
Unified SensorNet Architecture with Multiple
Owners: An Implementation Report

Pradeepkumar Mani, Satyasree Muralidharan,
Victor S. Frost, Gary J. Minden, and David W. Petr

ITTC-FY2010-TR-41420-24

May 2010

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Abstract

In practical sensor networks, it is possible that various components of the sensor network are

owned and maintained by different organizations. This complicated scenario renders provision of security

and management of these components as a challenging task. A framework for assured and controlled

access for sensor networks is needed. In this paper, we describe such an architecture which integrates

various component technologies into a unified framework. We also describe details of a proof-of-concept

implementation, a standards - based multi-hop wireless sensor network application that demonstrates the

salient features of our unified multi-ownership architecture.

ii

CONTENTS

I Introduction 1

II Challenges in a Multi-Owner Scenario 3

III Related Work 3

IV Proposed Architecture 4

IV-A Device Layer . 5

IV-B Repository Layer . 7

IV-C Application Layer . 7

V The ACE Architecture 9

V-A Key Features of ACE for the Architecture for Sensor Networks 10

V-B Access Protocol in ACE . 12

VI Demonstration of Multi-owner Unified Architecture 13

VI-A Choice of Sensor . 14

VI-A1 Using the Nose . 14

VI-B Choice of Standardized Sensor Interface . 15

VI-C Choice of Sensor Network . 16

VI-D Sensing Application . 16

VI-E Proof-of-Concept Implementation . 18

VI-E1 Hardware Specifications . 19

VI-E2 Software Specifications . 20

VI-F Demonstration Procedure . 20

VI-G Summary of Experiences . 21

VII Conclusions 23

References 24

iii

LIST OF FIGURES

1 Proposed Unified Multi-Ownership Sensor Network Architecture 5

2 ACE Architecture showing the various components and their communications 10

3 Access Protocol showing the sequence of actions when an ACE Client contacts the Service

Directory . 12

4 Nose Server - Nose Communication via Multi-hop Wireless Mote Network 18

5 Sequence of Message Exchange between Nose Server and Nose 18

6 Various Components of Prototype Architecture . 19

7 Demonstration Architecture showing Secure Access and Control of Sensor Capabilities in a

Multi-Ownership Scenario . 19

8 Demonstration Set up showing the various hardware components 21

9 User A successfully fetches profile from the Smell profile Database 22

10 User A successfully executes LOAD PROFILE, but cannot run START IDENTIFICATION 22

11 User B successful in executing START IDENTIFICATION, but unsuccessful in executing

LOAD PROFILE . 22

1

I. INTRODUCTION

SENSOR networks have been identified as being key technology in monitoring and detecting threats.

These systems face critical technical challenges in providing a security and management architecture

in scenarios representative of a large class of applications. Although the design and architecture of sensor

networks [1], [2] and [3] have been studied and many networks have already been deployed [4], the

development of a unified architecture for these systems when network elements are owned by disparate

organizations is yet to be created.

As a motivating example, consider the following scenario, where a unique requirement is consideration

of multiple owners of data and infrastructure: hazardous chemicals are often transported in trains. If the

train meets with an accident, there is the possibility of a leak of one or more of the hazardous chemicals,

which puts the inhabitants around the accident site at serious risk. It is very critical that the leaking

chemical(s) and the extent of the leaks be identified as quickly as possible, so that evacuation procedures

can be initiated in a timely manner, if required. A monitoring team (MT) could be assigned the task

of identifying and monitoring the nature and extent of chemical leaks. Once the initial assessment of

the MT is complete, a containment team (CT) can be assembled to contain the leak. The MT, at the

very least, would require one or more chemical sensors deployed (either manually or through some other

means) that can identify the nature and extent of the chemical leaks, and report the data to one or more

authorized data collectors. To detect the presence of a chemical, the MT would probably need to upload

(into the chemical sensor) an electronic profile of the chemical substance. This information could be

obtained from a database of chemical profiles owned by the vendor e.g. the company initializing the

transport of the chemical. In addition to the chemical sensors, there could be an assortment of sensing

hardware composed of weather sensors, video feed, etc., that provide additional sensing data to the MT.

Each type of sensing equipment (including the database of profiles) could be owned by a different

organization. Since the nature of the data could be sensitive, the MT would need to have the appropriate

authorization to access the sensor data. The MT might also have to verify the authenticity of the data

to counter the possibility of malicious attackers. The access level for the MT could vary by each device

and database in this system. For example, the owner of the database of profiles could limit access of

the MT only to those chemicals that are currrently being transported in the train. In addition to having

permission to read the chemical sensing data from the chemical sensors, the MT would also need to have

write permissions to the chemical sensors to upload the chemical profiles. The MT would also need read

permissions to access data from the weather sensor and video cameras. Once the nature and extent of

2

the leaks have been identified, a CT can then proceed to contain the leaks. The CT could be a different

entity from the MT, and would require access to the sensing data from the assortment of sensors. The

access permissions provided to the CT could differ from the ones provided to the MT. For example, the

CT would not require write permissions to the chemical sensors, but may require write permissions to

the camera to be able to tune the position of the camera appropriately.

Clearly, any authorization that is required needs to be acquired in real-time, spanning multiple adminis-

trative boundaries. This requirement can be circumvented by providing restriction-free access (super-user

or administrative privileges) to the sensors and sensing data to any entity (MT and/or CT). Unfortunately,

such a strategy is not only a blind approach, but could also be dangerous. For maximum flexibility and

scalability, all sensors, data collection entities and databases need to expose standardized interfaces to be

able to achieve seamless flow of data.

Simply placing sensors and cameras at the venue does not satisfy these requirements. Sensors must

be integrated into an overall architecture to provide the responsible authorities both on- and off-site with

situation awareness. Situation awareness includes: the location of personnel and assets (e.g., CT and

health professionals), the state of the venue, and past experiences. A command center facility staffed

from multiple agencies needs to be able to direct the collection of information to meet their immediate

needs, translating the information into knowledge to be used as the basis of decisions on how best

to maintain the safety of the venue. Information would flow to the headquarters facility from sensors,

cameras, voice communications, and data archives, where each of these may be owned by separate

entities. Situation awareness applications would facilitate transforming this information into knowledge.

The decision-makers would then use this knowledge to direct the allocation of resources, e.g., point

cameras or reposition personnel.

The remainder of this paper is organized as follows: We identify some key challenges in the develop-

ment of a unified architecture for sensor networks with multiple owners in Section II. In Section III, we

discuss related research. We discuss our proposed architecture in Section IV and in Section V we briefly

describe the Ambient Computational Environment (ACE) [5] [6] architecture and its extensions that form

the heart of our unified multi-ownership architecture. In Section VI, we describe, in detail, the prototype

sensor network that we implemented to demonstrate proof-of-concept of our unified architecture; we also

include some lessons learned in the process. Finally, in Section VII, we present the conclusions of our

work.

3

II. CHALLENGES IN A MULTI-OWNER SCENARIO

The development of a unified architecture for sensor networks with multiple owners has not yet been

fully explored and validated. Design, development, construction, deployment, and evaluation of a sensor

network to enhance the safety and security pose significant research and technical challenges. From

our experience with the prototype implementation of our proposed architecture, we are able to provide

answers to the following questions:

1) What kind of access/control/security mechanisms need to be developed to facilitate the participation

of multiple organizations? These mechanisms must allow for different policies for observing and/or

controlling sensors.

2) What software systems and hardware are required to assist in the rapid and easy deployment,

management, use, and redeployment of sensor networks?

3) To make the system affordable, how can commercial-off-the-shelf (COTS) wireless technologies

be leveraged for use in an environment characterized by the heavy use of wireless communications

equipment?

III. RELATED WORK

There is growing literature concerning the architecture and design of sensor networks [1], [2], [3],

as well as the Open Geospatial Consortium Sensor Web Enablement (OGC- SWE) efforts [7] and Oak

Ridge National Lab’s SensorNet Information Architecture [8]. Several sensor networks have already

been deployed [4]. Clearly, many of the component technologies required to realize the above chemical

sensing scenario exist: sensors (especially chemical and radiological), cameras, communications systems

and networks, data archives, GPS (or other location identification methods), GIS systems, and situation

awareness applications. It would be a straightforward engineering task to design a “one-off” deployment,

owned and controlled by one organization that may satisfy the needs of one venue. However, this is a

point solution, and not a resuable one. A suitable integrated system architecture that could be reused

across many venues is desirable in this case.

Our proposed Multi-Ownership Sensor Network (MOSN) architecture is an agents-based, tiered net-

work architecture that supports internet connectivity, similar to the IrisNet architecture [9]. In addition,

the MOSN is standards-based, and supports open standards such as OGC-SWE [7] and IEEE-1451 [10].

A premise of this research is that elements of the system will be owned by multiple organizations and

communicate across administrative domains. Thus, there is a need for mechanisms that facilitate access

to and control of sensors across multiple organizations as well as a requirement for rapid deployment.

4

Ownership by a wide variety of administrative domains is briefly mentioned in [9]. Unlike the IrisNet, the

MOSN provides a secure system that facilitates the participation of multiple organizations in supplying

needed component/subsystem functionality. Also, while SensorML [11] has sensor schemas that include

security, user limitations and access constraints (like documentConstrainedBy), and schemas that identify

the responsible party (like operatedBy), the integration of these into an overall system remains to be

explored. A model of the new system has been implemented and evaluated. For a detailed comparison

of the MOSN with existing sensor network architectures, the readers are referred to [12].

Our key contribution can be summarized as follows: we propose MOSN, a unified architecture for

systems that have network elements owned by multiple organizations, which incorporates well-defined

interfaces between different components with appropriate authorization/authentication mechanisms that

are secure and suited for disseminating and analyzing sensor information. We also demonstrate the salient

features of our architecture through a proof-of-concept implementation consisting of a standards-based,

multi-hop wireless sensor network application. To the best of our knowledge, there is no other architecture

that addresses the unique issues of multiple ownership in a sensor network.

IV. PROPOSED ARCHITECTURE

The objective here is to develop a unified architecture that has elements owned/controlled by a variety

of organizations which can communicate across across administrative domains. Our proposed architecture

is general (not a point solution), scalable (in size and evolution of technologies), flexible (able to mix and

match technologies based on the venue requirements), economical (based on COTS technologies), and

leverages standards where possible. The proposed approach facilitates multiple organizations providing

different services, enabling the development of a business model based on sensor network technologies.

The key features of the proposed architecture include assured and controlled access to sensor nodes in a

multi-owner environment, archiving and information dissemination.

The architectural components are divided into three layers as shown in the Fig. 1 based on their

functionality:

1) Device Layer

2) Repository Layer

3) Application Layer

5

Fig. 1. Proposed Unified Multi-Ownership Sensor Network Architecture

A. Device Layer

Device Layer comprises all the physical sensor endpoints together with the first level of data access

and management points for the entire architecture. This consists of:

• Sensors

• Sensor nodes

• Sensor services

• Collectors

6

A Sensor is a device that responds to an environmental quantity (e.g. light, temperature, etc.) by

generating a functionally related output usually in the form of an electrical or optical signal. Sensors

communicate the collected data to the node that controls them in the sensor network. The sensors could

be of different types such as radiological, mechanical, optical or chemical sensors. Often sensors are

characterized by small size and low energy consumption. Sensors can be broadly classified into two

types: active sensors, and passive sensors. Active sensors usually engage in two-way communication

with the data collecting host. They can accept commands from the sensor node in real time, and send

appropriate responses back. Passive sensors, on the other hand, simply send back (periodic/event-driven)

data to the collecting node. They usually do not support a Request- Reply type of communication with

the control node.

A sensor node is a computer that typically manages one or more sensors through a set of services.

The sensors could be directly connected to the sensor node either through serial or parallel ports or

through a multi-hop network. The communication between the sensors and the node may or may not

incorporate a secure communication. The security of this link depends upon the nature of the connectivity.

If the sensors are plugged to the node directly through serial or parallel ports, then the communication

is inherently secure. With a multi-hop wireless network, security should be explicitly incorporated in the

communication links.

Sensor services are programs that control the sensors attached to the node. There could be one or more

services per node, with each service dealing with one sensor. In this proposed architecture, we assume

that each sensor service (program) controls exactly one sensor. In practical applications, a single service

could control more than one sensor. The architecture proposed here could be extended so that one service

supports multiple sensors.

Collectors are programs that collect data from these services and transport them to the repository

layer for further use. There could be one or more collectors depending on the number of devices in the

device layer. The communication between the collectors and the sensor services follow the access control

mechanism discussed later in this document. Collectors must authenticate and authorize themselves with

the service, before tasking or configuring a sensor. Collectors gather data in one direction (from device

to repository) while the sensor services load data or commands in the other direction (from repository to

device) e.g., load commands from the Sensor Databases to the sensors. Collectors talk to the devices which

typically belong to their organization or domain; our solution is not restricted for such a communication

but spans across different organizational domains.

7

B. Repository Layer

This forms a link between the lower device and the upper application layer allowing dissemination of

information. This consists essentially of databases of two types:

• Infrastructural databases that are mandatory and store information required to support the system:

– Service Directory - database of current services available such as Temperature Sensing Service,

Chemical Sensing Service.

– Regional Database - database of location of sensors.

• Sensor Databases that store and retrieve sensor data, e.g., database of images captured by cameras

used for surveillance.

There could be multiple repositories (sensor and infrastructural databases) within this layer, each owned

by a different organization. Within a given administrative boundary, the services from the device layer

register themselves with the Service Directory when they come online, necessitating each organization to

maintain a list of currently available services. This is illustrated in Fig. 1, which shows two organizations,

A and B, with their corresponding administrative boundaries. Each organization has its own set of devices

and repositories. Each organization might implement redundancy in its repositories and devices for fault

tolerance and robustness.

C. Application Layer

The application layer provides a unified view of the various components of the architecture to the

user. A user in this architecture is a human being who uses the infrastructure for various applications.

Applications are programs that can either talk to the organizer to get the processed data or talk to

the services directly, and comply with the open standard implemented by the system. An organizer is

a program that fetches data from the repository layer and presents meaningful interpretations to the

requesting application. Consider the chemical sensing application described in section I. The MT at

the accident site could have temperature sensors as part of the weather sensors deployed to monitor

various threats such as fire, etc. An agent program collects raw temperature data, converts them into

location-centric values, and writes them into the database of temperature values. The system could also

have cameras deployed at various locations in the venue to provide on-demand, live video feed. The

temperature sensors, cameras and the database could be owned by different organizations. A security

officer has a monitoring application program that shows the location of the various temperature sensors,

and the temperature values recorded by them (retrieved from the database). The monitoring application

8

raises an alarm whenever any sensor shows a temperature value that is outside a specified range. The

security officer uses the monitoring application to request video feed for the location of the suspected

fire. Based on the contents of the video feed, the office can then initiate appropriate actions.

The architecture described here could be applied directly to this scenario. Referring to the architecture,

the agent program in this example plays the role of the collector and organizer- it transports sensor data

(temperature, video) from the device layer to the repository later, and from the repository layer to the

application layer (monitoring application program used by the inspector). The owner of each of these

components (sensor, camera, database, etc.) is an organization and the security officer is the user.

This 3-tier architecture is layered with organized communication between the layers using the inter-

mediaries such as collectors and organizers. However, we anticipate that some scenarios might require a

user talking directly to a device without having to pass through this layered architecture.

Consider a situation where the user takes direct control over the sensors of all organizations and may

wish to control them without having to talk to the organizer or the collector. In such a case, the user will

need authorization to interact with devices from all organizations. The user will use the applications to

talk to the sensor services controlling the devices through an out-of-band communication. Our solution

also provides a way to have this Direct Communication between the user and the devices as in Fig. 1.

With reference to the chemical sensing security system described above, the video feed from the camera

requires direct communication between the user and the camera.

The description of the unified architecture (MOSN) is not yet complete. We still have not discussed

the following issues:

1) Inter-layer communication

2) Policies for the following:

a) Secure, controlled and authorized access to a specific component (sensor, database, etc) in a

multi-owner heterogeneous sensor network. These policies will be important if we would like

to restrict access to only a specific instance of the component, in the presence of multiple

similar components (e.g. temperature sensor # 43)

b) Secure, controlled and authorized access to a specific functionality of a specific component

in a multi-owner heterogeneous sensor network. These policies are required if we would like

the client to have access to only a subset of functionalities offered by a specific component.

(e.g. only READ function from Temperature Database, but no WRITE privileges)

3) Propagation and enforcement of these policies

9

We address all the above-mentioned issues by borrowing components from the ACE [5], [6] architecture.

The device control and data flow mechanisms developed for ACE are used here to manage/control con-

nections between applications and sensor nodes. The ACE control mechanisms provide for authentication

by the device of the controlling application, authorization to access and control the device based on an

established security policy, confidential transmission, and integrity checks. The ACE data flow mechanism

supports real time exchange of data between applications and devices that is private and checked for

integrity. ACE supports establishing services within the environment to archive data flows, replicate data

flows to multiple receivers, and play back archived data. Since the ACE architecture is a key component

in the MOSN, the next section discusses the ACE architecture in some depth.

V. THE ACE ARCHITECTURE

ACE provides a secure communication fabric between the various components in the various layers

of the unified architecture. The ACE architecture was developed to be the basis for a pervasive system,

where the users have long-lived workspaces and mobility within the environments irrespective of rooms

or machines. In other words, in the ACE system, the users can roam anywhere, while still preserving

their sessions with the resources.

ACE supports two types of communication channels between the client and the service:

1) Control channel: Provides a way for communicating control messages. It is a reliable in-order

channel.

2) Media channel : Provides a way for communicating audio and video. Reliability and in-order

delivery are not important in this channel.

In the ACE architecture, services constitute the atomic level of computation. The most important

services are the three core services - Service Directory service, User Database service, and Regional

Database service. These core services are programs that inter-operate as shown in the Fig. 2, performing

user authentication and verifying user authorization to allow a client to only access resources that he is

permitted to. The Service Directory is a directory service that locates all available services as well as

their characteristics (Name, Location, and Service Class). All services register and un-register with this

service. Since this is the directory for all the other services, the location of this service is fixed. The User

Database is a database of all users in the system. The information includes Public Key, Name, Login

name and Login characteristics. In ACE, the login characteristics include information like passwords,

finger prints and iButton identifiers that can identify the user. The Regional Database is a database of the

10

Fig. 2. ACE Architecture showing the various components and their communications

information of all the service locations in the system (e.g. rooms containing various sensors, geographical

co-ordinates of the accident site and associated sensors, etc.).

A. Key Features of ACE for the Architecture for Sensor Networks

We have already mentioned that the architecture for sensor networks demands secure communication

between the various components of the system (client, services, etc.), component-level access control

to each and every component in the network, and method or function-level access control to every

functionality of a given component. We briefly discuss the features of ACE that are suitable to the

requirements of this architecture.

1) Client Server communication using Enhanced RMI:

Whenever a client wants to talk to the Service, the client provides his credential showing that he

has permissions to talk to the service to access the resources. The service validates his credential

before providing the resource. The authorization not only provides access to the resource, but also

extends to every method that the client requests to perform on the device.

The services present themselves as Java remote objects. The functionalities that the services adver-

tise are given in the Java Interface. The client obtains the remote object to the service and performs

actions using the Java RMI. This feature can be directly applied to the target architecture with the

collectors being the clients, sensors being the devices, and the sensor service being the gateway

between the collectors and the sensors.

11

2) Secure communication using TLS:

Transport Layer Security (TLS) provides authentication of the user and security of the message

exchanges in the control channel. The users are identified by public key of the asymmetric key

(either RSA or DSA). The public key is certified by a Certificate Authority to verify the validity of

the key. A Certificate Authority (CA) is an entity that issues digital certificates. Each organization

will have its own CA to issue certificates for users within that organization. The role of the CA is

to issue 1) certificates to identify the users and, 2) credentials to identify the actions that can be

performed by the users.

If a user wants to talk to devices from multiple organizations, then he/she needs to contact the CAs

of different organizations individually to get certificates. The user presents this signed certificate

to any service for authentication. At the end of the handshake between the client and the server,

a session key is negotiated and all the messages are encrypted with this key using any symmetric

key algorithm such as AES or DES. In this architecture, security of the message exchanges

between the collectors and the sensor services is important. This TLS and AES encryption of

the ACE framework provides authentication of client-server, secured communication by encrypting

the message exchanges and provides error-free delivery as required here.

3) Access Control using KeyNote Trust Management System:

Once user authentication is complete, the service programs determine the actions that the user can

perform based on the exact permissions assigned to the user - i.e., the service must authorize the

actions requested by the user based on these permissions. ACE uses KeyNote Trust Management

[13] to provide access control on the actions requested by the users. KeyNote provides a simple

language for describing and implementing security policies, trust relationships and digitally-signed

credentials to control potentially dangerous actions over untrusted networks. The policies are

specified using the KeyNote language, which are then signed by the CA, and given to the client

as a credential file. The user presents this credential file to any service that he wishes to access.

This trust management allows the system to control access to the actions performed by a collector on

the sensors. Each method that the client is trying to access through the remote object of the service

can be checked for authorization by querying the KeyNote engine. If the collector does not have

a valid credential, it cannot perform the requested action on the sensor and an exception is raised.

Since this authorization is implemented within the service infrastructure, all services inherently

implement the authorization procedure. Detailed descriptions of the KeyNote trust management

system and the KeyNote description language are beyond the scope of this paper. Interested readers

12

Fig. 3. Access Protocol showing the sequence of actions when an ACE Client contacts the Service Directory

are referred to [13] and [14] respectively.

B. Access Protocol in ACE

In our architecture, the ACE framework provides the required client-server authentication, secure

communication (by encrypting the message exchanges), and error-free delivery. The ACE architecture

contains the KeyNote mechanism, which enables formulation and enforcement of policies.

The user presents the signed certificate from the CA to any service for authentication. The sequence of

actions when an ACE user talks to an ACE Service is described below. Each time a new client contacts

a service, the service spawns a new thread dedicated to the communication with the specific client.

Typically the following happens when a client wishes to access a resource, as shown in Fig. 3:

1) User contacts the service (the client thread of the service) for establishing a session.

2) The service replies with its certificate for authentication, key exchange for establishing session key

and requests the user for his certificate.

3) The user replies with his certificate and session key exchange. The user verifies the Server’s

certificate. The client sends Finished.

4) The service contacts the user database to verify the user’s certificate. Once verified, the service

sends Finished. The TLS authentication is completed and a session is established.

5) The service creates a new KeyNote Session that will be used for user’s authorization.

13

6) The service provides the required policy to KeyNote database to be used to verify the client’s

credentials later.

7) The client provides his credential to the service.

8) The service adds this credential to the KeyNote database.

9) The service replies the result of adding the credentials to the user.

10) The client requests the service to list the available services.

11) The service provides to KeyNote the current set of action attributes such as domain in which this

application is used, room in which the service runs, current Time and the method requested by the

client.

12) The Service queries KeyNote for authorizing the action requested by the client.

13) The KeyNote engine verifies the credential against its current set of attributes and returns the result

to the Service.

14) The Service determines whether to perform the action requested by the client or not depending on

the result from the KeyNote engine. If the Service performs the action, it returns the result to the

client. Else, it returns an Access Denied exception to the client.

VI. DEMONSTRATION OF MULTI-OWNER UNIFIED ARCHITECTURE

We wanted to choose a simple, yet powerful application to demonstrate the salient features of our

multi-owner unified sensornet architecture, namely secure access and control of the various entities in a

heterogeneous network of sensors. To this end, we chose a simplified version of the chemical detection

sensing application described in Section I. Initially, a database was populated with profiles of the various

chemicals of interest. An authorized client can retrieve the profile corresponding to a specific chemical, and

load it into the detection sensor. Another authorized client (or perhaps the same client as the initial one)

can issue commands enabling the sensor to detect the presence of a chemical. Note that the database (and

perhaps the individual profiles themselves), and the sensor need not be owned by the same organization.

To build this system, we had to choose a number of components. First, we had to decide on the

specific sensor we were going to use. Based on the requirements of the sensor (bandwidth, processing

power, etc), we then had to choose a wireless sensor network technology to build the network. For future

extensibility with minimal system reconfiguration, we chose a standard sensor interface. All the hardware

and software components associated with the sensor, the wireless network and the software library that

provides the standardized interface belonged to the Device Layer. To support this architecture, we needed

databases for the core services. We also needed databases that stored the sensor-related data (e.g. chemical

14

profiles, video, etc.). These databases formed part of the Repository layer. Finally, we needed application

programs that allowed a client to interact with the components in the system. This software was part

of the application layer. Below, we briefly describe our choices for the various components, and some

issues that we faced with our choices.

A. Choice of Sensor

To realize the application, the first task at hand was to choose a sensor that was easy to operate and

program, while at the same time had a sufficiently rich set of features that would allow us to demonstrate

secure control and access under a variety of multiple ownership scenarios. It is apparent that we would

require an active sensor for the application under consideration. We chose the Cyranose 320 Electronic

Nose sensor [15] (referred to simply as Nose henceforth), which met all of our requirements. The Nose

is a handheld sensing device that can be trained to identify the presence of certain chemical compounds

or substances.

1) Using the Nose: The training procedure is a rigorous process, and has to be conducted in controlled

environments. The training procedure consists of a series of controlled exposures of the Nose to the target

substance. Each exposure results in a smell print, and the result of the training procedure results is a

series of smell prints, collectively called as a smell profile (corresponding to the target substance). The

Nose stores the smell profile in its internal memory. This smell-profile can be retrieved from the Nose,

stored externally in the form of a file, and can be loaded into the Nose at a future date. The identification

procedure requires the Nose to be exposed to unknown substance for a brief period of time. The Nose

compares the smell-print that is created due to this exposure against the smell profile (series of smell

prints) already stored in the Nose. The result is a percentage match between the unknown substance and

the known substance (the substance corresponding to the smell profile loaded into the Nose). During the

training process, we realized the following:

• The accuracy of the smelling process depended heavily on the accuracy of the training process.

• The Nose is not a suitable device for real-time scenarios (such as smoke detection, etc.) due to the

time to generate results. It is targeted as a hand-held device that requires operation in a controlled

environment.

Despite these disadvantages, the Nose was still the preferred sensor to demonstrate proof-of-concept of

the architecture due to its simplicity of operation and rich set of control features. For our experiments, we

trained the Nose to distinguish between Isopropyl Alcohol and Water. The following subset of commands

were the focus of the demonstration:

15

1) LOAD PROFILE - loads the provided smell profile from the file provided

2) START IDENTIFICATION - starts to “smell” the sample provided to match it to one of the possible

candidates in the smell profile

3) FETCH RESULTS - returns the result of the latest identification along with a confidence measure

B. Choice of Standardized Sensor Interface

To support a heterogeneous mix of sensors, a standardized interface was necessary to communicate

with the sensors. Such standards ensure that a standardized software interface will be exposed by the

architecture to the sensors/devices in the system. These interfaces minimize developmental efforts required

when new sensors need to be integrated into the system in the future.

The IEEE 1451 standard [10] is one such standard that has been developed precisely for this purpose.

Also the ORNL SensorNet architecture [8] has selected the IEEE 1451 standard for this effort and

its services. The IEEE 1451 standard was also chosen as an example for the prototype architecture -

the system designers could use any competing standard such as Microsoft’s Universal Plug and Play

(UPnP) [16], or Optical Sensor Interface Standards [17] in case of optical sensors. We do not make any

recommendations on the choice of the standard. For more details on the IEEE 1451 standard, readers are

referred to [10].

A key challenge in this task was to efficiently integrate the developed framework and IEEE 1451,

so that standardized interfaces are exposed to the sensors by the Nose Server. An IEEE 1451-compliant

server is also called a Network Capable Application Processor (NCAP)[18]. We chose the Java Distributed

Data Acquisition and Control (JDDAC) library [19] to build our custom Nose NCAP. Though the JDDAC

was not 100% compliant with IEEE 1451, it was deemed sufficient due to lack of alternative IEEE 1451

software in Java (Java was preferred because the bulk of the ACE code was written in Java), and also to

demonstrate proof-of-concept.

One of the main obstacles in using the Nose as a sensing device in a IEEE 1451 environment was that

the Nose was not an IEEE 1451 - compliant device. We overcame this obstacle by placing a Nose-1451

interface in the NCAP [18] module, that did the following:

1) convert incoming IEEE 1451 compliant messages from the client to Nose-Specific commands and

send it to the Nose, and

2) convert incoming Nose-specific message from the Nose into a IEEE 1451 message, and send it to

the client

16

In addition, the JDDAC library did not support a Request-Reply type of communication, which is critical

in future sensor networks, and thus to our application. We overcame this by extending the JDDAC IEEE

1451 library by implementing the necessary features from the IEEE 1451.0 [18] standards document to

support a Request-Reply type of communication.

C. Choice of Sensor Network

The next step in our research was to set up a wireless sensor network to study and demonstrate

secured and controlled access to sensors with multiple owners. After investigating some sensor network

technologies, we decided to construct the wireless network using MICA2 motes developed by Crossbow

Technologies [20]. The following were the salient features of the MICA2 motes:

• Processor: Atmel ATmega 128L MicroProcessor (7.37 MHz clock)

• Memory: 4KB data RAM, 128KB Program Flash, 512 KB (serial) Flash

• Radio: ChipCon model CC1000 multi-channel transceiver (868/916MHz, 433 or 315MHz)

• Data Rate: Up to 38.4 Kb/s

• Range: ∼30m (indoors), ∼150m(outdoors)

• External Interface: 51-pin expansion connector

• Power Source: 2 AA batteries

• Operating System: TinyOS (TOS)

The popularity of motes and TinyOS in the sensor network community and a rich set of libraries that

facilitates quick application-building were the primary motivations for selecting them. For high-bandwidth

applications like video, the motes-based sensor network would not be a good choice. In such cases, one

could use a 802.11-based wireless mesh network.

D. Sensing Application

We developed an application using NesC in the TinyOS platform [21] that would manage message

transfer between the Nose and the Nose server via multiple hops of motes. The Nose was directly

connected to the destination mote via a serial port connection. TinyOS supplies a serial port communi-

cation module that uses a framed message format, which would not be understood by the Nose. This

complication was overcome by writing a custom serial port communication module that transfers raw

data across the serial port without any framing, using low-level TinyOS routines.

Another problem with TinyOS was that the default message size was 29 bytes, while the message sizes

generated by the Nose was of the order of few hundreds of bytes, sometimes even greater than the largest

17

message size supported by TinyOS (128 bytes). So, we decided to fragment the large Nose messages at the

source to fit the default TinyOS packets, and reassemble the fragments at the destination. Fragmentation-

Reassembly could be implemented by increasing the default message size to the maximum message

size (128 bytes). However, TinyOS messages were the de facto mode of message exchange between the

various layers in the TinyOS stack, and thus increasing the default message size was not viable because

it resulted in an overall RAM requirement that exceeded the available RAM capacity. Given that the

application was not particulary time-sensitive or bandwidth intensive, there was no need to increase the

size of the fragment. Fragmentation/Reassembly (FR) was thus implemented as follows, using the default

TinyOS message size (29 bytes) as the maximum fragment size:

A fragmentation layer was introduced between the application layer and routing layer of the source, and

a reassembly layer was introduced between the application layer and routing layer of the destination. The

FR module was been designed in a very modular fashion, so that any routing protocol can be “plugged”

into the application. A simple stop-and-wait protocol with positive acknowledgement was introduced for

error recovery, in the event that a fragment was lost in transit. If an ACK is not received at the source

within a dynamically determined time frame, the fragment is assumed to be lost, and a retransmission

procedure is initiated. The number of retransmissions is limited to a predetermined maximum to recover

from a loss of route to the destination.

Multi-hop communication in our application was made possible by using TinyAODV [22] as the routing

protocol. TinyAODV is derived from the well-known Mobile Ad hoc NETworking (MANET) [23] routing

protocol, the Ad hoc On-demand Distance Vector (AODV) [24] routing protocol. TinyAODV retains only

a subset of AODV’s features so that it can fit within the memory constraints imposed by the motes (and

thus tiny). TinyAODV was chosen because it was simple, and it came bundled with the library supplied

by Crossbow.

Fig. 4 shows the multi-hop communication schematic between Nose Server and the Nose in the

Nose Service application. With reference to our architecture, the Nose Service plays the role of the

collector, while the motes network and the Nose sensor form part of the device layer. We only used

the following three commands: LOAD PROFILE, START IDENTIFICATION, and FETCH RESULT.

These commands were issued by the Nose service and were transmitted to the Nose via the multi-hop

wireless motes network. Fig. 5 shows the sequence of message exchanges between the Nose Server and

the Nose.

The following section describes the use of a proof-of-concept prototype, and the resulting lessons

learned.

18

Fig. 4. Nose Server - Nose Communication via Multi-hop Wireless Mote Network

Fig. 5. Sequence of Message Exchange between Nose Server and Nose

E. Proof-of-Concept Implementation

Fig. 6 shows the various components of the prototype unified mutli-owner sensor network architecture.

There are no performance measurements associated with these demonstration experiments. Instead, the

objective of our prototype implementation was to demonstrate the interaction of various entities (owned

by multiple vendors) in a secure, controlled-access environment.

Fig. 7 shows the schematic of the multiple-ownership architecture. Two clients, user A and user B

are used here, and the clients were each assigned different permissions to access and control the Nose.

The client programs of both users were run on the same machine. We had server-1 running the ACE

Core Services: the ACE Service directory, ACE User database service, and the ACE Regional database

service. To demonstrate that the various components of the architecture could function in a distributed

manner, we ran the Nose (chemical sensor) service on server-2. The nose server, which was built to IEEE

1451 specifications, was connected to an electronic nose via a multi-hop MICA motes network. Here,

19

Fig. 6. Various Components of Prototype Architecture

Fig. 7. Demonstration Architecture showing Secure Access and Control of Sensor Capabilities in a Multi-Ownership Scenario

we showed that the clients could successfully execute only the commands that they were permitted to

execute on the Nose, and were not able to execute commands for which they did not have the necessary

permissions. Fig. 8 shows the actual demonstration configuration.

1) Hardware Specifications:

• Server 1- Pentium III 750 MHz processor, 256 MB RAM, 10 GB HDD, Red Hat Enterprise Linux

WS release 4

• Server 2- Dell Latitude D820, Pentium Dual Core T2500 2.0 GHz, 1 GB RAM, 80GB HDD, Fedora

20

Core 5 (2.6.16)

• Client Host - Pentium III 933 MHz processor, 512 MB RAM, 80 GB HDD, Red Hat Enterprise

Linux WS release 4

• motes - MICA2 motes, 915 MHz, programmed using nesC (TinyOS 1.1.7) on a mib510 board (serial

port). The transmission power level of the motes was reduced by 20 dB to reduce the range of the

radios to ∼5 ft, to demonstrate multi-hop routing.

• Electronic Nose - Cyranose 320, serial # B001203158, mounted on a chemistry lab stand

2) Software Specifications:

• Server Application - The server application or the Nose service could issue commands to, and receive

responses from the Nose. It contained the Nose NCAP mentioned above, so that all communication

between the client, server and sensor was IEEE 1451 compliant. We used the JDDAC library, which

has been built around IEEE 1451 specifications, to build our Nose NCAP. It involved designing

a new Function Block to process and issue Nose-specific commands and a Transducer Block to

provide serial port IO capability. The ACE communication channels provided the communication

fabric between the client and the server. The Nose server exposed standard ACE interfaces to the

client, so that the Nose service could leverage the ACE security, authentication and authorization

mechanisms that are critical to our architecture.

• Client Application - The sole purpose of the Nose Client was to issue IEEE 1451-compliant com-

mands to the server, based on the user input. The client application was a simple GUI which simply

lists the commands that can be executed on the Nose. To ensure inter-operability with ACE, all client

applications were written in Java and used Remote Method Invocation (RMI) [25] to communicate

with the sensor services. With JAVA-RMI, the services present themselves as remote objects. The

applications get handles to these remote objects and use them to talk to the services. As recommended

in the JDDAC documentation [19], Eclipse IDE was used to build the Client and Server applications.

The version of Java that we used was JDK 1.5.0.8.

F. Demonstration Procedure

As mentioned earlier, here we model each of components of the network (Nose, Smell profile Database,

etc.) as belonging to a different organization, and the clients were not necessarily associated with any

of these organizations. This lends itself to a truly multi-ownership scenario, where the clients require

access to resources that span multiple administrative boundaries. The clients already possess the necessary

authorization (credential files). We do not discuss how each client obtained the credential files from an

21

Fig. 8. Demonstration Set up showing the various hardware components

appropriate CA - we simply assume that the authorization was obtained via some legitimate method. The

following were the permissions assigned to each user:

1) User A: LOAD PROFILE,

2) User B START IDENTIFICATION and FETCH RESULT.

In addition to these permissions, the credential file contains other relevant information such as the time

frame within which the user is permitted to execute these commands, the room that contains the Nose

(regional information), etc.

To execute LOAD PROFILE, first a profile had to fetched from the smell profile database (repository

layer), and then loaded into the Nose. Using the simple client GUI provided (client application), user

A was able to successfully retrieve the file corresponding to “Isopropyl Alcohol - Water” profile from

the database of smell profiles. Fig. 9 shows the sequence of associated message exchanges that leads to

fetching the smell profile. As a second step, user A could successfully load the smell profile into the Nose

by executing the LOAD PROFILE command. User A then tried to execute START IDENTIFICATION

command, but received an “Access Denied” error message due to lack of permissions. Fig. 10 shows

the sequence of message exchanges that lead to successful execution of LOAD PROFILE, and an

unsuccessful attempt in executing START IDENTIFICATION.

G. Summary of Experiences

The above-mentioned demonstration validates the design of the proposed architecture. Our experience

with the prototype implementation provided a better understanding of some of the issues that we listed

in Section II. Lessons learned include:

22

Fig. 9. User A successfully fetches profile from the Smell profile Database

Fig. 10. User A successfully executes LOAD PROFILE, but cannot run START IDENTIFICATION

• Scalability: The architecture does not require the control components to be co-located with one

another or with the devices, and functions in a very distributed fashion. Thus, the architecture

is scalable. However, we have not conducted any formal studies to assess the scalability of our

architecture, and such evaluation is definitely an area of future work.

• Security/Access/Control Policies for Multiple Organizations: The KeyNote trust management system

turned out to be an excellent choice for formulating and enforcing security, control and access policies

for components belonging to different organizations. However, the policy specification language

lacked structure and proved to be cumbersome when specifying policies for a large number of

heterogenous sensors, each with multiple functionalities. A new policy specification language, with

Fig. 11. User B successful in executing START IDENTIFICATION, but unsuccessful in executing LOAD PROFILE

23

a hierarchical structure is being considered to overcome this problem.

• Software Support: The ACE architecture software is perhaps the most critical software component

of the system. ACE provided authentication, authorization and secure communication services. The

other major software component was the IEEE 1451 library. IEEE 1451 enabled future extensibility

of supported sensors with minimum software developmental effort. However, integrating the IEEE

1451 library into the ACE architecture required significant effort. We expect that similar effort levels

will be required if we wish to integrate other sensor interface standards into the system. A convenient

improvement will be to enhance the system to support these standards as simple plug-in modules,

so that deployment of this architecture is simplified and rapid.

• Device Reconfiguration: The use of a standardized interface to communicate with the sensors greatly

reduces the need for device as well as system reconfiguration. The IEEE 1451-compliant sensors

are also called smart transducers - they have the ability for self-identification, and can be configured

during service start-up. Sensors can be reconfigured, added or removed from the system with great

ease.

• Device Naming/Addressing: The use of the regional database in the developed architecture ensures

that the addresses or names assigned to the devices only have local significance. This greatly

simplifies the addressing or naming of the devices. If the sensors are moved to a different location,

then the corresponding entry in the regional database will be updated, and (possibly) the device will

be assigned a new address.

• Hardware Support: For our implementation, we entirely used COTS wireless sensor components

(motes), which are not only affordable, but also easy to deploy. The limiting factor of motes is that

it requires programming using NesC in the TinyOS platform. A more attractive alternative could be

to use SunSpots [26] or gumstix [27] that allow for programming in Java. We are currently exploring

these technologies as possible wireless sensor network building components.

VII. CONCLUSIONS

In this paper, we described a sensor network architecture which integrates various component technolo-

gies into a unified framework that is rapidly deployable, scalable and owned by variety of organizations.

We also created a proof-of-concept implementation, which is a standards-based multi-hop wireless sensor

network application. In our framework, the control mechanisms provide for authentication of the client

(by the device of the controlling application), authorization to access and control the device based on

an established security policy, confidential transmission, and integrity checks. The data flow mechanism

24

supports real time exchange of data between applications and devices that is private and checked for

integrity. Security policies are specified and enforced via a KeyNote Trust Management System. This

prototype demonstrated the salient features of our unified multi-ownership architecture, namely assured

access and fine-grained control to the various components in the system across multiple administrative

domains. In particular, we showed that the users could access and control resources (devices, functions

of devices) belonging to multiple owners, provided they had the necessary authorization to do so.

Unauthorized users were denied access to the resources.

REFERENCES

[1] A. Hac, Wireless Sensor Network Designs. West Sussex, England: Wiley & Sons, 2003.

[2] D. Estrin et al., “Connecting the Physical World with Pervasive Networks,” IEEE Pervasive Computing, pp. 59–69, January-

March 2002.

[3] I. F. Akyildiz et al., “Wireless Sensor Networks: A Survey,” Computer Networks, vol. 38, pp. 393–422, September 2002.

[4] R. Szewczyk et al., “Lessons from a Sensor Network Expedition,” in European Workshop on Wireless Sensor Networks

(EWSN ’04), Berlin, Germany, 2004, pp. 66–80.

[5] G. J. Minden et al., “Architecture and Prototype of an Ambient Computational Environment: Final Report,” Univ. of

Kansas, Tech. Rep. ITTC-FY2004-TR-23150-09, July 2003, http://www.ittc.ku.edu/publications/documents/Minden2003

23150-09.pdf.

[6] J. Mauro, “Security Model in the Ambient Computational Environment,” Master’s thesis, Dept. of EECS, The University

of Kansas, USA, 2004, http://www.ittc.ku.edu/research/thesis/documents/james mauro thesis.pdf.

[7] M. Botts et al., “OGC Sensor Web Enablement: Overview and High Level Architecture, OGC 06-050r2,” http://www.

opengeospatial.org/pt/06-046r2.

[8] B. L. Gorman et al., “Advancing Sensor Web Interoperability,” Sensors, vol. 22, no. 4, pp. 14–18, April 2005,

http://www.sensorsmag.com/sensors/Homeland+Security/Advancing-Sensor-Web-Interoperability/ArticleStandard/Article/

detail/185897.

[9] P. B. Gibbons et al., “IrisNet: An Architecture for a Worldwide Sensor Web,” IEEE Pervasive Computing, pp. 22–33,

Oct-Dec 2003.

[10] “The IEEE 1451 Standard,” http://ieee1451.nist.gov/.

[11] M. Botts, “Technical Specification for Sensor Model Language (SensorML) - Version 0.0, Open Geospatial Consortium,

OGC 05-086r2,” http://portal.opengeospatial.org/files/?artifact id=13879.

[12] D. T. Fokum et al., “A Taxonomy of Sensor Network Architectures,” University of Kansas, Tech. Rep. ITTC-FY2008-TR-

41420-07, January 2008.

[13] M. Blaze et al., “The KeyNote Trust-Management System Version 2,” RFC 2704, September 1999.

[14] S. Muralidharan et al., “SensorNet Architecture with Multiple Owners,” University of Kansas, Tech. Rep. ITTC-FY2008-

TR-41420-02, July 2007.

[15] “Cyranose 320 Handheld Electronic Nose,” http://www.smithsdetection.com/eng/1383.php.

[16] “Microsoft’s Universal Plug and Play (UPnP),” http://technet.microsoft.com/en-us/library/bb457049.aspx.

[17] “Optical Sensor Interface Standard,” http://www.ntb.ch/pub/bscw.cgi/d18647/OSIS WG2 Standard Documentation.pdf.

25

[18] “The IEEE 1451.0 Standard: A Smart Transducer Interface for Sensors and Actuators - Common Functions, Communica-

tions Protocols and Transducer Electronic Data Sheets (TEDS) Formats,” http://grouper.ieee.org/groups/1451/0/.

[19] “Java Distributed Data Acquisition and Control (JDDAC),” https://jddac.dev.java.net/.

[20] “MICA MOTES from Crossbow Technologies,” http://www.xbow.com/Products/productdetails.aspx?sid=164.

[21] “TinyOS,” http://www.tinyos.net/.

[22] “TinyAODV,” http://tinyos.cvs.sourceforge.net/tinyos/tinyos-1.x/contrib/hsn/.

[23] “Mobile Ad hoc Networking (MANET) Charter,” http://www.ietf.org/html.charters/manet-charter.html.

[24] C. E. Perkins et al., “Ad hoc On-demand Distance Vector (AODV) Routing,” IETF RFC 3561.

[25] Sun Microsystems, “Java Remote Method Invocation (Java RMI),” http://java.sun.com/products/jdk/rmi/.

[26] “Sun Small Programmable Object Technology (SunSpots),” http://www.sunspotworld.com/.

[27] “GumStix,” http://gumstix.com/.

