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ABSTRACT 
XML has emerged as the primary standard of data representation 
and data exchange [13].  Although many software tools exist to 
assist the XML implementation process, data must be manually 
entered into the XML documents.  Current form filling 
technologies are mostly for simple data entry and do not provide 
support for the complexity and nested structures of XML 
grammars.  This paper presents SmartXAutofill, an intelligent 
data entry assistant for predicting and automating inputs for XML 
documents based on the contents of historical document 
collections in the same XML domain.  SmartXAutofill 
incorporates an ensemble classifier, which integrates multiple 
internal classification algorithms into a single architecture.  Each 
internal classifier uses approximate techniques to propose a value 
for an empty XML field, and, through voting, the ensemble 
classifier determines which value to accept.  As the system 
operates it learns which internal classification algorithms work 
better for a specific XML document domain and modifies its 
weights (confidence) in their predictive ability.  As a result, the 
ensemble classifier adapts itself to the specific XML domain, 
without the need to develop special learners for the infinite 
number of domains that XML users have created.  We evaluated 
our system performance using data from eleven different XML 
domains.  The results show that the ensemble classifier adapted 
itself to different XML document domains, and most of the time 
(for 9 out of 11 domains) produced predictive accuracies as good 
as or better than the best individual classifier for a domain.  
 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – parameter learning.  

 

General Terms 
Algorithms 
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1. INTRODUCTION 
1.1 Motivation   
XML is a markup language for documents containing structured 
information.  It has emerged as the primary standard of data 
representation and data exchange [13].  It enables people in the 
same professional discipline to exchange data and information 
without worrying about the data format and media.  Over the past 
few years, practitioners in a variety of domains have developed 
their own XML ontologies and applications to annotate their 
information.  A number of XML software tools have also been 
developed, such as Xerces, Xalan, FOP, Forrest, and Crimson 
from Apache, and XML Spy from Altova [1].  However, the 
major weakness of current software tools is that they only 
simplify the implementation process, but information for XML 
documents still needs to be manually entered into the XML 
applications.   
On the other hand, software tools that currently have the ability to 
assist data entry are mostly targeted to web-based forms.  They 
are designed especially for login forms or online shopping forms, 
e.g. AOL, Roboform, and Google Toolbar.  The data for online 
input form is mostly simple, e.g. login, password, address, and 
credit card number, and predefined by the user of the autofill 
application, the specific web site, or in some other location, such 
as the user's address book.   

 

1.2 Approach  
Our work developed an intelligent assistant, SmartXAutofill, that 
automates the data entry into XML forms.  Individual classifiers 
(predictors) were trained on a historical XML document 
collection and were combined into an ensemble classifier. The 
ensemble classifier integrates all the internal classification 
algorithms into a single architecture.  When a user starts to fill out 
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an input form for an XML document, each internal classifier 
proposes a value, and, through voting, the ensemble determines 
which value to accept.  As the system operates it learns which 
internal classifiers work better and modifies its weights 
(confidence) in their predictive ability.  As a result, the ensemble 
adapts itself to the specific XML domain, without the need to 
develop special classifiers for each XML domain.  Our system 
allows the ensemble classifier to incorporate any type and number 
of internal classification algorithms.  In our experiments, we have 
used four internal classifiers: a Naïve Bayesian classifier that uses 
probability techniques, a K-Nearest Neighbor classifier that uses 
instance-based techniques, a frequency classifier which selects the 
most frequently occurring value for an XML field, and a recency 
classifier that simply selects the most recently entered value for a 
field1. The results show that the ensemble classifier adapted itself 
to eleven different XML document domains, and most of the time 
(for 9 out of 11 domains) produced predictive accuracies at least 
as good as or better than the best individual classifier for a 
domain. 

 

2. RELATED WORK 
2.1 Form Filling Tools 
Software tools that have the ability to assist in data entry are 
mostly targeted to web-based forms.  AOL populates an input 
form (with at least one field filled) by searching through a set of 
template files that resemble the current state of the input form [8].  
The template files are usually stored at the user’s machine.  A 
match occurs if a template file that resembles the current state is 
found.  Then, the form completion program uses the template file 
to populate the rest of the input form.   
Roboform uses Passcards to store form data that is specifically 
associated to a particular website [11].  When the user visits a 
website which has a previously saved Passcard, Roboform will 
notify the user that there is a Passcard for the current website.  If 
the user decides to autofill the input form, then Roboform will 
populate the form with the Passcard. 
Google Toolbar enables users to automatically complete forms on 
the web [5].  The users first need to enter their own personal data 
in the AutoFill Options of the Toolbar, and the Toolbar stores the 
data on user’s own computer. When the user goes to a website 
with an input form, Google Toolbar will highlight the input fields 
that are recognized by its AutoFill feature.  User can choose to 
have Google complete the form with the previously stored 
information.  Similar behavior is exhibited by browsers such as 
Internet Explorer and Safari, which also read information from the 
user’s address book. 
The data supported by previous form filling tools is usually 
simple, e.g. login, password, address, and credit card number and 
has a linear structure.  Also, the user must have already entered 
and stored the data in some form for it to be accessible. However, 
XML grammars contain nested composition and complex tree-
like structures and the information in them is usually not already 

                                                           
                                                          1 Other classifiers were also tested, including one that used rules 

derived by C4.5 [10], and KNN with different sizes for K, but 
they all had either very bad individual predictive accuracy or 
had individual accuracies similar to other classifiers in the 
ensemble. 

stored, but needs to be entered2.  Not only are previous data entry 
tools unable to support XML grammars, but also incapable to 
learn and improve their performances. 
It is also important to note that our classification/prediction 
algorithms are approximate, and make suggestions based on an 
approximate match (probabilistic, syntactic or otherwise) between 
the values in a historical collection of XML documents and the 
values in a document that is partially filled and for which they 
predict the empty node values.  This is significantly different 
from other autofill systems which require a perfect match between 
the incomplete document and the values and documents already 
stored.   

 

2.2 Ensemble Learning 
Ensemble learning is a machine learning technique that selects a 
collection, or ensemble, of hypotheses from the hypothesis space 
and combines their predictions [12].  An ensemble consists of a 
set of independently trained classifiers whose predictions are 
combined when classifying new instances.  The one of the most 
widely used ensemble methods is called boosting.  Boosting 
works with a weighted training set.  Each example in the training 
set has an associated weight wj >= 0.  The higher the weight of an 
example, the higher is the importance attached to it during 
training.  Boosting, produces a series of classifiers, where the 
training set used for each member of the series is chosen based on 
the performance of the earlier classifier(s) in the series.  All 
examples start with wj = 1 and boosting increases the weights 
(importance) of misclassified examples and decreases the weights 
of the classified examples.  Therefore, examples that are 
incorrectly predicted by previous classifiers in the series are 
chosen more often than examples that were correctly predicted.  
As a result, boosting produces new classifiers for its ensemble 
that are better able to correctly predict examples for which the 
current ensemble performance is poor [7].  
The idea of our ensemble classifier is based on boosting.  
However, instead of boosting the importance of the examples in 
the training set, it boosts the internal classifiers based on their past 
performances through weighting the individual classifiers.  Our 
ensemble learns which internal classifiers work better for a 
particular XML domain and adapts itself without developing 
special classifiers for infinite number of XML domains.  In 
addition, previous work in ensemble classifiers and boosting 
combined the same type of classifier, learned by the same 
methodology, but trained on different examples.  Our work 
combines different types of classifiers into an integrated 
classification framework. 

 

3. PREDICTING XML ENTRY DATA 
USING ENSEMBLE 

Experiments we conducted with a variety of approximate 
classification algorithms used to predict values for XML 
documents showed that the accuracy of a single classification 
algorithm differs greatly across nodes, documents, and document 

 
2 An exception to this are databases which need to be translated 

into XML.  In this case the data already exists, and the 
population of an XML document involves custom-made 
(usually) translation programs. 



collections due to the structural variability of XML and the 
specific nature of values used to represent information from the 
domain in the XML documents (see, for example, Table 1 in this 
paper).  It is impossible to predict which classification algorithm 
will work best for what type of document.   To solve this problem, 
we developed an ensemble classifier. An ensemble classifier is a 
collection of a number of classification algorithms where each of 
them provides predictions for the value of an XML node.  The 
ensemble learns which individual algorithms provide better 
predictive accuracy for different XML domains and for different 
nodes in the XML documents in these domains.  The result is a 
classifier that adapts itself to the specific XML collection, and 
performs better than any individual predictive algorithm. 
Our ensemble algorithm for predicting XML node values 
incorporates individual classification algorithms and learns which 
is most accurate for each node in the collection. Suggestions to 
the ensemble are made based on an approximate match between 
data entered in the current input form, compared to data stored in 
a historical document collection.  If many suggestions are made, 
they are ranked by the internal classifiers based on probable 
correctness.  Each unique node value from the set of suggestions 
provided by all internal classifiers is voted on and the overall 
most likely one is selected as the final suggested value.  Voting is 
based on the past performance (accuracy) of the suggested values 
for the given node in this document collection for each internal 
classifier.  After a suggestion has been made, the weights for each 
classifier are updated to record the accuracy of the suggestion. 

 

3.1 Suggestion Aggregator - Voting Among 
Internal Classifiers 
Since the ensemble receives predictions from many internal 
classifiers, voting is used for aggregating these inputs into a single 
suggestion. The voting system forms a consensus decision on 
which value is suggested by most of the classifiers.  All classifiers 
return the same number of maximum suggestions.  Each 
classifier’s suggestions are ranked; if a classifier returns N 
suggestions the top one receives a value of N, the second one N-1, 
and so on, with the last suggestion receiving a 1.  In addition to 
their rank, suggestions are modified by the weight of their 
classifier.  Initially all classifiers have the same weight, but this is 
modified based on which classifier works better for different 
nodes in the XML domain (more on this later).  An example of 
the voting mechanism is shown on Figure 1.  In this example, 
three classifiers provide a maximum of three suggestions each.  
Classifier A makes three suggestions; the top one receives a rank 
value of 3, the second one of 2, and the third one of 1; the rank 
values are multiplied by the weight of the classifier (0.67) and 
then normalized by the sum of the weights of all the classifiers.  
The same occurs for the suggestions by the other classifiers.  The 
suggestion with the highest support is the one selected by the 
ensemble and presented to the user. 
 

3.2 Ensemble Learning – Weighting Each 
Classifier by Past Performance 
The weighting system in our ensemble learns from past 
performance of the internal classifiers.  As classification 
algorithms exhibit different predictive accuracy for different 
nodes, depending on the number of instances of that node in the 
collection and the type and statistical distribution of values for the 

node across the collection, the overall accuracy of the suggestion 
system is improved by learning how each internal classifier 
performs on each node and weighting their votes accordingly. 
 

 
Figure 1. Ensemble classifier: individual, internal classifiers 

make predictions which are ranked, with the rank multiplied 
by the classifier weight (confidence).  The suggestion with the 

highest total support is presented to the user. 
 

Our measure of predictive performance of a classification on a 
node is the error rate of its suggestions for that XML node.  Error 
rate is defined as the number of incorrect suggestions over the 
total number of suggestions (ignoring cases where the algorithm 
can make no suggestion)3. In other words, the weight for classifier 
i on node n for a specific XML domain is: 
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For each node, we record the total number of suggestions for that 
node by each internal classifier and the number of errors in 
suggestions for that node by each classifier.  Since classifiers that 
make fewer suggestions may be favored (fewer suggestions imply 
fewer errors), the weight of each predictor is normalized by 
dividing it by the sum of all weights for all internal classifiers on 
the node.   
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3 A suggestion is considered to be correct if it was accepted by 

the user and it was one of the top two suggested by the 
classifier. 



where wti,n is the weight assigned to the ith classifier when 
suggesting a value for node n and c is the total number of internal 
classifiers. 
The weight for each internal classifier on each node is updated 
after each suggestion is made.  If the suggestion is correct, then 
the si,n total will be incremented.  If the suggestion is incorrect, both 
si,n total and si,n incorrect will be incremented. 
Initially the values suggested by each internal classifier are 
weighted equally.  If the user accepts the value, the internal 
classifiers that suggested it get rewarded by increasing their 
weight.  If the user rejects the value, the internal classifiers get 
punished by decreasing their weight.  As a result, our system 
adapts to the specific domain of XML documents and increases its 
prediction performance. 

 

4. EXPERIMENTS AND RESULTS 
In our experiment we used four simple prediction algorithms 
inside an ensemble which learned predictor weights for each node 
for each XML domain as described above.  Each classifier used 
approximate methods and the values entered in an XML form to 
predict the empty valued nodes in the same form.  As more nodes 
were filled in, the predictions changed. 
The value vi of a node ni could be predicted using traditional 
probability theory as the conditional probability of ni=vi given the 
values entered in all other nodes: P(ni=vi | n1=v1, n2=v2, …, ni-

1=vi-1).  Since this is computationally infeasible in a real-time 
application such as an autofill system, the first classifier we used 
was based on Naïve Bayes theory. Naïve Bayes analyzes the 
relationship between each independent and dependent variable to 
derive a conditional probability for each relationship.  When a 
new case is analyzed, a prediction is made by combining the 
effects of the independent variables on the dependent variable (the 
outcome that is predicted).  The Naïve Bayesian Classifier 
computes the probability of a value for an empty node, based on 
the conditional probabilities of the predicted value given the 
actual values of the nodes that have been filled in.  In other words, 
given the values of i-1 fields: v1, v2, …, vi-1, and given a possible 
vi for the value of the empty node ni, the Naïve Bayesian 
Classifier computes the probability that vi is predictably correct as 
follows: 

P(ni =vi)=

P(ni =vi |nk =vk)
k=1

i−1

∏

P(ni =vi |nk =vk)
k=1

i−1

∏ + 1−P(ni =vi |nk =vk)(
k=1

i−1

∏ )
 
The second classifier was a simple K-Nearest-Neighbor, where 
K=1 (our previous experiments showed no significant difference 
in predictive accuracy when using K=3, 5, or 7). The third 
classifier was based on frequency and suggested the most 
frequently used value for an XML node.  The final predictor 
simply suggested the most recently entered value for a node. 
Although it would be possible to include other commonly used 
classifiers such as artificial neural networks or support vector 
machines, we chose not to in this experiment because such 
classifiers require retraining as the document collection changes. 
This would place a computational burden on the system and slow 

it down considerably; when response time is a critical 
requirement, this would make the system inefficient to the user.  It 
might be possible to have such classifiers retrained off-line (for 
example, when the system is idle), but this was not tried in our 
current experiments.  Our current classifiers use the new values 
and new documents added to the collection without requiring a 
complete retraining. 
The goals of the experiments were the following: 
a. establish whether the ensemble could be trained to select the 

best classification algorithm for each node in each XML 
document domain 

b. establish whether the performance of the ensemble for each 
XML domain was at least as good as the performance of the 
best individual classifier for that domain 

c. determine accuracy and speed of classification 

 

4.1 Data Selection 
A variety of XML domain document data were gathered to span 
the size and complexity dimensions.  All data used for the 
experiment was collected on the Internet, except that data from 
one domain was collected directly from the Center for Army 
Lessons Learned.  XML samples have been collected from the 
following domains: thesaurus by Australian Public Affairs 
Information Service (APAIS) [2], Bio Medical journal papers 
(BioMed) [3], Center for Army Lessons Learned (CALL), a 
comprehensive protein database (iProClass) [6], a protein 
database by Protein Information Resource (PSD) [14], 
astronomical data from NASA (NASA) [14], a non-redundant 
reference protein database (NREF) [9], a protein knowledgebase 
for a protein sequence database maintained by the Swiss Institute 
for Bioinformatics and European Bioinformatics Institute 
(SPROT) [14], a protein sequence databank (UniProf) [4], course 
listing of the University of Wisconsin at Milwaukee (UWM) [14] 
and course listing of Washington State University (WSU) [14].  
Their size ranged from around 50 to 5000 documents, and they 
had between 20 and 420 nodes per document. 

 
4.2 Experimental Approach 
Before an experiment was run, we seeded a historical collection 
of XML documents with 10 documents; this is required since our 
algorithms use historical information to make predictions.  The 
classification algorithms made no suggestion for a particular field 
if there were no historical data for it or if every previous value for 
the field was unique, for example, nodes that contain abstracts of 
reports or papers, collections where a single document is 
produced daily and where the date node will be unique.  Clearly if 
no information exists it is better not to make a suggestion than to 
make a wrong suggestion.   
XML documents usually have hundreds of elements.  In order to 
exhaustively test the performance of predicting values on a single 
document, the experiment would have to request suggestions for 
every possible field in every possible state of an XML input form.  
For instance, if an input form has one hundred elements, the 
number of suggestions required to exhaustively test the possible 
predictions on every state of form completion is one hundred 
factorial.  Since exhaustive testing is not possible, the experiment 
performed repeated trials.  In each iteration, documents were 
randomly selected and all elements were suggested in a single 



random order.  In other words, a node was selected randomly, the 
classifier made a prediction, the suggested value was compared to 
the actual value, the error rate was modified as required, and then 
the correct value was filled in.  Next, another random node was 
selected and the process repeated. 
We ran tests after training on 10, 20 or 40 documents, and tested 
on 80 documents.  As the documents are completed and added to 
the historical database, the performance of the algorithms 
changes, but not in a significant manner.   
 

Table 1.  Accuracy for Naïve Bayes, KNN, Frequency and 
Recency Classifiers.  The best results for each trial are shown 

in bold face. 

Accuracy (%) XML 
Domain 

No of 
Training 

Doc Naïve 
Bayes KNN Freq Recency 

APAIS 10 51.10 50.03 51.48 48.87 

 20 50.79 50.02 51.00 48.91 

  40 50.86 49.86 51.00 48.87 

BioMed 10 11.80 10.45 13.84 12.95 
 20 11.54 10.22 14.15 12.59 

  40 12.49 10.37 15.17 12.35 

CALLS 10 97.06 98.53 98.53 100 
 20 97.06 98.53 98.53 100 

  40 97.06 97.06 97.06 100 

iProClass 10 29.21 37.59 37.23 34.61 
 20 28.08 37.38 36.92 34.14 

  40 30.02 36.78 36.84 34.39 

NASA 10 15.25 18.43 22.17 30.85 
 20 15.04 19.00 21.42 30.47 

  40 14.61 19.13 21.09 30.39 

NREF 10 69.54 80.65 81.36 79.06 
 20 71.23 81.62 82.35 80.05 

  40 70.59 81.86 82.35 79.90 

PSD 10 17.98 23.23 22.61 23.85 
 20 16.87 22.34 22.35 23.62 

 40 16.01 20.87 22.01 23.57 

SPROT 10 8.39 10.98 12.72 15.20 
 20 8.90 10.56 12.72 15.16 

  40 8.89 9.84 12.41 15.05 

UniProf 10 37.05 34.51 35.44 16.74 
 20 37.00 33.84 35.69 16.77 

  40 36.35 33.84 35.64 16.67 

UWM 10 26.69 25.01 28.21 48.05 
 20 26.45 24.82 28.26 48.06 

  40 27.10 24.70 29.24 48.05 

WSU 10 31.46 28.29 33.45 43.53 
 20 31.70 28.66 33.86 43.58 

  40 31.81 28.72 33.94 43.65 
 

Table 1 summarizes the results of the individual internal 
prediction algorithms (to the ensemble) with an initial seed of 10 
documents, and then trained by 10, 20 or 40 other XML 
documents.  The accuracy value is computed as the total number 
of correct predictions made on all nodes for all documents for a 
total of 80 test documents, over the total number of predictions 
made4.   
In bold face we are showing the best results for each trial.  As can 
be seen, different predictive algorithms perform better for 
different domains, although we did not study whether differences 
were statistically significant.  In some cases the differences seem 
insignificant (e.g. CALLS and APAIS collections), while in other 
cases they are quite large (e.g. WSU and UWM collections). 
For testing the ensemble classifier, the document collections were 
separated into three sets:  seed (10 documents as before), training 
collection and testing collection. Training collection was used to 
train the ensemble by modifying its weights. The ensemble 
randomly picked out a document from the training collection, 
received suggested values from the internal classifiers and 
modified the classifier weights based on the accuracy of the 
suggestion. The documents from the training collection, once used 
for training, were added to the seed and were used in future 
predictions (but not in testing).  As before, 10, 20 or 40 
documents were used for training the ensemble. 
After training, the weights were frozen and the ensemble was 
tested on 80 documents in the same way as the individual 
classifiers.  These documents formed the testing collection.  
Accuracy was calculated as before.  
Table 2 shows the results of the ensemble classifier as compared 
to the results of the best individual classifier for each domain and 
number of training documents.  In bold face we are showing 
which classifier worked better.  Note that the ensemble classifier 
worked as well as or better than the best individual predictor in 9 
out of 11 domains. 
In addition to accuracy we studied whether the weights for each 
classifier for each node for an XML domain would change inside 
the ensemble during training.  This was observed for all 
experiments.  For example, the weights of some nodes from the 
iProClass XML domain are shown in Table 3 (iProClass 
documents had a maximum of 47 nodes). 

 
Table 2.  Comparison of the accuracy for the best individual, 

internal classifier for each XML test domain versus the 
ensemble classifier. The best results are shown in bold face. 

Best Classifier XML 
Domain 

No of 
Training 

Doc Name Accuracy (%) 

Ensemble 
Accuracy 

(%) 

APAIS 10 Freq 51.48 52.13 

 20 Freq 51.00 51.19 

  40 Freq 51.00 51.90 

                                                           
4 Since some collections had few documents, documents might be 
used more than once in testing iterations, but since the 
suggestions are made in random order and prediction is based on 
the random state of the form, they were considered separate trials. 

 



BioMed 10 Freq 13.84 15.95 

 20 Freq 14.15 15.95 

  40 Freq 15.17 16.8 

CALLS 10 Recency 100 100 

 20 Recency 100 100 

  40 Recency 100 100 

iProClass 10 KNN 37.59 38.69 

 20 KNN 37.38 37.89 

  40 Freq 36.84 37.46 

NASA 10 Recency 30.85 28.07 

 20 Recency 30.47 26.07 

  40 Recency 30.39 27.36 

NREF 10 Freq 81.36 81.50 

 20 Freq 82.35 82.55 

  40 Freq 82.35 82.55 

PSD 10 Recency 23.85 27.10 

 20 Recency 23.62 26.36 

 40 Recency 23.57 25.26 

SPROT 10 Recency 15.20 17.70 

 20 Recency 15.16 17.40 

  40 Recency 15.05 17.54 

UniProf 10 NB 37.05 37.58 

 20 NB 37.00 37.60 

  40 NB 36.35 37.45 

UWM 10 Recency 48.05 44.57 

 20 Recency 48.06 44.51 

  40 Recency 48.05 45.09 

WSU 10 Recency 43.53 45.82 

 20 Recency 43.58 45.84 

  40 Recency 43.65 45.09 
 
As can be observed from Table 3, different classifiers are 
preferred for different nodes (Naïve Bayes for Node 13 and Node 
28, KNN for Node 22, Frequency for Node 14, and Recency for 
Node 6 and Node 7), and the weights have been modified from 
their initial value of 1, through the training process. 

 
Table 3.  Weights of selected XML nodes from iProClass 

domain.  

NodeId 
Naïve 
Bayes KNN Freq Recency 

6 0.4146 0.5805 0.4829 0.7724 

7 0.6878 0.7528 0.5772 0.8423 

13 0.1404 0.1066 0.1184 0.0880 

14 0.0100 0.0100 0.0186 0.0100 

22 0.0449 0.1124 0.0375 0.0637 

28 0.2543 0.1890 0.2474 0.0825 

 

Finally, we were interested in the time performance of the 
ensemble as any autofill system needs to be faster than the user 
and must work in real-time.  Since the performance of the 
ensemble ranged between 1 and approximately 60 milliseconds, 
we believe that the real-time requirement is satisfied. 
 

4.3 Discussion 
In our experiments we expected that the ensemble classifier 
would work at least as well as the best performing internal 
classification algorithm for a domain, and also that for different 
domains it would match the performance of different internal 
classifiers.  This was the case in 9 out of the 11 domains where 
we tested our algorithms.  We currently have no explanation as to 
why the ensemble did worse than the best algorithm in the UWM 
and NASA domains (although in both cases it did significantly 
better than the second-best classifier); it is possible that more 
training of the ensemble would have improved its performance in 
these two cases. 
An interesting observation is that the ensemble learns to prefer 
different algorithms for different nodes in the same domain, 
leading to adaptation and learning at the lowest possible level.  
This would explain why it performed better than the best 
individual predictor in 9 domains: the ensemble learns the best 
algorithm per node instead of per domain, while individual, 
internal algorithms make predictions based on the whole 
document in a domain. 
An unexpected result was that the best individual predictive 
algorithms were most often the simplest ones: recency and 
frequency, while more complex algorithms were seldom the better 
ones, and often had much lower accuracy. 

 

5. CONCLUSIONS 
In this paper we presented an ensemble classifier that assists the 
data entry into XML documents by predicting the values of XML 
nodes.  The ensemble integrates individual classification 
algorithms and learns which ones predict the values of XML 
nodes more accurately.  Our approach is different from current 
autofill technologies, since our internal classifiers use 
approximate predictive techniques (e.g naïve conditional 
probability or partial syntactic match).  Current autofill 
technologies, on the other hand, require a perfect match between 
the data in the document being completed and some document in 
memory.  Our ensemble also differs from traditional ensemble 
classifiers, since it integrates disparate classification and 
prediction algorithms, instead of algorithms induced by the same 
methodology through boosting.  
Our experiments showed that the ensemble adapted itself to a 
variety of XML domains, learned the best predictive algorithm for 
a node in an XML domain, and in 9 out of 11 test domains 
performed as well as or better than the best individual predictive 
algorithm.  The accuracy achieved ranged greatly from domain to 
domain, with lowest predictive accuracy of 15.95% and best 
accuracy of 100%.  The average accuracy of the ensemble was 
44.3% and the median accuracy 37.9%.  The system performed in 
real-time, with worst performance of approximately 60 
milliseconds, satisfying the requirement that the autofill be faster 
than the user. 

 



6. FUTURE WORK 
Now that we have verified that the ensemble approach works, we 
intend to study which classifiers to include in the ensemble to 
improve its lower end performance.  Other possible extensions 
include tweaking the rewards formula for the ensemble, and 
exploring more complex classifiers such as Neural Networks or 
Support Vector Machines that may require off-line retraining.  
We will also study the use of ensemble-based prediction in 
different applications including web forms and databases.  
Finally, it will be interesting to study why simple prediction 
techniques seem to perform much better than complex ones, and 
whether this is a feature constrained to specific XML domains, or 
a more general feature of XML documents. 
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