
Intelligent Data Entry Assistant for XML
Using Ensemble Learning

Danico Lee

Information and Telecommunication Technology
Center

University of Kansas
2335 Irving Hill Rd,

Lawrence, KS 66045, USA
lee@ittc.ku.edu

Costas Tsatsoulis
Department of Electrical Engineering and Computer

Science
and

Information and Telecommunication Technology
Center

University of Kansas
2335 Irving Hill Rd,

Lawrence, KS 66045, USA
tsatsoul@eecs.ku.edu

ABSTRACT
XML has emerged as the primary standard of data representation
and data exchange [13]. Although many software tools exist to
assist the XML implementation process, data must be manually
entered into the XML documents. Current form filling
technologies are mostly for simple data entry and do not provide
support for the complexity and nested structures of XML
grammars. This paper presents SmartXAutofill, an intelligent
data entry assistant for predicting and automating inputs for XML
documents based on the contents of historical document
collections in the same XML domain. SmartXAutofill
incorporates an ensemble classifier, which integrates multiple
internal classification algorithms into a single architecture. Each
internal classifier uses approximate techniques to propose a value
for an empty XML field, and, through voting, the ensemble
classifier determines which value to accept. As the system
operates it learns which internal classification algorithms work
better for a specific XML document domain and modifies its
weights (confidence) in their predictive ability. As a result, the
ensemble classifier adapts itself to the specific XML domain,
without the need to develop special learners for the infinite
number of domains that XML users have created. We evaluated
our system performance using data from eleven different XML
domains. The results show that the ensemble classifier adapted
itself to different XML document domains, and most of the time
(for 9 out of 11 domains) produced predictive accuracies as good
as or better than the best individual classifier for a domain.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – parameter learning.

General Terms
Algorithms

Keywords
XML, Autofill, Ensemble Learning, Machine Learning

1. INTRODUCTION
1.1 Motivation
XML is a markup language for documents containing structured
information. It has emerged as the primary standard of data
representation and data exchange [13]. It enables people in the
same professional discipline to exchange data and information
without worrying about the data format and media. Over the past
few years, practitioners in a variety of domains have developed
their own XML ontologies and applications to annotate their
information. A number of XML software tools have also been
developed, such as Xerces, Xalan, FOP, Forrest, and Crimson
from Apache, and XML Spy from Altova [1]. However, the
major weakness of current software tools is that they only
simplify the implementation process, but information for XML
documents still needs to be manually entered into the XML
applications.
On the other hand, software tools that currently have the ability to
assist data entry are mostly targeted to web-based forms. They
are designed especially for login forms or online shopping forms,
e.g. AOL, Roboform, and Google Toolbar. The data for online
input form is mostly simple, e.g. login, password, address, and
credit card number, and predefined by the user of the autofill
application, the specific web site, or in some other location, such
as the user's address book.

1.2 Approach
Our work developed an intelligent assistant, SmartXAutofill, that
automates the data entry into XML forms. Individual classifiers
(predictors) were trained on a historical XML document
collection and were combined into an ensemble classifier. The
ensemble classifier integrates all the internal classification
algorithms into a single architecture. When a user starts to fill out

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IUI’05, January 9–12, 2005, San Diego, California, USA.

Copyright 2004 ACM 1-58113-894-6/05/0001...$5.00.

an input form for an XML document, each internal classifier
proposes a value, and, through voting, the ensemble determines
which value to accept. As the system operates it learns which
internal classifiers work better and modifies its weights
(confidence) in their predictive ability. As a result, the ensemble
adapts itself to the specific XML domain, without the need to
develop special classifiers for each XML domain. Our system
allows the ensemble classifier to incorporate any type and number
of internal classification algorithms. In our experiments, we have
used four internal classifiers: a Naïve Bayesian classifier that uses
probability techniques, a K-Nearest Neighbor classifier that uses
instance-based techniques, a frequency classifier which selects the
most frequently occurring value for an XML field, and a recency
classifier that simply selects the most recently entered value for a
field1. The results show that the ensemble classifier adapted itself
to eleven different XML document domains, and most of the time
(for 9 out of 11 domains) produced predictive accuracies at least
as good as or better than the best individual classifier for a
domain.

2. RELATED WORK
2.1 Form Filling Tools
Software tools that have the ability to assist in data entry are
mostly targeted to web-based forms. AOL populates an input
form (with at least one field filled) by searching through a set of
template files that resemble the current state of the input form [8].
The template files are usually stored at the user’s machine. A
match occurs if a template file that resembles the current state is
found. Then, the form completion program uses the template file
to populate the rest of the input form.
Roboform uses Passcards to store form data that is specifically
associated to a particular website [11]. When the user visits a
website which has a previously saved Passcard, Roboform will
notify the user that there is a Passcard for the current website. If
the user decides to autofill the input form, then Roboform will
populate the form with the Passcard.
Google Toolbar enables users to automatically complete forms on
the web [5]. The users first need to enter their own personal data
in the AutoFill Options of the Toolbar, and the Toolbar stores the
data on user’s own computer. When the user goes to a website
with an input form, Google Toolbar will highlight the input fields
that are recognized by its AutoFill feature. User can choose to
have Google complete the form with the previously stored
information. Similar behavior is exhibited by browsers such as
Internet Explorer and Safari, which also read information from the
user’s address book.
The data supported by previous form filling tools is usually
simple, e.g. login, password, address, and credit card number and
has a linear structure. Also, the user must have already entered
and stored the data in some form for it to be accessible. However,
XML grammars contain nested composition and complex tree-
like structures and the information in them is usually not already

 1 Other classifiers were also tested, including one that used rules

derived by C4.5 [10], and KNN with different sizes for K, but
they all had either very bad individual predictive accuracy or
had individual accuracies similar to other classifiers in the
ensemble.

stored, but needs to be entered2. Not only are previous data entry
tools unable to support XML grammars, but also incapable to
learn and improve their performances.
It is also important to note that our classification/prediction
algorithms are approximate, and make suggestions based on an
approximate match (probabilistic, syntactic or otherwise) between
the values in a historical collection of XML documents and the
values in a document that is partially filled and for which they
predict the empty node values. This is significantly different
from other autofill systems which require a perfect match between
the incomplete document and the values and documents already
stored.

2.2 Ensemble Learning
Ensemble learning is a machine learning technique that selects a
collection, or ensemble, of hypotheses from the hypothesis space
and combines their predictions [12]. An ensemble consists of a
set of independently trained classifiers whose predictions are
combined when classifying new instances. The one of the most
widely used ensemble methods is called boosting. Boosting
works with a weighted training set. Each example in the training
set has an associated weight wj >= 0. The higher the weight of an
example, the higher is the importance attached to it during
training. Boosting, produces a series of classifiers, where the
training set used for each member of the series is chosen based on
the performance of the earlier classifier(s) in the series. All
examples start with wj = 1 and boosting increases the weights
(importance) of misclassified examples and decreases the weights
of the classified examples. Therefore, examples that are
incorrectly predicted by previous classifiers in the series are
chosen more often than examples that were correctly predicted.
As a result, boosting produces new classifiers for its ensemble
that are better able to correctly predict examples for which the
current ensemble performance is poor [7].
The idea of our ensemble classifier is based on boosting.
However, instead of boosting the importance of the examples in
the training set, it boosts the internal classifiers based on their past
performances through weighting the individual classifiers. Our
ensemble learns which internal classifiers work better for a
particular XML domain and adapts itself without developing
special classifiers for infinite number of XML domains. In
addition, previous work in ensemble classifiers and boosting
combined the same type of classifier, learned by the same
methodology, but trained on different examples. Our work
combines different types of classifiers into an integrated
classification framework.

3. PREDICTING XML ENTRY DATA
USING ENSEMBLE

Experiments we conducted with a variety of approximate
classification algorithms used to predict values for XML
documents showed that the accuracy of a single classification
algorithm differs greatly across nodes, documents, and document

2 An exception to this are databases which need to be translated

into XML. In this case the data already exists, and the
population of an XML document involves custom-made
(usually) translation programs.

collections due to the structural variability of XML and the
specific nature of values used to represent information from the
domain in the XML documents (see, for example, Table 1 in this
paper). It is impossible to predict which classification algorithm
will work best for what type of document. To solve this problem,
we developed an ensemble classifier. An ensemble classifier is a
collection of a number of classification algorithms where each of
them provides predictions for the value of an XML node. The
ensemble learns which individual algorithms provide better
predictive accuracy for different XML domains and for different
nodes in the XML documents in these domains. The result is a
classifier that adapts itself to the specific XML collection, and
performs better than any individual predictive algorithm.
Our ensemble algorithm for predicting XML node values
incorporates individual classification algorithms and learns which
is most accurate for each node in the collection. Suggestions to
the ensemble are made based on an approximate match between
data entered in the current input form, compared to data stored in
a historical document collection. If many suggestions are made,
they are ranked by the internal classifiers based on probable
correctness. Each unique node value from the set of suggestions
provided by all internal classifiers is voted on and the overall
most likely one is selected as the final suggested value. Voting is
based on the past performance (accuracy) of the suggested values
for the given node in this document collection for each internal
classifier. After a suggestion has been made, the weights for each
classifier are updated to record the accuracy of the suggestion.

3.1 Suggestion Aggregator - Voting Among
Internal Classifiers
Since the ensemble receives predictions from many internal
classifiers, voting is used for aggregating these inputs into a single
suggestion. The voting system forms a consensus decision on
which value is suggested by most of the classifiers. All classifiers
return the same number of maximum suggestions. Each
classifier’s suggestions are ranked; if a classifier returns N
suggestions the top one receives a value of N, the second one N-1,
and so on, with the last suggestion receiving a 1. In addition to
their rank, suggestions are modified by the weight of their
classifier. Initially all classifiers have the same weight, but this is
modified based on which classifier works better for different
nodes in the XML domain (more on this later). An example of
the voting mechanism is shown on Figure 1. In this example,
three classifiers provide a maximum of three suggestions each.
Classifier A makes three suggestions; the top one receives a rank
value of 3, the second one of 2, and the third one of 1; the rank
values are multiplied by the weight of the classifier (0.67) and
then normalized by the sum of the weights of all the classifiers.
The same occurs for the suggestions by the other classifiers. The
suggestion with the highest support is the one selected by the
ensemble and presented to the user.

3.2 Ensemble Learning – Weighting Each
Classifier by Past Performance
The weighting system in our ensemble learns from past
performance of the internal classifiers. As classification
algorithms exhibit different predictive accuracy for different
nodes, depending on the number of instances of that node in the
collection and the type and statistical distribution of values for the

node across the collection, the overall accuracy of the suggestion
system is improved by learning how each internal classifier
performs on each node and weighting their votes accordingly.

Figure 1. Ensemble classifier: individual, internal classifiers

make predictions which are ranked, with the rank multiplied
by the classifier weight (confidence). The suggestion with the

highest total support is presented to the user.

Our measure of predictive performance of a classification on a
node is the error rate of its suggestions for that XML node. Error
rate is defined as the number of incorrect suggestions over the
total number of suggestions (ignoring cases where the algorithm
can make no suggestion)3. In other words, the weight for classifier
i on node n for a specific XML domain is:

errorratewt ni −= 1,

or

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

totalni

incorrectni
ni s

s
wt

..,

..,
, 1

For each node, we record the total number of suggestions for that
node by each internal classifier and the number of errors in
suggestions for that node by each classifier. Since classifiers that
make fewer suggestions may be favored (fewer suggestions imply
fewer errors), the weight of each predictor is normalized by
dividing it by the sum of all weights for all internal classifiers on
the node.

Normalized
∑=

= c

i ni

ni
ni

wt

wt
wt

1 ,

,
,

3 A suggestion is considered to be correct if it was accepted by

the user and it was one of the top two suggested by the
classifier.

where wti,n is the weight assigned to the ith classifier when
suggesting a value for node n and c is the total number of internal
classifiers.
The weight for each internal classifier on each node is updated
after each suggestion is made. If the suggestion is correct, then
the si,n total will be incremented. If the suggestion is incorrect, both
si,n total and si,n incorrect will be incremented.
Initially the values suggested by each internal classifier are
weighted equally. If the user accepts the value, the internal
classifiers that suggested it get rewarded by increasing their
weight. If the user rejects the value, the internal classifiers get
punished by decreasing their weight. As a result, our system
adapts to the specific domain of XML documents and increases its
prediction performance.

4. EXPERIMENTS AND RESULTS
In our experiment we used four simple prediction algorithms
inside an ensemble which learned predictor weights for each node
for each XML domain as described above. Each classifier used
approximate methods and the values entered in an XML form to
predict the empty valued nodes in the same form. As more nodes
were filled in, the predictions changed.
The value vi of a node ni could be predicted using traditional
probability theory as the conditional probability of ni=vi given the
values entered in all other nodes: P(ni=vi | n1=v1, n2=v2, …, ni-

1=vi-1). Since this is computationally infeasible in a real-time
application such as an autofill system, the first classifier we used
was based on Naïve Bayes theory. Naïve Bayes analyzes the
relationship between each independent and dependent variable to
derive a conditional probability for each relationship. When a
new case is analyzed, a prediction is made by combining the
effects of the independent variables on the dependent variable (the
outcome that is predicted). The Naïve Bayesian Classifier
computes the probability of a value for an empty node, based on
the conditional probabilities of the predicted value given the
actual values of the nodes that have been filled in. In other words,
given the values of i-1 fields: v1, v2, …, vi-1, and given a possible
vi for the value of the empty node ni, the Naïve Bayesian
Classifier computes the probability that vi is predictably correct as
follows:

P(ni =vi)=

P(ni =vi |nk =vk)
k=1

i−1

∏

P(ni =vi |nk =vk)
k=1

i−1

∏ + 1−P(ni =vi |nk =vk)(
k=1

i−1

∏)

The second classifier was a simple K-Nearest-Neighbor, where
K=1 (our previous experiments showed no significant difference
in predictive accuracy when using K=3, 5, or 7). The third
classifier was based on frequency and suggested the most
frequently used value for an XML node. The final predictor
simply suggested the most recently entered value for a node.
Although it would be possible to include other commonly used
classifiers such as artificial neural networks or support vector
machines, we chose not to in this experiment because such
classifiers require retraining as the document collection changes.
This would place a computational burden on the system and slow

it down considerably; when response time is a critical
requirement, this would make the system inefficient to the user. It
might be possible to have such classifiers retrained off-line (for
example, when the system is idle), but this was not tried in our
current experiments. Our current classifiers use the new values
and new documents added to the collection without requiring a
complete retraining.
The goals of the experiments were the following:
a. establish whether the ensemble could be trained to select the

best classification algorithm for each node in each XML
document domain

b. establish whether the performance of the ensemble for each
XML domain was at least as good as the performance of the
best individual classifier for that domain

c. determine accuracy and speed of classification

4.1 Data Selection
A variety of XML domain document data were gathered to span
the size and complexity dimensions. All data used for the
experiment was collected on the Internet, except that data from
one domain was collected directly from the Center for Army
Lessons Learned. XML samples have been collected from the
following domains: thesaurus by Australian Public Affairs
Information Service (APAIS) [2], Bio Medical journal papers
(BioMed) [3], Center for Army Lessons Learned (CALL), a
comprehensive protein database (iProClass) [6], a protein
database by Protein Information Resource (PSD) [14],
astronomical data from NASA (NASA) [14], a non-redundant
reference protein database (NREF) [9], a protein knowledgebase
for a protein sequence database maintained by the Swiss Institute
for Bioinformatics and European Bioinformatics Institute
(SPROT) [14], a protein sequence databank (UniProf) [4], course
listing of the University of Wisconsin at Milwaukee (UWM) [14]
and course listing of Washington State University (WSU) [14].
Their size ranged from around 50 to 5000 documents, and they
had between 20 and 420 nodes per document.

4.2 Experimental Approach
Before an experiment was run, we seeded a historical collection
of XML documents with 10 documents; this is required since our
algorithms use historical information to make predictions. The
classification algorithms made no suggestion for a particular field
if there were no historical data for it or if every previous value for
the field was unique, for example, nodes that contain abstracts of
reports or papers, collections where a single document is
produced daily and where the date node will be unique. Clearly if
no information exists it is better not to make a suggestion than to
make a wrong suggestion.
XML documents usually have hundreds of elements. In order to
exhaustively test the performance of predicting values on a single
document, the experiment would have to request suggestions for
every possible field in every possible state of an XML input form.
For instance, if an input form has one hundred elements, the
number of suggestions required to exhaustively test the possible
predictions on every state of form completion is one hundred
factorial. Since exhaustive testing is not possible, the experiment
performed repeated trials. In each iteration, documents were
randomly selected and all elements were suggested in a single

random order. In other words, a node was selected randomly, the
classifier made a prediction, the suggested value was compared to
the actual value, the error rate was modified as required, and then
the correct value was filled in. Next, another random node was
selected and the process repeated.
We ran tests after training on 10, 20 or 40 documents, and tested
on 80 documents. As the documents are completed and added to
the historical database, the performance of the algorithms
changes, but not in a significant manner.

Table 1. Accuracy for Naïve Bayes, KNN, Frequency and
Recency Classifiers. The best results for each trial are shown

in bold face.

Accuracy (%) XML
Domain

No of
Training

Doc Naïve
Bayes KNN Freq Recency

APAIS 10 51.10 50.03 51.48 48.87

 20 50.79 50.02 51.00 48.91

 40 50.86 49.86 51.00 48.87

BioMed 10 11.80 10.45 13.84 12.95
 20 11.54 10.22 14.15 12.59

 40 12.49 10.37 15.17 12.35

CALLS 10 97.06 98.53 98.53 100
 20 97.06 98.53 98.53 100

 40 97.06 97.06 97.06 100

iProClass 10 29.21 37.59 37.23 34.61
 20 28.08 37.38 36.92 34.14

 40 30.02 36.78 36.84 34.39

NASA 10 15.25 18.43 22.17 30.85
 20 15.04 19.00 21.42 30.47

 40 14.61 19.13 21.09 30.39

NREF 10 69.54 80.65 81.36 79.06
 20 71.23 81.62 82.35 80.05

 40 70.59 81.86 82.35 79.90

PSD 10 17.98 23.23 22.61 23.85
 20 16.87 22.34 22.35 23.62

 40 16.01 20.87 22.01 23.57

SPROT 10 8.39 10.98 12.72 15.20
 20 8.90 10.56 12.72 15.16

 40 8.89 9.84 12.41 15.05

UniProf 10 37.05 34.51 35.44 16.74
 20 37.00 33.84 35.69 16.77

 40 36.35 33.84 35.64 16.67

UWM 10 26.69 25.01 28.21 48.05
 20 26.45 24.82 28.26 48.06

 40 27.10 24.70 29.24 48.05

WSU 10 31.46 28.29 33.45 43.53
 20 31.70 28.66 33.86 43.58

 40 31.81 28.72 33.94 43.65

Table 1 summarizes the results of the individual internal
prediction algorithms (to the ensemble) with an initial seed of 10
documents, and then trained by 10, 20 or 40 other XML
documents. The accuracy value is computed as the total number
of correct predictions made on all nodes for all documents for a
total of 80 test documents, over the total number of predictions
made4.
In bold face we are showing the best results for each trial. As can
be seen, different predictive algorithms perform better for
different domains, although we did not study whether differences
were statistically significant. In some cases the differences seem
insignificant (e.g. CALLS and APAIS collections), while in other
cases they are quite large (e.g. WSU and UWM collections).
For testing the ensemble classifier, the document collections were
separated into three sets: seed (10 documents as before), training
collection and testing collection. Training collection was used to
train the ensemble by modifying its weights. The ensemble
randomly picked out a document from the training collection,
received suggested values from the internal classifiers and
modified the classifier weights based on the accuracy of the
suggestion. The documents from the training collection, once used
for training, were added to the seed and were used in future
predictions (but not in testing). As before, 10, 20 or 40
documents were used for training the ensemble.
After training, the weights were frozen and the ensemble was
tested on 80 documents in the same way as the individual
classifiers. These documents formed the testing collection.
Accuracy was calculated as before.
Table 2 shows the results of the ensemble classifier as compared
to the results of the best individual classifier for each domain and
number of training documents. In bold face we are showing
which classifier worked better. Note that the ensemble classifier
worked as well as or better than the best individual predictor in 9
out of 11 domains.
In addition to accuracy we studied whether the weights for each
classifier for each node for an XML domain would change inside
the ensemble during training. This was observed for all
experiments. For example, the weights of some nodes from the
iProClass XML domain are shown in Table 3 (iProClass
documents had a maximum of 47 nodes).

Table 2. Comparison of the accuracy for the best individual,

internal classifier for each XML test domain versus the
ensemble classifier. The best results are shown in bold face.

Best Classifier XML
Domain

No of
Training

Doc Name Accuracy (%)

Ensemble
Accuracy

(%)

APAIS 10 Freq 51.48 52.13

 20 Freq 51.00 51.19

 40 Freq 51.00 51.90

4 Since some collections had few documents, documents might be
used more than once in testing iterations, but since the
suggestions are made in random order and prediction is based on
the random state of the form, they were considered separate trials.

BioMed 10 Freq 13.84 15.95

 20 Freq 14.15 15.95

 40 Freq 15.17 16.8

CALLS 10 Recency 100 100

 20 Recency 100 100

 40 Recency 100 100

iProClass 10 KNN 37.59 38.69

 20 KNN 37.38 37.89

 40 Freq 36.84 37.46

NASA 10 Recency 30.85 28.07

 20 Recency 30.47 26.07

 40 Recency 30.39 27.36

NREF 10 Freq 81.36 81.50

 20 Freq 82.35 82.55

 40 Freq 82.35 82.55

PSD 10 Recency 23.85 27.10

 20 Recency 23.62 26.36

 40 Recency 23.57 25.26

SPROT 10 Recency 15.20 17.70

 20 Recency 15.16 17.40

 40 Recency 15.05 17.54

UniProf 10 NB 37.05 37.58

 20 NB 37.00 37.60

 40 NB 36.35 37.45

UWM 10 Recency 48.05 44.57

 20 Recency 48.06 44.51

 40 Recency 48.05 45.09

WSU 10 Recency 43.53 45.82

 20 Recency 43.58 45.84

 40 Recency 43.65 45.09

As can be observed from Table 3, different classifiers are
preferred for different nodes (Naïve Bayes for Node 13 and Node
28, KNN for Node 22, Frequency for Node 14, and Recency for
Node 6 and Node 7), and the weights have been modified from
their initial value of 1, through the training process.

Table 3. Weights of selected XML nodes from iProClass

domain.

NodeId
Naïve
Bayes KNN Freq Recency

6 0.4146 0.5805 0.4829 0.7724

7 0.6878 0.7528 0.5772 0.8423

13 0.1404 0.1066 0.1184 0.0880

14 0.0100 0.0100 0.0186 0.0100

22 0.0449 0.1124 0.0375 0.0637

28 0.2543 0.1890 0.2474 0.0825

Finally, we were interested in the time performance of the
ensemble as any autofill system needs to be faster than the user
and must work in real-time. Since the performance of the
ensemble ranged between 1 and approximately 60 milliseconds,
we believe that the real-time requirement is satisfied.

4.3 Discussion
In our experiments we expected that the ensemble classifier
would work at least as well as the best performing internal
classification algorithm for a domain, and also that for different
domains it would match the performance of different internal
classifiers. This was the case in 9 out of the 11 domains where
we tested our algorithms. We currently have no explanation as to
why the ensemble did worse than the best algorithm in the UWM
and NASA domains (although in both cases it did significantly
better than the second-best classifier); it is possible that more
training of the ensemble would have improved its performance in
these two cases.
An interesting observation is that the ensemble learns to prefer
different algorithms for different nodes in the same domain,
leading to adaptation and learning at the lowest possible level.
This would explain why it performed better than the best
individual predictor in 9 domains: the ensemble learns the best
algorithm per node instead of per domain, while individual,
internal algorithms make predictions based on the whole
document in a domain.
An unexpected result was that the best individual predictive
algorithms were most often the simplest ones: recency and
frequency, while more complex algorithms were seldom the better
ones, and often had much lower accuracy.

5. CONCLUSIONS
In this paper we presented an ensemble classifier that assists the
data entry into XML documents by predicting the values of XML
nodes. The ensemble integrates individual classification
algorithms and learns which ones predict the values of XML
nodes more accurately. Our approach is different from current
autofill technologies, since our internal classifiers use
approximate predictive techniques (e.g naïve conditional
probability or partial syntactic match). Current autofill
technologies, on the other hand, require a perfect match between
the data in the document being completed and some document in
memory. Our ensemble also differs from traditional ensemble
classifiers, since it integrates disparate classification and
prediction algorithms, instead of algorithms induced by the same
methodology through boosting.
Our experiments showed that the ensemble adapted itself to a
variety of XML domains, learned the best predictive algorithm for
a node in an XML domain, and in 9 out of 11 test domains
performed as well as or better than the best individual predictive
algorithm. The accuracy achieved ranged greatly from domain to
domain, with lowest predictive accuracy of 15.95% and best
accuracy of 100%. The average accuracy of the ensemble was
44.3% and the median accuracy 37.9%. The system performed in
real-time, with worst performance of approximately 60
milliseconds, satisfying the requirement that the autofill be faster
than the user.

6. FUTURE WORK
Now that we have verified that the ensemble approach works, we
intend to study which classifiers to include in the ensemble to
improve its lower end performance. Other possible extensions
include tweaking the rewards formula for the ensemble, and
exploring more complex classifiers such as Neural Networks or
Support Vector Machines that may require off-line retraining.
We will also study the use of ensemble-based prediction in
different applications including web forms and databases.
Finally, it will be interesting to study why simple prediction
techniques seem to perform much better than complex ones, and
whether this is a feature constrained to specific XML domains, or
a more general feature of XML documents.

7. ACKNOWLEDGEMENTS
This work was supported in part by the Kansas Technology
Enterprise Corporation.

8. REFERENCES
1. Altova, “XML Spy”, URL < http://www.xmlspy.com/>, Sept

17, 2004.
2. “APAIS Thesaurus,” URL <http://www.nla.gov.au/apais/

thesaurus/about.html>, Oct 1, 2003.
3. “BioMed Center – The Open Source Publisher,” URL

<https://www.biomedcentral.com/home/>, Sept 24, 2003.
4. “European Bioinformatics Institute,” URL

<http://www.ebi.ac.uk/trembl/index.html>, June 22, 2004.

5. “Google Toolbar,” URL <http://toolbar.google.com/>, Sept 8,
2004.

6. “iProClass – An Integrated Protein Classification Database”,
URL< http://pir.georgetown.edu/iproclass/>, June 18, 2004.

7. Maclin, R. and Opitz, D. “An Empirical Evaluation of
Bagging and Boosting,” Fourteenth National Conference on
Artificial Intelligence (AAAI-97), AAAI Press, 546-551.

8. Maxwell, D., von Reis, W. and Scott, G., “Method and
Apparatus for Populating a Form with Data,” US Patent
6,589,290, July 8, 2003.

9. “PIR Information Resource,” URL <http://pir.georgetown.
edu/pirwww/>, June 15, 2004.

10. Quinlan, J. R. Induction of Decision Trees. Machine
Learning, 1, 81-106. 1986.

11. “RoboForm: Free Password Manager, Form Filler, Password
Generator: Fill Forms, Save Passwords, AutoFill, AutoLogin,
AutoSave,” URL <http://www.roboform.com/>, Sept 8, 2004.

12. Russell, S. and Norvig, P. Artificial Intelligence A Modern
Approach, Second Edition. Prentice Hall, 664-668.

13. Su, H., Kramer, D., Chen L., Claypool, K. and Rundensteiner,
E. A. “XEM: Managing the evolution of XML Documents”.
Eleventh International Workshop on Research Issues in Data
Engineering, IEEE Computer Society Press, 103-110.

14. “University of Washington XML Repository,” URL
<http://www.cs.washington.edu/research/xmldatasets/www/re
pository.html>, June 15, 2004.

