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Abstract

Several recent studies on a wide variety of networks have empirically observed that

aggregate packet ows exhibit long-range dependence, i.e., the correlation between

neighboring exclusive blocks of data does not asymptotically vanish when the block

size is increased. Thus, actual network tra�c is bursty over a broad range of time

scales, in sharp contrast to conventional Markovian-type tra�c models. Conventional

models show tra�c burstiness at only short time scales while tra�c is smooth at large

time scales. Additional studies have demonstrated that long-range dependence in traf-

�c can have serious e�ects on network performance, but none of the previous work gives

a complete answer of what is causing long-range dependence in network tra�c. Since

the majority of empirical studies were performed with TCP tra�c, the initial hypoth-

esis was that the dynamics of TCP, such as ow and congestion control algorithms, are

the primary factor contributing to long-range dependence (LRD) in TCP tra�c. Pre-

liminary simulation results supported our assumption. However, futher investigation

and further results from a large number of simulations contradict our assumption; the

dynamics of TCP are not the main cause of the LRD observed in TCP tra�c. Our

results show that the presence of long-range dependence in network tra�c does not

necessarily depend on whether or not a reliable and ow- and congestion-controlled

protocol is employed at the transport layer. Further, the results of this study show

that in a client/server network environment, if tra�c exhibits long-range dependence,

then the distribution of message sizes is not necessary heavy-tailed.
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1 Introduction

Knowledge of the nature of tra�c of large internets or high-speed networks such as B-

ISDN is essential for engineering, operations, and performance evaluation of these networks.

Recent studies on a wide variety of networks have empirically observed that aggregate packet

ows are statistically self-similar in nature, i.e., the statistical properties of the aggregate

network tra�c remain the same over an extremely wide range of time scales or over all time

scales [24, 20, 4, 13, 28, 36]. Thus, actual network tra�c is bursty over a broad range of

time scales, in sharp contrast to conventional Markovian-type tra�c models, which show

tra�c burstiness at only short time scales while tra�c is smooth at large time scales. Since

self-similar tra�c has observable burst on all time scales, it exhibits long-range dependence

(LRD); the correlation between neighboring exclusive blocks of data does not asymptotically

vanish when the block size is increased [39]. This correlation is zero or decays exponentially

fast towards zero for traditional tra�c models.

1.1 Implication of Tra�c Long-Range Dependence on Network

Performance

The observation of tra�c long-range dependence leads to the following question: what is

the impact of long-range dependence on network and protocol design, congestion control, and

performance analysis? The studies by [31, 14, 12, 33, 29, 25, 3] show that the performance of

queueing models with long-range dependent arrival tra�c can be drastically di�erent from

the performance predicted by conventional tra�c models, especially by Markovian models. A

direct implication of long-range dependence on network performance is that the burstiness of

the tra�c typically intensi�es as the number of active sources increases. This is in contrast to

the traditional idea that tra�c becomes less bursty as the number of tra�c sources increases,

which is the typical nature of aggregate tra�c of the Poisson-type models. The results

show that network performance as captured by throughput, packet loss rate, and packet

retransmission rate, degrades gradually as the intensity of long-range dependence increases.

In practice, not accounting for the tra�c long-range dependence characteristic at the network

modeling stage of a system design can lead to overly optimistic performance predictions and

thus to quality-of-service (QoS) requirements that are impossible to guarantee in a realistic

network scenario [50].
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Speci�cally, the overall packet loss decreases gradually with increasing bu�er capacity,

in strong contrast to Poisson-based models where losses decrease exponentially fast with

increasing bu�er size. Moreover, the queueing delay increases drastically as bu�er capacity

increases, again in sharp contrast to the traditional models where delay does not exceed a

�xed limit regardless of bu�er size. Further, the large variations in the network tra�c on

time scales of hours, days, or months complicates careful sizing of network components, since

small errors in tra�c engineering can incur drastic penalties in loss or delay [15]. Although

some of the standard tra�c models suggest that congestion problems essentially disappear

with su�cient bu�er capacity, in long-range dependent environments such behavior can not

be expected. Increasing bu�er capacity won't prevent congestion from occurring but instead

will lead to large queueing delays [15, 33, 34].

1.2 What Gives Rise to Long-Range Dependence in Network

Tra�c?

The importance of long-range dependence in network tra�c raises another major question:

what causes long-range dependence in network tra�c? The results in [50] show that the

superposition of many independent ON/OFF tra�c sources with strictly alternating ON-

and OFF-periods and whose ON-periods or OFF-periods have heavy-tailed probability dis-

tribution functions results in aggregate packet streams that are consistent with measured

local-area network (LAN) tra�c and exhibits the same long-range dependence property as

can be observed in the data [24]. Although the ON/OFF model gives a plausible explanation

of the empirically observed self-similar nature of LAN tra�c, it ignores interaction among

tra�c sources contending for network resources which in real networks can be as complicated

as the feedback congestion control algorithm of many transport protocols, i.e., Transmission

Control Protocol (TCP). The simulation study in [34] which is motivated by the ON/OFF

tra�c model shows that if the distribution of �le sizes being transferred over the network

is heavy-tailed1 then the superposition of many �le transfers in a client/server network

environment induces self-similar tra�c and this causal relationship is not signi�cantly af-

fected by changes in network resources2, network topology, the inuence of cross-tra�c, or

1Meaning that the distribution behaves like a power law thus generating very large �le transfers with

non-negligible probability.
2Bottleneck bandwidth and bu�er capacity.
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the distribution of interarrival times. It is also shown that the degree to which �le sizes are

heavy-tailed directly determines the intensity of tra�c long-range dependence. In agreement

with the above results, the simulation experiments performed in [20] indicate that if the joint

distribution of the number of packets per conversation and conversation transmission rates is

heavy-tailed then TCP tra�c exhibits long-range dependence. In addition, the relationship

between �le sizes and self-similar tra�c was also suggested by the work described in [10]

which showed that self-similarity in World Wide Web tra�c might arise due to the heavy-

tailed distribution of �les present in the Web. Evidences that �le systems indeed possess

heavy-tailed �le distributions are noted in [10, 2, 17, 36].

Importantly, the work in [34] shows that the presence of long-range dependence depends

on whether reliable and ow-controlled communication is employed at the transport layer.

In particular, the reliable transmission and ow control mechanisms of transport protocols,

like TCP, serve to maintain the long-range dependence structure induced by heavy-tailed

�le size distributions. In contrast, if a non-ow-controlled and unreliable transport protocol

(such as User Datagram Protocol, UDP) is used, the resulting tra�c shows little self-similar

characteristics: although still bursty at short time scales, the degree of self-similarity is very

small.

1.3 Our Work

Our work is based on our assumption that the long-range dependence in aggregated TCP

tra�c is induced by the dynamics3 of TCP. This study performed to validate our assumption

was motivated by the following considerations:

1. TCP tra�c was used in most empirical and simulation studies [24, 10, 20, 34, 36,

38, 49, 50] performed to either detect the presence of long-range dependence (LRD)

in network tra�c or give a possible explanation of what causes the LRD in network

tra�c.

2. The results in [50] provide compelling evidence in favor of explaining the self-similar na-

ture of aggregate LAN tra�c in terms of the heavy-tailed probability distribution func-

tions of the ON-periods or OFF-periods of the individual ON/OFF source-destination

pairs that make up the aggregate packet stream. But, they fail to explain the empiri-

cally observed self-similar nature of WAN tra�c.

3Reliable ow and congestion control, see next section.
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3. Although the ON/OFF model gives a plausible explanation of the empirically observed

self-similar nature of LAN tra�c, it ignores interaction among tra�c sources contend-

ing for network resources which in real networks can be as complicated as the feedback

congestion control algorithm of many transport protocols, i.e., Transmission Control

Protocol (TCP).

4. The empirical studies in [24, 20, 36, 38] have shown that the aggregate TCP tra�c

exhibits long-range dependence in nature.

5. The signi�cant work in [34] is a simulation study of TCP client/server ows which is

focused only when the distribution of the �le sizes being transferred over the network is

heavy-tailed. But, in a large and complex real network environment such as Internet,

this might not be the only case.

6. As shown by the work in [34], the presence of long-range dependency in network tra�c

depends on whether reliable and ow-controlled communication is employed at the

transport layer.

7. TCP through its reliable, ow and congestion mechanisms controls the rate at which

data packets are transmitted. Importantly, the state of the network governs TCP's

behavior and transmission rate.

8. TCP tra�c is very bursty in nature. Since TCP is a sliding window protocol, it trans-

mits packets within a window as fast as it can and then waits for acknowledgment4.

9. TCP is the most widely used transport protocol in the Internet, a global collection of

networks connecting millions of computers and users, and incorporating a large variety

of di�erent network technologies. Asynchronous Transfer Mode (ATM) technology is

the emerging standard adopted by telecommunications and computer vendors for high

speed backbone networks. Most of the existing ATM backbone networks employ TCP

over ATM technology. Thus, understanding the nature of TCP tra�c is critical in

order to properly design and implement future networks.

10. Since long-range dependence in tra�c can have serious e�ects on network performance,

it is very important to be able to control its intesity. But to do that, it is important

to identify and evaluate all cases that cause TCP's tra�c to be long-range dependent.

4See next section for details.
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The above considerations led to the hypothesis that the primary factor contributing to

long-range dependence in TCP tra�c is when the dynamics of TCP are in e�ect. Further,

we assumed that, in many cases, some application-level characteristics and the number of

active connections have also a major contribution in the long-range dependency of TCP

tra�c, but they are not the main factors. Preliminary simulation results [22] supported

our hypothesis. However, futher investigation and further results from a large number of

simulations contradict our initial hypothesis; the dynamics of TCP are not the main factor

of the presence of LRD observed in TCP tra�c.

1.4 Lessons Learned

From this study several important lessons have been learned:

� In a greedy-source5 network environment, the activation of TCP's dynamics by packet

losses is a possible source of long-range dependence in TCP tra�c.

� In a client/server network environment, if tra�c exhibits long-range dependence, then

a) it is not caused by the dynamics of TCP, b) the dynamics of TCP most likely had no

e�ect on its intensity, c) the distribution of �le sizes is not necessary to be heavy-tailed.

� In a client/server network environment, if the distribution of �le sizes is exponential

or uniform with very high means (or a combination of low and high means), the aggre-

gation of many ows can result in tra�c that exhibits long-range dependence6. The

aggregation of network connections whose �les sizes are exponentially distributed with

low mean (4 KB) with connections whose �le sizes are also exponentially distributed

but with high mean (5 MB or higher) can generate tra�c with similar burstiness

with tra�c created by a combination of connections whose �les sizes are heavy-tailed

distributed.

� The presence of long-range dependence in network tra�c does not necessarily depend

on whether or not a reliable and ow- and congestion-controlled protocol is employed

at the transport layer.

5A greedy source has always data to send.
6This statement is based on our simulation results. It is not yet proved by rigorous mathematical analysis.
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� In a client/server network environment, if periodicity is observed in TCP tra�c by the

autocorrelation function, then most likely it is caused by the dynamics of TCP.

� To obtain accurate estimates of the intensity of long-range dependence of an empirical

trace either measured or simulated, we recommend several hours (10 or more) of tra�c

be collected. In our study we collected tra�c in the range from about 3 hours to

229 hours, while most published results are based on at most three hours of tra�c

traces. The de�nition of long-range dependence applies only to in�nite time series.

In detecting the presence of LRD in �nite tra�c traces, there is no rule of how many

samples are required to get an accurate estimate of the self-similar parameter H. The

number of samples required for an accurate estimate of H depends very much on

the tra�c process. In most cases, incorrect estimates of H are obtained when tra�c

traces are short. We also recommend that the intensity of the long-range dependence

be estimated at di�erent time scales, i.e., at 0.01, 0.1, and 1.0 second aggregation

intervals. It is possible for self-similar parameter H estimators to show evidence of

LRD in network tra�c only at short time scales.

� The self-similar parameter H does not give a complete characterization of a tra�c

process. Two tra�c traces with the same value of H can have totally di�erent tra�c

patterns. For di�erent network conditions, application-level characteristics, and trans-

port protocol parameters the characteristics of network tra�c can be very di�erent.

Hence, constructing a general tra�c model from tra�c traces may not be achievable.

The rest of this technical report is organized as follows: Section 2 provides an overview

of transport protocols, speci�cally it presents a brief description of the Transmission Con-

trol Protocol (TCP); Section 3 provides the de�nitions of long-range dependent and self-

similar stochastic processes, and discusses some of their properties; Section 4 de�nes the

network model used in all simulations; Section 5 presents the simulation results; and Section

6 presents a discussion of results and the goal of future work.
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2 Transport Protocols

The International Standards Organization (ISO) developed an architectural model to de-

scribe the structure and function of data communications protocols. This model is called

the Open Systems Interconnect (OSI) Reference Model, and it provides a common frame of

reference for data communications models. The OSI Reference Model (Figure 1) contains

seven layers that de�ne the functions of data communications protocols. Each layer repre-

1

2

3

4

5

Presentation Layer

Application Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

7

6

Figure 1: The OSI reference model

sents a function performed when data is transferred between cooperating application across

a network. A layer does not de�ne a single protocol but a data communications function

that may be performed by any number of protocols. Hence, each layer may contain multiple

protocols, each providing a service suitable to the function of that layer.

For this study, only the transport layer (the fourth layer in Figure 1) is considered. The

transport layer has a number of functions, not all of which are necessarily required in any

given network. The most common transport layer functions are [32]:

� addressing,

� connection establishment and termination,
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� ow and congestion control,

� bu�ering,

� multiplexing,

� segmentation and reassembly

� handling duplicated packets,

� error recovery and control.

There are many transport protocols exist in standard commercial networks7 but the most

popular are TCP and UDP. Since the focus in this simulation study is on TCP and UDP, a

brief overview of these protocols is given next.

2.1 Transmission Control Protocol

Transmission Control Protocol (TCP) provides reliable data connection services to applica-

tions and contains the mechanisms that guarantee that data is delivered error-free, without

omissions, and in sequence. It is a reliable byte stream, connection-oriented, and end-to-end

ow and congestion control protocol in the transport layer of the TCP/IP8 protocol suite

(see Fig. 2). A detailed analysis on the functionality of each layer in the TCP/IP protocol

suite can be found in [42]. TCP is the most widely used protocol in the Internet, and it

was designed to work independently of the lower layer implementation for transferring data.

TCP operates on top of Internet protocol (IP) layer, which provides a best e�ort service.

That is, there are no guarantees that an IP packet successfully gets to its destination. Appli-

cations that require the transport protocol to provide reliable data delivery use TCP because

it veri�es that data is delivered across the network accurately and in proper sequence.

TCP is connection-oriented. Two end hosts using TCP must establish a logical end-to-

end connection with each other before they can exchange data. Control information, called

a handshake, is exchanged between the two end hosts to establish the logical connection. As

soon as the connection is established, data can be transferred. The established connection

7A list of most widely used transport protocol is given in [32].
8O�cially it is known as the Internet Protocol (IP) suite, but because TCP and IP are the most known

protocols from the IP suite, it has become common to use the term TCP/IP to refer to the whole protocol

suite.
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Physical Media

LINK

ATM

AAL 5
Ethernet

Network  (IP)

Transport

TCP UDP

Application
(Telnet, FTP, E-mail, Rlogin, etc.)

Figure 2: TCP/IP protocol suite reference layer model

between the end hosts is full duplex. This means that data can be owing in each direction,

independent of the other direction. When the data transfer between the two end hosts is

�nished the connection is terminated.

When an application passes data to TCP for delivery, TCP breakes the data stream into

smaller chunks and adds a protocol information header to form a segment. This is the unit

of data that TCP passes to IP. IP appends its own protocol information header and it forms

a datagram. The largest chunk of data that TCP can include in each segment is called the

maximum segment size (MSS). During the connection setup phase, each end host announces

its MSS and TCP choose the smallest one.

To transfer data reliably, TCP uses a technique called positive acknowledgement with

retransmission. TCP views the data it sends as a continuous stream of bytes, not as inde-

pendent packets. So, to maintain the sequence in which bytes are sent and received, a TCP

segment header contains a sequence number and an acknowledgement number. Each byte of

data sent is numbered sequentially from an initial sequence number. The sequence number

identi�es the sequential position in the data stream of the �rst data byte in the segment.
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The receiver is expected to acknowledge the received data. The acknowledgement (ACK)

tells the sender how much data has been received in order and the acknowledgement number

speci�es the sequence number of the next byte (octet) that the receiver expects to receive.

But data segments and ACKs can get lost. TCP handles this by setting a timeout every

time it sends a segment. If the segment isn't acknowledged when the timeout expires, TCP

assumes that the segment was lost or corrupted and retransmits it.

The amount of time a sender waits for an ACK before retransmission is called retrans-

mission timeout (RTO). A TCP segment may traverse a single low-delay network (i.e.,

high-speed LAN), or it may travel across multiple intermediate networks through multiple

routers. The delay that each segment may experience through each intermediate network

and at each router depends on the network tra�c. Hence, the total time, called the round-

trip time (RTT), required for a segment to travel to the destination and an ACK to return

to the sender changes signi�cantly over time as tra�c load varies. To adopt in the delay

variations encountered in networks, TCP uses an adaptive retransmission algorithm that

tracks delay changes on each connection and adjusts its RTO accordingly. The exact details

of calculating the RTO are given in [18, 8, 42].

TCP segments are passed to IP which routes them as IP datagrams to the destination.

Since IP is a connectionless service, datagrams can arrive to the destination from di�erent

routes. Therefore, IP datagrams and hence TCP segments can be received out of order. TCP

resequences the out-of-order segments before it passes them to the application. Further, TCP

detects transmission errors in the received segment by maintaining checksum. The sending

TCP computes a checksum over the entire segment and then stores it in the checksum �eld

in the segment's header. The receiving TCP computes again the checksum of the receiving

segment and compares it to the content of the checksum �eld in the segment's header. If

the values don't much, TCP discards it and doesn't acknowledge receiving it. Also, since

segments or ACKs can get lost or arrive late due to excessive delay in the network, duplicate

segments may arrive at the receiver. TCP detects the duplicate segments by comparing their

sequence numbers with the sequence number of the data byte it expects to receive next from

the sender. Duplicate segments are discarded.

2.1.1 Flow Control

Flow control is concerned with the regulation of the rate at which the sender transmits

packets to match the rate at which the destination station receives data, so that it is not
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overwhelmed. That is, without control, the sender may transmit packets at a rate too fast

for the receiver. This may cause queue overow at the receiver, leading to packet losses,

retransmissions, and degraded performance. Thus, a ow control technique protects the

receiver from being overowed by the sender.

Having a mechanism for ow control is essential in an internet environment, where ma-

chines of various speeds and sizes communicate through networks and routers of various

speeds and capacities. TCP attains end-to-end ow control by using the sliding window

technique [6, 8, 42]. It allows the sender to transmit multiple segments before it stops

and waits for an ACK, which results in high network utilization and throughput. But, the

amount of unacknowledged data that the sender can have in transit to the receiver depends

on the window size which is controlled by the receiver. The receiver has a �nite amount

of data bu�er space for each TCP connection. The received data are stored in the bu�ers

until read by the corresponding application. The window indicates how much bu�er space

the receiver has available for the incoming data. A zero window tells the sender to cease

transmission of data until it receives a non-zero window value. Thus, the purpose of this

window is to allow the receiver to control the rate at which it receives data and to prevent

a fast transmitting host from overowing the data bu�ers on a slower host.

2.1.2 Congestion Control and Avoidance

Flow control between the source and the destination does not help much toward reducing

the possibility of congestion within the network. Congestion is a condition of severe delay

caused by an overload of packets at one or more switching nodes within the network. It can

occur whenever the o�ered load to the network exceeds its capacity. Even in a well-designed

network, statistical variations in tra�c ows may lead to congestion. As the arrival packet

rate at a network node becomes greater than its transmission packet rate, its queue length

grows dramatically. As the node becomes congested, queue starts to overow, (i.e., packets

that arrive at a time the queue is full are discarded), and delays increase beyond acceptable

levels. Dropped packets are eventually retransmitted by the source causing the tra�c load to

further increase. As the number of retransmissions increases, more nodes become congested

and more packets are dropped. A typical pattern of network performance as a function of

the o�ered load is shown in Figure 3. As the o�ered load increases beyond the knee point,

throughput increases slowly but the delay increases dramatically. After the load reaches the

network capacity, throughput stops increasing. When load exceeds the congestion collapse

13
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Figure 3: Network performance as a function of the o�ered load

point, throughput falls o� rapidly approaching zero.

There are two broad classes of congestion control mechanisms: preventive control and

reactive control. Preventive congestion control techniques attempt to prevent congestion by

taking appropriate actions, such as regulating the tra�c from the source, before it actually

occurs. A preventive congestion control technique that allows the network to operate at the

knee point as shown in Figure 3, (i.e., the region of low delay and high throughput), is called

a congestion avoidance technique. However, reactive congestion control techniques are still

required to protect the network should it reach the congestion collapse state due to transient

changes in the network. The purpose of a reactive congestion control technique is to detect

the fact that the network is congested and help it to recover by reducing the tra�c ow into

the network.

TCP standards de�ne two congestion control mechanisms, one preventing and one reac-

tive. Although the two techniques are di�erent, in practice they are implemented together.

The combine scheme is known as Slow Start and Congestion Avoidance Scheme. With
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this scheme, the sender maintains three variables for each connection: a congestion win-

dow (cwnd), a send window (snd wnd), and a slow start threshold (ssthresh)9. The sender

never transmits more than the minimum of (cwnd) and the receiver's advertised window

(rcv wnd). That is, always the transmission window size is given by

snd wnd =MIN(cwnd; rcv wnd):

The congestion window is for a ow control imposed by the sender based on its assessment

of perceived network congestion, while the receiver's advertised window is for a ow control

imposed by the receiver related to its amount of available bu�er space. The slow start

threshold determines when the transmission state of the sender shifts from the slow start

phase into the congestion avoidance phase.

Current implementations of TCP can not distinguish segment losses due to transmission

errors from segment losses due to congestion. So it makes the conservative assumption that

all losses are due to congestion. When a timeout occurs due to a segment loss, TCP �rst

doubles the current RTO for all unacknowledged10 segments and then enters the slow start

phase to recover from congestion. Slow start begins at the sender by �rst setting cwnd to

one segment and

ssthresh 
snd wnd

2
:

It then sends one segment and waits for an ACK. If there aren't any unacknowledged seg-

ments, the retransmission timer for this segment is also set to 2 � current RTO. When the

ACK is received, a new RTO value is estimated and cwnd is incremented by one segment,

and hence two segments can be transmitted. For each ACK the sender receives, cwnd is

incremented by one segment which leads to an exponential window increase. That is, cwnd

doubles for every RTT. Slow start ends when cwnd reaches ssthresh or rcv wnd, or segment

loss is detected. Since slow start gradually increases the transmission rate, whenever TCP

establishes a new connection, it begins transmitting data from the slow start phase in order

to avoid ooding the network with additional tra�c, leading to network congestion. In this

case, ssthresh is set equal to rcv wnd, and the total time required for slow start to achieve

the bandwidth allowed by the receiver is calculated as follow:

Tss(W = ssthresh) = RTT � log2W: (1)

9In practice, cwnd, snd wnd, and ssthresh are expressed in terms of bytes, but here they are expressed in

terms of segments for simplifying the discussion.
10A segment that has been transmitted but no ACK has been received.
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When cwnd reaches ssthresh, TCP shifts to the congestion avoidance phase and slows

down the rate of window increment. In the congestion avoidance phase, the network is

probed for available bandwidth by transmitting one additional segment for each RTT, until

the receiver's advertised window is reached or a segment loss is detected. The total time

required for congestion avoidance to reach the bandwidth allowed by the receiver given no

segment loss is calculated as follow:

Tca = RTT � (rcv wnd� ssthresh): (2)

Figure 4 shows the slow start and congestion avoidance phases for three di�erent cases. In

Avoidance
CongestionSlow

Start

Slow
Start
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Avoidance
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Avoidance
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time (RTT)

time (RTT)
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Figure 4: Visual description of slow start and congestion avoidance

all three cases, TCP enters the slow start phase after a segment loss is detected by a timeout.
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2.1.3 Fast Retransmit and Fast Recovery

TCP is required to generate an immediate duplicate ACK 11 when an out-of-order segment

is received. The fast retransmit scheme detects the loss of a single segment without having

to wait for the retransmission timer to expire. When sender receives a prede�ned number

(usually 3) of duplicate ACKs, it deduces that a segment loss occurred. It then sets ssthresh

to one-half the current cwnd and retransmits the lost segment as indicated by the duplicated

ACKs. Next, it sets cwnd to ssthresh plus three segments. Each time another duplicate ACK

is received, fast retransmit increments cwnd by one segment and transmits a new segment

if it is allowed by the new value of cwnd. Upon receiving a non-duplicate ACK, the scheme

shifts to fast recovery. It sets cwnd to ssthresh and begins congestion avoidance, without

falling back to slow start.

2.1.4 Delayed Acknowledgements

TCP standards recommend delaying ACKs at the receiver. Since ACKs are cumulative, one

ACK can acknowledge multiple segments. Sending one ACK for more than one segment

reduces the return path bandwidth used by the ACKs. In most implementations, TCP does

not send an ACK the instant it receives a segment. Instead, it delays the ACK in case there

data to send to the sender, and so the ACK can be sent along with the data. Usually, TCP

delays ACKs up to 200 ms to see if there is data to send with the ACK. An exception is

when out-of-order or two segments are received. In such cases, an immediate ACK is sent.

Equation (1) is not valid if delayed ACK is implemented.

2.2 User Datagram Protocol (UDP)

UDP is a non-ow-controlled, unreliable, and connectionless transport protocol. It allows

applications to exchange data (messages, �les, etc.) over the network with a minimum of

protocol overhead. There are no techniques in UDP for verifying that data reached the

destination correctly, therefore, it does not guarantee that data is delivered error-free. Also,

UDP does not use any ow and congestion control mechanism like TCP. Two end hosts

using UDP don't establish any logical end-to-end connection with each other before they

can exchange data.

11It's called duplicate ACK because it again acknowledges the last in sequence received and acknowledged

segment.
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3 Long-Range Dependence and Self-Similarity

This section gives the mathematical de�nition of long-range dependent and self-similar pro-

cesses, and a brief discussion on self-similar stochastic modeling.

3.1 Wide-Sense Stationary Stochastic Processes

A discrete-time real-valued stochastic process X = fXt; t = 0; 1; 2; : : :g is strictly station-

ary process if all of the distribution functions describing the process are invariant under a

translation of time. X is said to be stationary in the wide sense, or weakly stationary, if its

mean � = E[Xt] is a constant, its variance �2 = E[(Xt � �)2] <1, and its autocovariance

function

Ck = Cov(Xt; Xt+k) = E[(Xt � �)(Xt+k � �)] k = 0; 1; 2; : : : (3)

depends only on the time di�erence k. The autocorrelation function of X is then given by:

r(k) =
Ck

Ck=0

=
E[(Xt � �)(Xt+k � �)]

�2
k = 0; 1; 2; : : : (4)

which depends also only on k. Hence, for each k, r(k) measures the correlation between

elements of X separated by k units of time.

3.2 Long-Range Dependence

Let X be a wide-sense stationary stochastic process with an autocorrelation function of the

form

r(k) � k��L(k) as k !1 (5)

where 0 < � < 1 and L is slowly varying at in�nity, that is,

lim
k!1

L(kx)

L(k)
= 1 8x > 0:

Such functions are L(t) = const, L(t) = log(t), or any function having a nonzero horizontal

asymptote at 1.

De�nition 1 A wide-sense stationary stochastic process X is called a stationary process

with long memory or long-range dependent if r(k) satis�es relation (5). That is, the auto-

correlation function decays hyperbolically as k increases, implying that

1X

k=1

r(k) =1: (6)
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Equivalently ([39]), let Sn = X1 + � � �+Xn, then

Corr(Sn; S2n � Sn)! c > 0 as n!1;

i.e., the correlation between neighboring non-overlapping blocks does not asymptotically van-

ish when block size is increased. Otherwise X is called short-range dependent.

This means that for stationary processes with long memory, the correlations between

observations that are apart (in time) decay to zero at a slower rate than one would expect

from independent data or data following classic ARMA- or Markov-type models. Note that

the de�nition of long-range dependence applies only to in�nite time series. (See [5] for an

elaborate discussion on stationary processes with long memory.)

Although for a long-range dependent process the values of r(k) for k large enough are

very small, their cumulative e�ect is of importance because it gives rise to features which

are drastically di�erent from the short-range dependent processes considered in the conven-

tional packet tra�c models. A short-range dependent process can be characterized by an

autocorrelation function that decreases exponentially fast (i.e., r(k) � �k; 0 < � < 1),

implying a summable autocorrelation function (i.e.,
P1

K <1).

The simplest models with long-range dependence are self-similar processes. Self-similar

processes are particular attractive models because the long-range dependence can be char-

acterized by a single parameter, the Hurst (H) parameter.

3.3 Self-Similar Stochastic Processes

There are several de�nitions of self-similarity; not all of the de�nitions are equivalent. The

most well known de�nition (known as the standard, see [5, 45]) states that the time series

Y = fYt; t 2 Tg is self-similar with self-similarity parameter H if the following property is

satis�ed:

Yt =
d ��HY�t; 8� > 0; 0 � H < 1; (7)

where =d is equality in the sense of �nite-dimensional distributions. An example of such a

process is Fractional Brownian Motion (Brownian Motion if H = 1/2). While a process Y

satisfying (7) can never be stationary, it is typically assumed to have stationary increments

[45].
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More appropriate de�nitions of self-similarity in the context of network data tra�c and

standard time series theory are as follow [45, 5]: Let X = fXt; t = 0; 1; 2; : : :g be a wide-

sense stationary sequence with an autocovariance function Ck and autocorrelation function

r(k) as de�ned by (3) and (4), respectively. For each m = 1; 2; 3; : : :, let X(m) = fX
(m)

k ; k =

1; 2; 3; : : :g denote a new aggregated time series obtained by averaging the original series X

over non-overlapping blocks of size m, replacing each block by its sample mean. That is, for

each m = 1; 2; 3; : : :, X(m) is given by

X
(m)

k =
Xkm�m+1 + � � �+Xkm

m
k � 1: (8)

The new aggregated time series is also wide-sense stationary with autocovariance function

C
(m)

k , variance �2(m) = C
(m)
0 , and autocorrelation function r

(m)

k .

De�nition 2 If X is the increment process of a self-similar process Y de�ned in (7)

(i.e., Xt = Yt+1 � Yt), then is called exactly self-similar with self-similarity parameter H if

8m = 1; 2; 3; : : :,

X =d X(m)

mH�1
(9)

Note that this de�nition of self-similarity is related to the �rst but they are not equivalent.

De�nition 3 X is called an asymptotically self-similar process with self-similarity parame-

ter H if (9) holds as m!1.

De�nition 4 X is called exactly second-order self-similar with self-similarity parameter H

if 8m = 1; 2; 3; : : :, X(m)

mH�1 has the same variance and autocorrelation as X.

De�nition 5 X is called asymptotically second-order self-similar with self-similarity param-

eter H if X(m)

mH�1 has the same variance and autocorrelation as X as m ! 1. That is, 8k

large enough [24],

r(m)(k)! r(k) as m!1

That is, X is exactly or asymptotically second-order self-similar if the corresponding

aggregated processes X(m) are the same as X or become indistinguishable from X at least

with respect to their autocorrelation functions.
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The parameter H is called the Hurst parameter. It measures the degree of self-similarity

of a time series. Speci�cally, it expresses the speed of decay of time series' autocorrelation

function. From [5] (Sect. 2.3), the asymptotic behavior of r(k) is shown to be:

r(k)

H(2H � 1)k2H�2
! 1 as k!1 (10)

For 1
2
< H < 1, the correlations decay to zero so slowly that

P1
k=1 r(k) = 1. Thus, the

process X has long-range dependence. This means that a long-range dependent process

is always an asymptotically second-order self-similar process, and long-range dependence

implies an asymptotically second-order self-similarity. Note that a long-range dependent

process can also be an exactly second-order self-similar since the latter one implies asymp-

totically second-order self-similarity. For H = 1=2, all correlations at non-zero lags are zero,

i.e., the samples (observations) Xt are uncorrelated. For 0 < H < 1
2
, the correlations sum

up to zero (i.e.,
P1

k=1 r(k) = 0), and the process X has short-range dependence. 12 In this

study, we focus on stochastic processes that have long-range dependence (1
2
< H < 1).

3.4 Properties of Long-Range Dependent Stochastic Processes

3.4.1 Nondegenerate Correlation Structure

The aggregated processes X(m) of long-range dependent processes possess a nondegenerate

correlation structure as m ! 1. This is in entirely contrast to conventional packet tra�c

models which all have the property that their aggregated processes X(m) tend to second-order

pure noise, i.e., 8K � 1,

r(m)(k)! 0 as m!1:

3.4.2 Slowly Decaying Variance

An important feature of asymptotically second-order self-similar (and thus long-range de-

pendent) processes is that the variance of the aggregated time series X(m) decreases more

slowly than the reciprocal of the sample size n. That is,

V ar[X(m)] � am�� as m!1 (11)

where a is a positive constant independent of m and 0 < � < 1. This implies that H =

1 � (�=2) for long-range dependency, and as � ! 0, and thus H ! 1, the autocorrelation

12For other values of H see [5], page 53
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function decays more slowly, i.e., the degree of self-similarity increases. In contrast, for

short-range dependent processes,

V ar[X(m)] � bm�1 as m!1 (12)

where b is a �nite constant independent of m. The slowly decaying variance feature of self-

similar process can be used to identify and estimate the degree of self-similarity of a time

series. As shown by Section 3.3, the degree of self-similarity or the intensity of long-range

dependence of a time series can be captured by a single parameter, the Hurst parameter H.

3.5 Methods of Estimating H

There are several methods for estimating the self-similarity parameter H or the intensity

of long-range dependence in a time series [5, 46]. In this simulation study we used only

two of them, the Aggregated Variance and the R/S methods, as described in [27, 5]. We

validated our implementation of the two estimators with the Ethernet data used in [24]. For

the robustness of these estimator, see [5, 47, 46]. Both methods are two of the better known

methods and they have good robustness properties, in particular, with respect to long-tailed

distributions [20, 5, 46]. Since con�dence intervals can not be obtained with either method,

we conlude that a timeseries has long-range dependence if the estimated H is well greater

than 0:5.

3.5.1 Aggregated Variance Method

Consider the aggregated series X(m) as described in Sec. 3.3, obtained by dividing a given

series of length N into blocks of length m, and averaging the series over each block. Its

sample variance is then given by:

^V ar[X(m)] =

PN

m

k=1(X
(m)(k)� �X)2

N

m

(13)

where

�X =

PN

t=1Xt

N
(14)

is the sample mean of the series. For successive values of m that are equidistant on a log

scale, the sample variance of the aggregated series is plotted versus m on a log-log plot. By
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�tting a least-squares line to the points of the plot and then calculating its slope, an estimate

of the Hurst parameter is obtained as follow:

Ĥ = 1�
slope

2
:

3.5.2 Rescaled Adjusted Range Statistic (R/S) Method

Let Xt; � � � ; Xt+n�1 be n observations of the process X with a sample variance,

S2(t; n) =

Pt+n�1

i=t X2
i

n
� ( �X(t; n))2

where �X(t; n) = 1
n

Pt+n�1

i=t Xi is the sample mean. The R/S statistic, or the rescaled adjusted

range, is given by:

R(t; n)

S(t; n)
=

max

1�u�n
[
Pt+u�1

i=t Xi � u �X(t; n)]� min

1�u�n
[
Pt+u�1

i=t Xi � u �X(t; n)]

S(t; n)
:

For successive logarithmically spaced values of n, the average

Q(n) =
1

n

nX

i=1

R(ti; n)

S(ti; n)

for di�erent values of t is plotted versus n on a log-log plot. The estimated H is given by

the slope of a �tted least-squares line to the points of the plot. For a more detail discussion

on both methods see [5].

3.6 Self-Similar Stochastic Modeling

Since the observation of self-similarity in several areas, several self-similar stochastic models

have been developed [5, 9, 40]. Two well known models that yield exquisite representations of

the self-similarity phenomenon but do not provide any physical explanation of self-similarity

are fractional Gaussian noise (FGN) and the class of fractional autoregressive integrated

moving-average (ARIMA) processes [24].

An important model which constructs self-similar processes is based on aggregating many

simple renewal reward processes which exhibit inter-renewal times with in�nite variances [44].

In other words, a self-similar process is generated by superimposing many simple renewal

reward13 processes, in which the rewards are restricted to the values 0 and 1 (OFF/ON), and

13See [48] for the de�nition
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in which the inter-renewal times are heavy-tailed. As the number of such processes grows

large, such a construction yields a self-similar FGN process. In contrast to FGN and ARIMA,

this method does provide a physical explanation of self-similarity and it became appealing

in the context of high-speed packet tra�c [49, 24]. As shown in [50], the superposition of

many independent ON/OFF tra�c sources with strictly alternating ON- and OFF-periods

and whose ON-periods or OFF-periods are heavy-tailed results in aggregate packet streams

that are consistent with measured local-area network (LAN) tra�c and exhibits the same

self-similar property as can be observed in the data [24].

3.6.1 Heavy-Tailed Probability Distributions

Since heavy-tailed distributions are very important in self-similar modeling, a brief descrip-

tion is given here as presented in [10]. A probability distribution is heavy-tailed if

P [X > x] � x�� as x!1 (15)

where 0 < � < 2. Thus, regardless of the behavior of the distribution for small values of

the random variable, if the asymptotic shape of the distribution is hyperbolic, it is heavy-

tailed. A simple heavy-tailed distribution is the Pareto distribution [36]. Its distribution is

hyperbolic over its entire range. Its probability density function is given by

p(x) = �k�x���1 �; k > 0 x � k (16)

and its cumulative distribution function is given by

F (x) = P [X � x] = 1� (k=x)�: (17)

The parameter k represents the smallest possible value of the random variable.

Heavy-tailed distributions have a number of properties that are qualitatively di�erent

from distributions more commonly encountered such as exponential or normal distributions.

If � � 2, then the distribution has in�nite variance. If � � 1, then it has in�nite mean.

Thus, as � decreases, a large portion of the probability mass is present in the tail of the

distribution. That is, a random variable that follows a heavy-tailed distribution can give

rise to extremely large values with non-negligible probability.
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4 Network Model and Simulation Scenarios

The purpose of our simulation study was to validate our assumption that the primary factor

contributing to long-range dependence in TCP tra�c is the dynamics of TCP. The dynamics

of TCP, congestion control and avoidance, are in e�ect only in response to packet losses and

when a new TCP connection is established, where TCP starts transmitting data with the

slow start phase. Therefore, simulations were designed and run a) for cases where the

dynamics of TCP were frequently in e�ect, and b) for cases where the dynamics of TCP

were not frequently in e�ect.

4.1 Network Model

The network model used here is shown in Figure 5. N TCP sources transmit over an IP

WAN through a shared bottleneck node with capacity of � bits per second and a FIFO

bu�er of size B packets to an equal number of TCP receivers. Importantly, the study was

TCP
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TCP
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Dest

TCP
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Figure 5: WAN Network Model with N TCP Tra�c Flows via Bottleneck Node

focused on TCP-Reno which is currently the de facto standard implementation of TCP

[42]. TCP-Reno implements Slow Start and Congestion Avoidance Schemes in the manner
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described in Section 2.1.2. It also includes the Fast Retransmit, Fast Recovery14, and Delayed

Acknowledgements mechanisms. However, in some cases studied these mechanisms were

disabled in order to detect the e�ect of Slow Start and Congestion Avoidance mechanisms

on the TCP tra�c's long-range dependency. When these mechanisms are disabled, we call

this implementation of TCP as TCP-Tahoe. Also, several studies were conducted with UDP

as the transport protocol to see if indeed the dynamics of TCP have any e�ect on long-range

dependence in network tra�c. The round-trip times (RTT) for each connection were set in

the range from about 20 ms to about 450 ms. High RRTs results in longer Slow Start and

Congestion Avoidance periods, and thus burstier tra�c at the bottleneck node.

Several types of TCP and UDP connections were considered: a) connections with greedy

sources, b) client/server connections (ON/OFF model): 1) with �le sizes and OFF times

exponentially distributed, 2) with �le sizes Pareto distributed and OFF times exponentially

distributed, and, 3) with �les sizes and OFF times uniformly distributed. In the greedy-

source cases, TCP layer had always data to send, i.e., the transmitted messages were in�nity

long. In the client/server cases, the client was modeled as \TCP Dest" and the server was

modeled as \TCP Source". When UDP was used as the transport protocol, only client/server

connections were considered.

In order to see the e�ect of TCP congestion control and avoidance on long-range depen-

dency, it was necessary to create packet losses. Two methods for packet losses were used.

First, by setting the bottleneck queue size small, packets were discarded due to queue over-

ow. Second, packets were discarded randomly (Random Loss) with a probability p drawn

from a uniform distribution.

4.2 Simulation Model

The simulation models in this study were implemented using BONeS DESIGNER, a com-

mercial software package for modeling and simulating event-driven systems [43]. The TCP

BONeS module used in all simulation models was created for the study in [23]. Figure 6

shows the the top level of the simulation model created for the case of 64 TCP connections

with greedy sources. The BONeS simulation model for a greedy TCP source is shown in

Figure 7. For the client/server cases, the TCP User module was replaced by a Client/Server

User module. The top model of the simulation model created for the case of 64 UDP

14See Section 2.1.3.
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client/server connections with �le sizes and OFF times exponentially distributed is shown

in Figure 8 The maximum packet size for each simulation was set to 1000 bytes. Simula-

tions were run for di�erent number of TCP/UDP connections. The maximum number of

connections in a simulation was 512.

In all the cases studied, the tra�c ows were measured by collecting the number of bytes

sent by all active sources (aggregated byte tra�c) per aggregation time intervals (10 ms or

greater) at the ingress (see Figure 8) or at the egress (see Figure 6) of the bottleneck node .

As shown in Figures 6 and 8, the collection of byte counts was done by the \Get Bytes Per

Time Unit" module. Each simulation was run for at least 10000 simulated seconds resulting

in one million or more byte counts in the timeseries. The run times of each simulation on

a SPARC Ultra-60 with 1 GByte of RAM were in the range from about 10 hours to several

weeks. The intensity of long-range dependency (H) in each timeseries was estimated by the

methods described in Sec. 3.5.
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5 Results

5.1 Cases of Connections with Greedy Sources

Studies, [50, 34, 20, 10], have shown so far that some application-level characteristics (i.e.,

�le-size distributions) can cause network tra�c to be long-range dependent. The goal of

this part of the study was to identify other factors contributing to long-range dependence

in network tra�c. This set of cases addresses TCP connections with greedy sources. In

these cases, it is very clear that all application-level factors contributing to long-range de-

pendency are eliminated. Speci�cally, the primary goal of these simulations was to validate

our assumption that long-range dependence in aggregated TCP tra�c can be induced by

the dynamics of TCP.

5.1.1 Case of No Packet Losses

The congestion control and avoidance mechanism of TCP are activated only in response to

packet losses. Without the e�ect of these TCP mechanisms, is the generated tra�c with

greedy sources long-range dependent? To answer the question, we run several simulations

with di�erent number of TCP greedy sources and system parameters. In all simulations there

were no packet losses and round-trip times were kept constant. Therefore, the generated

tra�c was equivalent of a tra�c generated by a constant bit rate (CBR) source. Obviously,

such tra�c patterns (constant rate) do not exhibit long-range dependence (LRD).

Part of the dynamics of TCP is ow control. The operation of ow control depends

very much on the round-trip time (RTT). If the RTT is made random, does this make the

tra�c LRD? To answer this question, we ran a simulation in which the RTTs were uniformly

distributed random variables in the range of 300 ms to 600 ms. The bit rate generated was

uctuating within a small range when byte aggregation was done every 10 ms, but it was

fairly constant when the byte aggregation was done every 1 sec (Figure 9). Thus, the answer

to the above question is no.

5.1.2 Case of Packet Losses Due to Queue Overows

Does the activation of TCP's dynamics by packet losses give rise to long-range dependence

(LRD) in TCP tra�c? To answer this question, several simulations were performed with

the e�ect of TCP's dynamics being the only factor that could contribute to the possible
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Figure 9: Data Rate vs Time for the Cases of 64 TCP Connections with Greedy Sources,

No Packet Losses, and Random RTT. Left Plot) Aggregation Time = 10ms, Right Plot)

Aggregation Time = 1 sec.

long-range dependency. The values of the most important TCP and network parameters

are shown in Table 1. Table 2 shows the values of the estimated self-similar parameter Ĥ

for the simulations described in Table 1. As shown in Table 2, for each simulation, the

long-range intensity (Ĥ) of the generated aggregated tra�c was estimated for three di�erent

aggregation time intervals: 10 ms, 100ms and 1 sec. Let the tra�c sequences formed by

sampling the tra�c every 10 ms, 100 ms and 1 sec be X(n), Y (i), and Z(j), respectively.

Clearly, Y (i) and Z(j) are aggregates of X(n). Therefore, Y (i) and Z(j) should have the

same LRD properties as X(n). Looking the values of Ĥ estimated by both estimators, R/S

and variance methods, in Table 2, we observe that in most cases seemingly Z(j) doesn't

have LRD. That means that the corresponding X(n) and Y (i) sequences should not have

LRD either. However, the estimators show evidence of weak LRD in the tra�c sequences of

some cases.

Then, for the cases where the sequences Z(j) are shown to have no LRD, why do both es-

timators show evidence of LRD for X(n)? Note that the de�nition of long-range dependence

applies only to in�nite time series. Here we attempt to estimate the intensity of long-range

dependence in a time series by using only a �nite number of samples. The question now is:

how many samples required for a time series to get a good estimate of its LRD intensity,

if there exists? Figures 10 and 11 show plots of Ĥ versus number of samples for X(n) for

the cases 19 and 10 described in Table 1. It is clear from these plots that for these tra�c

sequences a much greater number of samples is required to obtain more accurate values of
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Ĥ. Also, since not enough samples are collected for the sequences Z(j), it is not possible by

these results to conclude that for cases 2, 3, 4, 5, and 14, the tra�c sequences exhibit LRD.
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Case Number Bottleneck TCP Max Link Bottleneck RTT

# of Queue Size Window Speeds Link Speed (ms)

Flows (packets) Size(KB) (Mbps) (Mbps)

1 2 20 1000 134 100 30{50

2 2 50 1000 10 15 200{250

3 4 20 1000 134 100 30{50

4 6 40 1000 134 100 30{50

5 8 40 1000 134 100 30{50

6 8 60 1000 134 100 30{50

7 16 40 1000 134 100 30{50

8 16 60 1000 134 100 30{50

9 20 60 1000 134 100 30{50

10 24 60 1000 134 100 30{50

11 28 80 1000 134 100 30{50

12 64 30 100 100 80 30{50

13 64 100 100 100 80 30{50

14 64 300 100 100 80 30{50

15 64 100 64, 90, 1.5, 10, 20, 136 30{50

300 40, 98, 136

16 64 400 64 1.5, 10, 20, 136 30{50

40, 98, 136

17 64 50 1000 5 45 200{250

18 64 50 1000 5 45 20-30

19 64 100 1000 10 45 400-450

20 64 100 1000 10 45 400-450

Table 1: Run-Time Simulation Parameters for the Cases of TCP Connections with Greedy

Sources Undergoing Packet Losses.

32



X(n) Y (i) Z(j)

Case TCP Data Aggregation Time Interval

# Type Collection 10 ms 100 ms 1 sec

Place Estimated Ĥ Parameter

R/S Var R/S Var R/S Var

1 Tahoe ingress 0.75 0.71 0.59 0.62 0.45 0.52

2 Reno egress { { { { 0.67 0.67

3 Tahoe ingress 0.80 0.73 0.73 0.67 0.66 0.59

4 Tahoe ingress 0.76 0.71 0.69 0.65 0.61 0.55

5 Tahoe ingress 0.76 0.72 0.69 0.69 0.63 0.58

6 Tahoe ingress 0.72 0.65 0.61 0.54 0.52 0.43

7 Tahoe ingress 0.70 0.66 0.64 0.58 0.56 0.50

8 Tahoe ingress 0.71 0.64 0.61 0.56 0.54 0.47

9 Tahoe ingress 0.71 0.66 0.64 0.59 0.58 0.52

10 Tahoe ingress 0.69 0.65 0.62 0.58 0.57 0.51

11 Tahoe ingress 0.65 0.53 0.57 0.52 0.54 0.49

12 Tahoe ingress 0.61 0.56 0.57 0.52 0.52 0.48

13 Tahoe ingress 0.62 0.57 0.56 0.53 0.55 0.52

14 Tahoe ingress 0.64 0.66 0.59 0.65 0.59 0.69

15 Reno ingress 0.60 0.57 0.56 0.53 0.57 0.50

egress 0.60 0.50 0.55 0.49 0.56 0.48

16 Tahoe ingress 0.69 0.62 0.60 0.55 0.56 0.50

17 Reno egress 0.65 0.61 0.59 0.54 0.52 0.47

18 Reno egress 0.63 0.58 0.55 0.54 0.57 0.55

19 Reno egress 0.70 0.67 0.66 0.61 0.55 0.50

20 Tahoe egress 0.71 0.64 0.62 0.55 0.52 0.45

Table 2: Estimated Values of H for the Cases of TCP Connections with Greedy Sources

Undergoing Packet Losses and Described in Table 1.
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Figure 10: Ĥ vs Number of Samples for the Tra�c Sequence X(n) of Case 19 Described in

Table 1
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Figure 11: Ĥ vs Number of Samples for the Tra�c Sequence X(n) of Case 10 Described in

Table 1
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5.1.3 Case of TCP Connections with Greedy Sources Undergoing Random

Packet Loss

TCP's dynamics (congestion control and avoidance) are in e�ect in response to packet loss

regardless the source of loss. If TCP packets are discarded randomly within the network,

does the aggregated TCP tra�c exhibit long-range dependence? A study was conducted

to resolve the above question. In all cases considered in this section, the queue size at the

bottleneck node was set to in�nity and the maximum TCP window size was set to 1 MByte.

Three set of simulations were performed. In the �rst set, packets were discarded randomly

with a probability p from the aggregated tra�c after the network node in consideration.

Fig. 12 shows exactly the position (\Random Loss" module) where packets were getting

lost in a random fashion. In the second set of simulations, all connections were combined

  64 TCP Greedy  QoutBonesOut Random Loss       [ 30-Jun-1999 18:23:14 ] 

Random
Loss t2

No Match64 TCP Greedy
Sources/Dests

Get Bytes
Per Time
Unit

Write
File Integer

Write File
(STRING)
- Param

WrapUp

Open File
(APPEND)

Node

Init

Figure 12: BONeS Simulation Model for 64 TCP Connections with Greedy Sources Under-

going Random Packet Loss.

in groups of two and packets were discarded randomly with a probability p per aggregated

pair, as shown by Fig 13. All simulations in this set were carried out only for 16 connections

(See Table 3, Simulation Numbers 9 to 13). For the last set of simulations in the case of

random loss, connections were joined in groups of four and packets were dropped randomly

with a probability p per group. All simulations in the last set were carried out only for

28 connections (See Table 3, Simulation Numbers 14 and 15). The values of the most

important TCP and network parameters are shown in Table 3. Table 4 shows the values

of the estimated self-similar parameter Ĥ for the simulations described in Table 3. Again,

for each simulation, the long-range intensity (Ĥ) of the aggregated tra�c was estimated for
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  4 TCP Sources With Random Packet Loss per Pair       [ 13-Dec-1998 18:53:03 ] 

Node
 (1)

Random
Loss t(Node1)

Node
 (2)

Random
Loss t(Node2)

4 TCP
Sources

Seg_In 1

Seg_Out 1

Seg_In 2
Seg_In 3

Seg_In 4

2

Figure 13: BONeS Simulation Module for 4 TCP Connections with Greedy Sources Under-

going Random Packet Loss per Aggregated Pair.

three di�erent aggregation time intervals: 10 ms, 100ms and 1 sec. Analyzing the results of

Table 4 and applying the same reasoning of the previous section, we arrive to the conclusion

that for the cases considered in this section, the generated TCP tra�c traces do not have

long-range dependence.
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Case Number Packet MTU Link Bottleneck RTT

# of Loss Speeds Link Speed (ms)

Flows Probability (KB) (Mbps) (Mbps)

1 2 0.01 1 134 100 30{50

2 2 0.001 1 134 100 30{50

3 2 0.0001 1 134 100 30{50

4 2 0.00001 1 134 100 30{50

5 28 0.01 1 134 100 30{50

6 28 0.001 1 134 100 30{50

7 64 0.001 8 134 134 30{50

8 64 0.001 1, 1.5 1, 2, 10, 15, 34, 134 30{50

8, 9 40, 50, 70, 90,

100, 110, 120, 134

Per 2 Flows

9 16 0.0 (2 Pairs) 1 134 134 30{50

0.01 (6 pairs)

10 16 0.01 1 134 134 30{50

11 16 0.01, 0.05, 1 134 134 30{50

0.001, 0.0001

12 16 0.01 1, 4, 134 134 30{50

8, 9

13 16 0.01, 0.05, 1, 4, 134 134 30{50

0.001, 0.0001 8, 9

Per 4 Flows

14 28 0.01 1 134 134 30{50

15 28 0.001 1 134 134 30{50

Table 3: Run-Time Simulation Parameters for the Cases of TCP Connections with Greedy

Sources Undergoing Random Packet Losses.
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X(n) Y (i) Z(j)

Case TCP Data Aggregation Time Interval

# Type Collection 10 ms 100 ms 1 sec

Place Estimated Ĥ Parameter

R/S Var R/S Var R/S Var

1 Tahoe ingress 0.61 0.57 0.57 0.51 0.53 0.43

2 Reno ingress 0.65 0.60 0.59 0.53 0.50 0.41

3 Tahoe ingress 0.71 0.59 0.58 0.49 0.43 0.31

4 Tahoe ingress 0.79 0.65 0.67 0.53 | |

5 Tahoe ingress 0.58 0.52 0.52 0.46 0.46 0.36

6 Tahoe ingress 0.63 0.55 0.55 0.46 0.43 0.33

7 Tahoe ingress 0.46 0.35 0.41 0.26 0.37 0.15

8 Tahoe ingress 0.45 0.33 0.42 0.25 0.36 0.14

9 Tahoe ingress 0.34 0.44 0.36 0.47 0.35 0.46

10 Tahoe ingress 0.61 0.57 0.55 0.50 0.50 0.43

egress 0.61 0.57 0.55 0.50 0.50 0.43

11 Tahoe ingress 0.71 0.56 0.63 0.51 0.51 0.38

12 Tahoe ingress 0.63 0.58 0.58 0.51 0.52 0.44

13 Tahoe ingress 0.73 0.66 0.66 0.57 0.54 0.45

14 Tahoe ingress 0.59 0.54 0.54 0.47 0.48 0.39

15 Tahoe ingress 0.64 0.56 0.56 0.46 0.44 0.32

Table 4: Estimated Values of H for the Cases of TCP Connections with Greedy Sources

Undergoing Random Packet Losses and Described in Table 3.
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5.2 Cases of Client/Server Connections (ON/OFF Model)

We saw in the previous sections that the dynamics of TCP alone may not give rise to LRD

in TCP tra�c. The simulation study performed in [34] on a speci�c client/server scenario

shows that the presence of long-range dependence in network tra�c depends on whether

reliable and ow-controlled communication (such as the dynamics of TCP) is employed at

the transport layer. Is this true in general? In this section, simulations were performed to

re-evaluate a) the e�ect of di�erent �le size's distributions on the long-range dependency and

b) whether the dynamics of TCP have any e�ect on the intensity of LRD in a client/server

network environment. Several simulations were run with TCP Reno, TCP Tahoe, and UDP

as the transport protocols.

5.2.1 Case of File Sizes with Heavy-tailed Distribution

Several studies have already shown that when the distribution of �le sizes being transferred

is heavy-tailed, then the aggregation of many such connections results in a long-range depen-

dent network tra�c [50, 34, 20, 10]. However, it was necessary to validate this observation

with our network model. In this set of simulations, the �le sizes were Pareto distributed with

the heavy-tailed parameter � set to 1.06 and the OFF times were exponentially distributed.

The run-time simulation parameters for the cases considered here are shown in Table 5.

Note that simulations 1, 2, and 5 were run long enough to collect 14, 75, and 92 hours of

continuous tra�c sequences, respectively. These sequences are much greater than any em-

pirical tra�c trace study published so far. Adopting the notation de�ned in Section 5.1.2,

it is very clear by the values of Ĥ shown in Table 6, X(n), Y (i), and Z(j) exhibit strong

LRD properties. That is, the tra�c sequences generated by the simulations performed in

this section have strong long-range dependence.

Figure 14 shows a plot of Ĥ as a function of the number of samples for the tra�c sequence

X(n) generated by the case 1. Despite the relative small uctuations, both estimators seem

to converge to a value well greater than 0.75, suggesting strong LRD.

Do the dynamics of TCP have any e�ect on the intensity of LRD? As shown by Table

6 three cases were considered with TCP Reno as the transport, two with UDP, and four

with TCP Tahoe. The values of Ĥ between the two TCP avors do not signi�cantly vary.

Disabling the slow start mechanism in case 7 had no e�ect on the intensity of LRD. Com-

paring the values of Ĥ between the UDP and TCP cases, we see no signi�cant variation.
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Case Number Mean Mean Packet TCP Max Link Bottleneck RTT

# of File OFF Loss Window Speeds Link Speed (ms)

Flows Size Time Size (KB) (Mbps) (Mbps)

14 Hours Tra�c

1 64 4 KB 600 ms Yes 1000 20 10 200{250

75 Hours Tra�c

2 64 4 KB 600 ms No 1000 134 622 200-250

3 64 4 KB 600 ms No 1000 Inf Inf 200-250

4 64 4 KB 600 ms No | 10 100 |

92 Hours Tra�c

5 64 4 KB 600 ms No | 134 622 |

6 64 4 KB 600 ms No 64 10 134 30{50

7 64 4 KB 600 ms No 64 10 134 30{50

8 64 100 KB 1 sec No 64 10 134 30{50

9 512 4 KB 600 ms No 64 10 134 30{50

Table 5: Run-Time Simulation Parameters for the Cases of ON/OFF Tra�c Sources with

File Sizes Pareto Distributed and OFF Times Exponentially Distributed.

Note that the values of Ĥ listed for case 5 (UDP case) are for a 92-hour tra�c trace, and

comparing them with the 75-hour tra�c trace of case 2 (TCP Reno case) we can see that

there is not much di�erence. Extending the 75-hour tra�c sequence to 92 hours, as the UDP

case, the values of Ĥ for both would probably be similar. Also, the small di�erence in Ĥ

values between cases 2 and 5 can be due to the uctuation of Ĥ versus number of samples.

Comparing a section of the tra�c sequence X(n) between cases 2 and 5 shown in Figure

15 by the plots (e) and (f), we can observe that the tra�c pattern of the UDP case, case 5,

resembles more to a typical plot of �le size versus number of observations when generated

by a Pareto distribution with mean 4 KB and � = 1.06 than the tra�c pattern of case

2 (TCP case) (see Figure 1 in [11]). We believe that the tra�c pattern of case 2 shown

by the plot (e) in Figure 15 is altered by the dynamics of TCP without a�ecting the LRD

properties. Plots (c) and (d) in Figure 15 compare the autocorrelation functions (ACF) of

X(n) for cases 2 and 5, respectively. The ACF of plot (c) shows evidence of periodicity in
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X(n) Y (i) Z(j)

Case Transport Data Aggregation Time Interval

# Protocol Collection 10 ms 100 ms 1 sec

Type Place Estimated Ĥ Parameter

R/S Var R/S Var R/S Var

1 Reno egress 0.84 0.85 0.86 0.85 0.82 0.83

2 Reno egress 0.82 0.83 0.82 0.81 0.77 0.75

3 Reno egress 0.81 0.92 0.85 0.92 0.76 0.89

4 UDP egress 0.87 0.88 0.85 0.86 0.81 0.84

5 UDP egress 0.79 0.78 0.76 0.73 0.71 0.67

6 Tahoe ingress 0.86 0.91 0.81 0.89 0.79 0.86

7 Tahoe: Disabled Slow Start

ingress 0.85 0.90 0.82 0.89 0.79 0.86

8 Tahoe ingress 0.93 0.92 0.89 0.90 0.86 0.89

9 Tahoe ingress 0.88 0.89 0.84 0.87 0.81 0.84

Table 6: Estimated Values of H for the Cases of ON/OFF Tra�c Sources with File Sizes

Pareto Distributed and OFF Times Exponentially Distributed and Described in Table 5.

TCP tra�c (as expected), but the ACF of plot (d) shows no evidence of periodicity in UDP

tra�c. Obviously, the periodicity observed in TCP tra�c is caused by the dynamics of TCP.

Do the dynamics of TCP always cause a periodicity in TCP tra�c? As we can see from the

plots of Figure 16 the answere is no. Comparing the ACF of plot (d) in Figure 15 with the

ACF plots in Figure 16 and the round-trip times (RTT) listed by the last column of Table

5 we can say that the periodicity in TCP tra�c is caused by the window ow control of

TCP when the round-trip times are very large. The plots generated by the R/S statistics

are shown by the plots (a) and (b) in Figure 15 for the cases 2 and 5, respectively.
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Figure 14: Ĥ vs Number of Samples for the Tra�c Sequence X(n) of Case 1 Described in

Table 5
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Figure 15: Plots for Cases 2 and 5 Described in Table 5. Case 2: plots (a), (b), and (e).

Case 5: plots (b), (d), and (f). Plots (a) and (b): pox plots of R/S Estimator. Plots (c)

and (d): Estimated ACFs. Plots (e) and (f): Sections of Tra�c Showing the Rate (Mbps)

vs Time. All Plots were Generated by the Tra�c Sequences (X(n)s) Collected Every 10 ms

Intervals.
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Figure 16: Estimated Autocorrelation Functions of X(n) for Cases 6 (plot a) and 7 (plot b)

Described in Table 5.

44



5.2.2 Case of File Sizes and OFF Times Exponentially Distributed

In the previous section we saw that when the distribution of �le sizes being transferred is

heavy-tailed, then the aggregation of many such connections results in a network tra�c

that exhibits long-range dependence. What happens when the distribution of �le sizes

being transferred is exponentially? The simulation study in [34] shows that when �les sizes

are exponentially distributed with mean 4 KB and the OFF times are also exponentially

distributed with mean 600 ms, the aggregated tra�c does not have LRD. In this section,

we study the case of with TCP (or UDP) client/server connections with both �le sizes and

OFF times exponentially distributed, but with di�erent and much higher means.

Case Number Mean Mean Packet TCP Max Link Bottleneck RTT

# of File OFF Loss Window Speeds Link Speed (ms)

Flows Size Time Size (KB) (Mbps) (Mbps)

1 64 50 KB 0.6 s Yes 1000 20 10 200{250

2 64 100 KB 10 s No 1000 5 134 200{250

3 64 100 KB 240 s No 1000 5 134 200{250

4 64 100 KB 240 s No 1000 5 134 200{250

5 64 1 MB 240 s No 1000 5 134 200{250

6 64 10 MB 240 s No 1000 5 134 200{250

7 64 10 MB 240 s Yes 1000 5 134 20{30

8 64 10 MB 240 s Yes 1000 5 134 200{250

9 64 5 MB 360 s No 1000 5 45 200{250

10 64 4 KB 0.6 s No { 5 45 {

11 64 1 MB 120 s Yes { 5 45 {

12 64 2 MB 120 s Yes { 5 45 {

13 64 10 MB 240 s Yes { 5 45 {

14 64 10 MB 240 s Yes { 5 134 {

15 64 10 MB 240 s Yes { 5 134 {

16 64 5 MB 360 s Yes { 5 45 {

Table 7: Run-Time Simulation Parameters for the Cases of ON/OFF Tra�c Sources with

File Sizes and OFF Times Exponentially Distributed.
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Table 7 lists the run-time simulation parameters for 16 di�erent cases. In each case, all

64 TCP or UDP connections were identical. The estimated values of the H parameter are

listed in Table 8. Figure 17 compares case 4 described in Table 5 with case 10 described in

Table 7 in terms of the variance-time curve, autocorrelation function, and aggregated tra�c

rate. As we can see, although in both cases the �les sizes and OFF times have the same

means, the characteristics of the aggregated tra�c are di�erent. In addition, this veri�es

again the fact that when �les sizes are exponentially distributed with mean 4 KB and the

OFF times are also exponentially distributed with mean 600 ms, the aggregated tra�c does

not exhibit LRD. It is clear by the results in Table 8 that the tra�c sequences generated

by cases 1, 2, 3, 4, 10, and 11 do no exhibit LRD. However, both estimators show evidence

of LRD in the other tra�c sequences generated by the rest of the cases listed in Table 8.

Case 8 was run long enough to generate a 27-hour tra�c sequence, again much longer that

all previously reported results.

We considered nine more cases, but this time not all connections were similar. Connec-

tions were splitted in two or more groups where in each group all connections were identical.

In the �rst group, the mean �le size was set to 4 KB and the mean OFF time set to 600

ms. In the other groups the means were set to much higher values. The run-time simulation

parameter are shown in Table 9, and the corresponding estimated values of H are shown in

Table 10. Again, results show that the tra�c sequences generated by these cases have LRD.

Note also that cases 6 to 9 were run long enough to collect 92-, 60-, 49-, and 18-hour tra�c

traces, respectively.

The results of Table 10 are unexpected. The common conception is that the superposition

of many ON/OFF tra�c sources whose ON-periods or/and OFF-periods have heavy-tailed

probability distribrution functions yields an aggregate network tra�c that exhibits long-

range dependence. Here are cases of LRD where both ON and OFF times are not heavy-

tailed. We then plotted sections of tra�c rates at di�erent time scales (0.01, 1, and 10

seconds) for the tra�c sequences generated by cases 4 and 5 of Table 9 (exponential cases,

means 4 KB and 5 MB) and compared them with similar plots constructed by case 4 of

Table 5 (heavy-tailed case, mean 4 KB). Comparing the tra�c patterns shown in Figures

18 and 19, we observe that the tra�c patterns created by the exponential cases are very

similar with the tra�c patterns that were created by the heavy-tailed case. Also, we can

see clearly the presence of high burstiness in tra�c pattern of case 4 of Table 9 at all three

di�erent time scales. Importantly, both cases were run with UDP as the transport protocol.
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This shows again that the presence of long-range dependence in tra�c does not necessarily

depend on whether a reliable and ow- and congestion-controlled protocol is employed at

the transport layer. The plots (c)-(f) of Figure 19 compare the two cases in terms of the

plots of the R/S estimator and autocorrelation functions.

Further, the variance-time plot, autocorrelation function, and tra�c patterns at four

di�erent time scales (0.01, 1, 10, and 100 seconds) for case 7 (exponential case) of Table 9

are compared with those of case 2 (heavy-tailed case) of Table 5 in Figures 20 and 21. Both

cases used with TCP Reno as the transport protocol. Although the variance-time plots and

autocorrelation functions look very similar, the tra�c patterns do not. We expected the

tra�c patterns of the two cases to be di�erent since in the exponential case there were more

connections (128) and the source link speeds were much lower than those in the heavy-tailed

case. Despite the fact that the tra�c patterns between the two cases look very di�erent, this

shows that the tra�c for the exponential case is not smoothed out at high time scales (10

and 100 seconds) which it is consistent with the presence of long-range dependence. This

also shows that even though the values of LRD intensity (H) of two tra�c streams might

be similar, their pattern could be very di�erent.
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X(n) Y (i) Z(j)

Case Transport Data Aggregation Time Interval

# Protocol Collection 10 ms 100 ms 1 sec

Type Place Estimated Ĥ Parameter

R/S Var R/S Var R/S Var

1 Reno egress 0.62 0.59 0.62 0.57 0.60 0.55

2 Reno egress 0.66 0.64 0.62 0.57 0.56 0.51

3 Reno egress 0.68 0.66 0.62 0.59 0.55 0.52

Disabled Slow Start

4 Reno egress 0.63 0.62 0.57 0.54 0.54 0.49

5 Reno egress 0.79 0.78 0.71 0.70 0.63 0.60

6 Reno egress 0.94 0.90 0.88 0.85 0.80 0.79

7 Reno egress 0.96 0.90 0.85 0.85 0.79 0.79

27 Hours Tra�c

8 Reno egress 0.95 0.81 0.81 0.76 0.72 0.68

9 Reno egress 0.95 0.86 0.82 0.81 0.73 0.73

10 UDP egress 0.55 0.51 0.54 0.49 0.56 0.49

11 UDP egress 0.85 0.76 0.73 0.68 { {

227 Hours Tra�c

{ { { { 0.57 0.53

227 Hours Tra�c

12 UDP egress { { { { 0.56 0.50

13 UDP egress 0.98 0.92 0.90 0.84 0.71 0.65

14 UDP egress 0.99 0.90 0.88 0.85 0.80 0.78

15 UDP ingress 0.96 0.94 0.84 0.85 0.79 0.78

16 UDP egress 0.98 0.85 0.86 0.80 0.74 0.70

Table 8: Estimated Values of H for the Cases Described in Table 7 of ON/OFF Tra�c

Sources with File Sizes and OFF Times Exponentially Distributed.
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Figure 17: Comparison of Case 4 { Table 5 (a) With Case 10 { Table 7 (b) in Terms of

Estimated Ĥ, Estimated Autocorrelation Function, and Aggregated Tra�c Rate.
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Case Number Mean Mean Packet TCP Max Link Bottleneck RTT

# of File OFF Loss Window Speeds Link Speed (ms)

Flows Size Time Size (KB) (Mbps) (Mbps)

1 56 4 KB 0.6 s No 1000 5 45 200{250

8 2 MB 240 s

2 56 4 KB 0.6 s No 1000 5 134 200{250

8 10 MB 240 s

3 32 4 KB 0.6 s No 1000 5 134 200{250

32 10 MB 240 s

4 56 4 KB 0.6 s No { 5 45 {

8 5 MB 360 s

5 32 4 KB 0.6 s Yes { 5 45 {

32 5 MB 360 s

6 32 4 KB 0.6 s No 1000 Inf Inf 200{250

32 10 MB 240 s

7 64 4 KB 0.6 s No 64 10 134 200-250

64 10 MB 900 s

8 64 4 KB 0.6 s No 1000 10 134 200-250

64 10 MB 900 s

9 128 4 KB 0.6 s No 64 10 134 200-250

64 1 MB 240 s

64 10 MB 900 s

Table 9: Run-Time Simulation Parameters for the Cases of ON/OFF Tra�c Sources with

File Sizes and OFF Times Exponentially Distributed. Cases of Two or More Connection

Groups.
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X(n) Y (i) Z(j)

Case Transport Data Aggregation Time Interval

# Protocol Collection 10 ms 100 ms 1 sec

Type Place Estimated Ĥ Parameter

R/S Var R/S Var R/S Var

1 Reno egress 0.82 0.70 0.81 0.73 0.70 0.64

2 Reno egress 0.93 0.88 0.89 0.82 0.79 0.74

3 Reno egress 0.93 0.88 0.86 0.83 0.78 0.74

4 UDP egress 0.84 0.82 0.84 0.79 0.76 0.73

5 UDP egress 0.91 0.86 0.86 0.80 0.75 0.71

6 Reno egress 0.84 0.82 0.93 0.83 { {

92 Hours Tra�c

{ { { 0.70 0.66

7 Reno egress 0.90 0.87 0.93 0.84 { {

60 Hours Tra�c

{ { { 0.74 0.71

8 Reno egress 0.91 0.83 0.85 0.79 { {

49 Hours Tra�c

{ { { 0.68 0.61

18 Hours Tra�c

9 Reno egress { { 0.85 0.79 0.76 0.73

Table 10: Estimated Values of H for the Cases Described in Table 9 of ON/OFF Tra�c

Sources with File Sizes and OFF Times Exponentially Distributed. Cases of Two or More

Connection Groups.
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Figure 18: Comparison of Case 4 Described in Table 5 With Cases 4 and 5 Described in

Table 9 in Terms of Aggregated Tra�c Rate Patterns. Plots (a), (c), & (e): Case 4 of Table

5. Plots (b), & (f): Simulation 4 of Table 9. Plot (d): Case 5 of Table 9.
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Figure 19: Comparison of Case 4 (a) Described in Table 5 With Case 4 (b) Described in

Table 9 in Terms of 1) Aggregated Tra�c Rate Patterns (ATI = 10 sec), 2) Estimation of

H using the R/S Method (ATI = 10 ms), and 3) Estimated Autocorrelation Function (ATI

= 10 ms){ (ATI: Aggregated Time Interval).

53



2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

Lo
g1

0(
V

ar
ia

nc
e)

Log10(m)

a) File Size: Pareto Distr. -- OFF Time: Exponentially Distr. 

"logVar"
"VFitLine"

"VSlope-1.0"

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Lo
g1

0(
V

ar
ia

nc
e)

Log10(m)

b) File Size & OFF Time: Exponentially Distributed

"logVar"
"VFitLine"

"VSlope-1.0"

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

E
st

im
at

ed
 H

Data Counts

"rsmethod"
"varmethod"

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

E
st

im
at

ed
 H

Data Counts

"rsmethod"
"varmethod"

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

A
ut

oc
or

re
la

tio
n

Lag

 

"AutoCorrelation"

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

A
ut

oc
or

re
la

tio
n

Lag

 

"AutoCorrelation"

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ut

oc
or

re
la

tio
n

Lag

 

"AutoCorrelation"

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

A
ut

oc
or

re
la

tio
n

Lag

 

"AutoCorrelation"

Figure 20: Statistic Plots Created by (a) Case 2 Described in Table 5 (b) Case 7 Described

in Table 9 { Aggregation Time Interval: 10 ms
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Figure 21: Tra�c Patterns at Di�erent Time Scales Generated by (a) Case 2 Described in

Table 5 and (b) Case 7 Described in Table 9
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5.2.3 Case of File Sizes and OFF Times Uniformly Distributed

In the previous section, we observed cases in which the �le sizes and OFF times were exponen-

tially distributed and both variance and R/S estimator showed evidence that the aggregated

tra�c had LRD. In this section we considered seven cases having the �le sizes and OFF

times uniformly distributed. The run-time simulation parameters are shown in Table 11

and the corresponding estimated values of H are presented in Table 11. Obviously from the

results of Table 11, again, both estimators suggest the presence of LRD in tra�c formed by

connections whose �le sizes and OFF times are uniformly distributed. Figure 22 shows plots

of the estimated partial autocorrelation function for cases 1, 2, 5, and 6.
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Figure 22: Estimated Autocorrelation Functions (ACF) for Tra�c Sequences Formed by

Cases of of Table 11. Plots: (a) Case 1, (b) Case 3, (c) Case 5, (d) Case 6.
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Case Number Min/Max Min/Max Packet TCP Max Link Bottleneck

# of File OFF Loss Window Speeds Link Speed

Flows Size Time Size (KB) (Mbps) (Mbps)

1 64 10B/10MB 0.1/480 sec No 1000 5 45

2 64 10B/10MB 0.1/480 sec No 1000 5 134

3 64 10B/10MB 0.1/480 sec No 1000 5 134

29 Hours Tra�c

4 128 0.1/8 KB 0.01/1 sec No 64 10 134

64 0.1/4 MB 10/490 sec

64 5/15 MB 100/1900 sec

14 Hours Tra�c

5 56 0.1/8 KB 0.1/1 sec No 64 5 134

8 1/10 MB 10/400 sec

14 Hours Tra�c

6 56 0.1/8 KB 0.1/1 sec No { 5 134

8 1/10 MB 10/400 sec

14 Hours Tra�c

7 48 0.1/8 KB 0.1/1 sec No 64 5 134

8 0.01/1 MB 1/10 sec

8 1/10 MB 10/400 sec

Table 11: Run-Time Simulation Parameters for the Cases of ON/OFF Tra�c Sources with

File Sizes and OFF Times Uniformly Distributed.
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X(n) Y (i) Z(j)

Case Transport Data Aggregation Time Interval

# Protocol Collection 10 ms 100 ms 1 sec

Type Place Estimated Ĥ Parameter

R/S Var R/S Var R/S Var

1 Reno egress 0.91 0.81 0.80 0.74 0.70 0.63

2 Reno egress 0.91 0.80 0.77 0.72 0.68 0.60

3 UDP egress 0.95 0.82 0.81 0.76 0.72 0.64

4 Reno egress { { 0.79 0.68 0.66 0.58

5 Reno egress 0.81 0.75 0.79 0.70 0.68 0.60

6 UDP egress 0.80 0.74 0.75 0.68 0.66 0.58

7 Reno egress 0.73 0.70 0.71 0.64 0.62 0.56

Table 12: Estimated Values of H for the Cases of ON/OFF Tra�c Sources with File Sizes

and OFF Times Uniformly Distributed and Described in Table 11.
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5.2.4 Case of File Sizes and OFF Times Exponentially Distributed: Alternating

Mean for File Sizes

In this set of scenarios, for each TCP or UDP connection, the �le size was drawn by either

of two exponential random generator with di�erent means. With probability p the �le size

being transmitted was given by generator A with mean A, and with probability 1� p it was

given by generator B with mean B. For all six cases considered in this section, the OFF times

were exponentially distributed with mean 600 ms. Table 13 shows the run-time simulation

parameters, and the corresponding estimated values of LRD intensity (H) are shown in

Table 14. Again, the results presented here indicate LRD in the tra�c traces generated by

the simulations of this section.

Case Number Mean Mean Packet TCP Max Link Bottleneck

# of File File Loss Window Speeds Speed

Flows Size A Size B Size (KB) (Mbps) (Mbps)

1 64 4 KB 5 MB No 64 10 134

2 64 4 KB 5 MB No 64 10 134

3 64 4 KB 5 MB No 64 10 134

4 64 4 KB 5 MB No 64 10 134

5 64 4 KB 10 MB No 64 10 134

6 64 4 KB 10 MB No 64 10 134

Table 13: Run-Time Simulation Parameters for the Cases of ON/OFF Tra�c Sources with

File Sizes and OFF Times Exponentially Distributed: Alternating Mean for File Sizes. Mean

OFF Time: 600 ms
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X(n) Y (i) Z(j)

Case Transport Probability Aggregation Time Interval

# Protocol of File 10 ms 100 ms 1 sec

Type Size w/ Estimated Ĥ Parameter

Mean B R/S Var R/S Var R/S Var

5.5 Hours Tra�c

1 Reno 0.01 0.83 0.79 0.85 0.78 0.75 0.70

5.5 Hours Tra�c

2 Reno 0.001 0.84 0.82 0.85 0.81 0.79 0.76

102 Hours Tra�c

{ { { { 0.71 0.65

5.5 Hours Tra�c

3 Reno 0.0001 0.78 0.80 0.80 0.81 0.79 0.75

43 Hours Tra�c

{ { { { 0.73 0.66

5.5 Hours Tra�c

4 UDP 0.0001 0.76 0.74 0.75 0.70 0.69 0.61

40 Hours Tra�c

{ { { { 0.66 0.59

5.5 Hours Tra�c

5 Reno 0.001 0.87 0.86 0.91 0.86 0.84 0.81

58 Hours Tra�c

{ { { { 0.75 0.71

5.5 Hours Tra�c

6 Reno 0.0001 0.84 0.85 0.89 0.86 0.84 0.82

229 Hours Tra�c

{ { { { 0.73 0.63

Table 14: Estimated Values of H for the Cases of ON/OFF Tra�c Sources with File Sizes

and OFF Times Exponentially Distributed (Alternating Mean for File Sizes, Mean OFF

Time: 600 ms) and Described in Table 13
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6 Discussion

Understanding the nature of tra�c of large internets or high-speed networks is essential for

engineering, operations, and performance evaluation of these networks. Studies on a variety

of networks have empirically show that network tra�c is bursty over a broad range of time

scales suggesting long-range dependence. In this study we attempted to give answers to the

following questions by analyzing network tra�c generated by simulations.

Does the activation of TCP's dynamics give rise to long-range dependence in TCP tra�c?

For the case of greedy sources, the results in Section 5.1 indicate that the activation of TCP's

dynamics by packet losses due to overows at a bottleneck node within the network might

give rise to LRD in TCP tra�c. A de�nitely answer to this question can only be given by a

rigorous mathematical analysis. To get an accurate answer to this question by simulations

requires a very large number ( >> 1000000) of tra�c samples be collected.

Is the long-range dependence observed by empirical studies in real network tra�c induced

by the dynamics of TCP? In real network scenarios, there are no connections with greedy

sources. Real network tra�c sources are best described by the ON/OFF model where

the transmission of a �nite �le (ON time) is followed by an idle time (OFF time) and so

on. The results presented in Section 5.2 and obtained by running several simulations with

TCP Reno, TCP Tahoe, TCP Tahoe with Slow Start Disabled, and UDP as the transport

protocols suggest that a) the LRD observed in many tra�c sequences was not caused by the

dynamics of TCP, and b) the dynamics of TCP had no e�ect on the estimated intensity of

LRD detected in simulated TCP tra�c.

If the distribution of �le sizes is not heavy-tailed, does the aggregation of many connec-

tions result in tra�c that exhibit LRD? In several cases studied in Section 5.2, the �le sizes

and/or OFF times were not heavy-tailed distributed but both variance and R/S estimators

showed strong evidence of LRD in the generated tra�c sequences. Speci�cally, it was shown

that when the �le sizes are either exponentially or uniformly distributed with high means

(or a combination of low and high means), the resulting tra�c has properties indicating

LRD. Importantly, we showed that the combination of connections whose �le sizes are ex-

ponentially distributed with low mean (4 KB) with connections whose �le sizes are also

exponentially distributed but with high mean (5 MB or higher) can generate tra�c with

similar burstiness with tra�c created by a combination of connections whose �les sizes are

heavy-tailed distributed, i.e., pareto distributed.
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In most cases we have no prior knowledge of how the empirical network tra�c traces were

created. Can we conclude that a network tra�c trace has LRD by examining only the results

from the variance and R/S estimators? The de�nition of long-range dependence applies only

to in�nite time series; a process has LRD i�
P1

k=1 r(k) =1. Since tra�c traces are �nite,

the question now is how many samples are required to get a good estimate of the Hurst

parameter. We believe based on our results that the number of samples require to get a very

good estimate of the intensity of long-range dependence (H) by using the variance or the

R/S estimators depends very much on the process being study. For example, if the �le sizes

being transferred are heavy-tailed, then 1-hour tra�c trace is enough to detect the LRD by

both estimators. However, if the distribution of �les sizes and OFF times are unknown, then

several hours of tra�c must be collected in order to get an accurate estimate of the Hurst

parameter. The results of this study show that it is possible for the self-similar parameter

H estimators to show evidence of LRD at short time scales but show no evidence of LRD

at large time scales. Since the results also show that for many tra�c processes a very large

number of samples is required for an accurate detection of LRD presence, to detect possible

LRD in tra�c traces, many hours of tra�c traces must be collected to enable estimation

of H at di�erent time scales. We recommend that ten or more hours of tra�c should be

collected and then the long-range dependence should be estimated at di�erent time scales.

In most empirical and simulation studies [24, 10, 20, 34, 36, 38, 49, 50] performed to either

detect the presence of long-range dependence (LRD) or give a possible explanation of what

causes the LRD in TCP tra�c, at most three hours of TCP tra�c was used. Thus, some of

the results reported by these studies could be wrong.

Although, results from this study show evidence of LRD in simulated tra�c for cases of

TCP connections with greedy sources and TCP/UDP connections with ON/OFF sources

whose �le size distribution and OFF times were not heavy-tailed, we can not arrive to a

conlusion based merely on these results, that for these cases the tra�c indeed had LRD. In

future study, we will attempt to verify whether or not the tra�c generated by such cases

exhibit LRD by using rigorous mathematical analysis.
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