The ability of the user code to access node resources raises
questions about security. Active nodes must prevent
SmartPackets from over-consumption of resources such as
CPU time and memory storage. Active nodes must prevent
SmartPackets of one application from interfering with the
execution of other unrelated SmartPackets. SmartPackets
must also be prevented from unauthorized access to node
resources such as internal tables. But management packets
i.e. SmartPackets that manage services at the active node,
require access to internal data structures. Therefore, active
nodes implement levels of security to authorize and monitor
accesses. A security association is established by a security
protocol to determine the level of security at which a
SmartPacket executes. Security protocols use security
infrastructures such as key exchange or identity certificates to
create and authenticate a security association. The association
also determines the authorization that SmartPackets
belonging to the association have to the active node's
resources. The authorization includes or excludes certain
rights of access such as read/write/create permissions to
internal tables or memory storage, or ability to create or
define new properties for the association and/or modify
existing properties. Therefore, the following primitives are
required by protocols belonging to this class: (1) to create,
maintain, and destroy security associations; and (2) to
establish, extract, grant and revoke authorizations and
privileges to SmartPackets.

E. Network Management Class

The programmability of the nodes in an active network
enables the creation of self-configuring, self-diagnosing and
self-healing networks. This involves actions such as alarm
and event reporting, accounting, configuration management,
and workload monitoring. The advantage of using active
network to perform such functions is that it is possible to
capture a consistent state of a node by sending a single
SmartPacket that gathers all relevant information at one time.
In SNMP, the management station sends successive SNMP
requests to a node and the information gathered is later
assimilated. The information gathered in this manner may not
be consistent because there is an inherent latency involved in

sending requests and getting replies. State at a node may
change by the time the next request arrives and therefore the
replies cannot necessarily be correlated to reflect the correct
state of the node. Some state information could be such that it
is required to be gathered only if some other state variable
possesses a certain value. The logic required to perform such
an action must has to be previously coded at the node or the
management station is forced to make successive requests,
once for the independent state variable and then for the
dependent state variables.

Protocols performing such actions need a completely
different set of privileges and architecture. The security
association described earlier provides the privileges for the
protocols to gather state, update node properties such as
usage limits, and report state back to monitoring entities. The
architecture involved in the deployment of these protocols
requires dynamically establishing monitoring and monitored
entities in the network. Alarm and event reporting functions
have to be defined and installed at various nodes in the
network. Accounting and performance information is
gathered, stored and, in some cases, processed and reported to
other entities on the network. The active nodes must provide
management SmartPackets with the following interfaces: (1)
to create, access and modify the state of the active node; (2)
to establish events and state information to be gathered; and
(3) to establish frequency and format of reporting event
information. For example, event information can be
formatted in Universal Logger Message [14] format.

F. Routing Class

Active networks provide applications with the benefit of
overlaying several virtual topologies on top of the same
physical network. Applications can use their own routing
protocol that is derived from the virtual topology defined by
the application. Thus we can implement several novel routing
strategies such as geographical routing and information-based
routing. This class of protocols is different from the network
management class because in an active network, routing is an
application service. Using custom routing strategies,
applications create virtual network topologies that are
overlaid on the physical network. Such virtual topologies are
important for, say, mobile users to simplify handoffs and
location management. The primitives that protocols of the
routing class require are (1) information about the ports to
neighboring nodes; (2) interfaces to receive port status
messages; and (3) information about queue sizes at the ports.

G. Supplementary Services Class

Some protocols have the property of adding new features
to the packets based on their contents. These protocols can be
grouped into the supplementary services class. We use the
term supplementary because these protocols do not alter the
contents of the packet and usually add a new feature to the
packet. An example of this protocol is content-based
buffering which is an extension to the concept developed by
the DataMan project [15][16]. In a wireless network, if



connectivity to the mobile host is lost, incoming packets are
buffered or discarded depending on the contents of the
packet. Buffered packets are transmitted once connectivity is
re-established. Content-based buffering increases efficiency
of the protocol by discarding packets that contain real-time
data that cannot be delivered in time. The typical
requirements of these protocols are (1) finding available
memory; and (2) management of small state.

V. PROBLEMS IN WIRELESS NETWORKS

The principal concerns of wireless networks are that the
mobile hosts are typically resource-poor and have low-
bandwidth, unreliable connectivity to the static elements. The
rate at which data is transmitted to the client has to be limited
to match the bandwidth of the wireless link to prevent queue
overflows and potential data loss. Rate-limiting is achieved
either by compressing the data before sending it over the link
or by filtering out data packets. Applications alone can
determine the most suitable method. Active networking
addresses this problem by allowing the applications to install
the required filter at the wireless gateway.

Wireless networks are considered unreliable because the
links have changing bit-error rate (BER) and are prone to
sporadic connectivity breakdowns. Forward error correction
(FEC) is typically used to counter high BER. Adding FEC
padding increases the size of the data packet being
transmitted. Higher the BER, more the number of FEC bits
required. But in the case of a changing BER, a constant FEC
padding is not suitable. If the current BER of the link is low,
then the extra FEC bits are an overhead. On the other hand, if
the BER is too high, the FEC used is not good enough.
Intermittent connectivity poses a different kind of problem.
Incoming data packets have to be cached at the base station
during times of disconnection and the unit must be re-
integrated upon reconnection and the data packets transmitted
at that time. The base station or gateway must possess a large
buffer space to hold all data packets that arrive during the
disconnection period.

A. Active Networking Solutions

We now attempt to derive solutions to the above problems
by using the protocol classes defined earlier. Using a protocol
belonging to the supplementary services class such as an
adaptive FEC protocol solves the problem of changing BER.
The BER of the wireless link is monitored continuously.
Based on the current BER of the link, an appropriate number
of FEC bits are added on the packet before transmitting it
across the link. Thus the strength of the FEC padding
depends on the BER of the link.

A protocol such as content based buffering which is a
member of the supplementary services class can be used to
counter intermittent connectivity. In content-based buffering,
applications use SmartPackets that encode information about
the time-sensitivity of the data (e.g. audio) and the maximum

allowable delay that it can incur before it reaches its
destination. If the mobile node is temporarily disconnected,
the SmartPackets are cached at the base station by invoking a
“sleep” method. For text data packets, the “sleep” method
does nothing, but for timing-sensitive packets the encoded
algorithm periodically checks the current time against the
allowable delay and discards the packet if the delay time is
exceeded. The bandwidth problem is tackled by the protocols
of the filtering class. If the data is in packetized form like
packet audio or layered MPEG, we use a packet dropping
technique. For text and graphics data, we can use a adaptive
compression protocol that varies the ratio of compression
based on the available bandwidth.

B.  Application-specific Filtering

We have utilized the filtering protocol class described
above to create a new filtering protocol for applications in the
MAGIC-II project (http://www.magic.net). We implemented
the new protocol in the active network to make applications
like Ibrowse and Terravision more responsive to network
characteristics, especially for clients that are connected over
low bandwidth links. These applications are image display
clients that make requests for image data from remote servers
to view imagery of terrain data stored on the servers. These
requests are made as part of a frame. The requests in each
frame correspond to tiles that are part of the current view.
The image data is returned as a set of tiles that the client
application processes to render the terrain. When the user is
panning the terrain, the client application makes requests for
a large number of tiles. If the user is panning very quickly, it
is entirely possible that by the time some of the tiles reach the
client, the user has no need for them because he has already
requested a different set of tiles. In this case, the received
tiles are dropped by the application. This is especially true
when the client is running on a wireless host i.e. a host
connected to the network over a wireless link. If the user is
panning very rapidly, then the wireless gateway can become
congested resulting in deteriorated performance. The network
attempts to deliver all requested tiles to the client, including
those that will eventually be dropped. An application-specific
solution to this problem is to prevent tiles that are candidates
to be dropped by the client, from being transmitted across the
wireless link. This reduces the demand on network resources
and enhances the ability of the application to respond to user
input because there are more network resources available
when it needs them.

The active network solution is to have the client customize
the network by dropping filtering code at the gateway (Fig. 1)
that maintains the identifiers of tiles that are currently
requested. Tiles that are not part of the current request list are
dropped at the gateway itself. This prevents congestion at the
wireless gateway. Because only tiles from the current request
list are allowed to pass through, the user is not limited by the
capacity of the wireless link. When the user stops panning,
the request list at the gateway corresponds to tiles in the
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current view enabling to pass through. The application is thus
able to quickly synchronize up with the user’s demand.

C. Application-specific Bandwidth Sharing

We have also created a new protocol called Request
Merging protocol derived from the combining class of
protocols. We trap requests from clients and transparently
redirect them to nodes on which a proxy exists that keeps
track of the requests made to the server(s) (Fig. 2). The proxy
acts like a beacon and sends information about itself to
neighboring nodes periodically as a special SmartPacket. The
information includes location of the proxy, time sent,
expiration time and number of hops to the proxy. When a
request reaches an active node, it is redirected to the nearest
proxy based on the information stored at the node. At the
proxy, if an incoming request has already been made on
behalf of another client, the current request is cached. The
received reply is multicast to all clients.

The architecture is distributed, dynamic and survivable. It
is distributed because there can be several proxies and the
clients do not have to know of them beforehand i.e. they are
“discovered” as the request is forwarded through the network.
It is dynamic because the proxies are mobile. The architecture
is survivable because if a proxy dies or the node on which the
proxy resides goes down, the requests automatically
propagate towards the destination until they encounter
another proxy. The architecture also allows for cascading
proxies so that a request made by an upstream proxy serves
as an input request to a proxy downstream. The reply is
multicast back in the same manner.

VI. EXPERIMENTS AND PERFORMANCE ANALYSIS

We conducted experiments to measure the performance
benefits obtained by implementing the solutions described for
the above scenarios. The topology of the network is as shown
in Fig. 1 and Fig. 2. The network consists of 8 active nodes, a
workstation running the Ibrowse application and another
running the image server connected by 10 Mbps Ethemnet.
One of the active nodes is connected to the network over a
500 Kbps radio link. In all experiments, Ibrowse fetched
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Fig. 2. Example of combining class protocol

49332-byte image tiles from a remote server over the wireless
link. A static route ensures that IP packets from the client to
the server are always forwarded over the wireless link. In the
active network, routing was controlled so that the route
between the client and the server included the wireless link.

In active networking, we trade processing time at the
network nodes for benefits gained by sending information
rather than data through the network, which can be in the
form of reduced bandwidth demand, better utilization of node
resources such as buffers and queues and/or application-
specific customization. Performance of the network is
traditionally measured in terms of throughput and delay. But
simply calculating performance in terms of tiles delivered per
second is inappropriate. Because Ibrowse drops tiles that are
outside the user’s frame, a better measure is to find out the
number of tiles that the application actually displays.
Therefore we define effective throughput to be the rate at
which information (i.e. data utilized by the application) is
delivered to the application. This differs from the traditional
interpretation of network throughput, which is the rate at
which the network delivers data irrespective of its utility to
the application at that time. In our prototype active network,
all processing is performed at the application level. This adds
overheads to the delivery of packets (tiles) from the server to
the client. The result is that our prototype is unable to keep up
with the standard network protocols, which are optimized and
run in the kernel. Our throughput experiment (Fig. 3) verifies

ou 4

0y ~-e-- Active Network
04 —— Normal Network

Tiles received/minute
b3

20 40 60 80 100 120 140
Tiles requested/minute

Fig. 3. Throughput performance comparison between traditional
and active networks



that the baseline performance of our prototype is 1.7 times
slower than the standard network in terms of throughput. The
peak throughput obtained by the prototype is a little above 31
tiles per second whereas the throughput over the standard
network peaks at 54 tiles per second. At request rates beyond
60, the capacity of the wireless link is a factor. The link
capacity prevents the tiles from reaching the client as fast as
the demand resulting in a backlog at the wireless gateway.
From a perception standpoint, the user is unable to pan freely
over the terrain. The application’s response deteriorates until
the user stops and allows all the bottlenecked tiles at the
gateway to be transmitted over the link.

We do not directly compare the performance gain obtained
by filtering vis-a-vis the standard network, because active
networking is still in its infancy and even with the
performance gain achieved through filtering will not be able
to match the performance of the standard network. But since
we are interested in quantifying the benefits of active
filtering, we normalize the performance by running the
experiment only on the active network implementation with
and without filtering. We then use this metric to extrapolate
on the gain that can be achieved when the performance of
active networks approaches that of traditional networking
protocols. We instrumented Ibrowse to report the number of
tiles that arrive and the number of tiles that are dropped. The
difference between the two numbers gives the “effective
throughput” i.e. the number of tiles that are useful to the
application. Fig. 4 shows the raw performance gain in tiles
per minute. The improvement in effective throughput is
marginal up to a request rate of 36 requests/min. As the
request rate increases the filtering code allows only useful
tiles to be transmitted over the link. This frees up bandwidth
over the wireless link for later requests and therefore
increases effective throughput. But at a rate of 60
requests/min, the filtering code prevents almost all tiles from
reaching the client resulting in marginal effective throughput.

The performance of the request merging protocol is
measured using an application called #v sim. tv_sim requests
tiles at a user-specified rate from the server and calculates the
total number of tiles it receives. #v_sim can also make
requests for a specified set of tiles only. This enables two

tv_sim clients running simultaneously on a host to requcst the
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Fig. 4. Comparative throughput performance for active filtering

same set of tiles. Over the traditional networking path, both
requests and the tiles received are duplicated over the route.
The request merging protocol implemented in the active
network reduces the bandwidth demand over the wireless link
in half by merging requests for the same tile that occur
together. We calculate performance by finding the total
combined throughput of both applications in terms of tiles
received per minute. We consider only the extreme case in
which all duplicated requests arrive simultaneously. We see
from Fig. 5 that the total combined throughput seen by the
applications is better over the prototype despite its poor
baseline performance. In fact, because only a single copy of
every tile is returned over the wireless link and then
duplicated, at request rates of 96 and 120 the aggregate
throughput over the prototype is significantly larger than that
over the traditional network. We also observe that at a request
rate of 160 tiles/min, the performance improvement is
insignificant. We suspect that the drop in throughput at that
request rate is an artifact of our implementation.

If we compare the throughput curves for the traditional
network from Fig. 3 and Fig. 5, we observe that the aggregate
throughput is equal to the throughput of a standalone
application. This validates the fact both applications compete
for network bandwidth and therefore neither achieves
significant throughput. However, for active networking, the
aggregate throughput is twice that of a standalone
application. This demonstrates that application-specific
merging protocols help in reducing bandwidth demand while
keeping throughput rates matching the applications needs.

VII. RELATED WORK

The ANTS [17] prototype developed at MIT has an
architecture  similar to our implementation. Both
implementations use the Java virtual machine as the
execution environment on active nodes and transfer
SmartPackets (which they call capsules) between active
nodes using UDP. There are some other efforts investigating
active networks. The SwitchWare project [18], a joint project
between the University of Pennsylvania and Bellcore
Communications, has developed a software switch on which
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programs can be downloaded that modify link behavior.
Researchers there have also developed a new language called
PLAN [19] written specifically for active networking
platforms. The idea behind the Netscript project [20] at
Columbia University is to provide a scripting language for
creating data-flow paths in the network.

The Liquid Software project [21] at the University of
Arizona investigates technologies that allow use of mobile
code inside the network. The active networking project at
Georgia Tech [22] embeds vendor-defined functions at
network nodes. These functions are available to the user for
performing user-specific services. Data packets carry control
information including identifiers to select certain functions
and a set of arguments describing state information to be used
in the computation. This is a functional model of an active
node rather than the Turing Machine model followed by our
implementation. The functional model has the advantage of
tighter security and better damage control but it lacks the
flexibility of the latter because the vendor cannot anticipate
all the functionality that users may require in the future.

VIII. SUMMARY

In this paper, we studied various kinds of services that
applications require from the network and classified them
into protocol classes based on common characteristics. We
demonstrated that by using the methodology developed for
the classes, we could solve problems in wireless networks by
building new protocols and deploying them rapidly using the
active network infrastructure. We also conducted studies on
the performance of the protocols and showed some
performance results. In conclusion, we can say that the results
of the study were quite encouraging. We feel that there is a
need for further study of protocol classes. The methodology
outlined here, while not yet complete, provides an initial step.
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Active Networking Services in
Wired/Wireless Networks
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Active Networking Basics

Active Nodes
» Provide set of programmable platforms
» Platforms standardized, not protocols

SmartPackets

+ Carry customization code that executes
on active nodes
User packets tailor node behavior to be
application-specific
« Management packets implement policy

pplications

101ARY2Q
oywads uoneonddy

Impacts
+ Rapid development and deployment of
novel and advanced services
+  Eliminate protocol standardization delay
« Customize network with "application-
specific behavior

Active Network

Key Issues

Rapid development

+ Build custom/enhanced services

+ Increase confidence in design
Rapid deployment

+ Location

« Transport

+  Advertisement
Identification of novel services

» Classify existing protocols

*  Look for new sarvices or enhancements
Elicit service requirements

»  What do services require from node?

University of Kansas |-




Classification: Service Classes

= s
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Rapid Development

« Modular approach
+  Divide protocol functionality into protocol modules
* Extend behavior to enable rapid design/prototyping
+ Compose modules to implement service
»  Abstract Comman interfaces
« Provides template-like abstraction
« Customize templates with required interface
* Promotes reuse
» Common node primitives (API calls)
*  Small State management
¢ Available resources/interfaces
— Adjacent active nodes
- Available bandwidth on outgoing links
« Developed new protocols for Filtering and
Merging classes using this approach

e e University of Kansas|-
Tochnology Conter

Rapid Deployment

* Architecture for deployment Wireless link
+  Attributes of physical bcation
- e.g. wirdess gateway [ |
« Topology of service
— domain-based
— cascaded
« Distribution mechanisms
« Limited broadcast or flooding
« "Sniffing”
~ search on node attributes
+ Path-priming
+ Implemented mechanisms as protocol
modules

University of Kansas




Filtering Class

« Employs loss-based techniques i.e. "packet-
dropping"”
¢ Used primarily for bandwidth reduction
~ Low capaciy channels
— Congestion control
+ Applcdpessppcaton-tow (0 (57 ] (1] [ —— (1] (1 [T
« Lossy compression Node
+ Dropping of B-frames in MPEG video  amauns®¥
* Deployment E
¢ At rate-mismatch boundaries ¢.g. wireless gateways
* "Sniffing" discrepancies in rates of outgoing links
+ Priming path to tackle congestion problems
+ Interfaces
« Determine traffic load
« Management of small state

Universif ofKansas}-

Combining Class

» Combine packets from same or
different streams

« E.g. sensor fusion, audio bridging [MIT]
» Deployment \1/2: 12

* Close to source

« Distribution using "sniffing” or priming
» Interfaces

* To assess computing power

«  For memory/small state management 1/4:1/4:1/4:1/4

* Cloning/duplication of packets

University of Kansas

Requirements in Wired/Wireless Networks

«  Wireless links: low bandwidth, high BER, intermittent connectivity
« Increasing reliability of wireless channel

» Adaptive FEC

¢ Selective caching
« Increasing effectiveness of available bandwidth
« Increasing responsiveness of applications cc d over wireless
*  Solution:

+ Maximize “Effective throughput”

» Send data that can actually be utilized

«  Differs from traditional throughput which bits received per second

Lot Lhi ',alKansasr-
Technalogy Center




Active Tile Filtering

Derived from Filtering Class

Used with terrain visualization application called Ibrowse
*  Performs ion control at the wil i gateway
+  Provides rate match ing for latency-sensitive data

+ Node primitives:
*  Small State
management
* Bandwidth monitoring
Deployment
* At wired'wireless
gateway
¢ Location is “sniffed”

wone Thareques DPSS Mulmr

B AcheNode (mauchiy.ukans.magic.net
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Active Request Merging

» Derived from Combining Class

« Consolidate duplicated requests from multiple clients

+ Send request to server and multicast reply back to clients

¢ N-fold savings of bandwidth ... n = #simultaneous requests

* Deployment:
* Domain-based
« Limited broadcast for
request gathering
«  Cascaded
*  Primitives:
*  Small State management E 1]
+ Cloning/duplicaton ek
Crent

ity of Kansas

Performance (Baseline)

@ AN basdine performance 1.7 times as dow
@ AN execution environment is JVM interpreter
@ SmartPackets execute in user-space

20 w0 @ 0 10 ™ 140

Tiles requested/mirute
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Application Performance
Active Request Merging
Ly ® 2 apglications running Ibrowse
® Doubles “effective” capacity
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Application Performance

Active Tile Filtering
# Improves perform ance by ~ 30 %

~+- w/ Filtering
-+ w/o Filtering

Tiles received/minute
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Conclusions & Future Work

+ Classification enables ion of templates for rapid devel
of new protocols and services
* Architecture deployment methods captured as modules
» Demonstrated use and performance ad ge with real application
« Future work:
+ Define protocol module behavior and interfaces
+  Verify module composition to make statements about service

Technology Center




Transcoding Class

+ Protocols that transform user data from one form to another on the
fly
+ Encryption protocols
* GIF to JPEG
+ Deployment
+  Generally end-points of a connection
« Interfaces
s Processing power
*  Available memory

L of Kansas |-

Security Management Class

1 "

*»  Protocols that h security/trust rel
* Determine Active Node-SmartPackets trust
* Contains authorization for manipulating critical node resources
+ Need to implement levels of security ... dial figure

+ Establish security iation through key exch
* Deployment

+ Priming using Management SmartPackets
+ Interfaces

+ Create, maintain, and destroy securiy associations

+ Establish, extract, grant and revoke authorizations and privikges to
SmartPackets.

nforrmetion and 0
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Network Management Class

* Protocols managing active nodes
* Implement/change policy
« Event reporting
+ State gathering, reporting
+ Perform on-site diagnosis and event correlation
~ Provides consistent state
— Seif-healing properties
« Interfaces
¢ Create, access and modify the state of the active node
« Establish events and state information to be gathered
+  Establish frequency and format of reporting event information,
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Routing Class

«  Protocols providing application-specific routing
*  Overlay virtual topolgies on phy sical topology
* Implement novel rauting strategies
¢ E.g geographical routing, content-based routing
+ Deployment
*  Priming over virtual topology
+ Interfaces
« Information about the poris to neigh boring nodes
«  Interfaces to receive port status messages
+ Information about queue sizes at the ports

Uni ',ofKansas}-

Supplementary Services Class

« Add new features to SmartPackets based on content

« Don’tmodify existing content

+ E.g. content-based buffering in wireless networks, adaptive FEC
« Deployment

+ Sniffing for phy sical characteristics
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