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Differential Pricing for Differentiated Services 

 

1 Introduction 

 

Currently the Internet only offers a single type of service: all packets are serviced on 

a best-effort, first-in-first-out (FIFO) basis. This single type of service limits the 

nature of applications that can be adequately supported. As the “information 

revolution” is currently underway, more and more new applications are emerging, 

and the Internet has to support a wide variety of applications that have very different 

service requirements. For instance, some applications, like electronic mail, can 

tolerate significant delay without users experiencing discernible performance 

degradation, while other applications, such as voice over IP, degrade perceptibly 

with even extremely small delays. Similarly, some applications are relatively 

insensitive to packet loss while others are not, and some applications can adjust to 

reduced bandwidth while others cannot. The range of applications, and the diversity 

of service requirements, is likely to grow rapidly in the near future. Thus, it is crucial 

for the evolution of the Internet to meet these increasingly varied service 

requirements, thus becoming an integrated network.  

An integrated network caters to diverse application requirements, and an efficient 

solution to the problem of providing adequate quality of service (QoS) to 
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heterogeneous users is through the offer of multiple service classes. With the 

emerging protocols such as RSVP (Resource Reservation Setup Protocol) [5], 

DIFFSERV [6] and scheduling schemes such as priority queuing, class-based 

queuing and Weighted Fair Queuing (WFQ), the Internet is also going to be able to 

provide a collection of various classes of service. 

However, the current pricing and charging methods for Internet service are 

mainly flat-rate access-based, which will not be sufficient in the presence of multiple 

service classes and discrimination between different usage requests [3].   

Recently several papers have shown that differentiated pricing could provide 

incentives to users to improve network utilization, network efficiency and fairness 

among the users. Gupta et al [1] propose a priority pricing scheme to manage a 

multi-service class network which can be implemented in a completely decentralized 

environment. They show through simulation that priority pricing improves the 

performance significantly as compared to a uniform pricing scheme.  

Cocci et al [2][3] study the role of pricing policies in multiple service class 

networks (specifically, non-preemptive priority network). They conclude via 

simulations that with the same revenue generated, the users are more satisfied with 

the graduated pricing scheme than the uniform pricing scheme. 

DaSilva et al [4] adopt the game theory approach to analyze the existence and 

uniqueness of the Nash equilibrium for a non-cooperative “game”. The authors argue 

that by appropriately selecting the different prices for various priority levels, the 



 4

network providers will be able to induce an optimal point that can maximize both 

revenue and aggregated utility. 

In this technical report, we study the revenues raised by different pricing schemes 

in an analytical framework. As with some previous studies [3][4], we adopt a game 

theory approach to address this problem. We model the system as a game, and all the 

users are the participants of this game. The service provider sets the unit prices to 

maximize the total revenue, and all the users request the service to optimize their 

individual levels of satisfaction. Game theory has been widely used in economics to 

address similar problems. Here we consider two different pricing schemes. The first 

one is a uniform price scheme applies a uniform unit price to all the packets 

traversing a link. The second one is a differential pricing scheme in which each 

priority class has a different unit price. We compare the revenues raised by the  

differential pricing scheme and the uniform pricing scheme and show that if the 

users’ delay requirements are sufficiently different, the differential pricing scheme 

will raise more revenue for the service provider without losing any potential 

customers. 

This technical report is organized as follows: section 2 is an introduction to game 

theory. Sections 3 and 4 introduce separately the network model and the user model. 

Section 5 explains how to get the optimal unit prices and the optimal revenues. 

Section 6 compares the optimal revenues raised by the two pricing schemes. Finally 

section 7 addresses some related further research fields. The Appendix contains the 

derivation of the optimal differential unit prices. 



 5

 

2 Game theory 

 

As defined in [4], a game consists of a principal and a finite set of players. Each 

player will choose a strategy with the objective of maximizing his surplus function. 

If the users make choices independently, this is a non-cooperative game. Game 

theory attempts to predict the outcome of such a game, or properties of the predicted 

outcome. A particularly satisfying outcome of a non-cooperate game has the 

property that no user, by unilaterally changing her own request, can increase her 

surplus. This is referred to as the Nash equilibrium. The Nash equilibrium is 

considered a consistent prediction of the outcome of the game, in the sense that if all 

players predict that a Nash equilibrium will occur, then no player has an incentive to 

choose a different strategy. 

In a multi-service network, the service provider sets the unit prices and the 

service principle; each user is selfish and acts alone to make service choices with the 

aim of maximizing his individual level of satisfaction, i.e.., the surplus function. The 

surplus is a function of the performance of the selected service, which is in turn 

affected by the others’ choices. Therefore, all the users’ choices are interdependent. 

This could be modeled as a non-cooperative game, and the users are the players of 

the game.  
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The service provider is interested in determining which pricing schemes are more 

likely to achieve certain goals, e.g. maximizing revenue or social welfare. It is 

therefore important to be able to predict what service choices the customers will 

make under a given pricing scheme. Since the Nash equilibrium is the likely 

outcome of the game, it can be considered the network’s operating point. The 

selected pricing scheme should optimize the objective function while inducing a 

Nash equilibrium.  

According the game theory, a Nash equilibrium point is induced when unilateral 

deviation does not help any user improve his performance. In other words, at Nash 

equilibrium every user’s surplus function is no less than that when he changes his 

choice while all the others’ choices remain unchanged. 

 

 

3 The network model   

 

Here we consider a simple network with a fixed population of N potential network 

users.  For analytical tractability, we simplify it to be a single trunk network. The 

objective of the service provider is to maximize the revenue while trying to serve all 

the potential customers. 
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3.1 Service discipline 

We assume the network supports two service classes, high and low priority, by 

extend the first-in-first-out (FIFO) service discipline to two classes. The end node of 

the trunk then keeps a queue with the high priority packets arranged in the order of 

time-of-arrival, followed by the low priority packets also arranged in the order of 

time-of-arrival. The node transmits the packet at the head of the queue. 

 

3.2 Pricing scheme 

We adopt a usage-based pricing scheme here. We assume the charge for the service 

is a function of the number of packets served. Note that there also might be some 

fixed charges, like a monthly fee or connection fee, but they would be the same for 

the two pricing schemes. Since we are just interested in comparing these two pricing 

schemes, we ignore these fixed charges. 

So the charge for customer i is: 

Pi = pc(i) ⋅ average number of packets served in time T 

Where: c(i) is the service choice made by customer i; 

pc(i) is the price per packet of the service class chosen by customer i , 

 T is the billing interval. 

Under the uniform pricing approach, there is only one value of p. 

In the differential pricing approach, we denote by p1 the unit price for the high 

priority class, and p2 the unit price for the low priority class. 
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Equivalently, since we will be comparing the two pricing strategies for identical 

billing intervals, we let: 

 Pi = pc(i) ⋅ λi 

 Where λi is the arrival rate of user i packets. 

 

4 The user model 

 

We assume each user is selfish and acts alone. A user’s only objective is to request a 

service maximizing his individual level of satisfaction. Furthermore we assume the 

priority is assigned on per-user basis. 

 

4.1 Traffic 

We assume all the users have the identical traffic statistics. Furthermore, we assume 

that the user’s traffic is independent of the prices. 

We assume that each user’s traffic is a Poisson process, with arriving rate λ. The 

average service time for each packet is x, and 2x  is the second moment of the 

average service time. 
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4.2 Surplus function 

The surplus function represents the level of a user’s satisfaction with the service. We 

denote by Ci user i’s surplus function, which is the difference between the utility 

function and the charges for the service.  

The utility function Ui is how much money user i will be willing to pay for a 

particular service. Ui is a function of user’s traffic amount and quality of service 

(QoS), that is, the utility function describes how sensitive a user is to changes in 

QoS. The unit of Ui is some monetary unit (for example, U.S dollars).  

Here we choose mean delay time as the indication of the QoS, so we assume the 

utility is a function of the waiting time: 

Ui = λ(A – Bi ⋅ Wi ) 

Where: A is the upper bound of the amount of money the user is willing to pay 

for the service;  

Wi is the waiting time experienced by user i; 

Bi is a coefficient reflecting the effect of the delay time on user i’s benefit 

function. 

Note that, for user i the value of Wi when Ui goes down to 0 is his maximum 

tolerable waiting time. 

Figure 1 shows two example utility functions with the same λ but different Bi 

values. This represents two users who have the same traffic but different QoS. 
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Figure 2 shows two example utility functions of this form with λ1 > λ2 but the 

same value for Bi. This represents how the utility of a given customer changes as his 

traffic changes. 
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Figure 1 User’s utility function 
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Figure 2 User’s utility function 
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Our objective now is to find the optimal unit prices p (uniform pricing) and p1 

and p2 (differential pricing) to optimize the revenue while ensuring that each user’s 

surplus is non-negative. 

 

5 Optimal Revenue  

 

This section builds on the work of [4], generalizing it to an arbitrary number of users 

and introducing provider revenue optimization. 

 

5.1 Optimal Revenue Under the Uniform Pricing Scheme 

Under the uniform pricing scheme, all users would choose to request high priority 

service. This is because there is no monetary incentive to request low priority service 

and, if there is any congestion in the network, there is a performance dis-incentive to 

request low priority service. Therefore, this situation devolves to one in which there 

is only a single service class, and the waiting time experienced by each user is 

identical.  In order to serve all the N users, the service provider should set the unit 

price p so that each user’s surplus is no less than 0. 

The optimal problem is the following: 

Maximize: λλ ⋅⋅=⋅∑ pNp
N

i
 

Subject to: (A – Bi  ⋅W) λ – p ⋅ λ ≥ 0, ∀i =1,2,…,N 
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Since the objective function is linear, the optimal p should take the maximum 

value as long as it satisfies the constraints. The constraints could further be reduced 

to one, which is for the largest value of Bi. So the optimal unit price is:  

  p = WBA ⋅− max  

where: Bmax is the maximum value of the Bi. 

The optimal revenue is then: 

  

 

5.2 Optimal Revenue under the Differential Pricing Scheme 

Under the differential pricing scheme, the service provider charges different unit 

prices for the two priority classes. Let us denote by p1 the unit price for high priority 

class, and p2 for the low priority class, with p1 > p2 . 

We denote by N1 the number of the users choosing the high priority class at an 

operating point, N2 as the number of the users choosing low priority, with N1+N2=N. 

If  N1 =N, the optimal unit prices are the same as that of uniform pricing scheme. 

Therefore, we consider the case when N1 <N. 

First, we will find the optimal unit prices that maximize the revenue for every 

value of N1 from 1 to N-1. Then if a service provider aims only to maximize the 

revenue, he can find the optimal N1 through searching the revenues from N1=1 to N.  

λ⋅⋅−⋅ )( max WBAN
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In [5], Kleinrock presented the closed-form results for the mean waiting time in a 

two-priority head-of-line priority discipline for a single M/G/1 queue. According his 

results, the waiting time of high and low priority classes are as following: 

)1( 1

0
1 xN

W
W

λ−
=  

)1)(1( 1

0
2 xNxN

W
W

λλ −−
=  

 

where:  

)()( 2
2
12

2
2

12
1

0 xNxNxNW λλλ =+=  

 

Our goal now is to find the unit prices p1 and p2 that optimize the revenue. Given 

the assumption that the selfish behavior of individual users will result in a Nash 

equilibrium, the optimal unit prices should induce a Nash equilibrium.  

The Nash equilibrium represents the point where “unilateral deviation does not 

help any user improve his performance.” In our model, this could be interpreted as 

follows: at the Nash equilibrium, the user’s surplus is no less than that if he alone 

shifts to another service class. In other words, the surplus function of a user in high 

priority class will be no less than the surplus function when he changes to low 

priority and all the others remain unchanged, and similarly for a user charge from 

low to high priorities.  
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Let us denote by W1,+i the waiting time of the high priority class when user i 

changes his choice from low priority to high priority and all the others remain 

unchanged. 

])1(1[ 1

0
,1 xN

W
W i λ+−

=+  

 

Similarly, W2, +j is the average waiting time of the low priority class when user j 

alone changes his choice from high priority to low priority. 

)1]()1(1[ 1

0
,2 xNxN

W
W j λλ −−−

=+  

Using this notation, to induce a Nash equilibrium where N1 users will request 

high priority class and N2 users request low priority service, the unit prices should 

satisfy the following condition: 

• For the user in high priority class, 

λλλλ 2,211 )()( pWBApWBA iii −−≥−− + ,  i=1,…N1  

        i.e.., )()( 1,221 WWBpp ii −≤− + ,  ∀ i=1,…N1 

• For the user in low priority class, 

λλλλ 1,122 )()( pWBApWBA jjj −−≥−− + , j=1,…N2  

      i.e., )()( ,1221 jj WWBpp +−≥− , ∀ j=1,…N2 

For the service provider, a desired operating point (Nash equilibrium) may be 

influenced by some other considerations. For example, if it is desired to provision an 
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upper bound on the delay time for high priority class and the capacity is fixed, the 

number of users requesting high priority service should be limited to reach this upper 

bound. In our case, we assume the service provider simply wishes to maximize 

revenue. 

Furthermore, according to our assumption, the service provider will try to serve 

all the potential users. Thus under the optimal unit prices, a user’s surplus function 

must not be negative. That is: 

  111 ...2,1, NiWBAp i =∀−≤  

  222 ...2,1, NjWBAp j =∀−≤  

We use the following notation: 

B1max is the maximum value of Bi among the users choosing high priority class, 

B1min is the minimum value of Bi among the users choosing high priority class 

B2max is the maximum value of Bj among the users choosing low priority class. 

We can show (see Appendix) that B1min, and hence also B1max is no less than 

B2max. Furthermore, at an equilibrium point, the users with higher value of B will 

choose high priority, and the users with lower values of B will choose low priority. 

Using this notation, the optimization problem is: 

Maximize:  λλλλ 2211
1

2
1

1

21

pNpNpp
N

j

N

i
+=+ ∑∑

==

 

 

Subject to:        1max11 WBAp −≤                          
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       2max22 WBAp −≤       

     )()( 1,2min121 WWBpp i −≤− +               

                   )()( ,12max221 jWWBpp +−≥−  

The first two constraints ensure non-negative surplus for every user, and the 

second two ensure a Nash equilibrium. 

Hereafter, we adopt the following notations:  

p1max  = A - B1max W1, 

p2max   = A – B2max W2, 

(p1  - p2 )max  = B1min (W2,+i - W1), 

(p1  - p2 )min  = B2max (W2 - W1, +j ). 

As shown in the Appendix, the optimal unit prices p1optimal and p2optimal are as 

follows: 

Case 1: if (p1  - p2 )min ≤ p1max - p2max  ≤ (p1  - p2 )max , p1optimal = p1max and p2optimal = 

p2max. 

Case 2:  if p1max  - p2max  < (p1  - p2 )min  , p1optimal = p1max and  

p2optimal = p1max - (p1- p2)min 

Case 3: if p1max  - p2max > (p1  - p2 )max  , p1optimal = p2max + (p1  - p2 )max  and  

p2optimal = p2max  

Comparing the revenues of the two pricing schemes, we have the following 

results for a equilibrium point with N1 users choosing high priority class: 

• If N1=N,  the two pricing schemes are the same;  
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• If N1<N, then (see Appendix for derivation): 

If }
])1(1[

{)N -(1 B B
1

1
min11max2max xNN

xN
xx

λ
λ

λλ
−−

−  Ν Β + < 11 ,  

the revenue raised by the differential pricing scheme is greater than the uniform 

pricing scheme. Otherwise, the revenue raised by the uniform pricing scheme is 

greater than the differential pricing scheme.  

 

6 Discussion and Numerical Results 

 

In this technical report we have studied a simple model, one that involves only a 

single node, two service classes and where the users’ traffic patterns are identical. 

However we believe this network context is realistic since in this model the pricing 

issues are not obscured by the technical details of the network.  

In our model, the value of Bi represents a user’s sensitivity to the delay (waiting) 

time. Different values of B could be interpreted as the reflection of the users’ 

different delay requirements. The results show that if the users’ delay requirements 

are sufficiently different, the differential pricing scheme will raise more money for 

the service provider than the uniform pricing scheme. On the other hand, if the users’ 

service quality requirements are similar, the uniform pricing scheme is more 

profitable. Given the great diversity of the quality requirements that exists in the 

Internet now, it is more likely that the service provider would benefit more from the 

differential pricing scheme. 
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The choice of the operating point should take into account the specific 

requirements for services in a network. For example, if the network is over-

provisioned, and there is no need to restrict the number of users at high priority, the 

network provider could choose the value of N1 close to the total users number N.  If 

the operating point is N1 = N, the two pricing schemes are the same. Otherwise, the 

network provider could restrict the number of users by setting the operating point at 

N1<<N. In this case, a service provider could offer a delay bound for higher class to 

meet the requirements of some quality-sensitive applications. The preference for the 

two pricing schemes depends on a user’s delay requirement: the users with higher 

quality requirements will choose high priority, and those with lower requirements 

will choose low priority class.  

If a service provider aims only to maximize the revenue, he has to find the 

optimal value of N1 that maximizes revenue. This optimal N1 lies somewhere 

between 1 and N. Since the price for high priority is larger than low priority price, at 

the beginning the revenue increases as N1 increases. But as N1 increases, the average 

delay time of high priority class also increases and the optimal price for high priority 

decreases. So after the revenue reaches a maximum point, it goes down as N1 

increases. Service providers could thus find optimal N1 through searching the 

revenues from N1=1 to N.  

Figure 3 shows some revenue curves as a function of N1 under different users’ 

service requirements for a network. In this case, the network has 5 potential users 

and all of them have the same traffic characteristics. We let each user’s traffic 
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arriving rate to be 1, and set A to be 28. We also let W0 = 0.05⋅λ. We can see that if 

the user population has service requirements that are differentiated enough (B=2.5, 

10, 50, 100, 250) revenues from the differential pricing scheme exceed uniform 

pricing scheme for all N1 from 1 to N-1. Note that the revenue at N1=N is the same as 

the uniform pricing scheme. Here we choose the values of Bi such that they represent 

users’ maximum tolerable waiting time range from 0.1s (for real time applications) 

to 10s (for email applications). As user’s service requirements become more and 

more similar, at some values of N1 the revenues will be less than the uniform pricing 

scheme. If users’ service requirements are very close (B=230, 235, 245, 250, which 

means most of users have the maximum tolerable waiting time at the same level as 

voice), the uniform pricing scheme will become more beneficial. 

Figures 4 and 5 demonstrate the effect of users’ traffic utilization or these two 

figures, the parameters are the same. Figure 4 shows the difference between the two 

pricing schemes becomes greater when user’s traffic utilization increases. Here we 

choose B=2.5, 10, 50, 100, 250, and let λλ ⋅== 05.0)( 2
2
1

0 xNW , and set A to be 28. 

We can see the two pricing scheme are close to each other while λ=0.8, and the 

difference increases for λ=1. Note that the revenue under the lower traffic utilization 

is greater than the higher utilization. This is because the willingness-to-pay (user’s 

utility function) decreases as the average waiting times increases. Figure 5 further 

shows that the difference between the optimal revenues from the two pricing 

schemes increases as user’s traffic utilization increases. The parameters for this 
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figure are: N=5, x=0.1, A=28, λλ ⋅== 05.0)( 2
2
1

0 xNW , B=2.5, 10, 50, 100, 250. 

Here the optimal revenues under differential pricing scheme are the maximum point 

among N1=1,2,…N for a specific value of λ. This shows that the differential pricing 

scheme is more beneficial for a network with higher utilization. Note that when link 

utilization is 0.5, the revenue from uniform pricing is just a little above 0, which 

means it is almost non-profitable for a service provider although the utilization is not 

particularly high. On the other hand, differential pricing scheme can help the service 

provider to make profit without losing users at this point. 

Furthermore, our results could be viewed as a comparison of a priority network 

with a best-effort network. The revenue of uniform pricing scheme is the same as a 

best-effort network without differential service classes. The results show that if 

users’ service requirements are sufficiently different, provisioning multi-service 

classes will generate more revenue for a service provider.  

 

7 Summary of lessons learned 

 
• Differential pricing is superior to uniform pricing if the user’s delay sensitivities 

are sufficiently different 

•  Advantage of differential pricing can be significant for a large spread in users’ 

delay sensitivities 

•  Advantage of differential pricing increases with increasing traffic 

•  Differential pricing allows profitable operation at higher loads 
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Figure 3 Optimal revenues under different users’ service requirements 
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Figure 4 effect of user’s traffic utilization 
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Figure 5 Optimal revenue vs. user’s traffic utilization 
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Appendix  
 

The Derivation of the optimal unit prices under differential pricing 

scheme 

 

We use the following notation: 

B1max is the maximum value of Bi among the users choosing high priority class, 

B1min is the minimum value of Bi among the users requesting high priority class,  

B2max is the maximum value of Bj among the users choosing low priority class. 

p1max = A - B1max W1, 

p2max  = A – B2max W2, 

(p1  - p2 )max  = B1min (W2,+i - W1), 

(p1  - p2 )min   = B2max (W2, - W1, +j ), 

 

The optimal uniform pricing policy revenue is : 

      -- E.1 

where: 
xN

W
W

λ−
=

1
0  

and )()( 2
2
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2
2
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1

0 xNxNxNW λλλ =+=  
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For the differential pricing scheme, using the above notation the optimal problem 

could be rewritten as follows: 

 

Maximize:  λλλλ 221121

21

pNpNpp
N

j

N

i
+=+ ∑∑  

 

Subject to:       1max11 WBAp −≤                                  ⊇ 

  

   2max22 WBAp −≤           ⊄ 

 

       )()( 1,2min121 WWBpp j −≤− +                 ⊂ 

 

       )()( ,12max221 iWWBpp +−≥−                 ⊆  

  where: 
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For a particular N1, the objective function is increasing in p1 and p2, so the 

optimal values of p1 and p2 are the maximum possible values that satisfy the 

constraints ⊇, ⊄, ⊂ and ⊆. Direct upper bounds for p1 and p2 are given by ⊇ and ⊄, 

while ⊂ and ⊆ provide bounds on the difference (p1 - p2).  

For use in the following derivations, we provide the following identities: 

p1max   - p2max =
)1)(1(1 1

0
max2

1

0
max1 λλλ NxxN

W
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We begin by showing that B1min ≥ B2max. To begin, note that for conditions ⊂ and 

⊆ to hold at the same time, the following inequality must hold: 

(p1  - p2 )max  ≥ (p1  - p2 )min  
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Canceling common factors on each side of this inequality, we have: 
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We now show that B1min is greater than or equal to B2max. This leads to B1max ≥ 

B1min ≥ B2max, implying B1max ≥ B2max.  

 

Proof: 

Assume B1min is less than B2max, then we have: 
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Since 1-Nλx >0,  so Nλx < 1, then: 
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Thus, from the assumption we get  N1>N-1, which is not true.  
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So B1min is greater than or equal to B2max. 

We now consider the three possible cases for the value of p1max  - p2max . 

Case 1:  

If (p1  - p2 )min ≤ p1max  - p2max  ≤ (p1  - p2 )max , both unit prices could reach their 

maximum possible value, so the optimal prices are p1optimal = p1max and p2optimal = 

p2max (see figure A.1). 

 

 

 

 

 

    Figure A.1 

 

Appropriately adjusting and combining the limits on B2max from case 2 and 3 

below, this condition can be rewritten as: 
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The optimal revenue for a given N1 is: 
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Since B1max >B2max  , we have E.2 –E.1 >0, i.e., the revenue of differential pricing 

scheme is greater than that of  the uniform pricing scheme. 

 

Case 2:  

If p1max  - p2max < (p1  - p2 )min , the optimal value of p2 could not reach the 

maximum possible value, so the optimal prices are:  p1optimal = p1max and p2optimal =  

p1max - (p1- p2)min (see figure A.2). 

 

 

 

 

 

 

Figure A.2 

 

The condition  p1max  - p2max < (p1  - p2 )min could be rewritten as: 
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The optimal revenue for a given N1 is: 
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p2optimal p2max p1max 
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--E.3 
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According to the condition, )1(B]1)x (N -[1B 12max11max λλ xN−>+ , so we have: 

 

Since N > N1,  so we have E.3-E.1 >0, i.e., the revenue raised by differential 

pricing scheme is again greater than the uniform pricing scheme. 

 

Case 3:  

If p1max  - p2max  > (p1  - p2 )max, p1 and p2 could not take the maximum possible 

values at the same time. Furthermore, if p1 is greater than p2max + (p1  - p2 )max, then 

there is no possible value of p2 that satisfies ⊂ (see figure A.3). So p1optimal = p2max + 

(p1  - p2 )max  and p2optimal = p2max .  
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Figure A.3 

 

The condition p1max  - p2max  > (p1  - p2 )max could be rewritten as: 
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The optimal revenue under the differential scheme for a given N1 is: 
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E.4-E.1 =  
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The right hand side of  can be rewritten as 
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B1max, so it is possible for the uniform pricing scheme to produce more revenue than 

the differential pricing scheme. 

 It is possible for both  and  to be satisfied since (see proof below) 
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revenue of differential pricing scheme is greater than uniform pricing scheme; 

otherwise the uniform pricing scheme is better.  
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Proof: Subtracting the right hand side of  from the left hand side, we have: 
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Since B1max ≥ B1min and N>N1, the left side minus right side is greater than 0, so  

holds. 

Figure A.4 summarizes the results of this appendix. 

 

 

 

 

 

 

 

Figure A.4 

 

From this figure, it is clear that there is a single threshold for B2max that 

determines whether differential pricing is better than uniform pricing. In conclusion, 

the result of comparison is: 
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the revenue raised by the differential pricing scheme is greater than the uniform 

pricing scheme. 

 
 




