Netalyse
A Network Analysis Tool

Rene J.W. Laan
Roel J.T. Jonkman
Douglas Nichaus
Victor S. Frost

TISL Technical Report TISL-1660-11

November 1994

Telecommunications and Information Sciences Laboratory
The University of Kansas Center for Research, Inc.

gﬂﬂ

2291 Irving Hill D1z Lawrence, Kansas 66045

Abstract

This report describes the design of a measurement analysis processing program called
Netalyse. Netalyse is a generic tool which should be capable of handling almost any
type of time sorted output of a measurement tool. After preprocessing the data and
storing it in a binary internal format, the user can perform various calculations on the
data and display it in diverse graphs. Netalyse consists of three main parts, namely
Tcl/Tk, MatLab and database manager implemented in C.

IT

Samenvatting

Dit verslag beschrijft het ontwerp van een data analyse programma genaamd Netalyse.
Netalyse is een algemene tool die de tijdgesorteerde data geproduceerd door diverse
meet-tools kan verwerken. Na een preprocessingslag waarna de data in intern binair
formaat word opgeslagen, kan de gebruiker er diverse berekeningen op uit voeren en
het vervolgens in grafisch formaat displayen. Netalyse bestaat uit drie delen, namelijk
Tcl/Tk, Matlab en een database manager geschreven in C.

III

Acknowledgements

All the people who thought at first, Oh my God there is another bunch of Dutch guys
coming over.

Darren “GUI-guy” “This is gonna be a spiffy GUI”
Victor “Making good progress??”

Doug “People with red hair should stick together”
Jane “Take care or 1'll have you deported”

Steve “Can we try this?”

Mike “We return jack-didley do we?”

Khoi “1 2 3 4 test”

Joe “This bloody thing doesn’t work!!”

Cameron “You’re a stud”

Ben “No”

Vinai “I’m gonna kill you, you know”

To all the people at TISL who know the following line :
“Al sla je me dood, ik zou het niet weten”
(“Even if you beat me to death i wouldn’t know”)

1A%

Contents

Abstract 11
Samenvatting III
Acknowledgements Iv
1 Introduction 1
2 The perfect program 2
2.1 Setupandrunanexperimentttt 3
2.2 The specifications for the program e e e 3
23 Thetools. e e 4

3 Specifications and Analysis 6
3.1 General Specifications0 e 6
3.2 Specification on the measurements : 8
3.3 Reading the different file formats 9

4 Tcl/Tk general interfacing 11
4.1 Design of the application to TclTk interface 13

5 Matlab interfacing 18
51 Analysis e e e e e e e e e e e e 18
5.2 Matlab interfacedesign o o oL 19
52.1 Datatypes L e 19

5.2.2 Function specifications, 19

5.3 Interfacing Matlab to Tcl/Tk 20
5.3.1 Matlab commands in Tcl/Tk specifications 21

6 Basic routines needed for Netalyse 22
6.1 Gemneral analysis e 22
6.2 Gemeral Design 22
6.3 Linked-List Design e e e e e e e 23
6.3.1 Datatypes. e 25

6.3.2 Function specifications 27

CONTENTS

6.4 File-I/ODesignot v v i it it
6.4.1 Datatypes. i i
6.4.2 Function specifications

7 Database design

7.1 Recorddefinitions
72 Field Typehandling,
7.3 Working with fieldtypes,

7.3.1 Defined fieldtypes,

7.3.2 Defined functions which work with fields
74 Working withrecords,

7.4.1 Reading preprocessed files into memory
75 Queryingdata ¢ it i it
7.6 Sending datatoMatlab,,
7.7 The commands added to TCL for the database

8 Preprocessor design

9 Experiment Manager

9.1 Analysis i e e e e
9.2 Design oo i i e e e e e e e
10 Various utilities needed in Tecl/Tk
10.1 Analysis 0 . i e e e e e e e e e e e e e e
10.2 Design 0 0 i v e e e e e e e e e e e e e e
10.2.1 Function specifications
10.2.2 Tcl/Tk command specifications
11 The Grapical User Interface GUI
11.1 Designing GUD’s i e
11.2 Programming in Tel/Tk
11.2.1 Layout i i it e e e e e e e
11.2.2 Functionality
11.2.3 Type of variables in Tel/Tk
11.3 Specifications for the GUI
11.3.1 How will the user work with the program?
114 Thedesign i i i it e e e e
11.4.1 functionality of the calculator
11.4.2 Selecting a datasetforplots
12 Manual
12.1 Selectingdata o e
12.2 Calculation o e

VI

30
31
32

35
35
38
38
40
42
43
46
48
49
52

53

CONTENTS

12.3 Selecting dataforplots 0oL,
12.4 Modifying the plot parameters

13 Todo list

13.0.1 expirimentlevel
13.0.2 preprocessor supportol e e

13.1 Possible improvements
13.1.1 In the C-code
13.1.2 Tel in general
13.1.3 Selection GUI

13.1.4 Calculation GUI
13.1.5 The plot and calculation GUI

13.1.6 The plot GUI

14 conclusion

VII

79
80

81
81
81
82
82
82
82
83
84
84

86

LIST OF FIGURES

11-9 addvar e e e e e e e e e e e e e e e e e e e

12-1 Order of operands, reverse polish notation

Chapter 1

Introduction

The Telecommunications and Informations Sciences Labratory of the University of
Kansas was formed in 1983. The faculty consists of 13 professors, several PostDoc’s,
several PhD students and a lot of grad students. A main part of the research is done
in the area of telecommuncations and datacommunications. The research is done both
on software-level and hardware-level. One of the hottest topics at the laboratory right
now is high-speed networking. The laboratory is involved in designing and developing
a gateway which interfaces a local area high-speed network (LAN 155 Mbits/s) to a
wide area high-speed network (WAN, 2.4 Gbits/s)

The laboratory is involved in one of the six testbeds for high-speed networking.
(MAGIC, Multidimensional Applications and Gigabit Internetwork Consortium) The
main goal of the laboratory within this testbed is to do research concerning perfor-
mance of high-speed networks. To do the gathering and analysis of data, software is
needed, specific software like this is not available. The gathering is mainly based on
customized programs which interface directly with either the kernel or a device-driver.
The analysis which was performed on the gathered data was mostly done within mat-
lab, this implied specified knowledge of matlab and or several. There was clearly a
need for a specific analysis-tool. This report describes the first and partly the second
revision of Netalyse. Netalyse is an analysis-tool which has database- display- and
various calculation-capabilities.

Chapter 2

The perfect program

To analyse the performance of the MAGIC network and to compare the models with
reality, measurements need to be taken. Because of the high speed of the MAGIC
network, the delays and the performance of the computers connected to the network
are also important. This means that measurements need to be taken at different
levels in the computer architecture. The levels at which measurement can be taken
at the moment are :

e application level

e TCP/IP level

e AAL level (ATM Adaption layer)
o ATM level

The programs which take these measurements are not the subject of this thesis since
they are mainly written by other programmers. An experiment is taken by starting
all the relevant measurement programs and then starting the application of which
the perfomance is being measured. The global setup of an experiment is illustrated
by 2-1. The data generated by these measurement programs needs to be analysed.
Ultimately this analysis program can perform the following functions :

e set up and run an experiment.
e store the data in a convenient way.
¢ analyse the data.

e display the results graphically.

CHAPTER 2. THE PERFECT PROGRAM 3

NETALYSE
applicati - R applicatio
process] process2
X X

application layer application layer

presentation layer presentation layer

session layer

transport layer transport layer
AAL \\
network layer data collectoy data collector) | network layer

data link layer data link layer

. ATM cell / \ ATM cell .
physical layer \w/ physical layer

actual transmission path

session layer

AN
i

Figure 2-1: Setup of network measurements

2.1 Set up and run an experiment

The user indicates the computers involved, which measurement tools to use and which
application to use. The parameters with which the experiment is taken will be stored
together with the data files generated during the experiment. These parameters
could be: which computers are involved, packet sizes, the application which is run,
the parameters for this application etc.

Analysing the data

The data in the files generated during an experiment will be analysed by displaying
it in graphs and by applying various mathematical functions to the data. These
functions include auto- and crosscorrelation functions, as well as fourier transforms
or ordinary additions and multiplications. Also the user wants to see which event on
a certain level results in another event on another level. For instance: what happens
on the TCP/IP level if the application sends a picture to another computer.

2.2 The specifications for the program

The main goal, for us, was to write a program that could display the data from the
current measurement tools during the MAGIC meeting on the fifteenth of august
1994. Because of the limited time we had to limit the functionality to the following:

CHAPTER 2. THE PERFECT PROGRAM 4

e Setting up an experiment and running it can be done using scripts, so there is
no immediate need for a program that performs this function.

e The program has to be able to read the data files generated during an experi-
ment. The files would not be grouped together as an experiment.

e The program has to be able to analyse the data and display it in graphs.

For the input files was specified

o The files might be big, to big to fit in memory at once.

e Every measurement-program generates it’s own format because the type of the
data depends on the level on which it was generated.

Specifications for the format:

— both ASCII - and binary files must be read.

— binary files can be little-endian and big-endian.

— ASCII files may contain multiple records per file. In this case the first field
of the record will identify its type.

o New formats will be used for new data collection tools which will be developed
later.

Data from various files must be related because the data files are generated by
several different processes and must be related for analysis.

The program will have a GUI (Graphical User Interface) so it will be easy to use.

2.3 The tools.

The application can be divided into four parts:
e processing datafiles
¢ a mathematical part for analysis
¢ a part which does the graphing
e a GUI

The GUI is implemented using TCL/TK, an interpreter with which GUI’s can be
created fairly easy. Also, writing a TCL/TK program was to become the standard
way to create a GUI at TISL

For the mathematical and graphing part we had several options:

CHAPTER 2. THE PERFECT PROGRAM 5

e create our own graphing utility with TCL/TK and write the calculation routines
¢ use the public domain program Xgraph and write the calculation routines
e use Matlab which can do both graphing and the calculations

The advantage of programming our own graphing utility is that it could be integrated
perfectly in the rest of the program. On the other hand it would be a lot of work and
not as flexible as Matlab.

The program Xgraph is a program that takes a file as input and displays that as
a graph. The program is very limited and doesn’t let you modify the graph. Besides
that we would still have to program the mathematical functions. It would probably
be the least desirable solution.

Matlab is a very complete and flexible program and can do both graphing and
calculation. Matlab can be controlled by other programs. The disadvantage of Matlab
is that it is a commercial product so everyone who wants to run the Netalyse program
must buy matlab. Because Matlab is used in most university environments this does
not have to be a great drawback. Another disadvantage is that it is hard to exercise
the control sometimes needed. For instance the user can kill a graph without Matlab
sending a signal to the Netalyse program.

Because development time was important and we wanted to be able to do many
different calculations on the data we choose to use Matlab.

We decided to write the rest of the routines in the programming language C for
the following reasons: The interfacing with both Matlab and Tcl/Tk can be done
with C, C-compilers are available for every computer-architecture at TISL and we
had experience with programming in C.

Chapter 3

Specifications and Analysis

The choices of Matlab and Tcl/Tk leave the following to be written in C:
o Reading the datafiles into memory
e converting the data to Matlab input
o Interface to Tcl/Tk and Matlab

Below the functionality is derived from the specifications. When the functionality we
defined required new specifications then these are called derived specifications.

3.1 General Specifications

Specification :

The files might be big, too big to fit in memory at once.

Analysis :

Since the data files can be too big to fit in memory, the user has to be able to specify
what part of the file he wants to read. The user will do this by specifying the start
time and end time. After the specified data is read the user might want to read more
data from the same file. Since the files might be huge it would be slow to reread all
the data. It is faster to read only the extra information the user asked for. This can
be realised by approaching the specified start- and endtime as the start and end of a
window on the file. All data within the window is read. The window can be resized
and moved within the file, if the user wants more or other data.

Derived specification :

A windowing system for file access is required.

CHAPTER 3. SPECIFICATIONS AND ANALYSIS 7

All the input files have to contain timestamps and they must be sorted on time.
Network measurements always result in time series because a network measurement
is either a registration of events versus time or averages versus time. So all files will
have time and will be sorted on time automatically.

Specification :

The user wants to relate data from various sources. The data from different sources
is collected by different programs and stored in different files. So data from various
files must be related for analysis.

Analysis :

The data from various files must be related so the user will have data in memory from
several files. Because the user may want to read more data from the same file, the
file must be kept open until the user does not need the data from that file anymore.
These two requirements together imply that several files will be open at the same
time.

Specification :

Every measurement-program generates it’s own format.

Analysis :

The program has to be able to convert input in various formats into a standard format
Netalyse can work with. The files can be in ASCII format or binary format. The
ASCII format must be converted to numbers the computer can work with an binary
files may need endian conversion.

Specification :

New formats will be used for new tools which will be developed later.

Analysis :

The type of input files the program will use is not fixed and may change in the future.
Therefore the user has to be able to specifiy the data contained in a file. A file with
a new data type will only occur if a measurement program is modified, or if a new
measurement program is developed. Therefore this data can be considered static
during the execution of a program.

CHAPTER 3. SPECIFICATIONS AND ANALYSIS 8

Derived specifications :

The timestamps in the files may be represented in different forms. Since timestamping
is required to select what data to read, it needs to be converted from the various ways
time can be represented in a file to a standard representation. Since the time formats
were not specified, we have thought of the following representations of time in a file:

Absolute time :

Human readable formats like month/day/year hours:minutes:seconds.microseconds
Time in seconds since 00:00 01/01/1970 GMT (the time format used by UNIX). This
time format is usually extended with microseconds to get a better precision.

Incremental time :

The timestep between the previous and the current record is specified in the current
record. This is usually a time in microseconds

Implicit time :

The timestep between the previous and the current record is constant and not specified
in the record itself.

3.2 Specification on the measurements :

The time on the computers connected to the network is synchronised by the Network
Time Protocol (NTP). The NTP consists of one computer which receives the accurate
time from the global positioning system. This computer sends this time to all the
computers connected to the network. The NTP also gives information on the accuracy
of the clock in each computer. This accuracy depends on the load of the network.
The accuracy of the measurements will be in the order of hundreds of microseconds
due to the accuracy of the NTP, which won’t get more accurate results even on a
lightly loaded network.

analysis :

Microsecond clock resolution will be enough because the accuracy of the measure-
ments will be in the order of hundreds of microseconds due to the accuracy of the
NTP. Also the computers on the network run UNIX and UNIX is not a realtime

operating system so more accurate timestamps are not expected.

CHAPTER 3. SPECIFICATIONS AND ANALYSIS 9

files with internal format

PREPROCESSOR DATABASE

first record type

\ second recordtype /

A third recordtype

measurement file

information on{ the output files

If the measurement file contains

multiple recordtypes then multiple

files with internal format will be generated.
LIBRARY
MANAGER

Figure 3-1: Input and output of the preprocessor

3.3 Reading the different file formats

Specification :

The different formats have to be processed and a windowing function must be imple-
mented.

Analysis :

This would become complicated if it had to be done all at the same time. For instance
in case of incremental time, the absolute time of the previous record is required to
calculate the new record. If a window is empty there is no previous record.

To do this more easily we decided to write a preprocessor which converts all
kinds of files into one standard format. This also has the advantage that if new file
formats are used which can not be read by the current preprocessor, then only the
preprocessor has to be changed. The file format generated by the preprocessor will be
called the internal file format. This internal format is binary because that is usually
more compact than ASCII files. Besides this it can also be processed faster, because
the data in the file can be copied almost directly to memory. Another part of the
program will read those preprocessed files and send them to Matlab. This part will
be called the database because it has some funtions in common with databases like
working with records, selecting records etc.

The prepocessor converts the contents of a measurement file into a format which
can be read by the database. To do this the preprocessor needs information on the
file. The easiest way is to add a header to each file. From the header the program can
determine how to convert the file. Not every measurement program will, however,

CHAPTER 3. SPECIFICATIONS AND ANALYSIS 10

output this header. Therefore the preprocessor can also get it’s information from the
user, if there is no header in the datafile.

When the file is converted, the information on that file will be send to the library
manager in order to be stored in a library file. This library file contains all the
information on the files which are part of the same experiment. Lines which result in
an error when converting, are assumed to be documentation and will be copied to a
documentation file.

The files which will be read into memory, have been preprocessed, so they will be
binary and they will contain an absolute time in every record. To be able to analyse
the data on another computer than it was generated, the database therefore has to
be able to do endian conversion. No other conversions are required for preprocessed

files.

Chapter 4

Tcl/ Tk general interfacing

Generally speaking one can say that every application has some form of a commando
language. There are various reasons to choose an exsisting commando language rather
than designing your own. Tcl provides the normal expected features of a commando
language, such as variables, conditional- and looping commands, procedures, lists,
arrays, expressions, and filemanipulation. Tcl is built as an interpreter, the main
advantage of this is that there is no need to compile Tcl programs. The disadvantage
of it all is that Tcl’s performance is slow. All the code is written in C, so inclusion of
Tcl in user applications is fairly easy.

Due to the complexity of most of the applications of today, most of the applications
work with easy to use graphical user interfaces. (GUI’s) Tk provides an extension of
Tcl which implements most of the basic GUI functions needed. Tk is build on top of
the windowing system X11, which is the most commonly known windowing System
on Unix. architectures.

X11 uses the client-server model, see 4-1. The client and server are connected to
eachother via TCP/IP sockets. The client side of X11 is the side to which applications
connect. The server side takes care of the actual interaction between the keyboard,
mouse, display, other I/O devices and the user. The way X11, and most of the
windowing systems, work implies that a program using X11, constantly needs to
’watch’ for events. A normal gui will actually block on an event-querry until an
event occurs. TclTk is implemented using events, to handle events correctly there an
eventloop is required. Which means one’s own code will actually run under control
of TclTk. (Which runs itself under control of X11, and X11 runs under control of the
user.)

To interface a program to TclTk one should make it available as a command. Since
TclTk runs in an eventloop the commands need to return within reasonable time.
Otherwise the application command ’hangs’ the TclTk eventloop. If TclTk hangs
on an application command it acts as if the application got stuck. This specifically
shows one of the drawbacks of TclTk, and most of the other GUI languages, it’s not
really useable for realtime applications. Realtime applications generally need their

11

CHAPTER 4. TCL/TK GENERAL INTERFACING

\/

socket connection

JAN

Xlib linked

with user program

Figure 4-1: X11 setup

12

CHAPTER 4. TCL/TK GENERAL INTERFACING 13

X11
Tcl/Tk

User application

Figure 4-2: layerd model of user, X11, TclTk, application

own event loop.

4.1 Design of the application to TclTk interface

The first goal of the interface designphase was to design an interface which was useable
for any application, not just for Netalyse.

Just like Tk is hooked up to Tcl your own application should hook up to TclTk.
The way it is done is as follows: At startup Tcl Applnit is called, this function
performs all the initializations needed for the application. Since ’our’ application
needs to hook the commands into Tcl, ’our’ application should be initialized at this
point also. So we have to write functions which initializes the specific parts of ’our’
application. Just to make insertion of new initfunctions easy this is done with the
help of an array of functionpointers.

/*
* typedef ptr 2 an init function

*/

typedef int (*ptr2InitFunction_t) (Tcl_Interp*);

ptr2InitFunction_t anInitFunction[] = {

Tcl_Init,

Tk_Init,
Own_Init_Function,
Own_Init_Function,

NULL

CHAPTER 4. TCL/TK GENERAL INTERFACING 16

interp->result = exportUserError();
return TCL_ERROR;

}

return TCL_OK;

To keep the interfacemodules uniform, th above described function calls an evalu-
ation function which is the actual implementation of the command. If the command
consists of subcommands, this function calls the subfunctions related to the subcom-
mand which was invoked.

int Eval_Command (Tcl_Interp *interp, int argc, char *argv[]) {
/* input : interp, the interpreter in which the command is

* invoked.

* argc, number of arguments parsed along with the
* invocation.

* argv, array of characterstrings containing the
* arguments.

* returns : 0K if no errors, NOK if an error occured

* output : -

* desc : Handles database commands.

*/

if (strecmp (argv[0], "Sub_Command_1") == 0)
return subCommandi (interp, argc-1, &argv[1i]);

if (strecmp (argv[0], "Sub_Command_2") == 0)
return subCommand2 (interp, argc-1, &argv[il);

if (strcmp (argv[0], "Sub_Command_n") == 0)
return subCommandn (interp, argc-1, &argv[i]);

userError ("unknown subcommand %s\n", argv[0]);
return NOK;

CHAPTER 4. TCL/TK GENERAL INTERFACING 17

The subfunction can implement any functionality needed for the application

As one can see to all the functions a structure called Tcl Interp is parsed. This
structure contains some handy gadgets which can be used for various purposes. This
structure is an overlay of a much bigger structure which contains all the references to
the interpreter, since the bigger structure only contains specific information for the
interpreter itself, that structure is not discussed here.

typedef struct Tcl_Interp {
char *result; /* Points to result string returned by last
* command.
*/
void (*freeProc) _ANSI_ARGS_((char *blockPtr));
/* Zero means result is statically allocated.
* If non-zero, gives address of procedure
* to invoke to free the result. Must be
* freed by Tcl_Eval before executing next
* command.
*/
int errorline; /* When TCL_ERROR is returned, this gives
* the line number within the command where
* the error occurred (1 means first line).
*/
} Tcl_Interp;

The result field points to an array of 200 bytes, which can be used to parse
messages to Tcl/Tk. This array is allocated statically. It’s feasible that there are
occasions that one wants to parse messages bigger than 200 bytes. In this case one
can assign a pointer to a own allocated area of memory which is big enough to hold
the data. That area can either be statically or dynamically allocated. In case it’s
allocated dynamically (using ie malloc) that area needs to be freed after parsing the
message. The freeing of the message has to be done after it is read by the interpreter,
this can be achieved by parsing a function pointer to the interpreter which points to a
function which does the apropriate freeing of the memory. This is what the freeProc
field is used for. The use of this field can also extended to gracely exit functions. If a
function opens several resources and has multiple exits, its handy that the resources
will be closed properly by the call to the function which is pointed to by the freeProc
field. The errorLine field allows assignment of an integer which indicates in which
line in the source the error occured. In the current interface this option is not used,
but in the second revision of the interfacetemplate this will be used also, to conform
completely to the interface specification.

Note : All this stuff is barely documented in the Tcl/Tk manual and all
together it took quite a while to figure out all the stuff.

Chapter 5

Matlab interfacing

Matlab is a commercial software package meant for generic numerical analysis. It
mainly consists of two parts, a numerical computation unit and a graphical display
unit. Matlab has an easy to use command-language (just like TclTk) which has most
of the normally expected programming capabilties. Next to that there are several
matrix specific and calculation specific programming constructions. (vectorized cal-
culations) The command language allows creation of complex scripts. In this way
more complex calculations can be represented in simple scripts.

5.1 Analysis

Matlab is not really made to function as a part of another application, although they
provide an extension which forks a matlab process. The Matlabprocess is connected
via pipes to the process which uses the interface. The interface allows parsing of plain
Matlab commands. All the interfacing code is contained in a library and in a headerfile
The calls needed for forking off a matlab engine, controlling and transfering matrices
are included in the library, so writing the code is fairly easy. The interfacing code
written on top of the code provided by matlab takes care of errors and encapsulates
the data structures that have no need to be seen by the user.

Figure 5-1: matlab interproces communication

18

CHAPTER 5. MATLAB INTERFACING 19

5.2 Matlab interface design

All the calls to fork the engine etc are included in the library, so the only thing one
has to do is call them in the correct order. The pipes which connect the processes
are not even visible, since they are encapsulated in functions which do the actual
passing to the pipes etc. The disadvantage of the encapsulation shows when it comes
down setting up the reversepipe. (From matlab to one’s own proces.) One has to
set up a big buffer to hold the messages Matlab sends back. If the buffer is not big
enough to hold the message, it’s truncated. The functionality needed to interface any
application to Matalb consists of the following.

e Creation of a Matlab environment.
e Destruction of a Matlab environment.
o Evaluation of commandstrings.

Transfer of matrices from an application to Matlab.

Transfer of matrices from Matlab to an application.

Freeing matrices in Matlab.

Export matlab buffer.

Since Matlab consumes many resources on a system it’s not really useful to implement
a core which can handle multiple instantiations of Matlab engines. All the data which
is not needed by the user should be abstracted by encapsulating it. All the error
checking should be done within the procedures.

5.2.1 Datatypes

There is not really a need for datatypes within the matlab module, the only one needed
is the structure which binds logical components together. The only two components
which can be bound together are the outputbuffer and a pointer to a stucture which
refers to the Matlab engine.

5.2.2 Function specifications

name : createMatLabEngine
input : -
output : -

name : destroyMatLabEngine

CHAPTER 5. MATLAB INTERFACING 20

input : -
output : -

name : evalMatLabCommand

input : matlabcommand
output : -

name : getMatrix

input : -

output : matrix

name : putMatrix

input : MatrixName, length, width, matrix
output : -

name : freeMatrix

input : matrix

output : -

name : getMatLabBuffer
input : -
ouput : Matlab output buffer

5.3 Interfacing Matlab to Tcl/Tk

Within Tecl/Tk a command Matlab should be made available which parses plain
Matlab-commands to the Matlab engine. Since the Matlab interface is setup in such
a way that it’s easy to interface to c, this makes it also easy to interface to Tcl/Tk. The
same functions are used as used for a general interface to Tcl/Tk, except the internals
of the functions differ slightly from a 'normal’ setup. To parse the outputbuffer to
Tcl/Tk an extra function has to be created. The extra should implement the parsing
from the Matlab output buffer to the Tcl/Tk domain. As mentioned before in the
Tcl/Tk interface description, the resultpointer is used for parsing the buffer. Next to
that Matlab has not any provisions for printing times allong the x-axis therefore also
an extra function is needed. This function should be able to automatically determine
the correct scale and number of values to put on the x-axis. The function which
makes the Matlab command available to Tcl/Tk also creates a Matlab engine, so the
user doesn’t have to invoke a separate routine which forks the Matlab engine.

CHAPTER 5. MATLAB INTERFACING

5.3.1 Matlab commands in Tcl/Tk specifications

name
input

name
input
output

name
input

note

: matlab
: matlabcommand
output :

: getMatlabOutput

: matlab output buffer

: createTimeAxis

: begin time, begin date, end time, end date, matlab axis handle
output :
: This function is not implemented mainly due to a lack of time.

21

Chapter 6

Basic routines needed for Netalyse

6.1 General analysis

Two basic tools are needed , a generic linked list utility, and a generic file-I/O utility
which is capable of handling windows on files. There are several design approaches to
such generic tools, in this case a choice is made for an object oriented approch. The
objects that need to be handeld are seen as abstract data types on which a number of
functions operate. This implies that the objects operated on can not be seen directly
by the user. Only functions which work on the object can modify the object, ie the
object is not directly accesible by the user.

6.2 General Design

Since the basic-routines need to be implemented in plain-C, this will create some
constraints on the design.

e Abstracting the user from any data which is not neccessary for performing a
certain function. (ie. if one uses the fread systemcall on a file, one should also
parse the filepointer to that function. This pointer is neccessary for the fread
function to determine which systembuffer to use, but is of absolutely no interest
to the user.)

e Abstract the user from messing around with systemcalls which can be complex.
e Relieve the user from the normal error-checking overhead on systemcalls.

e Extend functionality of standard libraries (i.e. linked lists are not implemented
in standard libraries.)

e Encapsulate important data in modules in such a way that the user can not
access that data. (Static declared variables are always accessible by declaring

22

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 23

in another module the same static, the linker solves this and makes it reference
the same memoryspace. Conclusion is that if the user really wants to access
data there is always a way to do that. Although this should be considered to
be ’tricky’ programming)

o If encapsulated data needs to be accessed, that data should be accessed through
a function, which can do additional checks on the passed data.

An approach like this has it’s disadvantages :

¢ There is a need for a selection-method in case the functions have to operate on
multiple instantiations of objects (files, linked lists etc.) This selection algorithm
needs a key, otherwise there is no bases on which objects can be selected. This
selector needs to be parsed to the user.

e There is a need for administering the objects. Since generic code is meant to
be as general as possible, the number of objects should not be bounded to a
maximum, so the allocation of objects has to be done dynamically. This can
either be done by means of dynamic arrays or by using a linked list.

Adminstration of objects could be done either using a linked list or a dynamic array.
A dynamic array has the disadvantage that when it needs to grow there is a chance
that the whole array has to be copied in memory, since it won’t fit at the current
location. An advantage of a dynamic array is that compared to a linked list the
access speed is faster since one can index directly into it. It’s clear that the choice
is arbitrary. In this case the choice is made in favour of a linked list, because that is
also a part of the basic-I/O routines.

There also has to be a mechanism which preserves the state on a current level in
a application. This is achieved by using the dynamic array structure, since the total
amount of memory used is small, rough estimation a maximum of 20 quadwords, this
should not pose a problem. The array is organised as a lifo (stack) so as one goes
down a level the current state is pushed onto stack, and as one goes up the current
state is poped of stack. This can be made clear with an example : Suppose the user
selects a listobject on toplevel, the user would expect that from that moment on the
listobject stays selected, but there could be a layer below the toplevel that also uses
listobjects, i.e. if the toplevel calls a function which also uses listobjects. In that case
the state of the top level has to be preserved by the previous described mechanism.
If not the function would return to top level leaving the state of the core managing
the list objects modified, that this would be a major problem speaks for itself.

6.3 Linked-List Design

The linked list engine is as mentioned before based on a selectionalgorithm. That
makes the core behave as an infinite statemachine. The different states in which

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 24

the linked list core can exist are numereous. Due to that there is a need for state
preserving functions. State preservation is achieved by using a combination of a stack
which stores the current list object and some variables mentioned in the datastructure.

Primairy functionality

Create a list object.

Destroy a list object.

Insert an element.

Delete an element.

Read an element. (get)

Write an element. (set)

Selection of a list on basis of an ID, generated while the list was Created.
Saving of current context.

Restoring of current context.

Secondairy functionality

Moving through the list.

Rewind to the beginning of the list. (BOL)
Wind to the end of the list. (EOL)

Size of the list in number of allocated elements.
Status of the list.

Searching through the list.

Element Id tagging function.

Element Id search function.

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 25

Debugging functionality
e Print out of the internal links. (the listobjects)
o Print out of a specified list object.

e ID & Name (if given) of the list.

The internal housekeeping of the linked list-utility also consists of a linked list which
contains the list-objects themselves. Each listobject is identified by a unique identifier.
This identifier can be obtained in several ways. By far the easiest way is by tagging
the objects with their sequence number in the list. The disadvantage of this method
is that the objects need to be inserted in a sorted manner. So each time a new object
is created the list has to be run down from the beginning either until the end or until
an available identifier is found. Identifiers become available when objects are deleted
from the list.

To achieve a consistent movement there are several solutions, one could take care
of every exception that could occur, this results in a lot of code. Another option is
to create a state machine. In this case the choice is made for a state machine. The
state machine reflects the current status of the linked list. The state machine is on
a per object basis, so if one changes from one list to another also the current state
changes. The state of a linked list is stored in the object itself.

6.3.1 Data types

Each listobject is a datastructure which itself is a element of a linked list. This
implies that the datastructure needs pointers which maintain the linked list of which
the object is a part of. To speed up the selection algorithm a dual chained linked list
is convenient since we can go back and forth in the list of objects. The structure also
needs to contain a pointer which point to the list. For faster access a head and a tail
pointer are implemented. The sizeOfElement field describes the default size which is
allocated per element. The ptr2CurrentEntry field is a pointer which points to the
last accessed element.

{ type] name]
pointer ptr2Next
pointer ptr2Prev
integer listIdentifier

string nameOfList

pointer | ptr2HeadOfList
pointer ptr2TailOfList
integer sizeOfElement
integer | numberOfElements
integer | stateOfLastMove
pointer | ptr2CurrentEntry

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 26

creation of a list

move backward
MOVED)\ MOVED

BACKWARD FORWARD

move forward

move backward move forward

Figure 6-1: linked list state machine

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 27

Each element is also contained in a data structure, this structure should at least
contain a pointer to the next element and a pointer to the previous element. Since
we want to be able to cope with elements with varying sizes within one list, also in
each element the size needs to be included.

L type [name ‘
pointer | ptr2Next
pointer | ptr2Prev
integer | elementSize
pointer | ptr2Data

The reason why there is also a pointer for the data itself, is that it makes the linked list
even more flexible, so there is also a option to assign the pointer to an allocated area
of memory. Normally the functions provided should take care of allocating memory.
During the development of file-I/O it became clear that there was a need to have
direct acces to the data pointer. The alternative was to have two copies of the same
information in memory. To keep the two copies consistent, every change had to be
copied to the other and so on. This could be solved by having direct access to the
datapointer. So some extra functionality was needed.

Datapointer functionality

o Get data pointer

e Set data pointer

The last function mentioned is currently not neccessary but may be used by future
extensions of the core. It allows to set the datapointer to a user specified memory
area, this implies that the core shouldn’t use the pointer in this case to allocate
memory.

6.3.2 Function specifications

Primary functionality

name : createlist

input : sizeOfAnElement, nameOfList

output : listIdentifier

note : the nameOfList is an optional argument, it can be handy in case of
debugging otherwise the user has to match up the listid’s which is
not easy at all.

name : destroyList

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 28

input : -
output : -

name : insertElement
input : anElement
output : -

name : deleteElement
input : -
output : -

name : getElement
input : aDirection
output : anElement

name : setElement
input : aDirection, anElement
output : -

name : selectList
input : listld
output : -

name : saveListContext
input : -
output : -

name : restorelistContext
input : -
output : -

Secondary functionality

name : moveList
input : direction, repeatCount
output : -

name : rewindList
input : -
output : -

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE

name : windList
input
output : -

name : getListSize
input : -
output : listSize

name : getListStatus input
output : listStatus

name : getFreeDataldentifier
input : offset
output : dataldentifier

name : searchDataldentifier
input : offset
output : -

Debugging functionality

name : printControlLinks
input : -
output : -

name : printListLinks
input : -
output : -

name : getListld

input :

output : listName

note : The name is optional, by passing a null to this function no name is
parsed back.

Datapointer functionality

name : getPtr2Data

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 30

input : direction
output :

name : setPtr2Data
input : -
output : -

6.4 File-I/O Design

Since there is a need for reading files and marking windows within a file there is
implicitly also a need for reading backwards in a file. The reason why there was a
need for windows within a file was that because of the size it is not possible to read
it into memory all at once. (file sizes ~ 300Mb) Also there is no reasonable way to
calculate offsets into files, in such a way that there is no need anymore for reading at
every different access the whole file again.

Elementary functionality

e Open a file

¢ Close a file

o Select a file

e Read ASCII records

e Write ASCII records

e Read binairy records

e Write binary records

e Saving of current context

e Restoring of current context

Secondary funtionality

o Goto end of file (EOF)
e Goto begin of file (BOF)

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 31

Windowing functionality

¢ Open a window on a file

Close a window on a file

o Select a window

Mark begin of a window

Mark end of a window

Goto begin of the window

Goto end of window

The file-I/O utility is build on top of the linked list core to do the internal house-
keeping. Most of the functions are easy to implement. Every file is represented by an
element in a filelist, it contains the information concerning one file. Every time a file
is opened, an entry in the list is created, and accordingly on closing th corresponding
entry is removed.

6.4.1 Data types

There is a need for two datatypes within the fileio core, none of which should be visible
for the user. The first one should contain all the properties neccessary for the file
itself, the second on should contain all the properties neccessary for the windowdata.
The datatypes used are actually elements in linked lists. But since the linked list
core is used the datatypes conceal the typical pointer hassle. The file object should
also preserve the state in which the window list was, because there is no other way of
preserving that state. Every fileobject has one associated linked list which controls a
list object which contains all the windowobjects.

uype 1 name j

&teger fileIdentifier
uong previousOffset
int windowListIdentifier
pointer ptr2Window
pointer | ptr2FileDescriptor
int recordSize

L type name —]
integer | windowldentifier
| long | windowStart

| long windowEnd

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE

list of files

list of windows

Figure 6-2: linked list structure

Within the fileobject a pointer is contained which maintains the current selected
window. The data stored in a windowobject is only the begin and the end of a
window within the file. The begin and the endpoint can be obtained by requesting
the offset relative to the beginning of the file. One can jump to those offsets with
certain systemcalls.

6.4.2 Function specifications

Primairy functionality

name : openFile

input : filename, filemode, recordsize

output : fileldentifier

note : recordsize is used for binairy mode reading

name : closefile
input : -
output : -

name : readLine
input : direction

output : line

name : writeLine

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE

input : line
output : -

name : readRecord
input : direction
output : record

name : writeRecord
input : record
output : -

name : saveFileContext
input : -
output : -

name : restoreFileContext
input : -
output : -

Secondairy functionality

name : go2Eof
input : -
output : -

name : go2Bof
input : -
output : -

Windowing functionality

name : openWindow
input : -
output : -

name : closeWindow
input : -

CHAPTER 6. BASIC ROUTINES NEEDED FOR NETALYSE 34

output : -

name : markBow
input : -
output : -

name : markEow
input : -
output : -

name : go2Eow
input : -
output : -

name : go2Bow
input : -
output : -

name : selectWindow
input : -
output : -

Chapter 7

Database design

7.1 Record definitions

The user will specify the types of records in a file. We have assumed this file won’t
change often so the file is read when the program begins and remain unchanged
during execution. The record definition file can be modified with any text editor.
The disadvantage of this approach is, that this is not the easiest way for the user to
change the recordtypes he has available, but again the user won’t have to change this
file often.

This record definition file contains the record definitions and have some explana-
tion of the format of the file. The definition of a record looks like this:

recordname; fieldname fieldtype; fieldname fieldtype ...

Fieldtype will be something like integer, floatingpoint or time The recordname and
fieldname can be anything the user wants. The recordname is used to identify the
record type so it has to be unique. Comment are supported in the file. Comment
lines will start with a special marker : “*” When this file is read it produces the
following datastructures:

e a list of record structures
¢ containing per record :

— the name of the record, and a list of field structures
e containing per field :

— the field type as a number and the field name.

When processing the record definitions file, three levels can be distiguished: the file
level, the line level and the field level. The file level will open files and select definition
lines.

35

CHAPTER 7. DATABASE DESIGN 36

=

—1 open file |
—[not end of file and no error |
-

L‘ read line from file |
| first char of line |

| * do nothing |
| newline do nothing |
process this line |
—/
"‘1 close file

=

Figure 7-1: readconfig

name : readconfig
input : filename of record definitions file

output : the record definitions structure filled in result indicating
whether an error occured or not

In the second level, one line will be converted to a record definition.

name : processline
input : a line with a record definition
output : one record definition result indication whether an error occured or not

In the third level a pair of words is converted to a field definition

name : string to field
input : a string containing a fieldname and a fieldtype

output : a field definition result indication whether an error occured or not

CHAPTER 7. DATABASE DESIGN

=)

—| store first word of line as record name|

"'1 not end of line and no error |

L

get next field definition |

process field definition |

(=)

Figure 7-2: processline

=D

"‘i store first word as ﬁeldname|

-"I for every fieldtype |
fieldtype string = second word

6'1 type = this fieldtype
1

| fieldtype is set |

"'I fieldtype not set |

6_1 setl error |

_‘l timefield not set and datatype = timefield |
6‘1 set timefield to this field |

=D

Figure 7-3: string to field

37

CHAPTER 7. DATABASE DESIGN 38

7.2 Field Type handling

Field type definition ?

A record is composed of several fields. How a record is processed depends on the type
of the field. The actions taking place in case of an ASCII-file are typically:

¢ Read a line from a file
e determine the type of the record

Take the first field and convert it to an internal representation

e store this converted field in an internal record
o take the second.......
e and so on until the last field of the record.

For converting time and date to an internal representation of time there are two
fields required which can not be converted seperately because they convert to one
internal structure. The definition of a fieldtype must therefore depend on the internal
type (time in this case) and not on the whitespace seperated fields of the record in
the file.

A fieldtype gives the type of a field in an internal record, and specifies the op-
erations on a field. Absolute time, for instance, will be a fieldtype which can be
calculated from two fields in the input record : date and time.

The conversion from string to internal representation, which is required for reading
ASCII files, depends on the fieldtype. Also, when reading a binary file the conversion
depends on the type. The conversion from incremental time to absolute time for
instance, is an example of a field dependent conversion which has to be done when
reading a binary file. For debugging and displaying of data it is necessary to convert
the internal representation to a string. To select data, a function which can compare
two fields of the same type is required. Because the type of a field can be a structure,
the endian-conversion depends on the field type.

7.3 Working with fieldtypes

Fieldtypes defined in the program have to be extended when new measurement tools
use new formats. This means that the functionality which is related to the fieldtypes
must be seperate from the rest of the program. Also, the number of fieldtypes defined
may not influence the part of the program which works with the field types.

For instance a routine which has to read from a file needs a different conversion
function for every fieldtype it has to handle. To make this routine independent of
the fieldtypes which are defined, it has to call a function which converts a string of

CHAPTER 7. DATABASE DESIGN 39

fields information records informations

string to
floating point

which |fieldtype

nr of fields

string to
converts lines time
to records
string to
input is a string integer

result is a binary representation of the value
of the string, calculated by a converion function.

Figure 7-4: converting a string with fieldtypes

any type to an internal representation. This function converts a string to an internal
representation depending on the fieldtype. This is illustrated in figure 7-4

Example :

Assume, the field types absolute_time, integer and float are defined. These three fields
together make up one record, which could look like this :

06,/20/94 12:30:05 123 10.5

This record has to be converted to an internal representation. The record type is
given. The fieldtype can be derived from the recordtype and the fieldnumber. The
first fieldtype is time. So the conversion routine for converting a string to an internal
representation of time must be called. The function which is converting the whole
record will call the conversion function which converts strings to internal represen-
tation with the recordtype and the fieldnumber as parameters. This general string
to internal representation function will call a routine which will convert the string to
the internally used representation of time.

For every operation which is required on a fieldtype there has to be general function
which will call the function specific to the fieldtype must exist.

The functionality which is required for the field types depends on the needs of the
program. Every time the program needs a new operation on a fieldtype, it can easily
be added by writing that function for every fieldtype available and another function

CHAPTER 7. DATABASE DESIGN 40

which provides this new function to the rest of the program. These functions are
discussed in paragraph

For each fieldtype the followin has to be stored :
e A name used to identify the type in the record definitions file

o The size in fields for conversion from records
e The size in bytes when stored in memory or preprocessed file

The size in bytes used in a unpreprocessed measurement file

e a function which converts a string to a fieldtype

¢ a function which converts a binary input to a fieldtype

e a function which performs a correction calculation on a field

¢ a function which converts an internal file to an internal field

¢ a function which converts a field to a type readable for Matlab
¢ a function which converts an fieldtype to a string

e a function which compares two fieldtype elements

7.3.1 Defined fieldtypes
The fieldtypes we’ve defined sofar have the following characteristics :

e Integer :

— String :
Must be a positive or negative number with in the range of a 32 bit integer.

— Binary external format :
Little or big endian 32-bit integer.

— Correction calculation :
None

¢ Float :

— String :
Must be a positive or negative number with in the range of a 32 bit IEEE
floatingpoint.

CHAPTER 7. DATABASE DESIGN 41

— Binary external format :
Little or big endian 32-bit IEEE floatingpoint.

— Correction calculation :
none

e Double :

~ String :
Must be a positive or negative number with in the range of a 64 bit IEEE
floatingpoint.

— Binary external format :
Little or big endian 64-bit IEEE floatingpoint.

— Correction calculation :
none

e Time :

— String :

a date in the format mm/dd/yy followed by the time in the format hh:mm][:ss[.uuuuuu]]
— Binary external format :

GMT time in seconds since 01/01/1970 in 32 bit plus microseconds 32 bit

unsigned

— Correction calculation : none

o Incrementaltime :

— String :
a timestep in microseconds not bigger than the max value of a 32 unsigned
number

— Binary external format :
GMT time in seconds since 01/01/1970 in 32 bit plus microseconds 32 bit
unsigned

— Correction calculation :
The incremental time is calculated by adding the timestep to the time in
the previous record

¢ implicittime

CHAPTER 7. DATABASE DESIGN

— String :
empty

— Binary external format :
0 bytes

— Correction calculation :
The implicit time is calculated by adding the value in the constant record
to the time in the previous record

7.3.2 Defined functions which work with fields

name
input

output :

name
input

output :

name
input

output :

name
input

output :

name
input

output :

name
input

output :

name
input

output

: str2Type
: record type, fieldnumber, the field as a string

the field in internal representation

: cmpType
: record type, fieldnumber, fieldl and field2 in internal representation

-1 if fieldl < field2, 0 if fieldl = field2, 1 if fieldl > field2

: type2Str
: record type, fieldnumber, a field in internal representation

a string representing the input field

: type2Double
: record type, fieldnumber, a field in internal representation

the field represented in double format

: ext2Int
: record type, fieldnumber, a field in external representation

the field represented in internal representation

: file2int
: record type, fieldnumber, a field in internal file format

the field represented in internal representation

: correctType
: record type, fieldnumber, the constant record, the previous record

the current record

: the specified field will contain the calculated value

42

CHAPTER 7. DATABASE DESIGN 43

The functionality of all the routines above is the same since the conversion is done
by fieldtype specific functions. The difference between them are the parameters with
which they are called. For each of the functions listed above there are functions
specific to the fieldtype. Some fieldtypes share functions for the same operation. The
fieldtype specific functions have a limited complexity so they will not be discussed in
further detail. The functionality of most of the conversion routines is limited. The
routines providing functions are also very simple: just look up the fieldtype with the
given record and field number and call the right function.

7.4 'Working with records

Records have to be copied, stored and deleted and fields have to be stored in and
retrieved from records. For storing the records the size of the record has to be
calculated. This size can be calculated by adding the sizes of the fields comprising the
record. To retrieve.the field from a record, the size of the field and the offset have to
be known. The size of a field depends on the fieldtype and is specified with that field
type. The offset of a field in a record can be calculated after the record definition file
is read. The size of a record can be calculated at the same time.

The data structure :

e max size of any record for buffers
e a list of size/offset structures
e containing per record

— the size in memory
— the size on disk

— a list offsets

— containing per field

* an offset

To fill this structure, for every field in every recordtype the size is requested and the
offset calculated

name : record type init
input : record type definitions and the field type definitions
output : the records sizes and offsets structure filled in.

CHAPTER 7. DATABASE DESIGN

=

r‘ buffersize = 0 |

—1 for every record type |

—| offset="0 |
“I discoffset =0 |

"| for every field in record |
store offset for this field |

discoffset += disc size of type of this field |

offset += memory size of type of field|

“I store offset as size of this recordl

r‘lgre discoffset as disc size of this record |

_'1 buffersize = max(buffersize discoffset offsetj

 (

< end

Figure 7-5: record type init

44

CHAPTER 7. DATABASE DESIGN 45

The function to extract a field from a record is simple since the offset is stored. The
function uses the record type and field number to find the offset and the size of the
field. The it copies it out of the record.

name : getField
input : a record, the record type and field number
output : the selected field

In the same way a field is extracted from a record containing it.

name : store field
input : a record, the record type and field number
output : the modified record

With the functions defined on fields, the same functions can be performed for records.
A line of text can be converted to a record. The line could have a record identifier as
the first word. A record from an external binary file can be converted to an internal
binary record. An record in internal file format can be converted so it has the right
endian format. Also the correction calculation can be done per record. This requires
three new functions:

name : str2Rec
input : the list of record types, a string containing a line, the untyped flag
output : the record type in this line, the result indication succes or failure

name : ext2Rec
input : the record type, a binary record in extern format
output : the binary record in internal format

name : int2Rec
input : the record type, a binary record in internal file format
output : a record in internal file format after endian correction

name : correctRec
input : the record type, a binary record in internal file format
output : a record on which the correction calculations are executed

CHAPTER 7. DATABASE DESIGN 46

=

"1 record contains no recordtype identifier in first ﬁeldl

record type is the specified typel
recordtype = lookup record type sn'ingl

—1 for every field in the internal representationl

get required number of words from the linel

convert words to internal represemation’

store field in the record |

=

Figure 7-6: str2Rec

7.4.1 Reading preprocessed files into memory

The following are the requirements for the database part of the program which will
read prepocessed files into memory:

¢ Endian conversion

Multiple files must be open at the same time

¢ data from multiple files will be in memory at the same time

e The data in memory has to be treated as a window on a file which can be
¢ resized and moved across the file.

e The window is specified by a starttime and an endtime

¢ multiple windows can be opened on a file.

Multiple files means a list of files must be maintained. A request for data will be
called a query as for a database. A new query opens a new window on a file. For
each file there will be a list of queries. Each query results in data in a list of records
read into memory.

For each file a fileID needs to be stored, which can be used by TCL/TK to indicate
which file it is. The identifier for the list in which the data is stored, information on
how to read the file, the record type and a boolean indication big of little endian.
Also the beginning and end of the window on the file need to be stored.

CHAPTER 7. DATABASE DESIGN 47

list of files
.. :
.......... list of records
: e - -2
: 2 > e
2.
B R L e T e T L e T e
I T S | 2 PR DI RP
&
g
§! TF e Tt KT T T
s} b
-
=3
@ .
8 B

Figure 7-7: The main datastructure of the program

Per query the following needs to be stored: the number of the list in which the
data is stored, an identifier for TCL/TK to refer to this query.

This data will be very dynamic so it must be stored in linked lists. With this a
linked list data can easily be added at both the beginning and the end of a window.
The structure of the required lists is illustrated by figure 7-7

o a list of opened files

¢ containing per file:

— an file ID
— fileinfo needed to read the file
— a query list
— containing per query:
* a filewindow ID

* the record type of the file
* a list containing the record

The list structure shown in figure 7-7, can be modified in a couple of ways. When a
file is opened, an element is added to the file list with information on that file. When
a query is opened, a query element is added to the query list then the empty data
list is created. When a query is closed the datalist and the related query element are
deleted. When a file is closed all the related queries will be closed.

CHAPTER 7. DATABASE DESIGN 48

name : openfile
input : filename, little endian flag
output : a file identifier

name : open query
input : none
output : a query identifier

name : close query
input : query identifier
output : none

name : close file
input : file identifier
output : none

7.5 Querying data

With a query data can be read from an opened file. The user specifies the time
interval he wants to read. For a new query he just specifies the file to read from. For
a modification of a query the user has to specify which query he wants to modify.
If the modification is a reduction, then the list has to be reduced and with the list
the window on the file has to be made smaller. When when a window is increased
and more data has to be read, it can be necessary to read from both the start and
the end of the window. This is handled by the following algorithm: first reduce the
list by deleting all the records from the start of the list that are not required. Then
remove all the records from the end of the list that are not required. If no records
were deleted from the start then data has to be added by reading back from the start
of the window towards the start of the file. If no records were deleted from the end
of the file then data has to be read from the end of the window towards the end of
the file.

This results in the functions this means two functions are required: one for re-
duciing the list if necessary and one for reading data from the file. Both functions
will provide a forward and a backward option.

name : modify query
input : query identifier, starttime and endtime
output : the query will be modified

CHAPTER 7. DATABASE DESIGN 49

(

=

—| new query |

create lists and filewindow

—| startmove=checklist(forward) |
—| endmovuchecklist(backwa.rd)l
—| startmove = backward |
¢‘| readbackward |
ﬂ endmove = forward |

6‘1 readforward |

end >

Figure 7-8: modify query

name : checklist

input : query identifier, direction, starttime and endtime

output : the list will be reduced if necessary and result will
indicate whether to read on in the specified direction

name : readforward/backward
input : query identifier, file identifier, starttime and endtime
output : the list will be expanded with data from the file

7.6 Sending data to Matlab

Matlab expects the input data to be arrays of doubles. Data in a query is a list of
records. From this list, lists of fields can be created. The fields must be converted to
doubles and put in an array. Which can then be send to Matlab. Since one array of
fields is send at a time, the query and the field must be specified.

name : listField2Array

CHAPTER 7. DATABASE DESIGN

(-

)

—klirection= forward

goto begin of list |

goto end of list |

—1 deletecounter = 0 |

'—1 get next element |

_1 cmpresult = cmptime(record starttime endtime)

| (] |

—‘ cmpresult = direction and not end of list
-

:'rdelete element l

_“ get next element |

'—1 cmpresult = cmptime(record starttime endtime)

—'1 Increment(deletecounter) —|

-/

“Fnove file window{(deletecounter) |

“| last record deleted |

< end

returnvalue = direction |

deletecounter > 1 |

returnvalue = stop

|

retumvalue = -direction

]

Figure 7-9: checklist

50

CHAPTER 7. DATABASE DESIGN

(=)

—‘I goto end of filewindow |

"‘l goto end of recordslist l

—rg'et next record |

—| not end of file and cmpresult != backward |
il

H cmpresult = cmptime(record starttime endtime) I

—L cmpresult = keeprecord |
add record in list]
1

| first in list]

set start of filewindow

]

L"L get next record
-/

—I set end of filewindow |
| list still empty |

set start of filewindow

—1 return value = cmpresult |

=)

Figure 7-10: readforward / readbackward

51

CHAPTER 7. DATABASE DESIGN 52

input : query identifier and fieldnumber
output : a pointer to the array and the length of the array

7.7 The commands added to TCL for the database

The functionality of the database and preprocessor described in the previous pages is
made available in TCL by adding commands. These commands are all preceded by
the word database, so it is easy to seperate the commands from ordinary TCL/TK
commands. The commands are:

dbinit When this function is called, the file with the record type definitions will be
read, also all the data which can be derived from this file (like record size and
offset) will be calculated.

openfile This function opens a data file.
query This function will read a part of an opened file.

closefile This function closes a file all the queries related to this file will be closed
as well.

closequery this function closes a query and frees all the memory occupied by the
data related to that query.

tomatlab From every record read in the query, the specified field is send to Matlab.

For debugging :
printlist prints the control structures related to the indicated linked list

printlinks prints the control structures per list. It shows all the lists created, what
files are open, which queries are made etc.

The parameters of Tcl commands are checked by a function. This function will
generate error messages to Tcl if a parameter is not correct . If all the parameters are
correct then the function which actually does the work is called. Sometimes a small
part of the functionality of a command is also implemented. The checking is as strict
as possible to be able to detect bugs more easily. This prevents as much as possible
that a wrong parameter generated by a bug in a Tcl script generates an during the
execution of the code. Al these functions are in the module database which provides,
in this way, the functionality of the database to Tcl.

Chapter 8

Preprocessor design

The purpose of the preprocessor is to convert many formats into a simple standard
format. For this the following functionality is required:

e conversion from ASCII to binary

o perform an endian conversion on the input files, if necessary

e convert time to the internal format of seconds and microseconds
e split a file with multiple reéordtypes into multiple file.

The preprocessor will be able to read any file which has records that meet the speci-
fications in the record definition file. When reading from a file there are several cases

as indicated below:

o ASCII files

— with record identifier in first field

* multiple recordtypes
* one record type

— no record identifier in first field
e binary files

— little endian

— big endian

Before the program can read a file it must know the following: a list of record types,
whether the file is binary, whether the file little endian or big endian, whether the
first field of a record is used as a record identifier and the timestep if the file has

impicit time.

53

CHAPTER 8. PREPROCESSOR DESIGN 54

This information might be specified by the user. Another option is to add a
header to the file, which is easier for the user and prevents mistakes. However not all
measurement programs will write a header. If a file contains no header, the user will
have to describe what is in the file.

The preprocessor uses the fieldtype definitions to perform the conversion. With
the following three conversion routines most conversions should be possible:

e A conversion routine to convert a string to a an internal field
e A conversion routine to convert a group of bytes to an internal field
e A correction calculation function.

The conversion from string to an internal field is obvious. It is required when reading
from an ASCII file.

The conversion from a group of bytes to an internal field is required for endian
conversion and type conversion when reading from a binary file. Type conversion is
required to convert an incremental time which is stored as an integer number into a
time type.

The correction calculation applies to fields which depend on other fields. For
instance, implicit time, the timestamp of the current record has to be derived from
the previous record and a constant timestep. For correction calculation, the previous
record, the current record and a constant record are available. The constant record is
the record which holds constant parameters which are not in the current or previous
record, like the timestep used for incremental time.

When the conversions are done, the converted record can be written to a file.
Which output file it is written to depends on the recordtype since each output file
can only contain one record type.

The data structure which is needed to preprocess a measurement file

¢ header present or not

¢ name of doc file

¢ name of input file

e start time

¢ end time

e list of record types in the file

e time type: implicit, incremental or ordinary
— timestep (in case of implicit time)

e binary or ascii file

CHAPTER 8. PREPROCESSOR DESIGN

(

=

"1 open file |
_1 header = readheader |
—1 noheader |
6'1 get file info from user |
| file is binary |

preprocess binary file |

preprocess ascii file |

—‘I close file

end)

Figure 8-1: preprocess

e unTyped (in case of ascii file whether or not the line starts with a record type)

¢ endian big or little

name : preprocess
input : input filename, output directory
output : output files are created, file info is send to the library
manager and result indiciates whether the process was successful

name : readheader
input : a file
output : information on that file

name : preprocessAscil
input : input file, output directory input fileinfo
output : output files are created, file info is send to the library
manager and result indiciates whether the process was successful

CHAPTER 8. PREPROCESSOR DESIGN

=)

—1 read a line |
—"1 first word = start of header wordl

read a line |

1
| not end of file and no error |
T

line not empty

é‘lﬂocess header line

—I no header |

=

Figure 8-2: readheader

name : preprocessBinary
input : input file, output directory input fileinfo
output : output file is created, file info is send to the library
manager and result indiciates whether the process was successful

56

CHAPTER 8. PREPROCESSOR DESIGN

=)

"1 open output files |

—1 init previous and constant record |

—1 read line —|

ﬂ not end of file |

-
ﬂ line not empty |
¢‘| convert line to record |
| conversion erlror |
writeline to documentation file|
"I for every field in the record |
correction calculation |
_‘ write record to output file for that record type |
—{ save record as previous record |
r' read line |
—/

—1 close output files |

"1 export info on output files to expiriment manager]

=

Figure 8-3: preprocessor

57

Chapter 9

Experiment Manager

Since there is a need for clustering databases together, which belong to one experi-
ment, there is a need for a tool which takes care of the administration. If an extra tool
is clued into Netalyse anyway it also would be nice if one could store a documentation
file which describes the experiment. This last option is in perticulair very important
because when one does an experiment the files that are generated are numerous. It’s
also nice if there is a possibility to generate a documentation file per file which is
converted to internal database format.

9.1 Analysis

Resulting from the specifications there is a need for some global experiment control
functionality, documentation file control, and database file control. The basic goal is
to parse the information related to an opened experiment to the gui. There should
also be a couple of functions available to the preprocessor which allow the preprocessor
to write an experiment.

9.2 Design

Each experiment gets it’s own description-file and it’s own dirtectory. The experi-
mentmanager should manage description files which contain all the information which
is contained in an experiment directory. Each data-file gets it’s own information block
within the experiment file. Since the preprocessor creates any new data-file which
belongs to an experiment, the preprocessor should have access to a function which
appends the information of that file to the experiment-file. The only funcionality
needed by the preprocessor is a function which takes care of that :

e Write datafile info to a experiment-file

The GUI needs access to the following fairly obvious functions :

58

CHAPTER 9. EXPERIMENT MANAGER

e create an experiment

e destroy an experiment

e open an experiment

e close an experiment

o get the documentation file on the experiment
¢ get documentation files on a specified data-file
e get data files contained in an experiment

e get info on specific data file

59

Chapter 10

Various utilities needed in Tcl/Tk

10.1 Analysis

There are several routines which are not easy to implement directly in Tcl/Tk for
several reasons. There was a need for two routines which could be implemented easier
in c than in Tcl/Tk because the subroutines needed for the routines were already
available in c.

10.2 Design

To simplify the scale in Tcl/Tk which is used for selecting, the scale is made to work
with percentages instead of real date and time variables. This makes the displaying
in Tcl/Tk easier. Since a lot of conversion routines already were needed for the
database-core it was easier to write this routine in C. It can make use of the existing
routines. The only adapation required is the incorporation of the data-types used
by the date-time conversion routines. Another utility which is placed in the utility
extension is the reading of the user-specified defaults. Since the tool has to be multi-
user this also lead to a slight extension of the file-io utitlity. There was a need for
tilde-expansion (The is used to indicate homedir references flaan = homedir of rlaan,
7pa,thname = own homedir.) This part is build into file-io without adding any extra
funcntionality for the user. If one opens a file, the filename is automatically scanned
for a tilde. When file-io was ‘fixed’ the function itself only had to read the file and
set the variables used in the tcl-domain accordingly. The last function could also be
implemented as a part of the experiment manager, because it’s mainly concerning
stuff related to the experiment manager.

functionality

e Reading of the default places to search for files.

60

CHAPTER 10. VARIOUS UTILITIES NEEDED IN TCL/TK 61

e percentage to time conversion.

10.2.1 Function specifications

name
input

output :
: this routine sets certain fixed variables in the Tcl/Tk domain.

note

name
input

output :
: this routine sets the specified variables in the Tcl-domain.

note

: readDefaults

(names are hardcoded)

: prc2Time
: beginTime, beginDate, endTime, endDate, percentage,

TclVariableName4Time, TclVariableName4Date

10.2.2 Tcl/Tk command specifications

name
input

output :
: this routine is called during initialization, normally a user doesn’t have to bother.

note

name
input

output :
: specified variables are set accordingly..

note

: util readdefaults

: util prc2Time
: beginTime, beginDate, endTime, endDate, percentage, TclVariableName4Time,

TclVariableName4Date

Chapter 11
The Grapical User Interface GUI

11.1 Designing GUDI’s

Designing a GUI is different from designing an ordinary program. First of all there
are very many ways in which the program can be used. The user will enter data,
go back, change things and wants to see the results immediately. Furthermore the
user can make mistakes or perform all kinds of unexpected operations, which may
not result in errors.

The GUI design has to depend on the anticipated use of the program. So the first
thing to do is to define possibilities the user interface will give the user and the way
the user will usually work with the program. The standard operations have to be
very easy to perform. This can be hard for a program which is completely new and
very interactive. For instance, a first there was no event plot, which is actually just
a special case of a xy-plot. It could be generated by an inventive user but it was not
easy. Since event plots appeared to be important and were used often, an event plot
was added as a graph type. Now it can be generated with a click of a button.

The way the dialog with the user works is also important. It is possible, for
instance, to pop-up an message window every time an exception occurs, but this is
very tiring so it has to be reserved for serious errors which need the intervention of
the user. Ordinary messages can be displayed on a status line.

11.2 Programming in Tcl/Tk

Programming in Tcl/Tk is not much different from programming in any other inter-
preter language. But since it is used for GUI’s some things are unique.

11.2.1 Lay out

A GUI written in T¢cl/Tk is made up of basic elements called widgets. Some examples
of widgets are buttons, listboxes, scrollbars, entry boxes, menu bars, text boxes etc.

62

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 63

These elements can be grouped using frames for lay-out purposes. Within the frame
the lay-out is done relatively to the frame. A widget can be put at the top, bottom,
left side or right side of the frame it belong in. The frame it self can be part of another
frame or the main window. The frame system makes it very easy to make comlicated
lay-outs. Designing the lay-out in Tcl/Tk is very easy. After a couple of drawings
on paper you can type the code for the lay-out and almost interactively modify the
lay-out until it looks good. Coding the functionality is bit more complicated.

11.2.2 Functionality

The widgets all have predefined functionality. The standard functionality of an entry
widget for instance are entering and modifying text, selecting text and copying text
from other windows, scrolling in case the text gets to big to fit completely in the
entry. Besides this an application can bind it’s own functionality. For instance when
the user enters the return key in the entry widget, a function can be called which
processes the input. When multiple entries must be filled in, the tab key can be
bound to a function that causes the the cursor to go to the next entry.

A Tcl/Tk program can be seen as a group of eventhandling routines. Each time
the user causes an event (move the mouse, click on a button etc.) one of these
eventhandlers is called. When multiple event handling routines use the same data,
this data has to be accessible to all of them. It’s tempting to let every eventhandler
access the data it needs directly, but this will lead to unexpected side effects and
unsystematic code.

If there are several defined functions which work on the same data but can be called
from several event bound functions, then it is best to make a module which performs
the defined functions on an internally defined global variable. Which may not be
accessed outside that module. This way you can prevent unexpected modifications
to the global variable, because the operations on the global variable are always done
by one of the functions in the module. It also makes it easier to modify the data
structure as long as the existing functions don’t change. For instance, if the global
variable was a list but it would be faster if implemented with an array. The provided
functions can stay the same but the internal structure is changed.

It is possible to pass the name of a variable to a function. This way the previously
described module can act upon multiple instances of a datastructure. Passing a name
can be compared to passing a pointer in C though there are some small differences.
In Tcl the function has to know at what level the variable was defined. The function
can access the variable with that name on global level, but also in the scope of the
calling routine. It can access any variable in between the current level and the global
level.

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 66

R

2
R

SRR
e

Ficure 11-1: database selection eui

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 67

e 3 a8 SO
KRR ""‘c}%-:»

I pud * 100}

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 68

S
}_%\&%\t‘ﬁ
L
e

S
SRR

Figure 11-3: plot control gui

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 69

e the type (result or input)

o the formula if the variable is a result
The five display lists will contain:

o the descriptive name

o the index to the Matlab list.

A couple of standard functions can be defined for working with the Matlab variables
list: A function which returns a new unique name which can be used for a variable

in Matlab
name: getNewMatlabName
input : -
output : a unique name for a variable in Matlab
A function which lets the user add an input to the Matlab list
name : addInputToList
input : information on input variable
output : reference for this variable and the Matlab name
A function which lets the user add a result to the Matlab list
name : AddResultToList
input : the Matlab name and the formula
output : the reference for this variable and the Matlab name
A function which returns the Matlab name
name : getMatlabName
input : reference to the variable
output : the name of the variable in Matlab
A function which returns the information on an input variable
name : getUserData
input : reference to the variable

output : the extra data the calling function needed on the variable

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 70

11.4.1 functionality of the calculator

The calculator will consist of a numeric keypad, function buttons, operator buttons,
a stack and an accumulator in which data can be enterd. When a number key is hit
the corresponding digit must be stored in the accumulator just like in an ordinary
calculator. When a constant or variable was previously entered, it is not usefull to
add a digit to the string. Instead the accumulator is cleared. To do this a flag is
required which indicates the type of data in the accumulator.

name : enterDigit
input : name of entrybox, a digit
output : the digit will be added to the accumulator

The variable in the accumulator can be entered on the stack when the user hits the
enter button. The stack is a list with a descriptive name and a reference to the Matlab
variables list. Numbers and constants however do not have a reference to this list.
These stack entries can be used directly in a formula. To indicate these entries the
reference to the Matlab variables list is set to a reserved value.

When an operator button is hit, a string like "varl + var2” must be created. Var2
will be the first variable. Varl will be the second variable on the stack. This is the
way real reverse polish notation calculators work.

name : matlabOperator
input : the operator, the number of inputs and the list of inputs
output : the formula as a string

When a function button is hit the top n variables of the stack are popped and put in a
function expression in reverse order. For a function taking two variables as arguments
this will be: ”"functionname(varl, var2)” Var2 is the first variable popped from stack
and Varl is the second variable popped from stack.

name : matlabFunction
input : the functionname, the number of inputs and the list of inputs
output : the formula as a string

Just the string for the formula is not enough. First it has to be checked if the stack
holds enough variables. Then the formula can be generated. With the formula and
a new Matlabname an equation can be generated. The equation is send to Matlab.
When no error returns the result can be added to the matlab variables list. The
name of the result is the name of the function so the user can keep some track of the
contents on the stack.

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI

=

"1 number of inputs =0 |

6‘1 formula = operator —|

—[number of inputs > 1 |

6'1 decrement number of inputs

| pull variable %rom stack —l
1

| variable is a constant —l

formula = variable

formula = get matlabname of this stack value

"‘I for every remaining input
_1 pull variable from stack —|
—'I variable is a constant —|

insert "<variable> <operator>" at begin of formula

insert "<matlabname of variable> <operator>"at begin of formula

=)

Figure 11-4: matlabOperator

71

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 72

=)

—rnumber of inputs = 0

formula =function name |

—ﬁmll variable from stack |

—1 variable is a constant |

insert "(<variable>" at end of formula

insert "(<matlabname of variable>"at end of formula

"1 for every remaining input |

pull variable from stack |

variable is a constant |

insert ", <variable>" at end of formula

insert "', <matlabname of variable>"at end of formula

'—1 add) to end of formula

=

Figure 11-5: matlabFunction

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 73

name : operation

input : the stackname, the stack listbox name, the type of the operation either operator
or function, the name of the operator/function, the number of inputs/operands,
the list of output names.

output : a new variable will be created in matlab containing the result of the calculation.

If the user clicks on a stack variable an input window will be popped up which asks
the user for the name of the result It defaults to the name on the stack which was
the name of the operation.

name : setResult

input : the name of the stack, the name of the stacklistbox, the name of the result list
the name of the result listbox

output : the current selection in the stack is stored as a result in the result list

To get a unique name the name has to be compared to the existing names and if
there is a duplication then a new name must be entered by the user.

name : addUniqueToListbox
input : listboxname, the default name to add

output : the new name

11.4.2 Selecting a data set for plots

The user can select a data set for a plot in the plot x and plot y listboxes This is
done when the user hits the x-add button. Then the current selection in the input or
result listbox (by default one excludes the other) is copied to the x plot listbox. This
works the same for adding data to the y plot listbox.

name : addvar
input : -
output : the current selection from either the input listbox or the output listbox

When the dataset has been selected the user can select the type of plot he wants. The
same plot function is called for all the plot types. The difference is in the parameters
with which they are called.

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 74

=

—'1 not enough entries on stack |

display error |

—{Type is operator |
matlab operator |

matlab function |

"1 nr of outputs <> 0

é'lzr every result |

get new matlab name |

add name to list |

add name to result string |

—1 execute result = formula |

_‘] matlab error I

é‘lﬁplay error |

"‘1 for every result |
add result to matlablist |

add result to stack |

=

Figure 11-6: operation

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI

=

—| get current selection from listbox |

'—| get unique resultname from user |

"'1 user did not cancel operation |

replace the descriptive name it had on the stack with the new name
I

| add to resultlist |

=)

Figure 11-7: setResult

=

—1 recursive call

dialog window with message "Enter the name for the result

dialog window with message "The previously chosen name
the result is not unique. Modify the name"

“‘I for every existing resulmamq

new resultname = existing resulmamel

é“ set found |

—1 not found |

add new resulmame to resultlist |

adduniqueToListbox recursive calll

T

Figure 11-8: addunique

CHAPTER 11. THE GRAPICAL USER INTERFACE GUI 76

=

—I selection in input list |

selected = selection in input list |

selection in resultlist |

6'1 selected = selection in resultlist

ﬂ selected empty |

message
(end)

Figure 11-9: addvar

Chapter 12

Manual

The program is not extremely complicated and the GUI makes it easy to use. In
this chapter the use of the program is described because the online help is not yet
available. It will describe the existing version of the GUI, since the new version with
support for experiments still has to be designed.

12.1 Selecting data

When the program starts up the listboxes will be empty. What the user should do
then is click on the file menu and select the item ”select database”. This will pop up
a window in which the user can select files by double clicking on them. When all the
files are selected the database selection window is dismissed by pressing OK.

When this is done the file menu will show the selected database files. The user
then must select each of the files and click on records and fields he is interested in.
For the file the user selected he can specifiy a time interval by moving the triangles
along the range selector. If the resolution of motion (limited by the size of the pixels)
is not enough then the zoom in button can be pressed and the scale will be magnified.
When the this is done for every file, the submit button can be pushed.

12.2 Calculation

The calculation window is popped up in response to the submit button. The selected
data will be listed in the summary listbox. The data will have names that are com-
posed of the filename, the recordtype and the fieldtype. The items in the summary
listbox and other listboxes will be called variables.

A double click on any variable in the summary listbox will put that variable in
the accumulator of the calculator. When the enter button of the calculator is pushed,
the variable is copied from the accumulator to the stack. If the accumulator is empty,
the first variable on the stack is copied. Calculations are made only on the data on

77

CHAPTER 12. MANUAL 78

end of stack

|

- begin of stack

last pushed variable

operand operator operand

Figure 12-1: Order of operands, reverse polish notation

the stack, not on some data that might be just in the accumulator. When the desired
variables are put on stack, a calculation can be selected. This can be either a function
or an operator. The order of the operands used with an operator is illustrated in figure
12-1 The order of parameters for a function is the reverse of the order of the operands
for an operator. The parameter last pushed on stack is the first in the parameter list
of the function. The currently implemented operators are: + - x /

These operators work element by element. If one variable is a scalar and the other
a vector, then the operation will be done with the scalar and every element. The
currently implemented functions are:

¢ Fast Fourier Transform (FFT)

input : array of function values and an array with time stamps when these samples
were taken

output : array with amplitudes and an array with frequencies
e Auto Correlation

input : the array of which to take the auto correlation

output : an array of correlation values and the lag to plot it against
o Cross Correlation

input : two arrays of the same size

output : an array containing the result of the cross correlation
e Convolution

input : two arrays of the same size

output : an array containing the result of the convolution

CHAPTER 12. MANUAL 79

¢ Difference

input : array to take the difference of Xn = Xn+1 - Xn

output : the result of the difference, the last value is doubled to make the array the
same size as the source.

o Mean

input : an array

output : a number that is the mean of the array
e Variance

input : an array

output : a number indicating the variance of the array
e Power Spectral Density

input : an array of function values and an array with time stamps when these
samples were taken

output : array with the square of the amplitudes and an array with frequencies

Example of a calculation :

Dividing two input variables, variablel / variable2, is done as follows:

Double click on input variablel.

Click on the enter button of the calculator.

Do the same for the variable2.

Click on the divide button and the answer called divide will replace the two
input values on the stack.

To store this value double click on the stack variable divide. A window will pop up
asking for a name for the variable. It will default to divide, but when multiple divide
results must be stored, a unique name must be entered.

12.3 Selecting data for plots

Three types of plots can be generated:
e event plots

e histograms

CHAPTER 12. MANUAL 80

e xy plots

The first two types only require x-data and ignore the y data. Which data is plotted
in a graph is specified in the x and y plot lists. To add a variable in these boxes just
select a variable in the summary or result list, then press the add button in the x or
y plot list. When the desired dataset is selected, a plot can be made.

A histogram can be made by pressing on the histogram button. The number of
bars is specified in the entry just above the histogram button.

12.4 Modifying the plot parameters

When a plot is chosen a window will appear which will let the user modify the graph.
The data set generating the graph is specified, this can be a filename or expiriment
description. The plot title, which indicates what the plot means can be entered. The
description for the x-axis an y-axis can be also be specified. Per line in the plot the
line style and color can be specified. When the plot button is hit, the plot will be
drawn or redrawn after the specifications are changed. The Graph entry from the
menubar gives the user the following options:

Print : print to the printer
Add : add text and a legend to the graph
View : modify the scale and the grid of the graph

The done button closes the graph and the controlling window.

Chapter 13

Todo list

Required modifications to Tcl to be up to date with the C-functionality

13.0.1 expiriment level

In the C-code support is added for an expiriment level. This expiriment level is not
yet implemented in the Tcl part of the program. The expiriment layer is important
because it will allow the user to keep better track of the datafiles. With the few files
we have now it is already getting difficult to keep track of which file contains what.
Also the environment in which the expiriment was taken must be descibed. This
discription might be standardized. This will allow searches on specific expiriments.
If it is not standardized, this can simply be implemented as a text file which the user
can enter when he opens a new expiriment.

This will not change the GUI much. The file list will change in an expiriment
list, the record list will change in the file list and the field list will stay the same. An
open expiriment option has to be added to the file menu. This will result in a window
which will let the user add files to the expiriment.

13.0.2 preprocessor support

The files will be added to an expiriment after they have been preprocessed. The
preprocessing has been seperated from the reading of different files for performance
reasons and a flexibility. The Tcl part does not support the separate preprocessor yet.
When preprocessing a file it will be opened and the header will be read. If no header
is read, from the C-code a window can be called which asks the user for information
on the file.

81

CHAPTER 13. TODO LIST 82

13.1 Possible improvements

13.1.1 In the C-code

The C-part of the preprocessor may be extended with a standard text parsing utility
which solves problems like skip the n-th line, combine two lines together to get one
record, skip all the lines which contain a specified string. These functions are available
from standard text parsing functions and this would greatly extend the ability of the
program to read irregular file formats.

13.1.2 Tcl in general
Colors

Change colors so the current selection is readable on a black and white monitor. Now
on a black and white monitor the selected menu item and the selection in a listbox
are not readable.

Style

The system used for relief is not the same for every window of the program.

Variable names

The naming of variables might be changed to a better system and the user might want
to specify a name for the variable. The variable names are now made up out of the
combination file_record field. The records and fields also contain underscores. Better
readability can easily be achieved by replacing the underscores by other characters.

13.1.3 Selection GUI

Reducing the mouse clicks required With a double mouse click a file can be selected
from the file menu, then a double click on a record gives the fields in that record. The
double clicks can be replaced with single mouse clicks. When a file is selected the
first record type can be selected and the fields in that record type can be displayed
without other actions.

Deselection of data

With the current implementation it is not possible to deselect data To save memory
space this might be needed, when large files become available.

Entering start/end time and date

Entering time and date in an entry to select what part of the file to read.

CHAPTER 13. TODO LIST 83

Multiple datasets from one file

The C-code supports multiple parts to be read from one file. This might be usefull if
the user wants to compare a part of a big file with another part of the same file.

Reuse of previously read data

Currently the data from the files is read when the submit button is pressed. The
second time the same data is read, the previous data is discarded and all the data
is reread. This is not necessary. The queries can be recalled with the query number
returned on the first call. This will make the performance better since no data is read
if the range of data is not modified. When the range is modified only the part which
does not overlap the previous range is read.

Reduce data in Matlab

When the submit button is hit, the data is send to Matlab. Every time new data is
read it is put in different variables. This uses unnecessary memory, because the old
data is stil in the memory of Matlab. When the data is put in the same variable, the
old data will be discarded. When data is reused as described above, then the Matlab
variable name can be linked to a query identifier, so data from the same query ends
up in the same Matlab variable.

13.1.4 Calculation GUI
User specified functions

A function or operator in the program can be completely specified. The user might
generate such a description with the help of the GUI. This way the user can use
the calculator to work with his own scripts. It would be very convienient if the user
defined functions could be stored in a configuration file.

Recalculation

When the user has done some calculations on data and then selects an other part of
the same file he will probably see the result of the same calculations. If the points
"reuse of previously read data” and "Reduce dat in Matlab” are designed, then a
very simple recalculation function can be made which executes all the formula‘s in

the matlab list.
Discarding data

When the user does not need certain results anymore he might want to discard them.
When the result is used to calculate another result, then it may not be deleted. For

CHAPTER 13. TODO LIST 84

this the Matlab list has to be extended to contain dependencies so the program can
figure out what result depends on which. Deleted variables in the Matlab list must
be replaced by deleted entries. This cause the elements have to stay in the same
position in the list so the reference given will stay correct. The list may be converted
to an array ofcourse which does not have this problem. (in Tcl array elements can be
deleted without interfering with other elements indices.)

13.1.5 The plot and calculation GUI

Remove plot boxes from calculation GUI The data for the plots is now selected in
plotboxes. These boxes take up a lot of space and they are not necessary. In this
alternative situation, after the plot type is chosen the plot window will pop up. Then
the user can select the data he wants to plot, just by clicking on it. This is also more
logical because not every application needs xy-pairs of data.

13.1.6 The plot GUI

readable time scale

The time is a number in seconds which indicates the time since the start of the day.
Matlab only displays a four digits. This is clearly not enough. To solve this we
generate our own time scale with 8 digits.

There are three disadvantages to this: Matlab doesn’t take in account that the
labels are bigger so they will overlap depending on the size of the graph. The format
is not very easy to read. The third disadvantage is, when the user resizes the window
containing the graph, Matlab doesn’t inform Netalyse about it and will just make
more labels on the line and print the old values at new positions along the axis. It
will reuse the first labels when it runs out of labels.

The time can be made more easy to read with some more formatting etc. It is
now done in a Matlab script so it shouldn’t be hard to change. If a button is added to
update the axis labels, then the labels can be regenerated after they became invalid
due to a resize of the window. The tickmarks overlapping is not easily solvable. The
user will just have to size the window so that the labels do not overlap. It is however
with some C-programming possible to get control over the Matlab windows by using
X11 calls. The size of the plot window could be set fixed and can then only be
modified with the Tcl script. This script could then also regenerate the labels on the
axis.

One plot control window

The program uses a plot control window for every seperate graph. It would be easier
if there is just one control window which controls all the plot windows. This can
be done by letting the user select the desired plot from a list of generated plots. A

CHAPTER 13. TODO LIST 85

nicer way would be to let the user point at a plot window and select that plot as the
current. This can also only be implemented by using X11 calls directly from C.

icon names

The icon names of the plots are not descriptive, just figl, fig2 etc. Since the user can
generate plots very fast with this program, he will forget the plot number. With X11
calls it is possible to modify the icon name of a plot window. It could be set to the
specified plot name for instance.

Chapter 14

conclusion

Netalyse works but it needs a lot of improvement. Suggestions are done in chapter
13 “Todo list”. A couple of improvements which are not mentioned in the To-do list

and might be considered are :

e Get netalyse interfaced to Octave instead of Matlab, it has almost the same
capabilities as Matlab but it’s shareware!

o Instead of the own build database, a consideration might be to incorporate
a shareware database instead of our own. A suggestion might be “Ingres89”
a relational database which can do much advanced queries. Since our own
database can only do queries based on timestamps.

Originally this project started of as an Ethernet-analysis utility which was supposed
to become a systemadministration-tool. Mainly to analyse network congestion and
related problems. Since the specifications altered slightly it became a generic analysis
tool with an emphasis on networks. The first experiments done on an 155 Mbit/s
optical line were analysed with netalyse, and it showed that it was easy to use. (still
buggy sometimes. ..) The first prototype of Netalyse needs to evolve into an extensive
tool which is much more versatile than it is right now. But this needs a lot of user-

input. (specifications)

86

Bibliography

(1] Morris L. Bolsky, “Handboek voor de C-programmeur”, Prentice Hall (1988)
[2] Yourdon Inc., “Yourdon systems method”, Yourdon Press (1993)

[3] Barclay, “C-leerboek”, Prentice Hall (1993)

[4] Larisch, “UNIX”, Data Becker Nderlands

87

