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Innovative Active Networking Services
Final Report

1 Project Introduction

Traditional networking implementations follow a layered protocol model that
implements a well-defined protocol stack.  Major functionality is built into the
software and hardware of end-point hosts and the network switches and routers.
The entire complex of end-point host system software, network switch software, and
networking services evolves slowly due to need to reach consensus prior to
widespread changes and improvements in the protocols.  Active Networking was
developed to bring robust, rapid, flexibility to developing and deploying new
network services and protocols.

Our research project covered three areas:

(1) Create an architecture and implementation for Innovative Active
Networking Services based on Composite Protocols,

(2) Establish criteria and evaluation measures for Active Network
performance, and

(3) Implement Active Networking services on end-point host systems based
on the Windows NT and Linux operating systems.

1.1 Active Networking Services Architecture

Our architecture for Innovative Active Networking Services (IANS) is based on three
concepts:

(1) Composite Protocols — we identify functional units of conventional,
existing, and proposed protocols that are easily combined with new
application oriented protocols.

(2) Global Memory — we define a functional interface for the controlled
sharing of information among independent protocols that collectively
perform a network service.

 (3) Robust, Distributed Network Services — we identify new mechanisms to
easily distribute network services in a reliable and robust manner.

The problem of dynamic, on-the-fly customization of the intermediate network
nodes is addressed through Active Networking.  However, while the basic concept
of Active Networking allows for end-users to design their own "boutique" protocols,
we expect that most innovative protocols will encompass many functional
components with known networking protocol properties.  For example, we expect
that most protocols will require some mechanism of assured delivery.  We expect
that many protocols will require sequential data delivery.  We expect that many
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protocols will require custom routing mechanisms.  And, many protocols will
require authentication and privacy.

Previous work on protocol composition such as, the x-kernel [Hutchinson1991],
Horus [vanRenesse1995], and Kanga [Burke1996], focused on decomposing
protocols into modules implementing small pieces of functionality, and the
composition of these modules into flexible, modular protocol frameworks.
However, the activation of individual protocol modules is based on the flow of
protocol data units through the established protocol stack.  One therefore needed
to decide the order of functional modules, i.e. do privacy functions come before or
after assured delivery?  In addition, these early efforts could not count on an Active
Networking infrastructure and had to assume a fixed internet services structure
between end-point hosts.  Active Networking breaks these assumptions.

Composite Protocols will be built around the following concepts:

• Express network communication functions in terms of single-function
protocol components, with a uniform interface, enabling complex
protocols to be built by composing selected protocol components.
Protocol components will be described with a set of properties to
enable describing protocol compositions.

• Develop a composition operator to combine multiple protocol modules.
Our approach uses a very simple and regular stacking of protocol
modules leading to a standard encapsulation operator.

• Develop formal functional specifications for protocol components. Formal
specification explicitly states the properties of a protocol component
and its interaction behavior with external components.  Explicit
specification enables automatic evaluation of composite protocol
properties.

• Develop and evaluate a set of Composite Protocols based on an initial set
of protocol components that includes:  error detection, packet
retransmission (several types), segmentation and reassembly (e.g. TCP
PDUs and packet ordering), next hop routing, credit-based flow
control, simple privacy and authentication protocols.

For the implementation of specialized endpoint protocols, communication is
confined to the protocol components comprising a specific protocol.  We have
carefully defined the lines of communication among the components in a stack, in
order to aid in verification of implementation correctness.  However, when
considering network services communication among protocol components
becomes much more complicated, and in many current implementations largely ad
hoc.  A network service, such as multicast delivery, requires communication among
protocol components in different protocol stacks.  We have defined another level of
memory access, global memory, for protocol components. A global memory is
defined by a purely functional interface.  The implementation and execution
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monitor for a global memory are completely independent of any specific protocol
that requires access to the shared information.

As new services become available within the Active Network, there is the
requirement to establish robust, survivable distributed services.  Proxy information
servers [Kulkarni1999] are one example.  We envision survivable servers with the
following initial functionality:

• When launched into the Active Network, they attempt to identify near-by
cohorts,

• If other cohorts are found, they join the server group and enter either an
operational or standby state.  If no other cohorts are found, the server
replicates itself at another Active Node (within defined constraints),

• Operational servers announce themselves via an "information routing
beacon" to nearby Active Nodes.  End-point host service requests will
be routed to nearby operational servers. Standby servers periodically
monitor their nearby operational servers, and if the operational server is
running, no action is taken.  If the operational server does not respond,
the standby server switched to operational status.

These kind of robust, survivable and distributed services should be easy to
construct given the Composite Protocols and Protocol class libraries described
above.

2 Project Tasks

Our project was divided into two major tasks. The first task focused in
implementing a NodeOS and execution environment that would be simple to
check for security properties and demonstrate reasonable performance. The second
task focused on designing, implementing, and testing a composite protocol
architecture. These tasks are described below. Details of this work are described in
the technical reports listed below. These reports are available from The University of
Kansas Information and Telecommunications Center and have been submitted to
the sponsor.
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Task 1:  Design and Implement an Integrated Active Switching Node

Task 1 focused on integrating a number of Active Networking components into a
"Standard Active Switching Node" (SASN). Our goal was to combine a NodeOS,
execution environment, and active networking services on a stock personal
computer. The intent was that the NodeOS would be simple enough to determine
security properties by inspection and the combined software and hardware would
facilitate distributing active nodes to other institutions.

We assembled a Standard Active Switching Node from the following components:

1. Utah OS Toolkit [Ford1997]: The OS Toolkit offered a simple operating
system with small memory footprint;

2. OCaml [Remy1999]: OCaml is an implementation of the ML programming
language and runtime system. OCaml offers a programming environment
that can be formally analyzed;

3. University of Pennsylvania PLAN [Hicks1998]: PLAN uses OCaml to
implement a rigorous active networking execution environment; and

4. Experimental active networking services.

The Section 2.1 describes our work in implementing a SASN. Security was also a
capability we built into our Active Network. Section 2.2 discusses our security
architecture.

Project Task 2 focused on developing innovative active networking services.
Section 2.3 describes our composite protocol components. The work of composite
protocols is applied to the reliable multi-cast problem and described in Section 2.4.

2.1 An Integrated Active Node

The PLAN system is part of the SwitchWare [Alexander1998] active networking
project at the University of Pennsylvania. Its architecture contains two basic
components. It defines a high level interoperable layer wherein lie the active
packets based on a new language called PLAN. Below this layer, exists a much
stable layer that provides the node-resident services. These node resident services
can be written in a general purpose programming language such as Java or
OCaml. A typical PLANet (PLAN Active network) node would look as in Figure 1.
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Figure 1 A typical PLAN Active Node

The PLAN architecture [Hicks1998] is designed to provide programmability at two
levels. It can support both programmable (or active) packets and downloadable
router extensions. This basic structure, as discussed below, follows a model of
distributed computing that is based on remote evaluation. This sort of
communication is asynchronous and unreliable. The extendible router
infrastructure is used to provide support to heavyweight operations.

These extensions can be dynamically installed, but are not mobile once installed.

2.1.1 The PLAN language

An active networking approach must tread a fine line among the following issues:
flexibility, safety and security, performance and usability. Increased flexibility is the
primary motivation for active networks. PLAN does not have to be too general
because it adopts a two-level approach. This is because the service language helps
in providing general-purpose functionality. Hence PLAN has been able to express
itself in ‘little’ programs and acts as glue between router resident services. By safety
we mean reducing the risk of mistakes or unintended behavior, and security
encompasses the concept of privacy, integrity and availability in the face of
malicious attack. To address some of these issues, PLAN was made a functional,
stateless, strongly typed language. This ensures that PLAN programs are pointer-
safe and concurrently executing programs do not interfere with each other. Since
network operations involve changing the state of nodes in some way, some sort of
authentication is required. However, packet-based authentication is very costly and
hence PLAN pushes these features on to the node-resident services. PLAN
programs are statically typed and are guaranteed to terminate as long as they use
services which terminate. Basic error-handling facilities are also provided. These
help in improving the usability of PLAN programs.
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PLAN design is based on remote evaluation, rather than on remote procedure call.
Specifically, child active packets may be spawned and asynchronously executed on
remote nodes. Each packet may further create packets provided it adheres to a
global resource bound. The PLAN packet format is shown in Figure 2.

Figure 2 illustrates the PLAN packet.

The primary component of each packet is its chunk (code hunk), which consists of
code, a function to serve as an entry point, and values to serve as bindings for the
arguments of the entry function. The EvalDest field specifies the active node on
which this packet is to be evaluated. The packet is transported to the EvalDest
active node by means of a routing function specified by the field RoutFun. The
resource bound field specifies the total number of hops the packet and its
subsequent child packets can take before evaluation. The source and handler fields
represent the source node of initial packet and the handler function for error
handling respectively. A host application constructs the PLAN packet. It than injects
it into the local PLAN router via a well-known port, say 3324. Remote execution is
achieved by making calls to network primitives such as OnRemote or
OnNeighbor. These are services written at the lower level in a general-purpose
programming language. A PLAN program can be better explained by a simple Ping
example.

fun ping (src:host, dest:host) : unit =
  if (not thisHostIs(dest)) then
    OnRemote(|ping|(src,dest), dest, getRB(), defaultRoute)
  else
    OnRemote(|Ack| (), src, getRB(), defaultRoute)

fun ack() : unit = print(“Success”)

Figure 3 lists the PLAN code for ping.

This program is placed in an active packet that executes ‘ping’ at the source. The
arguments for the ping function include the source and destination active nodes.
The program then proceeds to execute as follows: If the packet is not at the
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destination, the OnRemote call is activated which creates a new packet and sends it
over to the destination using the defaultRoute, which is RIP here. Once the packet is
on the destination, it further invokes another OnRemote that executes an ‘ack’
function at the source. This completes the required operation for ping.

The PLAN language is characterized by the semantic basis provided by the theory
of lambda calculus. However, in order not to compromise on security, PLAN does
not include many features common to functional languages. In keeping with this
idea, PLAN has simple programming constructs: statement sequencing, conditional
execution, iteration over lists with fold and exceptions. The lack of recursion and
unbounded iteration (as well as the monotonically decreasing resource bound)
ensure that all PLAN programs terminate. Its type system is strong and statically
typed but is dynamically checked. This arises from the necessity of distributed
programming wherein static checking is necessary for debugging purposes
whereas dynamic checking ensures safety of the code. It also helps that PLAN does
not provide user-defined mutable state, although some aspects of PLAN, such as
the resource bound, maintain state. In addition to the general exception based error
handling mechanism, PLAN also provides an abort service that allows the
program to execute a chunk on the source node. A major feature of PLAN is that
chunks can be encapsulated in one another providing for protocol layering within
PLAN.

Another issue, which we have been digressing from, is the choice of
implementation language for PLAN at the service level. Such a language must to
able to provide services to make code dynamically loadable. To enable such
modules to work on heterogeneous types of machines, it must be portable. Thirdly,
in order to provide guarantees for safe execution and termination it must be a safe
language. PLAN has been implemented in OCaml [Remy1999] and the Pizza
extension to Java. Our efforts at an integrated node revolve around the use of
OCaml as a safe language. Hence we will be discussing it alone.

2.1.2 OCaml

OCaml provides several of the design goals required for a service level language.
Some of these have been outlined above. It has been developed at INRIA,
Rocquencourt within the “Cristal project” group. The OCaml language system is an
object-oriented implementation of the Caml dialect of ML.

All programming in OCaml is dominated by the use of functions. These first-class
functions can be passed to other functions, received as arguments or returned as
results. A powerful type system is another inherent feature of OCaml. It comes along
with parametric polymorphism and type inference. Functions also may have
polymorphic types. It is possible to define a type of collections parameterized by the
type of elements, and functions operating over such collections. For instance, the
sorting procedure for arrays is defined for any array, regardless of the type of its
elements.
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OCaml provides several common data-types such as int, float, char and string.
Other data-types include records and variants that are standard features of
functional languages. OCaml’s type system is extendable by using user-definable
data-types. New recursive data-types can be defined as a combination of records
and variants. More importantly, functions over such structures can be defined by
pattern matching: a generalized case statement that allows the combination of
multiple tests and multiple definitions of parts of the argument in a very compact
way.

OCaml is a safe language. The compiler performs many type checks on programs
during compilation. That’s why many programming errors such as data type
confusions, erroneous accesses into compound values cannot happen in Caml.
The compiler carefully verifies all these points, so that data accesses can be
delegated to the compiler code generator, to ensure that data manipulated by
programs may never be corrupted. The perfected integrity of data manipulated by
programs is hence granted for free in Caml. These features are extremely important
for an active network where mobile code generated at one end gets evaluated on
other machines.

Another feature that is of big importance to the active networking community
would be the strong type safety provided by OCaml. OCaml is statically type-
checked, hence there is no need to add type information in programs (as in Pascal,
or C). Type annotations are fully automatic and handled by the compiler.

The OCaml compiler frees the programmer of all memory management. All
memory allocations and de-allocations are handled automatically by the compiler.
This way the programs are much safer, since spurious memory corruption never
occurs. The memory manager works in parallel with an application, thereby
improving the efficiency of execution of OCaml bytecodes.

In addition to these features, OCaml provides an expressive class-based object
oriented layer that includes traditional imperative operations on objects and classes,
multiple inheritance, binary methods, and functional updates. Error handling is
achieved by an exception mechanism as in other object-oriented languages.

The OCaml distribution comes with general-purpose libraries that facilitate arbitrary
precision arithmetic, multi-threading, and graphical user interfaces, etc. It also offers
Unix-style programming environment including a replay debugger and a time
profiler.  Objective Caml programs can easily be interfaced with other languages, in
particular with other C programs or libraries. This feature has been extensively used
while building our wrapper around the Moab C libraries.

2.1.3 OSKit

The Flux research group at the University of Utah has developed OSKit.  It provides
a set of modularized libraries with straightforward and documented interfaces for
the construction of operating system kernels, servers, and other core OS
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functionality. It is not an OS in itself and does not define any particular set of “core”
functionality, but merely provides a suite of components from which real OS’s can
be built directly on hardware. The OSKit is considered self-sufficient in that it does
not use or depend on existing libraries or header libraries installed on the host
system.

Building the OSKit is no different than any other user-level system. Installing the
OSKit causes a set of libraries to be created in a user-defined location. They can
then be linked into operating systems just like ordinary libraries are linked into user-
level applications. The most important goal of the OSKit was to be as convenient as
possible for the developer to use. This has led to its modular structure. It is also
highly separable in that inter-module dependencies are very thin and managed
through “glue” layers that provide a level of indirection between a component and
the services it requires. The structure of the OSKit is shown in Figure 4.

For usability, it is critical that OSKit components have clean, well–defined interfaces.
To provide this sort of abstraction, the Flux project adopted a subset of the
Component Object Model as a framework in which to define the OSKit’s
component interfaces. COM is a language-independent protocol that allows
software components within an address space to rendezvous and interact with one
another efficiently, while retaining sufficient separation so that they can be
developed and evolved independently. The obvious advantage of COM is that it
makes the OSKit interfaces more consistent with one another. The other major
technical advantages it brings about are implementation hiding and interface
extension. COM helps us to define interfaces independently of the interfaces that
implement them. Hence, several different implementations of the same interface can
exist together. COM also allows for interface extension and evolution. An object
can export any number of COM interfaces, each of which can be defined
independently by anyone with no chance of accidental collisions. Given a pointer
to any COM interface, the object can be dynamically queried for pointers to its
other interfaces. This mechanism allows objects to implement new or extended
versions of existing interfaces safely. One of the other abstraction features of COM
that is made use of in OSKit is that interfaces can be completely “standalone” and
do not require any common infrastructure or support code that the client OS must
use in order to make use of the interfaces. This is markedly different from traditional
operating systems like BSD or Linux. Consider the networking stacks of these
systems. Though they are highly modular, each of their interfaces depend on a
particular buffer management abstraction which are mbufs and skbufs
respectively. The OSKit’s corresponding interfaces, on the other hand, rely on no
particular common implementation infrastructure.
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Figure 4 illustrates the OSKit software structure.

2.1.4 The OSKit Structure

Much of the OSKit code is derived directly or indirectly from existing systems such
as BSD, Linux, and Mach. The OSKit uses a two pronged approach towards legacy
code. For small pieces of code, that aren’t expected to change much in the original
source base, it is simply absorbed into the OSKit source tree, modifying it as
necessary. The OSKit uses an encapsulation method towards large blocks of code.
These include code borrowed from existing systems such as device drivers, file
systems, and networking protocol stacks. The OSKit defines a set of COM interfaces
by which the client OS invokes OSKit services. The OSKit components implement
these services in a thin layer of glue code, which in turn relies on a much larger
mass of encapsulated code, imported directly from the donor OS largely or entirely
unmodified. The glue code translates calls on the public OSKit interfaces such as
the bufio interface into calls to the imported code’s internal interfaces. It also in
turn translates calls made by the imported code for low-level services such as
memory allocation and interrupt management into calls to the OSKit’s equivalent
public interfaces. Although tricky to implement this simplifies the task of making
modifications to each block of code. Modifications to blocks of code remain
insulated from other components. For example, the OSKit’s Linux device driver set
has already tracked the Linux kernel though several versions, starting with Linux
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1.3.68. The encapsulation technique described above has made this relatively
straightforward.

Most operating systems come with their own boot loading mechanisms, which are
largely incompatible with those used by other systems. This diversity is attributed to
the fact that not much time is spent on designing boot loaders which are relatively
uninteresting when compared to actual OS’s itself.  The OSKit, on the other hand,
subscribes to the Multiboot standard. The Multiboot standard provides a simple but
general interface between OS boot loaders and OS kernels. Hence any compliant
boot loader will be able to boot any compliant OS. Using the OSKit it is very easy to
create kernels that support a variety of existing boot loaders that support the
Multiboot standard. Another key feature of the Multiboot standard is its ability of the
boot loader to load additional files in the form of boot modules. The boot loader
does not interpret the module in any way at the time of loading the kernel. It
however provides the kernel with a list of physical addresses and sizes of all the
boot modules. It is up to the kernel to interpret these modules in the way it seems fit.

The primary purpose of the OSKit’s kernel support library is to provide easy access
to the raw hardware facilities without adding obscuring the underlying abstractions.
Most of the definitions and symbols defined here are highly specific to supervisor-
mode code. This is in contrast to the most other OSKit libraries that are specific to
user-mode code. Another difference worth to note is that that most of the code here
is architecture specific. No attempt has been made to hide machine-specific details
so that the client OS may directly manipulate these. Other OSKit libraries build open
these machine-specific details and provide higher architecture-neutral interfaces to
higher layers. However these machine-specific details remain directly accessible.

The default behavior of the kernel support library is to do everything necessary to
get the processor into a convenient execution environment in which interrupts,
traps and other debugging facilities work as expected. The library also locates all
associated modules loaded with the kernel and reserves the physical memory in
which they are located. The client OS need only provide a main function in the
standard C style. After everything is setup, this library calls the client OS with any
arguments passed by the boot loader.

Memory management implementation typically used in user space, such as the
malloc implementation in a standard C library, is not suitable for kernels because of
the special requirements of the hardware on which they run. For example, device
drivers need to allocate memory with specific alignment properties and space
constraints. To address these issues the OSKit includes a pair of simple but flexible
memory management libraries. The list-based memory manager, or LMM, provides
powerful and efficient primitives for managing allocation of either physical or virtual
memory, in kernel or user-level code, and includes support for managing multiple
“types” of memory in a pool, and for allocation with various type, size and
alignment constraints. The address map manager, or AMM, is designed to manage
address spaces that don’t necessarily map directly to physical or virtual memory. It
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provides support for other aspects of OS implementation such as the management
of process address spaces, paging partitions or free block maps. Although these
libraries can be used in user space, they are specifically designed to satisfy the
needs of OS kernels.

The OSKit provides two different C libraries – one a minimal C library native to
OSKit and another imported from the FreeBSD C library. The OSKit’s minimal C
library is designed around the principal of minimizing dependencies rather than
maximizing functionality and performance. For example the standard I/O calls don’t
do any buffering, instead relying directly on underlying read and write operations.
Dependencies between C library functions are minimized. This approach is
followed since the standard C library running on a full-function OS, such as Linux,
makes too many assumptions to be reliable in a kernel environment.

The FreeBSD C library provides an alternative the OSKit’s minimal C library so that
sophisticated applications can be built using it. In addition to the standard single
threaded version of the library, a multi-threaded version is also built which relies on
the pthread library to provide the necessary locking primitives. Like the minimal C
library, the FreeBSD C library depends on the POSIX library to provide mappings to
the appropriate COM interfaces. For example, fopen in the C library will chain to
open in the POSIX library, which in turn will chain to the appropriate oskit_dir and
oskit_file COM operations.

The OSKit provides the developer with a full source-level kernel-debugging
environment. The OSKit’s kernel support library includes a serial-line stub for the
GNU debugger, GDB. The stub is a small module that handles traps in the client
OS environment and communicates over a serial line with GDB running on
another machine, using GDB’s standard remote debugging protocol.

One of the most expensive tasks in OS development and maintenance is
supporting the wide variety of available I/O hardware. The OSKit avoids direct
maintenance by leveraging the extensive set of stable, well-tested drivers developed
for existing kernels such as Linux and BSD.  The OSKit uses the technique of
encapsulation discussed earlier to integrate these various code bases into the OSKit.
Currently, most of the Ethernet, SCSI and IDE disk device drivers from Linux 2.2.14
are included. Eight character device drivers which manage the standard PC console
and the serial port are imported from FreeBSD in the same way.

The OSKit provides a full TCP/IP network protocol stack. It incorporates the
networking code by encapsulation. The TCP/IP stack is borrowed from the FreeBSD
system which is generally considered to have much more mature network
protocols. This demonstrates another advantage of using encapsulation. Two
different systems, namely Linux device drivers and FreeBSD TCP/IP can coexist with
one another. With this approach, it is possible to pick the best components from
different sources and use them together.
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However this approach is also fraught sometimes with inefficiency. The networking
stack is an excellent example of this. When a packet arrives at an OSKit node, it is
initially picked by the Linux device drives and represented as the Linux packet
buffer, skbuff. The OSKit represents all packets as COM bufio objects. Due to
contiguous nature of Linux packet buffers, they can be directly passed to the
FreeBSD TCP/IP stack as bufio objects. The FreeBSD code internally repackages
them as mbufs, which is the FreeBSD abstraction for packet buffers. However, the
situation reverses in the case of outgoing packets. mbufs consist of multiple dis-
contiguous buffers chained together. Hence when they are passed to the Linux
driver code as bufio objects, the Linux code has to resolve these into contiguous
buffers. This mismatch sometimes requires extra copying between on the send
path.

The OSKit incorporates standard disk-based file system code, again using
encapsulation, this time based on NetBSD’s file systems. The choice of NetBSD was
influenced by the fact that it had one of the best separated interfaces of the available
systems. FreeBSD and Linux file systems are more tightly coupled with their virtual
memory systems.

2.1.5 Active Networking NodeOS

The NodeOS interface defines the boundary between the EE and the NodeOS.
Generally speaking the NodeOS is responsible for multiplexing the node’s
resources among the various packet flows, while the EE’s role is to offer AAs a
sufficiently high-level programming environment. The design of the NodeOS is
influenced by three major considerations:

1. The interface’s primary role is to support packet forwarding. Hence the
interface is designed around network packet flows: packet processing,
accounting for resource usage, and admission control are all done on
a per-flow basis. No single definition is attributed to the flow.

 2. All NodeOS implementations need not export the same set of interfaces.
Some NodeOS implementations can have advanced features such as
hardware transfer of non-active IP packets. However, these features
must be exported to EEs so that they may make use of it. The NodeOS
may also be extensible. Exactly how a particular OS is extended is an
OS-specific issue.

3. Whenever the NodeOS requires a mechanism that is not particularly
unique to active networks, the NodeOS interface borrows from
established interfaces, such as POSIX.

The NodeOS defines five primary abstractions: thread pools, memory pools,
channels, files and domains. The first four encapsulate a system’s four types of
resources: computation, memory, communication, and persistent storage. The
domain abstraction encapsulates all the above and is used to aggregate control and
scheduling of the other four abstractions.
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The domain, Figure 5, is the primary abstraction for accounting, admission control,
and scheduling in the system. A domain typically contains the following resources:
a set of channels on which messages are received and sent, a memory pool, and a
thread pool. Active packets arrive on an input channel (inChan), are processed by
the EE using threads and memory allocated to the domain, and are then transmitted
on an output channel. One can think of a domain as encapsulating resources used
across both the NodeOS and an EE on behalf of a packet flow. Domain creation is
hierarchical, see Figure 6. This is used solely to constrain domain termination. A
domain can be terminated by the domain itself, or by the NodeOS because of some
policy violation. The domain hierarchy is independent of resource allocation. That
is, each domain is allocated resources according to credentials presented to the
NodeOS at domain creation. These resources are not deducted from the parent
domain.

Figure 5 illustrates a NodeOS Domain

Thread pools are the primary abstraction for computation and exist for accounting
purposes. A thread pool is initialized at the time of domain creation and threads run
“end-to-end”, i.e., to forward a packet they typically execute input channel code,
EE-specific code and output channel code. Threads in the pool are implicitly
activated and scheduled to run in response to certain events like message arrival,
timers firing and kernel exceptions. The entire domain is terminated if a thread
misbehaves. There is no explicit operation of killing a thread.



The University of Kansas /ITTC 16 Innovative Active Networking Services

Figure 6 a NodeOS Domain Hierarchy

The memory pools are the primary abstraction for memory. It is used to implement
packet buffers, the NodeOS abstraction for network flow buffers. A memory pool
combines the memory associated with the domains. This many-to-one mapping
between domains and memory pools accommodates EEs who would like to
manage memory resources themselves.  Memory pools have an associated
callback function that is invoked by the NodeOS whenever the resource limits of
the pool have been exceeded. The corresponding domains are terminated by the
NodeOS if the EEs do not handle resource violation in a timely manner. Memory
pools can be arranged hierarchically though this is not used to control the
propagation of resources.

Domains create channels to send, receive and forward packets. Some channels are
anchored in an EE i.e. they are used to send packets from an EE to the underlying
physical layer and vice versa. They can hence be classified into two types-inChan
and outChan. When creating an inChan, a domain must specify the following
things: (1) which arriving packets are to be delivers on this channel; (2) a buffer
pool that queues packets waiting to be processed by the channel; and (3) a
function to handle the packets. Packets to be delivered are described by a protocol
specification string, an address specification string, and a de-multiplexing (demux)
key. On the other hand the requirements for an outChan include (1) where the
packets are to be delivered and (2) how much link bandwidth the channel is
allowed to consume. Another type of channel known as cutChan is defined which
forward packets through the active node without being processed by an EE. This
might correspond to a standard forwarding path that the NodeOS implements very
efficiently. It can also be created by concatenating an existing inChan to an existing
outChan.
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A packet is de-multiplexed by specifying the protocol and addressing information.
For example, the protocol specification “if0/ip/udp” specifies incoming UDP
packets tunneled through IP. The address specification defines destination
addressing information like the destination UDP port number. The NodeOS
designers realized that simply specifying the protocol and addressing information is
insufficient when an EE wants to de-multiplex multiple packet flows out of a single
protocol. Hence a demux key is used which is passed on to the inChan. It can
specify a set of (offset, length, value, mask) 4-tuples. These tuples are compared in
an obvious way to the “payload” of the protocol.

Files are provided to support persistent storage and sharing of data. The file system
interface loosely follows the POSIX specification and is intended to provide a
hierarchical, namespace to EEs that wish to store data in files.

2.1.6 The Moab NodeOS

The Moab is a C implementation of NodeOS developed at the University of Utah. It
comprises of a multi-threaded fully pre-emptable single address-space operating
environment implementing the NodeOS abstractions. Moab is not an operating
system in the strict sense of the word. This is because invocations of NodeOS
functions are direct function calls and do not “trap” into the OS.

Moab is built using the OSKit. This helps it to leverage many of the components
such as the device drivers, a networking stack, and a thread implementation, as well
as a host of support code for booting and memory management. The following
paragraphs describe the Moab implementations of three NodeOS that help us to
understand the advantages and disadvantages of using OSKit:

The implementation of NodeOS threads directly leverages the POSIX thread library.
This was possible because of the similarity between the NodeOS and POSIX APIs.
This direct mapping between NodeOS and POSIX threads caused some
performance problems. The NodeOS’ thread-per-packet model of execution led to
creation and destruction of pthreads, which imposed a lot of overhead. This was
avoided by creating and maintaining a cache of active pthreads in every thread
pool.

The OSKit made it easy to track the memory allocated and freed within its
components such as the networking stack. However, it was difficult identifying the
correct user to charge the memory. Right now, the Moab charges the memory
allocated to the “root flow”. The alternative would be to charge it to the thread
doing the allocation. The OSKit’s memory interfaces are being modified to bring it
inline with the NodeOS’ needs.

Channels provide the path necessary for execution of a packet flow. Anchored
channels, namely inChan and outChan, are implemented in two ways depending
on their protocol specification. Raw interface (“if”) channels are directly
implemented over the stock Linux device drivers. All the other types of protocols
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use the OSKit’s socket interface and its network stack to deliver UDP/TCP packets to
Moab. This only partially implements the NodeOS API requirements since direct
“IP” packet delivery is not supported. Cut-through channels are implemented as
un-optimized concatenation of NodeOS inChan/outChan pairs and perform no
additional protocol processing.

2.1.7 Implementation of PLAN Router on OSKit

The OSKit provided us with a platform wherein single address-space based kernels
could be directly executed on bare hardware. It is with this idea that we proceed to
build a PLAN router that operates directly over the OSKit. The OSKit provided all the
essentials required for the router to operate. These include a C library, a TCP/IP
protocol stack and a pthread library. The OSKit’s modular design helps us in
choosing the components we would like the router to be integrated with. This
modularity also implies configurability. Hence, given a choice, we could link the
PLAN router with a different set of components at system build time.

The PLAN router is built in a vertically integrated fashion over the OSKit in a single
address space. In a traditional operating system, such as Linux, we tend to
differentiate between the user space and the kernel space. This is done to operate
the two levels with different levels of trust. This again is due to the fact that programs
loaded and unloaded at runtime should be operated only with certain privileges.
When a single application such as a PLAN router is intended to run on a system, it
is no longer necessary to differentiate between processes. Hence, the distinction
between kernel-space and application becomes fuzzy. In our implementation we
will study the effect of OSKit’s components on our PLAN router implementation.

2.1.7.1 Porting OCaml to OSKit

The first task involved in the implementation of a PLAN active node on OSKit was
the porting of the OCaml language to OSKit. A normal install of OCaml on Linux
would look like in Figure 7.

Figure 7 show an OCaml installation on Linux.
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In order to integrate OCaml with OSKit, the interfaces required by OCaml from the
underlying operating system have to be figured out. It is also necessary to examine
the interfaces provided by the OSKit in order to match them with those required by
OCaml. In this process, the dependencies of the libraries linked to provide the
interfaces have to be taken care of.  The sequence of development of a custom
OCaml kernel over the OSKit is shown in Figure 8.

A regular OCaml system is installed over Linux, in order to build the various OCaml
tools such as ocamlc (OCaml bytecode compiler ), ocamlopt (OCaml native code
compiler ), etc.  The OCaml-on-Linux compiler (ocamlc or ocamlopt) thus built is
used to custom-compile OCaml sources to generate a C object file instead of
compiled object bytecode executables. The objective Caml runtime system
comprises three main parts: the bytecode interpreter, the memory manager, and a
set of C functions that implement the primitive operations. In the default mode, the
Caml linker produces bytecode executables for the standard runtime system,
ocamlrun, with the standard set of primitives. In the “custom runtime” mode, we
may generate a C object file that contains the list of C primitives required or an
executable file that contains both the runtime system and the bytecode for the
program.

The OCaml runtime system was built using OSKit libraries. We then use the C
object file generated above and link it against a runtime system built using OSKit
components. If we are using the native code compiler, the –custom flag is not
necessary, as it can directly produce a C object file with the help of the –output-
obj option.

An OSKit interface file is then compiled which initializes the OCaml component.
This is linked with the OSKit libraries and the modified OCaml runtime system to
form an executable. Using the OSKit’s image generating tools, we generate a multi-
boot image of this kernel. This image is then booted as a kernel using a multi-boot
loader such as GRUB (Grand Unified Boot-loader).
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Figure 8 shows the Ocaml on OSKit software build process.

2.1.7.2 Integration of PLAN with OSKit

The integration of PLAN with OSKit involves matching all the OCaml interfaces
used by PLAN with those provided by OSKit. Fixes were required in areas such as
file operations and usage of loopback interfaces. To fix this, it was decided to
convert all file-based operations to string operations. Most of these files were
configuration files and DNS files. PLAN operates its own DNS system which makes
use of a file similar to the standard ‘/etc/hosts’ file on Unix systems. The PLAN code
thus modified is then custom compiled to generate object code. This is then linked
against OSKit libraries to form an executable that in turn is used to generate a
multiboot image.

The PLAN router protocol graph as used on OSKit is shown in Figure 9.
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Figure 9 illustrates the PLAN protocol stack.

The DNS shown in Figure 9 is implemented by PLAN in a user-level file that maps
host names with their IP addresses. The OCaml VM is the OCaml runtime system
linked against OSKit libraries that can load and interpret bytecode modules. The
TCP, UDP and IP modules of OSKit are derived from the FreeBSD TCP/IP stack of
OSKit. The Ethernet module uses the device drivers of Linux to probe and operate
network cards. Such a system is not highly optimized for network operations. We
shall further investigate this during our discussion of our results. Minor fixes were
required to the Pthread library to ensure that it works correctly.

2.1.7.3 Integration with the Moab NodeOS

As described earlier, the Moab NodeOS is a C implementation of the NodeOS API.
The Moab environment is first setup by means of the interface an_moab_setup. This
function initializes the Moab by first initializing the memory associated with the
NodeOS flow. The various hardware devices are probed and file systems initiated.
The networking framework is initialized and can be configured manually. The
Moab now reaches a state where its bare setup is done. The NodeOS root flow is
now started in this context. The parameters passed to it include the root flow thread
count and the root flow stack size. The function for flow initialization and it’s
associated arguments is also passed. The various NodeOS components such as
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resources, credential objects and threads are initialized. The complete setup of
Moab is now complete.

With the initialization of Moab complete, the root flow is then fired off as a thread in
this context. There is no callback associated with the root flow. It can be killed only
by an explicit call of ani_moab_shutdown. New credentials are created in the root
flow that may correspond to child flows. Since we have only one flow subordinate
to the root flow, all the root credentials are transferred to the new flow. A new flow is
now created in the context of root flow. The flow initialization function and the
corresponding arguments are now passed to this flow. This flow is used to startup
the OCaml virtual machine. A resource specification is also passed to the flow that
specifies the number of threads and the stack size allocated for each thread. A
thread is then fired off which starts up the Caml flow.

2.1.7.4 Testing and Discussion of Results

The following test framework was used to evaluate our implementation. Figure 10
describes a linear topology used to test the performance of OSKit as a node
operating system for an OCaml based active node.

Figure 10 show the basic setup for testing.

The machines used in the above tests were equipped with 530 MHz Pentium III
processors and 128 MB RAM. Their network interfaces were connected to 100
Mbps Tulip cards. The Caml benchmarking tests were done on a single machine
featuring both Linux and OSKit versions. The table compares Linux 2.2.13 and
OSKit version 20010214. The tests have been performed both with the bytecode
and native code versions of OCaml. All measurements are made using the rdtsr
function provided for i386 machines.

Most of the benchmarks are self-explanatory. We observe that the speedup
provided by OSKit as compared to Linux is not heavy.
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Benchmark Test OCaml-bc/
Linux
(ms)

OCaml-nat/
Linux
(ms)

OCaml-bc/
OSKit
(ms)

OCaml-
Nat/
OSKit
(ms)

Array Access
1000000 times in a tight
loop

876.25 215.992 851.441 199.035

Array Access 2
1000000 times after
unrolling of loops

757.45 215.891 742.894 199.167

Fibonacci  Series
N = 32

1,159.94 140.16 1,151.54 149.053

Hash Access
With 80000 entries

1,320.33 692.093 1,084.01 518.831

Heap Sort of 80000
randomly created entries

1,876.98 138.048 1,914.63 135.223

Various List operations
for 16 lists each of size
10000

991.441 184.252 990.477 171.724

Matrix Multiplication of
2 matrices of size 30x30

5,645.93 198.179 5,824.22 197.17

1000000 Method Calls
on the same object

1,429.35 129.09 1,388.04 129.192

Loop overhead for 16
nested loops

3,861.07 169.358 3,668.71 170.669

Thread synchronizations
between  2
producer/consumer
threads using a mutex
and a condition variable

1,804.36 1,740.73 1,186.81 1,132.77

Generated 900000
Random number

1,085.74 164.336 1,089.89 164.168

Sieve of Eratosthenes
Counts primes from 2 to
8192 , 300 times

3,202.76 145.933 3,170.74 155.087

String concatenates
40000 strings(using
Buffer.add_string)

84.231 11.286 83.338 11.173

String Append (using the
string concatenation
operator)

44,959.89 43,684.61 41,592.80 41,274.74

Table 2 compares the performance of four implementations of OCaml
on Linux and the OSKit
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2.1.7.4.1 Baseline Performance Evaluation

We study the performance of our implementation of the PLAN active network node
on OSKit using the above test framework and compare it with PLAN running over
Linux. Specifically, we measure the latencies observed during the execution of the
PLAN ping program.

The PLAN ping experiment will serve to demonstrate the difference in latencies
between Linux and OSKit. It consists of a simple application program, which injects
a PLAN packet that contains the ping code described earlier. This packet is injected
in Testnode1. The packet is evaluated at its destination (Testnode11), that is across
a single hop and sent back to the source.

2.1.7.4.2 Results

For the above PLAN ping experiment, the results are as shown in Figure 11. The
PLAN ping times have been measured as the average round trip time taken by the
packets sent from a Linux host to an OSKit router. Each individual test involved 100
round trip times. It illustrates the performance of this active protocol both on Linux
and OSKit. To enable us to compare these figures with a standard benchmarks, the
ICMP and C-level ping times are also shown. The C level ping consisted of a simple
UDP client which sends a packet to a UDP server that returns the packet back to the
client.  It is also noticed that there is perceptible difference between the bytecode
and native version of PLAN/OSKit. The Linux version does not show such a large
difference between the two versions.
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Figure 12 PLAN ping packet evaluation overhead.

The time taken for packet evaluation is shown in Figure 12.  The packet concerned
contains the PLAN ping packet code. The above chart measures the time taken by a
PLAN Active node to un-marshall the packet, interpret the PLAN code and send it
over to is next destination which, in our case, is the source.  The processing
overhead is considerably larger for PLAN/OSKit when compared to PLAN/Linux.
However this account for only a little of the total delay.

In order to further understand the delays seen, we ran an un-optimized version of
PLAN/OSKit. This version forks an extra thread that waits for packets from the local
PLAN port. It was noticed that the delays experienced increased considerably in this
case. These results are tabulated in Table 3. This is probably due to poor
performance of the OSKit Pthread library.

Switch Optimized PLAN Un-optimized
PLAN

PLAN/OSKit –
Native Code

5.4 ms 14.3 ms

PLAN/OSKit –
Bytecodes

8.45 ms 37.91 ms

Table 3 lists the execution times for two implementations of PLAN
and two runtime environments.

2.1.7.4.3 Throughput Tests

The following test framework measures the forwarding capacity of a PLAN node.
We make use of a linear back-to-back connectivity between 3 nodes in order to
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compare the forwarding performance of a PLAN switch.  The test topology is
shown in Figure 13.

In order to do these tests, PLAN routers are set up on the three nodes.  We then
make use of a Caml program that generates load of a given payload on the sender
side. This program injects these packets into the local PLAN router through its
PLAN port. The destination of these packets is on the far end of the topology, which
is Testnode 4. These packets are initially evaluated at Testnode1 and routed
through the active network by Testnode11. The PLAN router on Testnode 4 later
receives them and hands over the packets to a receiver program running on
Testnode 4 which waits for these packets on its PLAN port.  A total of 80,000
packets were sent from Testnode1 through Testnode11 onto Testnode4.

Figure 13 Illustrates the setup for router-level throughput tests.

The results of these tests are as shown in Figure 14. As seen from the figure the
PLAN/OSKit shows significant loss of packets as compared to the PLAN/Linux
switch. This could be attributed to a less tighter integration of PLAN over the OSKit
framework.

The above tests do not entirely isolate our problem of interest. The PLAN router
communicates with a local application by means of PLAN ports that are
implemented using Unix domain sockets. In addition to the forwarding overhead of
the switch used on Testnode11, these tests also carry the overhead of transfer of
packets between PLAN routers and the active applications, namely the load
generator and the receiver. The tests shown in Figure 14 reflect the performance
achieved by such application.
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2.1.7.4.4 Router-level Exchange

The tests described here measure the performance achieved by a PLAN networking
system. It makes use of an inbuilt “bandwidth service” provided with the PLAN
router. Hence packets are dispatched directly to and from the PLAN routers,
avoiding the costs of copying to and from the application. The test framework is
shown in Figure 13.

The sender service makes use of a script provided with the PLAN code to initiate the
service. The sender is made to send 100000 packets with a delay of 100
busywaiting iterations of an empty loop between each send. The sender initially
sends out a connection to the destination (testnode4) that starts a receiver thread
there. The receiver counts the number of packets arrived and reports the bandwidth
depending on the payload of the packet. The results of the test are shown in Figure
14.
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Figure 14 Comparison of routing performance of PLAN

The performance of a PLAN router is significantly affected. In the PLAN/Linux case,
for an Ethernet packet size of 750 bytes, only 9.4 % of the packets made it to the
receiver. The figures for the PLAN/OSKit case were worse. Of the 100000 packets
dispatched from Testnode1, the receiver reported only around 370 packets.  The
above tests involving PLAN were conducted using a version that makes use of
queues between its network layer and link layer. In order to reduce the
synchronization overhead associated with queue, the router-level exchange tests
were repeated with a new configuration.

The topology for the tests remains the same, as shown in Figure 13. The new
configuration of PLAN uses direct upcalls between its network layer and link layer.
This helps in removing a lot of thread synchronization overhead. The following
results, shown in Error! Reference source not found., verify this position.
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Figure 15 Comparison of routing performance of PLAN using upcalls.

Error! Reference source not found. illustrates the performance advantage gained
by operating PLAN using upcalls. The numbers of packets that make it to the
receiver also register a significant increase in both the cases. In the case of
PLAN/Linux, the number of packets received at Testnode4 increases by 4 times.
The improvement in performance is more marked in the PLAN/OSKit. As many as
5,600 packets make it to the receiver which is a 14-fold increase over earlier
numbers.

While we were able to assemble an active networking node from these
components, the complexity and performance did not meet our goals. The OS
Toolkit used Ethernet drivers and a standard protocol stack from the Linux
distribution. This reduced the work needed to implement network drivers and
internet protocols. However, the “glue” programs to link the Linux drivers to the OS
Toolkit APIs reduced the performance of active networking services. Further, the OS
Toolkit did not implement all the operating services required by the OCaml runtime
system. The details of this work are reported in ITTC-FY2003-TR-19740-07.

2.2 Distributed Security Policies

We also developed a mechanism to distribute security policies through an active
network. The details are reported in ITTC-FY2003-19740-08 and below.

We explain our design by first giving an overview of our framework. Each module
within this framework is described and specifics of its implementation are then
detailed.
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Figure 16 illustrates the design of the keying framework.

Our keying infrastructure consists of three main components - the Keying Server
(KSV), a Key Management Module (KMM) within every node, and an
Authentication Server (ASV). The keying server forms the central entity in our
framework.

The secure topology is specified in the form of links and groups, where the links
correspond to unidirectional Security Associations and the groups, the different
multicast groups. This topology is configured into the KSV either statically, when
the server comes up or dynamically using configuration commands. We define the
“trusted set” in a KSV as the collection of all those nodes that are either configured
as one end of a secure link or a member of a secure group inside a particular KSV.

The KMM runs on every node that wants to be part of the KSV’s trusted set
including the KSV itself. In order to set up the relevant security associations, a node
needs to register itself with the KSV. Either the KSV or the trusted node can initiate
this registering process. If initiated by the node, we can think of this being done
automatically when the node boots up. A node can register with multiple servers;
we do not however define how to resolve any conflicts that may arise out of the
same link being defined at two different servers. Errors in configuration are



The University of Kansas /ITTC 30 Innovative Active Networking Services

indicated to the appropriate servers when a node detects that such a mismatch in
configuration has occurred. Policy can additionally be used to define which KSV a
node is allowed to register with in the first place. We however suggest this last area
as future work.

During the node registration process and any time the configuration at the KSV
affecting this particular node has changed, the KMM at the KSV sends all the
pertinent information for both links as well as groups to this node. This link and
group information is then used to set up the security associations within the node.

Information exchanged between the KSV and the trusted nodes are authenticated
so as to discourage spoofing of messages, sent either with the intent of breaking
security or simply in order to perform some Denial of Service attack at the KSV.
Since data between the KSV and the trusted node is sent on a more-than-rarely
basis, we do not use direct public key mechanisms as summarized in Section 2.2.
Instead we use a shared key approach. We however require some infrastructure in
order to authenticate the shared key created. The Authentication Server provides
this service in our framework. The ASV maintains authentication information for all
those nodes that it considers as being a part of its domain of control. We define
“domain of control” for a particular Authentication Server as all those nodes for
which it  directly maintains authentication information. ASVs are organized
hierarchically and perform some trust-chaining mechanism to authenticate nodes
not lying directly in its domain of control.

We define our security services at the network layer using IPSec as our reference
framework. Rather than defining a separate module for the KMM we decide to
extend the services provided by IKE itself so as to seamlessly integrate IPSec services
within our framework.

Finally, since we authenticate different entities from a network-layer perspective,
DNSSEC comes up as a good candidate for providing these authentication services.
The ASV can now be treated simply as a DNSSEC server with the aforementioned
trust-chaining mechanism being natively provided by it. DNSSEC-aware resolvers
can check authenticity of retrieved DNS records by simply verifying the SIG records
sent as part of the query responses.

In the following sections we describe the basic design of the various sub-
components, the capabilities if any, that we need additionally from them, and finally
how we actually provide these capabilities.

2.2.1 Integrating IKE

We use the “pluto” implementation from Freeswan [Freeswan] as our IKE module.
Pluto runs as a daemon on a Linux Network node. This base implementation
though incomplete with respect to some features of IKE is still sufficient in order to
inter-operate with other pluto implementations and many other IKE
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implementations. Commands to pluto are given using a control interface to the
daemon, called “whack”.

Pluto uses either shared secrets or RSA signatures to authenticate peers during the
IKE phase-1 exchange. This database of pre-shared secret keys and private keys
required during the authentication process is maintained in the file
/etc/ipsec.secrets. Public keys for different hosts are normally specified using whack
commands but can also be queried-for using DNS.  In order to use the IKE, pluto
needs to be started using administrator privileges. Once the daemon has been fired
up, it enters a quiescent state and awaits further instructions from whack. Pluto may
optionally be started using a configuration file in which case it immediately initiates
setting up of the different security associations specified therein.

Internally, pluto maintains the following data structures – a connection list and a
state hash table. A single connection maintains all such information necessary in
order to create an SA having these characteristics. The connection structure
typically maintains information such as the two SA end-points, the lifetime of the SA,
a reference to the physical interface, and information linking it to the SA actually
instantiated.

During the IKE exchange, the information about the negotiation is represented in a
state object. Each state object reflects how far the negotiation has progressed. Once
the negotiation is complete and the SA established, the state object persists to
represent the SA. When the SA terminates, the state object is also discarded. Each
state object is given a serial number and this is used to refer to it in logged
messages. At any given time there might be many different states corresponding to
the same connection. Once the SA for a connection has been created, generally
two types of states exist – one ISAKMP state and one or more IPSec states. Pluto
destroys all its states once it shuts down.

Every state object is also associated with an event. An event fires when one of the
following occurs:

The SA corresponding to this state has expired

The SA corresponding to this state has to be replaced

The data packet associated with this state has to be retransmitted

Some secret needs to be refreshed

The state object has to be discarded

Events are maintained as simple entries in a queue and fire whenever the timers
associated with them expire.

A connection (and consequently its state) also maintains information about the
policy for this SA. Policy is simply a collection of certain flag values that denote
what kind of SA is to be created. Thus we have values such as
POLICY_AUTHENTICATE for authentication, POLICY_ENCRYPT for encryption,
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POLICY_TUNNEL for tunnel mode, etc. The state transitions after an IKE SA
depends on what flags are set in this policy. For example, IPSec SAs are created
only if either the POLICY_AUTHENTICATE or the POLICY_ENCRYPT flags are set.

2.2.2 Interaction between the node and the Keying Server

Once an IKE SA between the Keying Server and the node has been set up, keying
information needs to be sent from the former to the latter. We define a new policy
POLICY_KEYSERVER to indicate that IKE SA creation for this connection needs to be
followed by a keying update.

Since the registering node needs to set up IPSec-SAs without any direct IKE
negotiation with the peer, the KSV needs to send all such information required by
the registering node in order to describe the connection and SA between the latter
and its peer accurately. We investigate the different fields that need to be included
in the message sent by the KSV in order to achieve this.

In order to set up a Security Association, the first thing that needs to be known is the
type of security service (transformation type) – AH or ESP being offered by this SA.
We specify a list of policy groups in the KSV configuration file where each policy
group contains the following information:

The transformation type : e.g. (TRANS-TYPE = AH) or (TRANS-TYPE = ESP)

The lifetime in seconds for this SA: e.g. LIFE-SEC = 100

The lifetime in Kbytes of information transformed by this SA: e.g. LIFE-KBYTE
= 10000

Every link or group specified in the configuration file is associated with a particular
policy. In case no policy is specified, a default value of (TRANS-TYPE = AH,
LIFE_SEC = 28800, LIFE-KBYTE = 86400) is assumed.

Another value that we need to add artificially is the SPI value. The SPI as mentioned
before is used to identify a particular SA at the receiving end. Since this value is
receiver specific, the KSV creates an SPI for every node that it maintains as part of its
trusted set. By ensuring that the SPI generation process does not create duplicate
values, the KSV can make sure that no two hosts use the same SPI to send data to
the same peers. In order to conserve SPI space, the (SPI, sender) tuple can be used
instead of just the SPI to identify the SA uniquely at the receiver. However in our
application, we use the SPI value directly.

Security Associations can be either inbound or outbound. Each of these SAs can
exist independent of each other and can also have separate policies. Links at the
KSV are specified with some directionality. In our configuration file we specify
outbound links using the symbol “ =>”. In order to define inbound and outbound
links with symmetrical policy, we also specify a bi-directional link using the “<=>”
symbol. Examples of configuring links with such directionality are given in section
2.2.3.
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Figure 17 Fields in ACK Message

The KSV can specify some additional operations to be performed as soon as the
given set of SAs is installed at the receiver. An indication of which operation is to be
performed is passed as flags in the register message.

REFRESH: The KSV has specified this set of SAs as a complete set and not an
incremental update. Any older SAs that had been created as part of
earlier registration or update processes have to be deleted.

ACK_REQD: The KSV has asked the node to send back a confirmation about
having received and installed the SAs. Since IKE messages are sent
using the unreliable UDP protocol, this is particularly useful in some
instances where we want to guarantee that a particular SA was
successfully installed. A timestamp returned by the node can be used
by the KSV to determine the order in which SAs were installed at the
node if required. In order to identify which out of a number of possible
states an ACK value corresponds to, the client also reflects back the
server’s timestamp value in its ACK message. The state corresponding
to the (server, node, timestamp) tuple is guaranteed to be unique.

The format of the ACK message is specified in Figure 17. We summarize the
information contained in a registration message in Figure 18 below:

Figure 18 illustrates the fields in the Registration Message.
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A few of the fields defined in Figure 18 are used in the context of multicast groups
and will be explained in section 2.2.2.6. Nodes that do not belong to any multicast
group have the “ID len” and “Number of Keys” fields set to zero.

Once the information necessary to form an SA is received by the node, it goes
ahead and instantiates the same. No negotiation between the two nodes or costly
DNS lookups is required because KSV has already performed this operation for it.
We note that since all SAs are created artificially, in most cases there is no existing
connection corresponding to this source and destination present at either the KSV
or the node. Hence we define a new operation to create a connection “on the fly”.
The connection name used to index this connection in the connection database is
also created dynamically by simply concatenating the IP addresses of the two SA
endpoints. For example an on-the-fly connection created between 192.168.1.1 and
192.168.1.2 created on the fly is named  “ _192.168.1.1_192.168.1.2_”.

2.2.2.1 SA Deletion

Figure 19 illustrates the fields in the Delete Message.

The process of deleting an SA is very similar to that of creating one using the keying
server. However, we only need to send enough information to identify the SA or
more specifically, the peer and the SA directionality. Figure 19 specifies the format
of fields required in the delete message.  We also specify the flag and timestamps
fields for reasons mentioned in section 2.2.2.

When a node receives a “DELETE” message from the keying server for a particular
SA, it identifies and deletes all the states associated with the same. Deletion of these
states automatically cleans up any connection that may have been created on the
fly also described in section 2.2.2.

2.2.2.2 Alarm Indication

Messages that are sent by the Keying Server do not fail silently if they are not able to
perform their expected behavior. The affected node sends back some error
indication, which the server can simply log or use directly in order to rectify the
problem. We identify the following types for alarm indications:

SA_EXPIRED

MALFORMED_PACKET

SERVER_CONFLICT

SIGN_FAILED
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Figure 20 illustrates the fields in the Alarm Message.

Security associations have a limited lifetime. We need to re-key a particular SA
before the latest one expires so that the link security is never compromised. In case
a new key is not registered before the latest one expires, the node continues to use
the existing SA, renewing its lifetime to the default value. The alarm “SA_EXPIRED”
is however sent to the keying server to indicate that such an event has taken place.

A “MALFORMED_PACKET” indicates that some packet created by the server was
not understood properly by the node. This is different from the malformed packet at
the network layer, which we handle by retransmission mechanisms at the TCP level
or drop entirely in the case of UDP. Reception of such an alarm at the KSV is usually
an indication of either someone attempting (unsuccessfully) to spoof or replay
messages from the server or simply a loss of synchronization between the keying
server and this node. In the case of the latter, the server can simply perform a refresh
operation (Section 2.2.2.3) to bring the node back into a state of sanity.

Some configuration errors such as two keying servers independently specifying the
same node to be a part of the same multicast group can be detected at the node. If
so, the node sends the “SERVER_CONFLICT” message to both the servers it has
registered with.

The SIGN_FAILED alarm is used in the context of secure multicast groups, which
we describe in section 2.2.2.6.

2.2.2.3 Information Packaging
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Figure 21 illustrates the ISAKMP header fields.

In order to integrate the key registration process with IKE, we need to send the
information in a form that IKE understands. IKE uses the ISAKMP protocol to specify
the message formats sent between the two peers during various exchanges.

The details of the ISAKMP protocol itself are given in RFC 2408. Messages
exchanged in an ISAKMP-based key management protocol are constructed by
chaining together ISKMP payloads to an ISAKMP header (Figure 21(a)). There are
thirteen distinct payloads that all begin with the same generic header (Figure 21(b)).
Payloads are chained together in a message using the “next payload” field in the
generic header. The ISAKMP header describes the first payload following the
header and each payload describes which payload comes next. In our framework,
we use the ISAKMP notification payload (Figure 22) within an Informational
Exchange (Exchange type = 5) to send keying information from the KSV to the
node.

The notification payload is generally used to send status data from a process
managing the SA database to a peer process. ISAKMP defines two blocks of Notify
Message codes, one for errors and one for status messages. It also allocates a
portion of each block for private use within a particular Domain of Interpretation.

We define the following notification message types for use within the keying server
framework with the values for these types taken from the private section of the status
message codes:

KEYEXCHANGE_ACK = 32768

KEYEXCHANGE_REGISTER = 32769
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KEYEXCHANGE_DELETE = 32770

KEYEXCHANGE_ALARM = 32771

The values within the notification payload are as specified in RFC 2408 except for
the notification data field, which is decided by notification message type of this
payload. For the notification types defined in our system - KEYEXCHANGE_ACK
through KEYEXCHANGE_ALARM we define the notification data exactly as shown
in Figure 22.

Figure 22 illustrates the ISAKMP Notification Payload.

The Informational Exchange messages are protected using the IKE SA that has
already been created. This is done by chaining the notification payload with a hash
payload and encrypting the entire ISAKMP message, except for the fixed part of the
header. Only the IKE peers are able to read or modify the notification message
contents.

2.2.2.4 Installing IPSec Security Associations

The Freeswan KerneL IPsec Support (KLIPS) implementation provides us with a
mechanism for installing and maintaining Security Associations within a node.
KLIPS hooks into the routing code in a Linux kernel. Traffic to be processed by an
IPsec SA must be directed through KLIPS by routing commands. Pluto implements
ISAKMP SAs itself and after it has negotiated the characteristics of an IPsec SA, it
directs KLIPS to implement it.
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Destination Gateway Mask Flg Iface
129.237.126.215 0.0.0.0 255.255.255.255 UH eth0
129.237.126.212 0.0.0.0 255.255.255.255 UH ipsec0
192.168.1.0 0.0.0.0 255.255.255.0 U eth1
129.237.120.0 0.0.0.0 255.255.248.0 U eth0
129.237.120.0 0.0.0.0 255.255.248.0 U ipsec0
127.0.0.0 0.0.0.0 255.0.0.0 U lo
0.0.0.0 129.237.127.254 0.0.0.0 UG eth0

Table 4 Routing table containing an ipsec route.

KLIPS is implemented as follows. Every physical network interface is associated with
a corresponding virtual interface. These virtual interfaces are named ipsec0, ipsec1,
etc and each of them corresponds to one physical interface. Whenever a new SA is
to be installed either manually or using the pluto IKE daemon, a new route
referencing this virtual interface is installed in the kernel routing table. We observe
in Table 4 that packets sent out of the source 129.237.126.215 to the destination
129.237.126.212 have been routed through the virtual ipsec0 interface instead of
the physical eth0 interface.

The SA corresponding this connection is itself added to the SADB, which is
maintained as a hash table in kernel memory. IP packets belonging to a particular
SA now pass through the ipsec virtual interface as per the new route entry rather
than any physical interface. IPSec transforms are applied based on the security
association retrieved from the SADB and the keys corresponding to this SA.

In order to inform KLIPS about the SA-profile and its associated secret keys the
KLIPS implementation uses the PF_KEY generic key management API. PF_KEY is a
socket protocol family used by trusted privileged key management applications to
communicate with an operating system's kernel-mode implementation of IPsec.
Without going into too much details of PF_KEY sockets, we note these sockets
provide a generic interface for key management applications (such as IKE, GKMP)
for inserting and retrieving security association information inside the kernel using
a set of predefined messages. This eventually makes the keying applications more
portable.

In our prototype, we use the KLIPS implementation as is.

2.2.2.5 Extending the IPSec security associations for multicast data

IPSec is inherently a point-to-point protocol. One side encrypts and the other side
decrypts using some shared key either statically configured into it or dynamically
generated using IKE. Securing multicast data is a totally different paradigm since
there are multiple recipients of a single packet and often, many senders to the same
multicast address.
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Some aspects of IKE fail when viewed in a multicast context. The SPI value, which is
used by the destination to uniquely identify the sender of a given IPSec packet, has
a problem with multiple recipients. It is not possible for an SPI to be unique at all
destinations in this multicast group without making the negotiation process too
complex. Even if this was possible we now have the problem of the entire SPI space
being shared by all multicast nodes rather than each of them maintaining their own
individual SPI space. A better approach and the one that matches our prototype
well, is for the multicast server (the KSV in our prototype) to define and distribute the
SPIs for each multicast group itself.

Another aspect that fails in a multicast scenario is that of source authentication and
replay protection. There is no way to synchronize the anti-replay counters when all
nodes sharing the same secret can send data on the same multicast address. In our
implementation we simply turn off replay protection and limit source authentication
to lighter forms of “one within the group” rather that stricter definitions.

In order to have multicast support within KLIPS, we need to make a few
modifications.

KLIPS is modified to treat any multicast packets, as destined to itself. Multicast
packets are only dropped if no application has been registered on this
node to read multicast packets sent on this address.

As of this writing KLIPS is incapable of handling IP packets with a header
size greater than 24 bytes as in the case of IGMP. We modify this
behavior to allow the latter to go through

We also note that it is not possible to have an inbound and outbound SA for
a given multicast address. This is because for both cases, the
destination address and the SPI remain the same. We do not know the
sender beforehand and so cannot remove the SA ambiguity using the
source address. Hence we install only an outbound SA. The incoming
packets use this same SA in order to decrypt packets sent to this
multicast address

In order to allow any side to be able to find the SA for a multicast packet uniquely,
each node now uses the common group SPI as both the sending as well as the
receiving SPI. Multicast SAs defined in this manner are always bi-directional which,
intuitively, seems to be perfectly reasonable.

2.2.2.6 Integrating the keying framework for multicast groups

An important issue in secure multicasts is that of member revocation. We use the
LKH approach in our prototype implementation for multicast group member
revocation. We decide to use this approach as against other methods with the
reasoning that other implementations are simply variants of this basic approach.
Building the basic approach helps us to understand and incorporate any newer
approaches much more easily.
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We note the following important property of the hierarchical tree - all the members
are located at the leaf.  Hence we construct the hierarchical tree as a B+ tree. We
however do not link the leaves as we would normally do in a B+ tree simply
because it serves us no useful purpose in the context of our implementation.

Nodes are added by comparing an “index” with the “current” node-index and
traversing the tree based on the comparison result.  The index would be a value
that uniquely defines the host or any member value. We could think of maintaining
this index as an IP address type, but in order to leave our implementation more
generic we define this value as a character string.

Each node within in the B+ tree has the following contents:

A value specifying the number of entries in that particular node

The node key and its length

An array of values corresponding to every index maintained by this node

A shared key associated with each node in case this node is a leaf

An flag indicating whether the latest keying information for this node has
been sent out

Pointers to the child-trees

The KSV defines a multicast group, which it uses to send key update messages to all
members defined within one of its groups. This address is either known beforehand
to each of the clients or is sent as part of the first register message sent by the KSV.
In our implementation we have this value well known by all the clients. Clients that
lie in the trusted set of a particular KSV need to bind itself to this group in order to
receive the key update messages sent by its KSV. We however need to take care of a
few issues.

There needs to be some way for the server to inform the clients about the key it is
using to encrypt the current key-update message. A level indicator can identify this
value – however there can be multiple nodes at the same level and hence each with
the same level-indicator. For example in Figure 23, both keys 12 and 34 have a
level-indicator as 2 (considering the root as level 0). In order to remove this
ambiguity, we define a new method for identifying the encrypting key.
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Figure 23 illustrates generating group member IDs.

We define a new ID for each member within a group by encoding the branch
indices as an integer value, taken, in order to traverse the hierarchical tree from the
root to this member. Hence the ID corresponding to node 192.168.1.1 in Figure 23
is “X100” while the ID for node 192.168.5.0 is “X110”. The leading “X” identifies
the particular group in the list of all the groups maintained by this KSV. Intermediate
key IDs are simply subsets of the leaf IDs – hence to denote the parent node of
indexes 192.168.1.1 and 192.168.1.2 we simply specify its ID as “X10”. These ID
values and their associated lengths are sent in the node registration message
(Figure 18) in order to identify a group member completely.

We note that having long IDs could potentially lead to too many bytes being
consumed just for defining the ID field. We optimize this slightly by defining each
index as a byte instead of an integer, in effect limiting the maximum allowable order
for the B+ tree. This seems to be a reasonable balance because bytes themselves
have a range of 256 values and our B+ tree is not expected to be of such large
orders in any case.

In order to use the multicast key update channel reliably, every message that is sent
by the KSV needs to be signed. We see that this is true because using shared key
approaches, it is always possible for a node containing the shared key to spoof
messages from the KSV and hence confuse any revocation attempt by the KSV.

We summarize the protocol for multicast group member revocation using the
update channel.
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Figure 24 shows the multi-cast key-update message format.

Nodes that are defined to be a part of the KSV’s trusted set are allowed to register
with it. During this registration process, the KSV hands out the IDs corresponding to
every group that this node belongs to. A client maintains its ID information for every
server it has registered with and for every group it belongs to. In case it finds itself
configured by two different KSVs as belonging to the same multicast address, it
sends a SERVER_CONFLICT message to each of those servers.

Whenever the hierarchical tree at the KSV changes, an update message (Figure 24)
is sent. The receiving node is able to identify without any cryptographic procedures
if the update message belongs to it by simply checking the ID in the received
message. Update messages that do not contain a valid signature are ignored and a
SIGN_FAILED alarm (Section 2.2.2.2) is sent back to the KSV. In order for the group
update process to work reliably we need some guarantees from the multicast
channel itself. The algorithm will work incorrectly if packets are lost in the multicast
channel. We however treat this issue as one inherent of multicast communication
and beyond the scope of our problem.

Adding a new member to a multicast group can be a very costly process in this
approach. This is because, in order to keep the B+ tree balanced, ID values of
different nodes may change when a new member is added. New ID values for all
affected nodes then need to be sent separately using register messages. It may be
possible to optimize this process by delaying additions to the B+ tree until the next
delete operation but we do not explore this option further.

2.2.2.7 Integrating DNSSEC

We use the BIND 9.1 implementation for providing DNSSEC services. The
operations needed to set up the Secure DNS server are detailed in Appendix B. In
this section we describe how we integrate the liblwres library for invoking DNSSEC
services from our DNSSEC server.
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The lwresd program provided in the BIND distribution, is a daemon for lightweight
DNS resolvers. This daemon provides name lookup services to clients that use the
liblwres library. It is essentially a stripped-down, caching only name server that
answers queries using the BIND 9 lightweight resolver protocol rather than the
DNS protocol. Incoming lightweight resolver requests are decoded by lwresd,
which then resolves them using the DNS protocol. When the DNS lookup
completes, lwresd encodes the answers from the name servers in the lightweight
resolver format and returns them to the client that made the original request.

The liblwres library provides an API “lwres_getrrsetbyname( )” in order to get a set
of resource records associated with a hostname, class and type. After a successful
call to this function, a list of resource records and potentially another list containing
SIG resource records are filled up. The lwres daemon automatically checks these
signatures for validity and indicates success or failure by setting or clearing the
RRSET_VALIDATE flag respectively.

Using the “lwres_getrrsetbyname( )” API, the KSV as well as nodes belonging to its
trusted set are able to query for public key RRs and know if they are authentic
simply by testing the RRSET_VALIDATED flag. These public keys can then be used
to authenticate messages during the IKE phase-1 exchange or in the multicast key-
update channel.

2.2.2.8 Integrating the packet filter

This security framework defined in its present form yet has a serious problem –
spoofing is still very easily possible. To see how this is possible we again allude to
the Freeswan IPSec implementation.
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up_host:
        ipchains -A input -d $PLUTO_MY_CLIENT  -s
$PLUTO_PEER_CLIENT_NET -p 50 -j ACCEPT
        ipchains -A input -d $PLUTO_MY_CLIENT  -s
$PLUTO_PEER_CLIENT_NET -p 51 -j ACCEPT
       ipchains -A input -d $PLUTO_MY_CLIENT -s
$PLUTO_PEER_CLIENT_NET -p icmp -j ACCEPT
        ipchains -A input -d $PLUTO_MY_CLIENT  -s
$PLUTO_PEER_CLIENT_NET -i ! $PLUTO_INTERFACE  -j DENY

down_host:
        ipchains -D input -d $PLUTO_MY_CLIENT  -s
$PLUTO_PEER_CLIENT_NET -p 50 -j ACCEPT
        ipchains -D input -$PLUTO_MY_CLIENT  -s
$PLUTO_PEER_CLIENT_NET -p 51 -j ACCEPT
       ipchains -D input -d $PLUTO_MY_CLIENT -s
$PLUTO_PEER_CLIENT_NET -p icmp -j ACCEPT
        ipchains -D input -d $PLUTO_MY_CLIENT  -s
$PLUTO_PEER_CLIENT_NET –i ! $PLUTO_INTERFACE -j DENY

Figure 25 lists the ipchains rules for enforcing inbound policy.

The sending end of a Security Association ensures that packets that are sent are
afforded all the necessary transforms. At the receiver end, packets with the correct
transforms, using the correct keys are accepted, while those failing this step are
considered to be bad. There is nothing however, which checks if the sender has
simply abstained from IPSec processing altogether. The sender or any third party
can change the source address on the packet without adding any IPSec headers
and the receiver would just go ahead and treat this as a normal packet. This
problem arises basically due to the lack of an inbound policy check in the
Freeswan implementation. We can however provide an external policy check using
a simple packet filter such as IPChains.

The pluto implementation has a mechanism whereby system commands can be
executed as soon as the connection from or to a particular host comes up or goes
down. This interface which is actually a script file provides a very easy way to set
the packet filter rules at the appropriate places. Using IPChains the script would
have the format as shown in Figure 25. The –d option specifies the destination while
-s specifies the source. These values are passed as arguments to the script. The
values - 50 and 51 in Figure 25, signify the ESP and AH protocols respectively while
the –j options specifies the action to be taken when such a packet is received. The
above rules state that when a connection comes up for this source and destination,
only the packets containing either an ESP or an AH protocol header should be
accepted. This rule is rescinded as soon as the connection goes down.
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2.2.2.9 This framework and the ABONE Hop-By-Hop Security Architecture

The fundamental difference between our prototype and the ABONE Hop-by-Hop
framework is that while we define security services at the network layer, the latter
defines all the security services at the ANEP layer. We summarize a few differences
between the two approaches in Table 5.

The Keying Server Prototype ABONE Hop-by-Hop framework

Defines Security Associations in the
Network Layer

Defines Security Associations in the
ANEP layer

Identifies the SA using the receiver IP
address and the SPI

Identifies the SA using the sending
interface and the key identifier

Uses existing sequence numbering
and replay protection within the IPSec
implementation

Needs to define this separately since
replay protection is done at the ANEP
layer

Do not have a clear picture of the
active packet’s message boundaries

Clearly knows the message
boundaries, hence can perform
services such as non-repudiation more
effectively

Need to secure every packet from the
source to the destination irrespective of
whether it is an ANEP packet or no

Can be more efficient in terms of speed
because ANEP packets as opposed to
individual IP packets are being
secured

Defines a key management protocol to
distribute authentication keys among
peering nodes

No such protocol has been defined in
this framework as yet although key
management interfaces have been
defined

Table 5 lists a comparison between the Keying Server and the ABONE
Hop-by-Hop security frameworks.
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2.2.3 Defining a secure topology

In order to use pluto as a keying server, we need to run the daemon as follows:

pluto --keyserver <config file>

The configuration file is used to set up the keying server using the trusted set given
in the configuration file.

2.2.3.1 Configuration file Grammar

We specify the grammar for the configuration file used while running pluto as a
keying server using Backus-Naur Form notation.

/* The configuration File consists of three sections – Policy,
Group and Link */

<Conf_File>:: <Policy_Section> <Group_Section> <Link_Section>
 | <Group_Section> <Link_Section>
 | <Policy_Section> <Group_Section>
 | <Policy_Section> <Link_Section>
 | <Group_Section>
 | <Link_Section>;

/* Specification for the Policy Section */

<Policy_Section>:: <Policy>
 |  <Policy_Section> <Policy>;

<Policy>:: “POLICY” <Policy_Name> <Policy_List> “END_POLICY”;

<Policy_List>:: <Policy_Element>
 | <Policy_List> <Policy_Element>;

 <Policy_Element>:: "LIFE-SEC="{Decimal number of at least one
digit}
 |"LIFE-KBYTE="{ Decimal number of at least one digit}
 | "TRANS-TYPE=” “AH | ESP”;

/* Specification for the Group Section */

<Group_Section>:: <Group>
 | <Group_Section> <Group>;

<Group>:: “GRP” <Mcast_Addr> “,” “POLICY=” <Policy_Name> “MEMBERS”
<Member_List> “END_GRP”;
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<Member_List>:: <Member_Addr>
| <Member_List> <Member_Addr>;

<Mcast_Addr>:: <Valid_Name>;
<Member_Addr>:: <Valid_Name>;

/* Specification for the Link Section */

<Link_Section>:: <Link_Set>
| <Link_Section> <Link_Set>;

<Link_Set>:: “LINK” <Link_List> “END_LINK”;

<Link_List>:: <Link>
| <Link_List> <Link>;

<Link>:: <Source> <Link_Type> <Destination> “,” “KEY=”
<Key_String> “,” “POLICY=” <Policy_Name>;

<Link_Type>:: “=>” | “Û”; /* directionality of the link */

<Key_String>:: {Key_Len} “:” {base 64 encoding of the key}| {hex
encoding of the key}| {text value of the key};

<Key_Len>:: { One or more digits;}
<Source>:: <Valid_Name>
<Destination>:: <Valid_Name>
<Policy_Name>:: <Valid_Name>;

<Valid_Name>:: {Any valid IP address OR Any string starting with
a-z, A-Z followed by any number of a-z, A-Z, 0-9, minus or period
characters};

2.2.3.2 Setting up a sample secure topology
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Figure 26 illustrates overlaying a secure topology on Ethernet.

Consider the Ethernet shown in Figure 26. Since Ethernet has a shared bus
topology, a packet sent from testnode1 to testnode2 above would be broadcast to
all other nodes on the same segment. Suppose we wish to overlay a secure
topology over Ethernet in the following manner:

Any packet sent from testnode1 to testnode3 and from testnode3 to
testnode4 should be authenticated in both directions

Any packet sent from testnode1 to testnode2 should be authenticated while
packets from testnode2 to testnode1 should be encrypted.

Any packet sent from testnode3 to testnode6 should be authenticated but
there should be no security processing in the reverse direction.

testnode2, testnode3 and testnode5 should send authenticated data when
communicating on the multicast group 224.0.1.5

Such a topology can be easily defined using the configuration file shown in Figure
27.

POLICY auth
    TRANS-TYPE=AH
    LIFE-SEC=100
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    LIFE-KBYTE=10000
END_POLICY
POLICY enc
TRANS-TYPE=ESP
    LIFE-SEC=100
    LIFE-KBYTE=10000
END_POLICY
GRP 224.0.1.5, POLICY=auth
MEMBERS
    testnode2
    testnode3
    testnode5
    testnode6
 END_GRP
LINK
        testnode1 <=> testnode3, KEY=0:0, POLICY=auth
        testnode3 <=> testnode4, KEY=0:0, POLICY=auth
        testnode1 => testnode2, KEY=0:0, POLICY=auth
        testnode2 => testnode1, KEY=0:0, POLICY=enc
        testnode3 => testnode6, KEY=0:0, POLICY=auth
END_LINK

Figure 27 lists a policy specifying a secure topology.

2.2.3.3 Configuration Commands

We provide various commands in order to interact with the Keying Server and
define the secure topology. Before performing any of these commands, the keying
server and clients should be started using the following commands respectively:

pluto --keyserver <config file>
pluto --keyclient

We integrate configuration management with “whack” [FreeSwan] as specified in
Section 2.2.3.3. Hence our configuration commands have similar syntax as that of
the native whack commands. We define the following commands for managing the
keying server:

whack  --showconf

Since the configuration at the Keying Server is dynamic due to various links being
added and deleted, we provide a mechanism to query the Keying server for its
current configuration.

whack --keyinit-here <my-ip> --keyinit-there <peer-ip>

This command initiates the IKE key exchange between the nodes specified as <my-
ip> and <peer-ip>. This command can be initiated by either the keying server or the
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client. This is so because there is no guarantee of which one out of the server and
the client will come up first. The client could execute this command directly on
startup or we could alternatively imagine the server doing this step if it has restarted
with a new configuration file for example.

whack --add-link <server-ip> --host <source> --dir < uni | bidir >
--host <dest> [--policy <policyname>]  [--keymat <keylen:key>]

This command creates a new link from <source> to <dest>. Specifying the direction
as “bidir” creates a symmetric pair of SAs. In case no policy is specified, the link will
use the default policy. The key manager can manually specify the key material used
for this link; in case keylen is 0, a key for the link is automatically created.

whack --delete-link <server-ip> --host <source> --dir < uni |
bidir >  --host <dest>

This command is used to delete an existing link between <source> and <dest>. The
exact link specification has to be described. Thus, specifying “bidir” does not delete
two links created using “uni”.

whack --add-group <server-ip> [[--host <group-member> --to] --host
<group-addr>]  [--policy <policy-name>]  [--keymat <keylen:key>]

This command can be used either to create a new multicast group or to add a
member to an existing group. <group-addr> specifies the group multicast address.

whack --delete-group <server-ip> [[--host <group-member> --to] --
host <group-addr>]

Using this command we can delete existing members from a group or delete the
entire group itself if it is empty. As before, group-addr specifies the group multicast
address.

whack --refresh --host <server-ip> --to --host <client-ip>

At Keying Server may at any time send all keying-information pertinent to a
particular client. This may be necessary when, for example, this client has missed
any keying updates on the multicast channel. This command can then provide
synchronization between the Keying Server and the affected client.

2.2.4 Testing and Evaluation
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Figure 28 illustrates the security framework test configuration.

We use the topology shown in Figure 28 to test our Keying Server implementation.
Each node in our topology is a 533 MHz Pentium III machine and is connected to
100Mbps Ethernet. We can define such a topology using the configuration file
given in Figure 29 below:

POLICY auth
    TRANS-TYPE=AH
    LIFE-SEC=28800
    LIFE-KBYTE=86400
END_POLICY

POLICY enc
    TRANS-TYPE=ESP
    LIFE-SEC=28800
    LIFE-KBYTE=86400
END_POLICY
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GRP 224.0.0.5, POLICY=default
MEMBERS
    testnode3
    testnode5
    testnode6
END_GRP

LINK
        testnode1<=>testnode2, KEY=0:0, POLICY=enc
        testnode4<=>testnode2, KEY=0:0, POLICY=enc
        testnode2<=>testnode3, KEY=0:0, POLICY=auth
        testnode3<=>testnode5, KEY=0:0, POLICY=auth
        testnode3<=>testnode6, KEY=0:0, POLICY=auth
        testnode5<=>testnode6, KEY=0:0, POLICY=auth
        testnode6=>testnode7, KEY=0:0, POLICY=enc
        testnode7=>testnode6, KEY=0:0, POLICY=auth
        testnode5<=>testnode9, KEY=0:0, POLICY=auth
        testnode9<=>testnode10, KEY=0:0, POLICY=enc
END_LINK

Figure 29 lists the configuration file for the test topology.

We divide the testing process into two parts:

Functionality Testing: To ensure that all our SAs have been set-up correctly

Timing Evaluation: Which places some of our results in perspective

2.2.4.1 Testing for Functionality

We observe the behavior of the DNSSEC authentication framework after inserting
an unsigned KEY-Resource-Record corresponding to testnode5 in the DNS server
(testnode0).

In this case, the IKE set-up process between the KSV and testnode5 fails with the
following message: "Could not authenticate response from DNS server". A similar
test with an incorrect SIG record also produces similar results. Hence we conclude
that the DNSSEC framework has been set-up correctly.

Testnode6 # ipsec eroute
129.237.126.216/32 -> 129.237.126.213/32 =>
ah0xe69ad84f@129.237.126.213
129.237.126.216/32 -> 129.237.126.215/32 =>
ah0xe69ad84f@129.237.126.215
129.237.126.216/32 -> 129.237.126.217/32 =>
esp0xe69ad84f@129.237.126.217
129.237.126.216/32 -> 224.0.0.5/32       => ah0xe69ad84c@224.0.0.5
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testnode6 # ipsec spi
ah0xe69ad85d@129.237.126.216 AH_HMAC_SHA1: dir=in
src=129.237.126.217 ooowin=64 alen=160 aklen=160
life(c,s,h)=add(8,0,0)
esp0xe69ad84f@129.237.126.217 ESP_3DES: dir=out
src=129.237.126.216 iv_bits=64bits iv=0x2529fcbc1469c51f ooowin=64
eklen=192 life(c,s,h)=add(8,0,0)
ah0xe69ad84e@129.237.126.216 AH_HMAC_SHA1: dir=in
src=129.237.126.215 ooowin=64 alen=160 aklen=160
life(c,s,h)=add(8,0,0)
ah0xe69ad84d@129.237.126.216 AH_HMAC_SHA1: dir=in
src=129.237.126.213 ooowin=64 alen=160 aklen=160
life(c,s,h)=add(8,0,0)
ah0xe69ad84f@129.237.126.215 AH_HMAC_SHA1: dir=out
src=129.237.126.216 ooowin=64 alen=160 aklen=160
life(c,s,h)=add(8,0,0)
ah0xe69ad84f@129.237.126.213 AH_HMAC_SHA1: dir=out
src=129.237.126.216 ooowin=64 alen=160 aklen=160
life(c,s,h)=add(8,0,0)
ah0xe69ad84c@224.0.0.5 AH_HMAC_SHA1: dir=out src=129.237.126.216
alen=160 aklen=160 life(c,s,h)=add(9,0,0)

Figure 30 lists the ipsec eroute and ipsec spi command results.

We define a “correctly setup” Security Association as one in which peers are able to
reach one another after applying the proper IPSec transforms. We trust the verity of
the underlying IPSec implementation with respect to providing us with the correct
AH and ESP transformations. Thus, simply knowing that packets arrive with the
proper encapsulation is sufficient for us to determine that the SAs have been set up
correctly. The commands “ipsec eroute” and “ipsec spi” can be used to observe the
different Security Associations that have been set up. The results after executing the
above commands on testnode6 are shown in Figure 30.

 “ipsec eroute” shows us that IPSec processing must be done for packets
destined to testnode3, testnode5, testnode7 and the multicast address.
Each eroute also points to a corresponding SA in the SADB.

“ipsec spi” displays the contents of the SADB. The fields displayed for a
particular Security Association are as follows:

The SA identifier
The protocol used for the IPSec transformation
The directionality of the SA – inbound or outbound
The source with which to associate this SA with
The Replay window size
Initialization Vectors in the case of ESP
Authentication or encryption key length
Lifetime set for this Security Association
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Thus in order to send a packet to testnode5 (129.237.126.215) for example,
testnode6 performs the AH transform using the SA
ah0xe69ad84f@129.237.126.215. The entry for this SA in the SADB confirms AH
processing using the HMAC-SHA1 algorithm with a key-size of 20 bytes.

We check connectivity between the hosts Testnode6 and Testnode5 by performing
simple application-level “ping” tests. We simultaneously check if the packet at the
other end was received with the proper encapsulation by inserting the logging
option, “-l”, in an appropriate filter rule. We log all our results in /var/log/kern.log.

In our test scenario, packets are logged when any of the following conditions are
met:

ACCEPT: A packet from testnode6 has either of the AH or ESP in the
transport protocol field

DENY: A packet from testnode6 does not have the above transforms

If any log entry corresponding to rule 2 shows up, it means that some IPSec
transformations was not applied correctly.

testnode5# tail –f  /var/log/kern.log
Jun  3 20:42:44 testnode5 kernel: Packet log: input ACCEPT eth0
PROTO=51 129.237.126.216:65535 129.237.126.215:65535 L=108 S=0x00
I=13789 F=0x0000 T=64 (#1)
Jun  3 20:42:45 testnode5 kernel: Packet log: input ACCEPT eth0
PROTO=51 129.237.126.216:65535 129.237.126.215:65535 L=108 S=0x00
I=13791 F=0x0000 T=64 (#1)

Figure 31 lists packet filter logs.

The absence of DENY entries in Figure 31 above, confirms that packets sent from
testnode6 to testnode5 have the proper IPSec-AH encapsulation. Testing other links
in a similar manner assures us of the fact that all the Security Associations have
been set up accurately.

Multicasting, at the time of this writing suffers from a curious problem. We tried
testing multicast using a simple reader-writer application on a multicast address.
While security associations set up correctly, packets were still not detected at the
readers. One observation we made was that the IGMP join messages themselves
were not being sent out of the readers, which led us to believe that there was some
filtering happening at the Ethernet layer. This suggested that packets routed
through an “eroute” causes this behavior. We could not confirm this fact however.
We supply a temporary fix at this stage by modifying the Ethernet driver code to
accept all multicast packets seen on the Ethernet bus. The readers and writers now
function as expected.

We also check the operation of our LKH implementation as given below.
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Figure 32 illustrates a LKH tree for our sample secure topology.

We first add testnode4 to our multicast group using the command:

testnode5# whack  --add-group 129.237.126.218 --host
129.237.126.214 --to --host 224.0.0.5

Our LKH tree now has the form shown in Figure 32. We observe the key-update
behavior using LKH by revoking testnode5 from our multicast group:

testnode5# whack  --delete-group 129.237.126.218 --host
129.237.126.215 --to --host 224.0.0.5

The following key updates can be detected:

An update message with ID = 111 corresponding to keys K56’ and K0’
encrypted using the key K6

An update message with an ID = 10 corresponding to key K0’ encrypted
using the key K34

This observation agrees well with the requirements of the LKH mechanism.

2.2.4.2 Summary and Timing Evaluation

From our tests in Section 2.2.4.1 we have verified and demonstrated the following:

Correct operation of the DNSSEC authentication framework

Our ability to successfully set-up and configure node-to-node security
associations using a keying server.

Correct operation of the multicast key update channel during a member
revocation.
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DNSSEC processing typically takes about 2.5ms on average. In order to investigate
the latency imposed by IPSec encapsulation, we run a simple application-level
“ping” and examine the round-trip overhead. Expectedly, IPSec processing
introduces a significant overhead. While the average RT-time between two nodes
without a Security Association between them is 0.58 ms, the same, using either
IPSec ESP or AH processing is 1.2 ms.

A more interesting problem, however, is comparing the time taken for explicit
keying between every KSV-client pair and hierarchical keying using the LKH
mechanism whenever a member is revoked. We perform this test as follows:

Configure a multicast group containing all our testnodes except the DNS
server and our Keying Server

Register every node with the KSV so as to maximize the number of keys we
may have to send during a re-key

Remove all our nodes from the multicast group beginning from testnode10
incrementally so as to trigger any keying updates on our multicast
channel

Perform the same operation this time using individual KSV-client re-keys for
every node currently registered at the KSV

Repeat steps 1 through 4 for different orders of the LKH tree

Table 6 and Figure 33summarize our comparison results for explicit keying (EK)
and hierarchical keying using the LKH approach.

Revoke this testnode

=>

10 9 7 6 5 4 3 2 1

EK 4.4 3.8 3.3 2.8 2.3 1.7 1.2 .6 -
Order = 1

LKH 236.2 235.3 158.1 157.0 89.6 166.1 78.5 78.6 -

EK 4.4 3.8 3.2 2.7 2.2 1.7 1.1 .6 -
Order = 2

LKH 336.5 235.6 157.0 235.3 156.9 78.5 156.8 85.3 -

EK 4.4 3.9 3.2 2.7 2.2 1.7 1.1 .6 -
Order = 3

LKH 414.5 314.0 235.2 163.1 90.0 244.9 164.0 78.5 -

Table 6 Time in ms taken for Explicit (EK) and LKH keying for different
Orders of the LKH tree
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Figure 33 shows a comparison between Explicit Keying and LKH for
multicast member revocation.

To investigate the behavior of the LKH approach, we need to see how the LKH trees
are created in the first place. Figure 34 depicts this information.

We observe that the timing behavior for the LKH trees directly depends on the
number of public-key operations required to be performed during the revocation
process. Thus for the LKH tree with order=1, the number of public-key operations
required when testnode10 is revoked is 3 – one for every sibling node - (5,6) and
(7,9), and one for the adjacent branch. Revocation of testnode9 also has the same
number of public-key operations – one for testnode7, one for its sibling node –
(5,6) and finally one for the adjacent branch.
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Figure 34 illustrates a LKH tree for tree orders of 1, 2, and 3.

This result is interesting because it tells us that simply increasing the order of the
LKH tree does not necessarily improve the key-update time. On an average, the
update time increases because there are more number of key transmissions
required for larger orders. Even though a broader LKH tree requires a lesser number
of keying updates across branches for propagating key revocations, the delay
overhead caused by sending an update for every sibling in the current node is
significant.

Finally, we observe that the LKH mechanism is more than an order of magnitude
slower than its explicit key-exchange counterpart due to the expensive public key
operations required in its implementation.

In summary, it is clear that for small number of nodes the advantage of the LKH
algorithm is amortized by the overhead of the public key operations required in its
implementation. Explicit keying for every peer also does not scale well and
becomes comparable to the LKH mechanism as the number of nodes increase.  An
interesting future enhancement could be combining Explicit Keying with the LKH
approach in order to reduce the overall latency during group member revocation.
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Task 2: Innovative Active Networking Services

We believe that active networking capabilities fundamentally changes the dynamics
of network protocol design and implementation.  In traditional networks, relatively
few protocols are available.  These protocols must be widely accepted and
therefore general to satisfy a wide range of demands.  These protocols are
implemented and maintained by a few specialized engineers with a strong
emphasis on performance.

Active networking should allow a much wider community of users to design and
implement protocols that are specialized for specific application demands and/or
expected traffic patterns.  To realize this potential, however, the environment for
designing and implementing network protocols must change dramatically.  We
have identified several necessary features of this environment:

1. Safety and correctness.  With many users deploying network protocols on
shared resources, these key features of network protocols take on even
greater importance.  The user wants to deploy his/her protocol quickly,
without requiring extensive testing in an isolated test environment. He/she
may not have access to adequate test environments, and certainly does not
want to expend this additional time and effort.  Since network protocols
operate on shared hardware there will be very grave concerns among the
non-users of newly deployed protocols that they do not adversely affect their
usage of these shared resources – either maliciously or unintentionally.

2. Minimize time and effort for implementation.  The benefit of designing a
specialized protocol will be weighed against the effort required for its
implementation.  If an application or environment can make marginal
advantage of a specialized protocol, it will be implemented only if the
required expertise and costs are small, relative to the potential gains.

3. Reusability.  This is almost a corollary of the previous two items, but
sufficiently important to list separately.  Broadly speaking, network protocols
perform a small collection of functions, such as forwarding, filtering, error
checking and/or correction, although there are many alternatives and
variations for each general function.  Very often, new protocols will be a
variation of or specialization of one such function within an existing
protocol stack.  The ability to reuse all components but the one to be
modified has obvious advantages for both correctness and minimization of
effort.

4. In order to implement new network services, protocol definition
environments must provide facilities for the communication among
independently developed and deployed protocols, in order for them to
cooperate and provide the desired service.
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We have designed and implemented an environment for developing composite
protocols that emphasizes the features described above.  The key features of this
environment are:

1. Very fine decomposition.  Each protocol component should perform a
single, well-defined function.  Verification that an individual component is
safe and correct is much more tractable when the component is small and
performs a single function.  Additionally, a designer is able to maximize the
usage of pre-existing, and tested components when they are defined at a fine
level of granularity.

2. Each protocol component has a uniform external interface.  Therefore,
components can be physically connected in arbitrary order.  There may be
semantic dependencies that restrict connectivity to create valid protocol
stacks, but these dependencies are explicitly expressed elsewhere.  This also
allows designers of individual components to work independently without
agreeing on interface issues. This uniform interface is realized by providing
other formal mechanisms to describe and implement inter-component
communication rather than the traditional parametric interface.

3. A unique component composition operator is implemented in the
framework.

4. Each protocol component is defined abstractly via a finite state machine and
a set of memory dependencies.  This abstract definition is amenable to
formal analysis to detect inconsistencies and verify and specific functionality
is accomplished.  The actual implementation is automatically derived from
the abstract definition.

5. Every external dependency of a protocol component is explicitly identified
via a memory dependence.  Making external dependencies explicit allows
us to identify inconsistencies in network protocol definitions.  It encourages
component designers to minimize these dependencies.  Finally, this focuses
attention on the most likely areas for protocol errors – non-local interactions.

Technical details on the system are presented below and in the technical report,
"Design and Implementation of Composite Protocols," (ITTC-FY2003-TR-19740-05)
and [Minden2002].

2.3 Introduction

Active Networking anticipates an environment with rapid proliferation of new
network protocols. Application-specific protocols can be injected into the network
in advance of application data. In such an environment, it is no longer necessary to
achieve global agreement on protocol details and wait for the acceptance and
implementation of the protocol throughout the network, but one is enabled to
quickly design, test, and deploy innovative protocols and network services. This
encourages the development of a variety of specialized protocols by a wide range
of programmers, rather than a few specialized protocol designers.
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This environment places greater demands on ensuring the correctness of the
protocols deployed. A faulty protocol used by a single application may have wide
effect on the network infrastructure.

Our work addresses both of these issues, a methodology to more quickly design
and implement a new protocol and at the same time provide increased assurance
that the new protocol will have no negative impact on the network. We propose to
define network protocols through the composition of simpler, reusable
components, which are formally specified.

Partitioning a problem into smaller units, at least some of which can be reused, was
one of the first techniques employed for software development, and as such, is not
a new idea. However, it has typically not been used in the traditional
implementation of network protocols. There are two dominant reasons for this:

1. Performance has always been of critical concern for protocol
implementations. Clever programming tricks that could save a few
instruction cycles and/or bytes of memory have been very highly valued.

2. Relatively few protocols have been implemented, and once implemented
change very slowly over time. Therefore, reusability and ease of modification
have been of relatively lower importance.

We believe that active networking significantly changes these priorities.
Performance will remain an important issue, but correctness will become the most
critical concern. We anticipate the development of a wide variety of protocols with
only minor adaptations or specializations from existing protocols for specific
applications. The ability to reuse the common components will significantly reduce
the time and effort needed to develop specialized protocols, and will reduce the
effort required to demonstrate correctness. A variety of other researchers agree and
there is a growing body of research in the area of composite protocols.

2.3.1 Structure of Protocols and Services

Protocols are the major building blocks of network and distributed systems.
However, rigorous definition of what constitutes a protocol is rare.  Generally,
protocols are described as having some mutually agreed upon set of messages and
used to exchange information between peers.  We first seek a definition of protocol
that is: (a) sufficient to recognize a protocol when you see one, (b) suitable for rapid
definition of (simple) protocols for implementation and experimentation, (c) suitable
for machine manipulation, e.g. formal methods, and (d) allows extensions to more
exotic formalisms.  We provide such a definition for a protocol component in
Section 2.3.2.

In our architecture, protocol components implement simple communications
functions that are easily reused.  Example functions are in-order delivery, reliable
delivery, and message integrity. Protocol components are composed into
protocols. Composition can take many forms. In our current implementation,
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protocol components are linearly connected. Protocols, i.e. a linear collection of
protocol components, are what we normally deal with in networks and distributed
systems.  Primary examples are the Internet Protocol (IP), the Transmission Control
Protocol (TCP), and Real-Time Protocol (RTP) among many others.  Protocols can
be collected into larger configurations to provide a network service. The
implementation of a network services requires the implementation and deployment
of two or more protocols. An example of a network service is multicast which
requires protocols to join and leave a multicast group, a (possible) reliable delivery
protocol, a routing protocol to link multicast servers, and a tunneling protocol to
communicate between servers.

The remainder of this section focuses on the definition of protocol components and
a straightforward method of composing protocol components into a protocol.  The
composition is called a protocol stack.

2.3.2 Essential Elements of a Protocol Component

We think of protocol components as layers in a protocol stack, similar to traditional
networking layers, but at a much finer detail. On transmission, packets are accepted
from a higher layer, operated upon, and sent to a lower layer. On reception,
packets are accepted from a lower layer, operated upon, and sent to a higher layer.
Further, protocol components transfer information between a local protocol
component and remote peer protocol component over a communications channel.
A formal definition of the communications channel is outside the scope of this
paper.

A protocol component has the following elements:

1. Two finite state machines, one for transmission and one for reception,

2. A set of local functions,

3. A local memory, and

4. A set of properties.

The tokens are used to communicate state transition information from one end of
the communication channel to the remote end of the communication channel. The
best example of a token set is the TCP set containing SYN, ACK, and FIN. The most
common, and many times explicit, token is ‘PacketArrival’.

The finite state machines implement an orderly control sequence of messages and
actions. In our current implementation we use augmented finite state machines to
minimize the state space and facilitate formal analysis. The augmented structure
supports an input token and guard expression on each machine transition. The
augmented finite state machine is described below.



The University of Kansas /ITTC 63 Innovative Active Networking Services

The local memory is used for temporary storage by the protocol component. One
can think of the transmission buffers necessary for reliable delivery or the receive
buffers required for in-order delivery.

The local functions operate on the local memory, packet contents, and cause the
packet to transit up or down the stack.

The set of properties describe important attributes and requirements of the protocol
components.  Examples are ‘Provides in-order delivery,’ ‘Provides message
integrity,’ or ‘Requires reliable delivery.’ These properties can be used to insure a
particular composition of protocol components meets a global objective.

In addition, protocol components exchange information with other protocol
components in the protocol stack, with global memory (used to communicate
between protocols), and with a peer protocol component at the remote end of the
communications channel.  The interaction of these elements is described below.

2.3.2.1 Augmented State Machine Model

The augmented state machine model [Gurevich2000], which we use, consists of a
finite set of states with a finite set of transitions from one state to another. We define
the augmented state machine by transitions. Each transition is defined by the
current-state, the next-state, an event, a guard-expression, an action function and a
local-memory update.

1. Events trigger a transition from one state to another.

2. Guard expressions are Boolean expressions that conditionalize the transition
from one state to another. A transition can only be activated by its
corresponding event if the guard expression evaluates to true.

3. Action functions describe the response of the protocol component to the
associated event. Action functions typically would consist of executing
defined framework functions. Action functions should be limited to simple
sequences of non-branching statements through proper use of guard
expressions, synchronous transitions, and synchronous states.

4. The local memory update function modifies the component's local state after
the execution of the action function.

The state machine may have synchronous states and transitions. A synchronous
transition is one which does not have any event associated with it and is selected
based solely on its guard expression. A state is said to be synchronous if all of its
outgoing transitions are synchronous. Synchronous transitions are used to
sequence actions within a protocol component.
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2.3.2.1.1 State Machine Execution

The execution of a state machine is as follows. For any given non-synchronous
state, the state machine changes its state only in response to an event. When an
event occurs, a single transition (from the set of all outgoing transitions) is activated.
The action function is executed, the local-memory is updated, and the next state is
entered.

To determine the transition to be activated from the set of all transitions, first the
transitions for which the event does not match are filtered out. Next, the guard
expressions for each of the remaining transitions are evaluated. One and only one
of these guard expressions must evaluate to true and the rest must evaluate to false.
If none of the guard expressions are true, then we have an error condition of the
finite state machine remaining in the same state. If more than one of the guards
evaluates to true, then we have an ambiguous transition error condition. Because
the guards are Boolean expressions, an algorithm can determine that one and only
one transition is activated for each event.

A synchronous state transition occurs when all outgoing transitions are
synchronous. In this case, all the outgoing transitions are selected as if they had
matched an event, and their guard statements are evaluated through the same
process as above.

The action function corresponding to the activated transition is executed. This is an
atomic operation, as it is not pre-empted by the occurrence of another event in the
state machine. In actual implementation, an event occurring during the execution
of an action function shall be queued in order and sent to the state machine.

The local memory corresponding to the activated transition is then updated and the
next state is set as the destination of the matching transition.

2.3.2.1.2 Protocol Component use of Augmented Finite State Machines

A protocol component defines two Augmented Finite State Machines (AFSMs): a
Transmit State Machine (TSM) and a Receive State Machine (RSM). Protocol
component initialization defines the initial state of each machine and the initial state
of the local memory.

We currently use two events for our components:

PacketArrival

• PacketArrival (from above) occurs only in the TSM

• PacketArrival (from below) occurs only in the RSM

Timeout events

• Occur only in those SMs in which the corresponding timer was created.
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The designer can define additional events, however we keep the number of events
small to facilitate defining complete AFSMs and automatic checking of the protocol
components and its interactions within the protocol stack. This limited set of event
types does not, however, limit the expressiveness in our augmented state machines.
In addition, to an activation event, each transition is further qualified by a Boolean
guard expression that can refer to fields within the header of the arriving packet.
Therefore, from one state, several distinct and unambiguous transitions may be
defined each triggered by the same event type, using different guard expressions.
This approach does complicate the verification of state machine completeness,
because we must now determine that the set of Boolean guard expressions for the
transitions from a state with the same activation event are both disjoint and
exhaustive (that is, exactly one guard expression evaluates to true for the event).
The approach does allow, however, one to define the complete behavior with a
minimum number of distinct transitions.

2.3.2.2 Action Functions

A transition's action function would typically consist of invoking one of the
following framework functions:

3. PktSend (PktComponentMemory)
Send the packet downwards towards the “network wire” (i.e., the next layer
down, or the network). Occurs after the TSM has received a packet from
above that needs to be sent and has completed its processing in order to
send it. Therefore it can be called only from TSM.

4. PktDeliver ():
Passes the packet upward towards the “application” (i.e., the next layer up,
or the application). Occurs after the RSM has received a packet and has
finished processing it. Therefore it can only be called from the RSM.

5. NewPktSend (PktComponentMemory)
Send a newly created packet downward towards the “network wire.” This
creates a peer-to-peer message. May be called from either the TSM or the
RSM.

6. NewPktDeliver ():
Sends newly created (or re-constructed) protocol information upward
towards the application (e.g., reconstructing a set of fragments). Shall only
be called from RSM.

2.3.2.3 Protocol Memory

In order to complete formal analysis of a component it is critical to identify all
memory that is accessed by the component. In addition, the scope of each memory
accessed must be carefully defined. Memory can be classified into four categories,
based on its accessibility and scope:

1. Component-Local Memory
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2. Stack-Local Packet Memory

3. Global (external) Memory

4. Packet Memory

The diagram in Figure 35 provides a graphic display of the scope of these memory
categories relative to a protocol stack and each protocol component within the
stack. Each category is described in more detail in the following sections.

Figure 35 illustrates the different types of protocol memory and where
they are located within the protocol stack.

2.3.2.3.1 Component-Local Memory

Component-local memory is internal to a protocol component instantiation. It is
accessible only by action functions, the TSM, and RSM of the component. These
memories are separately instantiated at the send and receive. If the protocol
component is part of a duplex protocol (one which transmits information in both
directions between sender and receiver) then the TSM and RSM at each endpoint
share the same component-local memory.

The format and content of this memory is unconstrained for each protocol
component specification. This memory is instantiated with the protocol component
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initialization and extends until the protocol component is closed. All access, read
and write, is strictly limited to a specific component instantiation. Additional
controls for simultaneous memory access are not required for component-local
memory, since access to this memory is restricted to the single component for
which it was instantiated.

An example of component-local memory is the sliding window buffer in the
Reliable Delivery component at the sender to store unacknowledged packets.

2.3.2.3.2 Stack Local Packet Memory

'Stack Local Packet’ (SLP) memory provides a mechanism for components within a
protocol stack to share information. In our design, components invoke other
components by generating events between them. If all protocol components were
completely independent there would be no need for this form of communication.
Unfortunately, for a wide variety of protocols, complete independence is not
possible.

The abstract format of this memory is an association list, or a name-value pairs. The
“name” of each pair identifies an element of the SLP memory, and the second
element is the value of that element. The actual implementation may choose a more
efficient representation. Read access is provided by the framework function,

Value getSLP(Event, name).

Write access is provided by the framework function,

putSLP(Event, name, value).

The extent of this memory is limited to the life of a PacketArrivalEvent within a
protocol stack. These memories are accessible for read and write access throughout
a protocol stack, the collection of protocol components that realize a specific
network protocol.

This describes a memory unit of indefinite form with wide scope, which provides
great flexibility for inter-component communication. The use of getSLP(event,name)
expresses a dependence on another component to provide the named value; but it
places no requirement on the presence of a specific component to provide the
value, nor a specific call interface for the component with the requirement. These
access functions precisely define all inter-component dependencies within a
specific protocol stack. We propose static analysis of composed network protocols
to ensure that for every entity accessing a value in the composed protocol there
exists a value writer. In our initial work we also limit the number of writers to a
single component in the protocol stack. This limitation further improves the results
from formal analysis, but some protocol stacks may find this limitation too
restrictive. Furthermore, if the order of execution of protocol components within a
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composed protocol is fixed, as in our framework, this static analysis can further
verify that the write operation always occurs before any read access.

Additional controls for simultaneous memory access are not required for SLP
memory, in spite of its relatively wide scope, since it is attached to a specific
instance of a PacketArrivalEvent and at any instant of time is within the scope of a
single component.

An example of stack-local packet memory is the source address of a packet which is
set by the forwarding protocol component, perhaps mapping from source address
to port identifier.

2.3.2.3.3 External (Global) Memory

External memory contains information that is shared among separate protocol
stacks. For example, IP routing tables are accessed by routing protocols, such as
RIP or OSPF, IP forwarding protocol components, and management and
monitoring protocols.

This form of memory has arbitrarily wide scope and extent. This makes it extremely
difficult to handle in formal analysis. The format of external memories, access rights,
etc. must be agreed to by the designers of all protocols that share the information.
Furthermore, any modification in this shared memory by one protocol design may
require modifications in all other protocols that share the memory. Details of
mechanisms to coordinate and control global memories are outside the scope of
this paper.

In our design, global memory access is abstracted through a functional interface for
both reading and writing values. The specification of a network component
includes the list of external memory functions it utilizes. These functions make
explicit the dependencies of a protocol component (and any protocol stack which
contains it) on external memory. At the same time, they allow the definition,
maintenance and control of the memory to be completely separated from the
protocol stacks that utilize it. These functions are responsible for resolving
simultaneous access, restricting access rights, etc.

Because the extent of an external memory does not necessarily match the extent of
any specific protocol that accesses it, this memory must be maintained by the node
environment on which the protocols that accesses it execute. External memory must
be instantiated on each node on which one or more of the protocols execute.

An example of an external memory is the IP routing table. An example of an access
function, is nextHopLookup(destAddress).
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2.3.2.3.4 Packet Memory

Finally, a protocol component defines data that it attaches to a packet for
transmission to its peer component at the next-hop or endpoint. This memory
corresponds to the traditional “packet header.” We describe this as “memory”
because it transfers information between non-local entities.

The format and content of this memory is unconstrained for each protocol
component specification, much like the component-local memory. This memory is
instantiated with the protocol component when it transmits a packet, and extends to
the receiving peer protocol component. Access to this memory is strictly limited. It
must be written by the component in the transmitting node and read only by the
component at the receiving node. All intervening components have an opaque
view of this memory as a read-only, linear sequence of bytes. This limited access is
required for encapsulation so that security and error detection/correction
components are able to perform their functions over the user data as well as the
packet memory of other protocol components.

Additional controls for simultaneous memory access are not required for packet
memory, since access to this memory is restricted to the single component for
which it was instantiated.

An example of packet memory is the sequence number attached to a packet in the
Reliable Delivery component.

2.3.2.4 Protocol Component Properties

Protocol components are included in a protocol stack to provide a desired
capability, e.g. reliable communication, addressing, or in-order delivery. We use
the term ‘Property’ to describe the capabilities a protocol component provides,
requires, or maintains.  Properties can be used to select components from a library,
to verify that a protocol stack provides a needed capability, and/or to determine
protocol component inter-dependencies. A component may provide more than
one property, but it is usually desired to keep the number of provided properties
low to provide finer grain components that allow for additional flexibility.

We use three types of properties. The first type states characteristics of the protocol
component. For example, a component might provide an ‘In Order Delivery’
property, or a ‘Reliable Delivery’ property. The second type states characteristics
required of other protocol components.  For example, before routing a packet the
forwarding protocol component may require that the destination address not
contain an error. So, it might require a ‘Destination Address Correct’ property be
provided by a lower protocol component. The third type of property states
invariance of properties.  For example, a protocol component that decrypts packets
maintains the ‘In Order Delivery’ property.
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2.3.2.5 Parameterization

Parameters of a component are the options that can be used to tune the operation
of the component. For example, a reliable delivery component may take the
maximum send buffer size as a parameter. An increase in the send buffer size
allows this component to buffer more messages that have not been acknowledged
yet. Parameter values are distributed to each component at initialization time.

2.3.2.6 Identification of Components

There are several possible methods of identifying useful protocol components, but
one of the best and simplest may be the decomposition of current protocols. We
spent a great deal of effort trying to extract components that made up current
protocols in hopes that we would be able to eventually simulate the original. Some
of the components we considered were checksum, reliable delivery, in-order
delivery, windowing, and fragmentation.

2.3.3 Composition of Protocol Components

Protocol components communicate with peers across a communications channel.
The manner in which the packet memory of one protocol component is collected
with the packet memories of other components is called composition and defined
by a composition operator. The most common composition operator in network
protocol definitions is encapsulation. The encapsulation operator treats the content
of upper protocol layers as a single, undefined entity and carries it as a payload.  A
typical composition sequence is user messages are encapsulated in TCP packets,
which are encapsulated in IP packets, which are encapsulated in Ethernet packets.
While encapsulation is a powerful abstraction and implementation technique, there
are other composition operators and sometimes strict encapsulation is inconvenient
or violated (e.g. TCP checksum assuming certain values for IP header fields).

Besides the encapsulation composition operator, there are at least two other
possible operators.  The first, and simplest, is simple linear accumulation of
protocol component packet memory.  That is, one defines the protocol stack as a
sequence of protocol components.  Each protocol component from top to bottom
on the transmit side adds its packet memory (packet fields) to the beginning of the
packet. On the receiver side packet memory is removed from the incoming packet
in the reverse order and either used to implement the associated protocol
component or recorded in the stack local memory for other components to
reference. Thus packet memory acts as a “last added, first used” data structure.

A third composition operator we call Type-Length-Value.  Using this operator, each
element of the packet memory is tagged with its type or attribute. For example, one
might tag the destination address with ‘DestinationAddr’ or the time-to-live value
with ‘TTL’. While adding the attribute field expands the packet size, this approach
can facilitate some arbitrary ordering of packet processing and even parallel
processing (execution) of protocol components.
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For our initial implementation of composite protocols we use the simple, linear
composition of packet memory elements and process packets in the “last added,
first used” manner.

2.3.4 Related Work

The idea of composing protocols from modular components has a long history.
Indeed, basic courses in networking introduce network concepts based on the OSI
seven layer model and network protocols are designed to work with different lower
and upper layers.

The X-Kernel [Hutchinson1991] is an operating system kernel that provides an
architecture for constructing, implementing and composing network protocols. The
key idea behind X-Kernel architecture is to split the traditional protocol stack, which
has a simple linear topology and complex per-node functionality, into a complex
protocol graph consisting of individual protocols called micro-protocols and virtual
protocols.

The Cactus system [Wong2001] has a two-level model. Protocol components,
termed micro-protocols, are combined together with a runtime system to form a
composite protocol. A composite protocol is composed with other protocols in a
normal hierarchical manner (using X-Kernel) to form a network subsystem.

Ensemble [Hayden1998] is a group communications system designed for
constructing a variety of distributed applications from a set of reusable components.
It builds upon the Horus and Isis systems [vanRenesse1995] and is written in
Objective Caml (Ocaml) [Leroy2002], a dialect of the functional language ML. In
Ensemble, a protocol component is called a “layer”; and a set of layers is combined
into a “protocol stack.” The composition methodology used in Ensemble is simple
and regular. Each layer is stacked on the single layer immediately below it; and
communication between these two layers is handled by two FIFO queues, one for
information passing from the lower layer to the one above it; and the other for
information passing from the upper layer to the one below it. These queues are
implemented as unbounded in length.

CHANNELS [Boecking1995] is a run-time system for network protocol processing.
It enables dynamic configuration of protocols from a set of protocol components. It
provides facilities like buffers, timers and mapping tables that simplify common
protocol operations. It also provides a standard framework for inter-component
communication. CHANNELS is implemented in the C++ programming language
and is used in TIP (Transport and Internetworking Package). CogPiT (Configuration
of Protocols in TIP) defines a dynamic configuration methodology for protocol
components (modules) [Stiller1995]. The configuration algorithm (COFAL) selects
appropriate protocol components out of a pool of predefined components and
generates a 'channel template’. The channel template describes the list of selected
components and the interconnection among components. The CHANNELS run-
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time system uses the channel template to create instances of selected protocol
components and setup an application-tailored protocol.

Netscript [daSilva1998A, daSilva1998B] is a coordination language and
environment for developing composite protocols for active networks. It uses the
dataflow-programming model to structure the software on an active node. An active
node is visualized as a processor of packet streams. It consists of one or more
Netscript engines. A Netscript engine is a set of computational elements called
boxes, which are interconnected through their input and output ports. A box
consists of sequential event-handling code. When a message arrives at an input
port of a box, the event handler associated with the input port is executed.
Typically, this processing leads to the message being sent out of one (or more) of
the output ports of the box. The computation in a box is reactive to the arrival of
messages. There is no global state or state shared between boxes, so different boxes
may execute concurrently. Messages flow from box to box as a Netscript engine
processes them. New boxes can be added or removed dynamically from a Netscript
engine.

2.3.5 Conclusion

We have defined a formal approach to defining protocols in modular units called
protocol components. Each component is simple, well defined, and suitable for
automatic (machine) analysis. We have defined a simple composition operator,
which is also suitable for automatic analysis. By formalizing the definition of
protocol components and their interaction, we anticipate that more robust, reliable,
and secure protocols will be defined and deployed.

2.4 Design of Composite a Multicast Service

This section describes the various steps involved in building a composite service
using our framework with multicast service as a case study. Also discusses intra-
stack and inter-stack communication. Multicast is an excellent example of a
network service, which is made up of several cooperating protocols. Any form of
multicast service would require functions for multicast routing, creation of spanning
trees, reliable replication of multicast data and joining/leaving multicast groups. IP
Multicast is a collection of multicast routing protocols like DVMRP, MOSPF, PIM,
reliable multicast protocols like RMTP[Lin1996] and group management protocols
like IGMP working in tandem with IP for best-effort multicast delivery. The reason
for studying multicast service is that it combines data and control-oriented
protocols. TCP and IP are data-oriented protocols, while routing protocols like
RIP[Hedrick1988], OSPF[Moy1994], DVMRP and group-management protocols
like IGMP are control oriented (belong to the control-plane). It should be noted that
protocol components that we specify and implement are not in accordance with
any Internet standards like RFCs and internet-drafts for DVRMP, RMTP, IGMPv1,
and IGMPv2. What we are interested is the basic functionality of these protocols.
Only a sub-set of the standard functionality is specified and implemented. Also, we
assume that the reader has a basic understanding how IP multicast and other
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protocols like DVMRP and IGMP work in general. We now describe the various
steps in building a composite service using our framework.

2.4.1 Steps in building a composite service

2.4.1.1 Decomposition:

Decomposition is the initial process of identifying the key functional protocol
components in a monolithic implementation of a protocol.

For multicast service, we decomposed the monolithic DVMRP protocol into the
following protocol components: Neighbor Discovery, Route Exchange, Spanning
Tree, Pruning and Grafting. The IGMP protocol was decomposed into the
following components: Join/Leave and Query/Report. Other components that form
part of the data stack include Multicast Forwarding, Unicast Forwarding, variants of
Reliable Multicast like with/without ACK implosion prevention, hop-to-hop reliable,
Multicast Inorder, Replicator. These components are not a result of direct
decomposition from any other protocol.

2.4.1.2 Specification of protocol components

Once all the individual components are identified, the next step is to specify each of
these components using AFSMs as described in [Minden2002]. Each component is
represented by a TSM and a RSM, the set of events (data and control) that can
invoke this component, its memory requirements: local, stack-local, global and
packet memory along with its properties and some assumptions. The individual
functionality of each protocol component is described in Section 2.4.6 and
following. While specifying these components, care should be taken to ensure that
each protocol component performs only a single-function and is totally
independent of other components. Achieving total independence is only an ideal
case, practically some minor amount of dependence on other protocol
components may be required. Also, it may not be possible to represent each
decomposed protocol in terms of state machines or in accordance with the
composite protocol specifications. In such cases the decomposed protocol may
have to be either merged with other protocols or re-specified appropriately so that
they meet the specifications. E.g. A decomposed protocol having no header
information (bits-on-the-wire) can always be merged with another protocol.

2.4.1.3 Building the stacks
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Figure 36 Multicast Service Stacks

Once all the individual protocol components are specified, related components are
grouped in protocol stacks called composite protocol stacks. The composite
service, Figure 36, is just the collection of these stacks and global memory objects
(described later in this section). Multicast service is a collection of three stacks viz.
Multicast routing stack, Group Management stack and Multicast data/traffic stack
and the global memory objects.

We have decided to compose stacks using the linear stacking approach. In this
approach, while composing stacks, the order of stacking can play an important role
depending on whether the components being stacked are property oriented or
control oriented.

A property based component is one which provides a well defined property or
functionality to the component/application above it by adding headers to
application data. Typical examples are TCP components like Reliable delivery, in-
order delivery, or IP components like TTL, Fragment. Control based components
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do not provide any property to the component above, though they implement a
separate function on their own. They mainly exchange peer-to-peer messages only.

We find lot of examples of such control components in Neighbor Discovery, Route
Exchange etc. When these 2 components are stacked up with Neighbor Discovery
on top of Route Exchange, it should be noted that the Route Exchange component
does not operate or perform any computation on data sent by Neighbor Discovery.
It merely passes it down without appending its header. These types of components
are responsible for creating, managing global data structures, which may be
accessed by other stacks. They may or may not interact with each other. Interaction
if present is generally through control events (Intra Stack communication). Relative
ordering of control oriented components does not affect the overall general
functioning of the stack. They may however affect stack performance. It may be a
good idea to consider placing the component that exchanges peer-to-peer
messages most frequently, bottom-most in the stack and that which exchanges
messages least frequently, top-most the stack. Placing the component as low in the
stack as possible shall minimize end-to-end delay and also reduce extra overhead
(caused by dummy headers) added by other components. Placing the Neighbor
Discovery component low in the stack, and Pruning/Grafting high in the stack may
be a good stacking arrangement.

Property based components impose a strict ordering on components above/below
it. E.g. If reliability is needed hop-to-hop, the reliable component has to be placed
below the multicast forwarding component, where-as if reliability is needed end-to-
end, it has to be placed above the multicast forwarding component.

The framework offers the much-needed flexibility in this regard. Components can
be easily added to stacks, removed from stacks or even re-ordered within stacks
rendering different protocol stack properties to the user. Thus, building stacks with
an optimal ordering is an important and challenging task in building a service.

2.4.2 Deployment - Placing the stacks in the network

We focus mainly on service composition and not on automatic deployment issues
in an active network. Automatic deployment of composite protocol stacks and then
running these stacks on an Active Node is a subject of future research.

In this report, the composite protocol stacks are manually deployed on normal
nodes (non-Active nodes).
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Figure 37 illustrates a multicast network and the deployment of
services and protocol stacks.

Figure 37 shows an example multicast network with the different stacks deployed at
various nodes:

• Multicast Sender: sends multicast data destined for a particular group.
Need not be a part of a multicast group to send a multicast packet.
Typically attached to a multicast core-router.

• Multicast Core Router: present in the core of the multicast network.
They are responsible for creating and managing multicast routing
tables and setting up per source group multicast delivery trees.

• Multicast Leaf Router: these are nodes that do not have downstream
neighbors and are directly attached to multicast receivers (end-hosts).

• Multicast Receivers: these are end-hosts that have joined a particular
group and are entitled to receive multicast traffic destined to that
particular group.
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Note that both Multicast core routers and Multicast Leaf routers can also be
Multicast Receivers and Multicast Senders

2.4.3 Intra-stack Communication

Intra-stack communication refers to communication between two components in a
stack or communication between the application and a protocol component in the
composite protocol stack. This form of communication is handled by use of control
events in the framework and by extending components to provide control
interfaces. The PIPO (packet-in packet-out) interface is sufficient for data-plane
components (property-oriented) as discussed before. E.g. For components like
reliable-delivery, checksum, fragment etc, it may be enough to just act and process
the packet passed from above. Each component just adds its own header for
payload from above and strips off the corresponding header at the receiving side.
This interface will not be sufficient for components that depend on some control
information or set of user-level commands from the application. This demands a
need for a control interface to enable communication between components or
between the application and a component.

The component which implements a control interface offers a service to
components above it or to the application and is called the controlled component.
The component above this or the application that utilizes the provided service is
called the controlling component.

In the multicast service, the JoinLeave component of the GroupMembership stack is
an example of a component that makes use of such control events in the framework
and is the controlled component. The application which uses its control interface to
join/leave multicast groups is the controlling component.

SLPM (Stack-Local Packet Memory) can also be viewed as another form of intra-
stack communication in our framework. SLPM is an auxiliary data structure
attached to the packet as it is processed by components in the stack. SLPM fields
are implemented as (name, value) pairs and a set of framework functions are
provided to access SLPM. SLPM is often used to transfer packet information
between components. A high-level component can add a field to SLPM that is then
read and used by a low-level component. E.g. the next-hop IP address is added to
SLPM by the Forward component and is read from SLPM by a lower-level data link
component.

Thus intra-stack communication is mainly accomplished by use of control events in
the framework and in some cases through use of SLPM.

2.4.3.1 Inter-Stack Communication and Global Memory

One of the challenging problems in designing a network service is to identify and
address the issue of how different protocols interact with each other. Network
services require the cooperation of two or more network protocols; that is they need
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to share information. In this section, we will describe our solution to this
challenging problem.

Figure 38 Multicast service global memory objects.

Our solution is to generate a global memory object, independent of any protocol
that uses it, for the storage of information shared among two or more protocols. The
scope and extent of this object must be greater than that of any single protocol,
which accesses the information, stored in the global memory object. Access to read
/ write the contents of the shared information is provided through a functional
interface. A protocol component expresses its requirements for access to global
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memory object(s) by listing the external functions it uses in its implementation. E.g.
The RouteExchange component needs a function to write new routes into the
Routing Table. So, it would use a function like addNewRouteEntry (rt_entry) to add
a new route entry to the routing table. The IP forwarding function needs to know
the nexthop address for each destination. It would require an external function like
ipaddr getNextHopForDest (dest_addr) to get the nexthop address. These functions
addNewRouteEntry() and getNextHopForDest() are provided through the write and
read functional interface of the global Routing Table object respectively.

Very generally, the global memory object can be regarded as a server, providing
access to shared information to its clients, the protocol reading/writing this
information. For example, in the TCP/IP world the IP Routing Table is created and
maintained by protocols like RIP, OSPF etc. and is accessed by IP while forwarding
data packets. In our framework, the routing table is maintained as a global memory
object that is external to both protocols IP and RIP. We shall now discuss the
various features and requirements of global memory in our framework.

2.4.4 Global Memory features:

2.4.4.1 Functional interface:

In our framework, global memory access is abstracted through a functional
interface for both reading and writing data. The functional interface model helps in
encapsulating the data and hides the internal representation of the object.

2.4.4.2 Synchronization:

Protocols can access global memory only through the functional interface, so the
use of semaphores and/or any other control mechanisms to provide necessary
synchronization are embedded in these functions in a uniform and robust manner.
Synchronization is not delegated to the users of the shared object(s). Furthermore,
since the interface is truly functional, no pointers are shared, which eliminates any
possibility of conflicts from implicit sharing through multiple references to the same
object. In a similar manner, implementation of the functional interfaces can apply
access-rights controls to limit access to sensitive data. This approach makes
protocol interfaces to the global memory are very simple. Complex issues of
synchronization and access control are addressed just once in the design and
implementation of the global memory object, instead of requiring each protocol
that shares the information to incorporate these controls in its implementation. And
the solution is much more robust, since the integrity of the shared data cannot be
compromised by a single protocol, which does not correctly implement
synchronization algorithm.

2.4.4.3 Extensibility:

The global memory object definition can be extended by adding new functions to
its functional interface, to provide services for new protocols developed which
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use/access information in an existing global memory object. This provides a
powerful mechanism for developing new protocols and/or improving existing
implementations, while maintaining backward compatibility for previous clients
(protocols) that use the global memory object. Previous clients continue to use the
existing interfaces while the new protocols use the new extended version.

2.4.4.4 Implementing global memory:

We now discuss a few approaches to implement global memory.

2.4.4.4.1 Process model:

In this model, each global memory object is implemented with a separate process
running as a server on each node. Typically, each global memory server is started
up during the node initialization sequence. This server process maintains a single
internal representation for its global memory object. The server can choose any
representation for the data, because this structure is entirely local to the server. The
server implements an inter-process communication (IPC) interface according to the
functional definition of global memory. Any protocol that accesses a global
memory contacts the corresponding server process as a client. Communication
between the clients (protocols) and server is limited to the IPC interface advertised
by the server process. This implementation strategy is a direct implementation of the
abstract model we propose for a global memory object. Unfortunately, the
overheads associated with inter-process communication, even within a single
node, may be too large for the performance requirements of network protocol
implementations.

2.4.4.4.2 Shared-Memory model:

In this model, the data to be shared by multiple stacks is stored in shared memory.
The functional interface containing the set of all functions provided by the global
memory object is packaged into a dynamic link library (DLL). The protocol stacks,
which run as individual processes on a node, will link to the dynamic library
defined for the global memory it uses.

Accesses to global memory are simply function invocations in the process image.
The actual implementation of the functional interface is entirely opaque to the
clients (protocol stacks). The implementation uses operating system calls to access
a section of shared memory; so each protocol stack (independent processes)
references the same object stored in shared memory. The implementation is
responsible for handling synchronization issues, typically using semaphores
provided by the operating system in its shared memory interface.

This implementation approach strongly preserves the abstract functional interface
we want for global memory. Users of global memory have only an opaque view of
it through the functional interface provided by the DLL. Protocol stack
implementations remain operating system independent. The implementation of
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global memory objects, with node local resources, may need to be adapted to the
details of shared memory access interface provided by the operating system.

This implementation provides the same abstract view of global memory objects as
the server process model, but is significantly more efficient. Global memory access
is accomplished through a local function call instead of an inter-process
communication.

2.4.4.4.3 Node-OS model:

For the highest execution performance, an alternative is to embed global memory
objects directly in the operating system on which the protocol stacks run. With this
alternative, the operating system (kernel) interface must be expanded to incorporate
the functional interface, which defines the global memory object(s). The operating
system implicitly operates as the global memory object server. The protocols using
the global memory object obtain direct access through the (new) system function
calls introduced with the global memory object. This approach is worthy of
consideration only for a few special and widely accessed global memory objects,
such as the routing table. The solution is vendor/operating system specific. In
addition, it requires extensions to the operating system interface. For example, the
current TCP/IP implementations use a strategy similar to this (though not employing
a pure functional interface)to provide shared access to the routing table.

2.4.5 Initialization

Each global memory is independent of any network protocol, which uses it. From
the perspective of a protocol running on a node, the global memory is a "service"
provided by the node. Therefore creation of, and initialization of the global memory
is a responsibility of the node environment. Dynamic deployment of network
services must determine if the global memory object(s) used by the protocols,
which form the service, are already available on the nodes.

Figure 38 illustrates different protocols of the multicast service cooperating by
means of global memory objects. NeighborTable, RoutingTable, SourceTree,
PruneTable and GroupMemberTable are all global memory objects that provide a
set of read/write functions through their respective functional interfaces. E.g. The
Route Exchange component of the multicast routing stack writes into global
memory using the write interface of the global RoutingTable object and the
Multicast Forwarding component of the multicast data stack reads using the read
interface of the object. Each protocol component includes the list of external
memory functions it accesses.
getDownStreamNeighborsForSource(src_addr,group_addr),
addNewRoute(route_entry) are typical examples of read and write external
functions for the Route Exchange component.
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2.4.5.1 Independence

The global memory objects are designed to be mutually independent with each
other. E.g. in the above example, the Routing Table does not have any
dependencies with the Spanning Tree global memory object and vice versa. The
reason is this. A multicast service may need both the global memory objects
Routing Table and Spanning Tree, but say another service requires only the
services of the Routing Table object; its dependency on Spanning Tree is by design
an undesirable feature.

Also the global memory objects are designed so that it can be used across several
services. E.g. the Routing Table object can be used in unicast as well as multicast,
with possible variations in its set of functional interfaces.

2.4.6 IMPLEMENTATION

The multicast system described in this section is built on the IANS framework
described in Section 0. Section 0 provides a top level description of protocol
components. Details of our implementation are below.

Ensemble, a group communication system developed primarily by Mark Hayden of
Cornell University was used as a base framework for implementation of our
composite protocol framework specifications.  Extensions and modifications were
made to Ensemble to represent each Ensemble layer with the corresponding state
machine representation of the component. In this section, we first give reasons on
why we chose Ensemble as our implementation framework, then describe briefly
the state machine executor built in Ensemble, depict the mapping of our framework
functions with Ensemble events and then discuss timer implementation. The
features and limitations of the point-to-multipoint multicast model is then described.
This is followed by a detailed description of global memory implementation and
finally the working of each protocol component that make up the multicast service
is explained.

Ensemble was selected for the following reasons:

• Ensemble is written in Ocaml[Leroy2002], a functional programming
language, and dialect of ML[Appel1991]. Use of functional
programming languages aid in easy formal analysis of code.

• Ensemble uses linear stacking of protocol layers to form a stack, the
same composition methodology that our framework demands.

• Event handlers are atomically executed.

• Unbounded message queues between any two layers.

• Provides an uniform interface through its up and down event handlers,
thus enabling arbitrary composition of layers to form protocols.
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• Provides support for dynamic linking of components and switching of
protocols on the fly, enabling users to add or remove components from
a stack.

As Ensemble already provided a good base framework for implementing our
specification, it was decided to make use of it instead of developing a new
framework from scratch. Lot of code necessary for the original group
communication to work was removed; only bare essential code was retained. This
resulted in a much smaller Ensemble code base.

2.4.6.1.1 State Machine Executor in Ensemble

Individual layers that made up an Ensemble stack had no concept of state
machines. All layer functionality was implemented as part of their event handlers.
With the introduction of state machine representation for each component in our
framework, each Ensemble layer was made to internally invoke its corresponding
state machine if necessary. A common state machine executor was built for this
purpose. Its design is shown in Figure 39. For each component, the pair of state
machines TSM and RSM are defined in Ocaml. Each state machine consists of list of
states and a set of transitions from each state. Each transition is a defined as a record
containing enumerated next-state, current-state value, enumerated event-type,
guard function, action function and local-memory update. The state machine
executor has common functionality to execute any arbitrary state machine defined
as described above. It starts from an initial state, and moves through a set of states
depending on events and guards and executing action and local memory update
functions. It also supports synchronous states and transitions.
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Figure 39 illustrates the State Machine Executor

For example, for Ensemble down events ESend(Dn) the FSM executor maps to a
PktArrival event and invokes the TSM . TSM is then executed as defined. After state
machine execution, the FSM executor passes the PktArrival event back to the
Ensemble layer through defined framework functions e.g. pkt_send.. Similar
mapping of events take place for Up Ensemble events, they are directed to the RSM.
Certain Ensemble events need not be passed to the FSM if not needed by it. The
implementation allows by-pass of such events, which are of no interest to the state
machines.

The next-sub section describes the mapping between our framework functions and
Ensemble up and down event handlers.

2.4.6.2 Mapping of framework functions

The Table 7 shows the mapping between few of our framework functions and
Ensemble UP and DN events

Framework Functions Ensemble Event
Packet Transfer

pkt_send(pktmem) DN (EV, ABV, hdr)
new_pkt_send(pktmem) DNLM (ev, hdr)
pkt_deliver() UP (EV, ABV)
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new_pkt_deliver(pktpayl
d)

UP (ev, pktpayld)

Buffer Management
send_kept_packet(pktpay
ld)

DN (ev, hdr, pktpayld)

deliver_kept_packet(pkt
payld)

UP (ev, pktpayld)

Table 7 Framework Functions - Corresponding Ensemble Events

Words in small letters refer to component generated fields. E.g. In a
new_pkt_deliver() , the pktpayld is generated by the component, whereas in
pkt_deliver() ABV already exists along with the event.

Note the difference between existing and generated fields:

EV: Incoming/Outgoing Ensemble event, ev: component generated
Ensemble event.

ABV: Existing packet payload , pktpayld : component generated packet
payload

hdr :  component generated header.

Timer-related framework functions are described in the next sub-section.

2.4.6.3 Timer implementation

Component specification demands implementation of the following framework
functions:

• set_timer (timer_id: int, timeout: time)

• This function requests a TimerEvent with unique-id timer_id from the
framework after time seconds.

• cancel_timer(timer_id:int)

• This function is used to cancel an existing timer with id timer_id

• reset_timer(timer_id:int , timeout:time)

This function is used to reset the value of the timer with id timer_id and request
another timer that expires after time seconds.

In the Ensemble system, timers are implemented as Control events flowing up and
down the stack. ETimer the Ensemble heart-beat timer propagates all the way from
the layer bottom up to the topmost layer and is again reflected down the stack. But
this timer did not have the notion of a timer-id associated with it, which is needed
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by our specifications. So to cater to this requirement and to interface our timer
framework functions with the Ensemble timer, a Timer Module was built.

The Timer Module is defined as a list of timer objects.  Timer object is a record of
type timer_rec:

type timer_dir_type =
  | TimerUp // Up timer events requested by RSM
  | TimerDn // Dn timer events requested by TSM
type timer_rec = {
  timeoutid : int; // the unique timeout-id
  timeout : Time.t; // time-period for
expiry of timer
  timer_direction: timer_dir_type; // direction of
requested timer
}

The Timer module also provides several functions to perform operations on timer
objects.

• create() : creates a empty list of timer objects.

• length(): returns number of timer objects in list.

• add(timer_rec, timer_list): adds a new timer object timer_rec  to the
existing list timer_list.

• sort(timer_list): sorts the list timer_list based on the increasing timeout
value.

• lookup(timer_list, time, timer_dir): returns list of expired timers from
timer_list based on values of time and timer_dir.

• remove_all(timer_list, timeoutid, timer_dir): removes all timer objects
from list timer_list matching timeoutid and timer_dir.

The framework creates an empty list of timer objects for each component on
startup.

When the component invokes the set_timer() framework function as described
above, a new timer object is created with appropriate values for timeoutid, timeout
and timer_direction. This is added to the existing list of timers and then sorted in an
increasing order based on the timeout value. When set_timer() is invoked by the
TSM the timer_direction is set to TimerDn and when invoked by the RSM is set to
TimerUp.  A component can request for any number of timers provided each is
requested with a stack-wide timer-id value.

When an ETimer event reaches an Ensemble layer of a component, its time is
compared with the list of time values in the timer_list to yield a list of expired timers
along with their timeoutid values. For each expired timer, a new event called
TimerEvent(timeoutid) is created and then sent to the appropriate state machine ( all
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UP events are sent to RSM and all DN events are sent to TSM.  All expired timers are
always removed from the list using remove_all().

This ensures and produces the much-needed Timer Event with the unique timerid
for the state machine. Cancel_timer(timeoutid) framework function directly removes
the corresponding timer with id timer-id from the list , even before its expiry.

It should be noted that Timeout events shall be generated for the same state
machine that invoked the set_timer() framework function.

2.4.6.4 The point-to-multipoint multicast model:

The multicast service implemented is for multicast data flow in a point-to-multipoint
multicast network. Here, we have a multicast sender transmitting data on a
dynamically established and maintained multicast tree to a group of receivers.
Receivers (end-hosts) in this model can only join / leave certain multicast groups,
they cannot in-turn, multicast to other group members.

This model is well suited and applicable to situations like streaming video/audio
from a server, file downloads etc. This will not be appropriate for video-
conferencing types of multicast applications where we need a multipoint-to-
multipoint data flow. Note that in our model, we can have N different multicast
senders in the network multicasting data on their respective trees, but each should
be viewed as N separate multicast data flows. Receivers in a flow are allowed only
to send back unicast data back to the sender e.g. ACK packets.

2.4.7 Global memory using Shared Memory model:

This section describes the implementation of global memory using the Shared
Memory approach. A brief description of Linux shared memory, the kernel data
structures and shared memory system calls follows.

Shared memory is another method of inter-process communication (IPC) whereby
two or more processes share a single chunk of memory to communicate. Shared
memory is described as the mapping of an area (segment) of memory that will be
mapped and shared by more than one process. This is the fastest form of IPC,
because there is no intermediation (i.e. a pipe, a message queue etc). Instead,
information is mapped directly from a memory segment, and into the addressing
space of the calling process. A segment can be created by one process and
subsequently written to and read from by any number of processes.

Details of setting up and using shared memory in the Linux operating system are
described in [ITTC-F2004-TR-19740-11].
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2.4.7.1 Global Memory Initialization

Both shared memory and semaphores, which are part of global memory, are
created and stored in the Linux kernel. Global memory initialization on a node has
to be done prior to running the composite protocol stacks that use them.
Initialization comprises of shared memory initialization and semaphore
initialization.

Shared Memory Initialization: consists of creating the necessary shared memory
segments for all the global memory objects.

Semaphore Initialization: consists of initializing the set of semaphores (3 of them)
for each global memory object.

2.4.8 Multicast Service Objects and their Functional Interface

The global memory objects used by the multicast service are

• Neighbor Table

• Routing Table

• Source Tree

• Group Table

• Prune Table

For each global memory object, the ML data structure types and the list of
functional interfaces they provide is listed in this sub-section. Since shared memory
is always available as a contiguous chunk of memory, global memory data
structures cannot be stored in the form of linked-lists or hash-tables. All objects are
stored as an array of structures (contiguous memory) in its own allocated and
initialized shared memory space.

2.4.8.1 Neighbor Table

The neighbor table stores multiple 1-1 mappings between an interface and the
corresponding neighbor detected on that interface. Its functional interface allows
creation and update of these mappings through its Write functions and provides
functions to retrieve an element of a map given the other. In general, this object can
be used by any protocol to store interface-neighbor mappings. For example, it
could be used by OSPF’s hello-protocol. In this multicast service, the Write interface
is used by Neighbor Discovery and the Read interface is primarily used by the
Multicast Forwarding component. The table below lists some of the core functions.

WRITE void write_ntable([in] struct ntable_entry ntable[], [in] int num);
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 invoked by Neighbor Discovery when new neighbor is discovered or

 when existing neighbor is found dead

READ [int32] int getNeighborForInterface([in,int32] int intf);

   returns the neighbor's IP address given the interface IP address

 boolean isAddrNeighbor([in,int32] int addr);

 returns true if the input IP address is a neighbor and false if not

 [int32] int getInterfaceForNeighbor([in,int32] int nbor);

       returns the interface's IP address given the neighbor's IP address

 void read_ntable([out] struct ntable_entry ntable[]);

 returns the entire content of the Neighbor Table.

Table 8 Neighbor Table- Functional Interface.

struct ntable_entry {
int32 intf_addr; // interface IP address
int32 nbor_addr; // neighbor IP address
boolean lastbit; //flag
};

2.4.8.2 Routing Table

The routing table is a repository for unicast-routes. The metric and next-hop
information for each route prefix is stored in this object. In general, any protocol
that needs to create and store routes can use this e.g. RIP can also use this. Here the
Route Exchange component interacts with this object to store its routes. Multicast
Forwarding primarily uses its Read interface during RPF checks and Unicast
Forwarding uses it during forwarding unicast packets. The table lists the core
functional interfaces for the object.

WRITE void write_rtable([in] struct rtable_entry rtable[], [in] int num);

 invoked by Route Exchange when new routes are found

READ [int32] int getNextHopForDest([in,int32] int dest_addr);

 returns the next-hop IP address for a given destination IP address.

Table 9 Routing Table – Functional Interface
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struct rtable_entry{
int32 rt_netaddr;  // network address
int32 rt_netmask;// network mask
int metric; // hop-count
int32 nexthop;// next-hop address
boolean rt_lastbit; //flag }

2.4.8.3 Source Tree

The source tree object maintains spanning trees for each multicast source in the
network. A spanning tree for each source network contains information on the
dependent downstream neighbors for that source. Here, the Spanning Tree
component interacts with this object when its creates/updates spanning tree
information. The Multicast Forwarding component uses its Read interface during
the forwarding process. The table lists the core functional interfaces offered by this
object.

WRITE void write_source_tree([in] struct tree_entry tree[], [in] int num);

 invoked by Poison Reverse component when a Poison packet is received

READ void getDnStreamNeighborsForSrc([in,int32] int src_addr, [out] t0 nbor_list[]);

 returns downstream dependent neighbors for a particular  source address

 void read_source_tree([out] struct tree_entry tree[]);

 returns the entire contents of the Source Tree

Table 10 Source Tree – Functional Interface

struct tree_entry{
int32 tree_netaddr; // network address
int32 tree_netmask;     // network mask
int32 nbor_list[];      // downstream dependent neighbors
boolean tree_lastbit;
};

2.4.8.4 Prune Table

The prune table stores interface prune state information for each source-group pair
in the network. Interfaces can be in any of the three states: un-pruned, pruned or
grafted. This object provides functions to prune/graft specific interfaces for specific
source-group pairs. Its Read interface provides functions to retrieve interface state
for a specific source-group pair which is used by Multicast Forwarding. The Write
functions are used by the Pruning, Grafting and the Join/Leave components. This
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object is not accessed / used when pruning feature is disabled. The table below lists
the core functional interfaces:

WRITE
void pruneIGMPIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int
intf_ipaddr);

 Add/update prune table entry for (src_addr,grp_addr) pruning igmp interface intf_ipaddr

 void pruneIGMPIntfforGrp([in,int64] int grp_addr, [in] int intf_ipaddr);

 Add/update prune table entry for (all src_addr's,grp_addr) pruning igmp interface intf_ipaddr

 
void pruneCoreIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int
intf_ipaddr);

 Add/update prune table entry for (src_addr,grp_addr) pruning core interface intf_ipaddr

 
void graftCoreIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int
intf_ipaddr);

 Add/update  prune table entry for (src_addr,grp_addr) grafting core interface intf_ipaddr

 void graftIGMPIntfforGrp([in,int32] int grp_addr, [in,int32] int intf_ipaddr);

 Add/update prune table entry for (src_addr,grp_addr) grafting the igmp interface intf_ipaddr

READ int get_no_of_entries();

 returns the number of entries present in the Prune Table.

 struct prunetable_entry getentry([in] int n);

 returns the nth entry from the Prune Table

 struct prunetable_entry getentryForSrcGrp([in,int32] int src, [in,int32] int grp_addr);

 returns the Prune Table entry corresponding to the (source,group) pair (src,grp_addr)

Table 11 Prune Table – Functional Interface

struct intf_entry{
int32 ipaddr  // Interface IP address;
int intf_state; // either un-pruned, pruned or grafted
};
struct prunetable_entry {
int32 src_addr; // source address
int32 grp_addr; // multicast group address
struct intf_entry igmp_intf[]; // list of igmp interfaces
struct intf_entry core_intf[]; // list of core interfaces
};
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2.4.8.5 Group Table

The group table stores group membership information for each interface. It allows
dynamic addition of new entries and updating existing entries when members on
attached interfaces join and leave multicast groups. It also provides an interface to
check if a particular group member is present on an interface. The Join Leave
component accesses the Write interface and Multicast Forwarding uses the Read
interface. The following table lists the functional interfaces:

WRITE void write_grptable([in] struct grptable_entry grptable[], [in] int num);

 invoked by the Join-Leave component on the leaf router periodically

READ boolean checkGrpAddrForIntf([in,int32] int gaddr, [in,int32] int intf_addr);

 checks if the group address gaddr is present on the interface intf_addr, returns true if present.

 void read_grptable([out] struct grptable_entry grptable[10]);

 returns entire contents of the Group Table

Table 12 Group Table – Functional Interface

struct grptable_entry{
int32 intf;
int32 grpmem_addr[10];
boolean grp_lastbit;
};

2.4.9 Protocol Interactions Through Global Memory

In this sub-section we present a brief operational overview of how the protocol
stacks interact with each other using global memory. Global memory is accessed
before data transfer, during transfer, when members join and leave groups and also
during pruning/grafting of the tree branches.

Before data transfer:

At startup, the global memory objects on all nodes are initialized. Before any
transfer of data can take place, the multicast routing and the group management
stacks are started. The routing stack components work independently of each other
generating and sending packets to their corresponding peers. Neighbor Discovery
dynamically updates the Neighbor Table, Route Exchange updates the Routing
Table and Spanning Tree creates and maintains the Source Tree global object.
Route Exchange makes use of Neighbor Table and Spanning Tree makes use of
Routing Table and Source Tree global objects for its operation. The pruning and
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grafting components during this place are not active and thus the global memory
Prune Table remains un-accessed and empty.

Spanning trees are now fully set-up for data transfer to take place. If members join
groups in this phase, the Join Leave component updates the Group Table at
corresponding nodes. They will just remain listening for data, as data transfer has
not yet started.

Data Transfer:

Multicast Forwarding in the data stack is the core component, which accesses all
the global memory objects. It accesses Neighbor Table for interface-neighbor
mappings, reads Routing Table during its Reverse Path Forwarding [Pusateri2000]
check, reads SourceTree to get the list of dependent downstream neighbors, reads
GroupTable to find if there are any group members on its leaf interfaces. If there are
no group members on a leaf interface, its prunes the leaf interface and writes into
Prune Table. It finally reads from PruneTable to get the list of un-pruned/grafted
interfaces before forwarding the packet.

Meanwhile, as soon as PruneTable entries get created at the leaf nodes, the Pruning
component becomes active and prunes are sent upward. It should be noted that all
the other components of the routing stack Neighbor Discovery, Route Exchange,
Source Tree still remain active during this phase dynamically maintaining their
respective global objects.

Member join/leave:

The Group Table is updated whenever member joins/leaves a group both at leaf
router and at end-hosts. In addition to this, when a member joins a group all
previously pruned interfaces corresponding to that group are grafted and this
information is written into the Prune Table. Thus the Join/Leave component writes
into both Prune Table and Group Member Table as shown above.

Pruning and Grafting: At the core the Pruning component writes into Prune Table
on receiving a prune and Grafting writes into the Prune Table on receiving a graft.

Thus the stacks work in tandem, interacting with each other using the shared
information in the global memory to provide multicast of data through the branches
of the multicast tree.

Note: When reliable multicast is used Unicast Forwarding uses Routing Table to
forward unicast NACKs and re-transmissions.

2.4.10 Component Implementation

In this section, we describe the three protocol stacks needed to implement the
multicast service; the multicast data stack, the multicast routing stack, and the group
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join/leave stack; and list each protocol component used in the multicast service.
For complete technical details see [ITTC-F2004-TR-19740-11].

2.4.10.1 Multicast Data Stack

This component is the core component in the multicast data stack. It is present on
all the nodes i.e. at senders, core and leaf routers as well as end-host receivers. It is
responsible for the transmission of multicast data packets on the un-pruned/grafted
branches of the multicast tree. Initially when the branches of the tree are not
pruned, packets follow the source broadcast tree. But when pruning comes into
operation and builds the source-group multicast trees, packets are multicast on the
un-pruned branches of the multicast tree.

The TSM is operational only on nodes, which act as Multicast senders. On all other
nodes, which either forward multicast data  (core and leaf routers) or deliver it to the
application (end-hosts multicast receivers) the TSM remains inactive and only the
RSM is operational.

The TSM sends the packet on all un-pruned/grafted interfaces having downstream
dependent neighbors for the corresponding (src,grp) pair. The packet is dropped if
no downstream neighbors are present for the (src,grp) pair.

Note: In order to prevent sending multiple Esend events (one for each downstream
interface) down the stack, this component only generates a single Esend and sends
it down with the list of downstream neighbors attached in stack local packet
memory (SLPM). The packet will be then handled by the Replicator component
down below the stack, which actually is responsible for replicating the packet and
sending it to the list of downstream interfaces as read from SLPM.

At the router: The RSM contains most of the functionality. It first performs the RPF
(Reverse Path Forwarding) check on the packet. This checks if the packet is
received on the correct upstream interface, one that is used to reach the source of
the multicast packet. If the RPF check fails the packet is dropped. If it is successful,
each leaf interface is checked, if any, for group members. If a group member is
present on the interface, the packet is multicast on the leaf interface, otherwise the
leaf interface is pruned for this (src,grp) pair. The packet is then multicast on all un-
pruned/grafted branches of the tree to all dependent downstream neighbors. At the
destination (end host multicast receiver) The multicast packet is delivered to the
host.

2.4.10.1.1 Replicator

This component is actually used by the multicast forwarder to replicate the packet N
times and send the packet on N different interfaces. Without this component, the
multicast forwarder had to send N separate ESend events down the stack to send
the packet on N interfaces. This caused lot of overhead and extra processing for the
intermediate components in the stack like Fragment, Checksum etc. To prevent this
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extra overhead the multicast forwarder runs over the replicator (placed bottommost
in the stack), and sends only a single ESend event with list of next-hop attached in
SLPM. The replicator reads from SLPM, gets the list of N next-hop addresses and
sends the same packet on N different interfaces. The core-functionality is embedded
in the TSM, which reads from SLPM and replicates the packet and sends it. The
RSM is almost dummy, it only delivers the packet after setting appropriate SLPM
fields like IncomingInterface() and McastSrc()

Note: This component acts only on "multicast" packets. All "unicast" packets are
passed with a NoHdr attached.

A NoHdr is attached for all unicast packets. Address header attached for all
multicast packets.

The reason the multicast source address is part of the header is that some
components (eg: RMTP discussed later) below the multicast forward may need to
know the original source address of the multicast packet. So the source address
carried as part of header is then set in SLPM at the destination for other components
to read. Also, the dest_addr is used to set the SLPM field IncomingInterface at the
destination stack.

Has to be placed below the multicast forwarding component and as below/bottom
in the stack as possible for reducing the overhead incurred for other intermediate
components in the stack. The remaining components described in this sub-section
are all property-oriented optional components in the multicast-data stack.

2.4.10.1.2 Multicast in-order component

This component provides in-order delivery of all packets flowing in a point-to-
multipoint multicast network (i.e. from a single sender to multiple receivers). The
TSM is fairly simple, each packet is sent after tagging it with a sequence number.
The sequence number is incremented monotonically after sending each packet.
The core in-order functionality lies in the RSM. The component maintains a
separate receive window buffer for each unique sender in the network.

All in-order packets are directly delivered to the application. Out-of order packets
are buffered in the receive window. They are actually inserted at the tail of the buffer
and then sorted based on increasing sequence numbers. Timers are associated
with each buffered packet to prevent it from remaining forever in the buffer.
Buffered packets are delivered when their corresponding timers expire.

Limitations: cases when this component does not deliver packets in-order:

• When the buffer is full and an out-of-order packet arrives, the first
packet in the buffer is delivered. So the in-order property is limited by
the degree of in-orderness, which should not exceed the window size.

• A buffered packet's timer expires (usually set to a large value).
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2.4.10.1.3 End-to-End Reliable (without NACK implosion prevention)

This component provides end-to-end reliable and in-order delivery of packets in a
point-to-multipoint network (i.e. from a single sender to multiple receivers). The
working of this component is based on RMTP, but this does not implement the
NACK-implosion prevention mechanism. (NACKs are sent all the way up the tree to
the original multicast sender). This component is operational only at the multicast
sender and at all end-host multicast receivers.

The multicast sender handles:

(a). Transmission of multicast packets, (b) buffering of un-ACKed data in send buffer
(c) NACK processing (d) Re-transmission of data using either multicast or unicast.

The receiver is responsible for:

(a). periodic transmission of a NACK packet (reporting packets that are not yet
received) back to the sender. (b) buffering out-of-order packets in receive buffer. (c)
delivering in-order data to the application.

Timers used are dally_timer (Tdally) , retrans_timer(Tretrans) and
nack_timer(Tnack).

Transmission/buffering of multicast packets: (handled by TSM at multicast sender)

Each multicast packet is tagged with a sequence number. (starts from 0 and is
monotonically increased for every packet). All packets sent are buffered in
send_buffer for later re-transmission if needed. The retrans_timer is also started after
sending the first packet.

It should be noted that in this type of multicast network, the sender does not
explicitly know who the receivers are. Receivers can dynamically join/leave a
particular multicast session. The goal is to provide reliable delivery to the current
members of the session. So the creation and termination of sessions is timer based.
dally_timer is used for this purpose. After sending the last packet in the session, the
dally_timer is started. Tdally is defined as at least twice the lifetime of the packet in
the network. Receivers send back their REQ packets only if they have lost packets.
The dally_timer is reset on receiving a REQ from any of the receivers. Also, time
interval between sending two consecutive REQs is much smaller than Tdally. So,
expiry of the dally_timer implies that either (a). all current receivers have correctly
received all packets (b). something exceptional like a permanent link breakdown
has occurred. This ensures termination of the session and all connection state (e.g.
send buffer contents) are deleted.

Negative Acknowledgement packets (NACKs)
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NACK packets are used to periodically (Tnack) report the contents of the receiver
window to the sender. They contain the next expected sequence number at the
receiver and a sequence list of packets that have not received. When all packets are
correctly received and in-order, the receiver window is empty and thus no NACK
packets are sent.

Receiving NACKs  (handled by RSM at multicast sender)

The sender buffers all NACK packets in nack_buffer received during every period
Tretrans. These NACK packets from different receivers in the network will be later
processed when the retrans_timer expires.

NACK processing and retransmissions  (handled by TSM at sender):

When the retrans_timer expires , the nack_buffer is processed and a retrans_list is
created. Each element in the list contains the packet sequence number and list of
receivers that has requested this packet. to be transmitted. For each retransmission,
if the number of receivers requesting packet exceeds a threshold Mcast_Threshold ,
the packet is re-transmitted using multicast, if not is it unicast back to the particular
receiver.

Two types of packets: data sent using header DataPkt, ACKs sent using header Ack.

Stack Placement: must be placed above the multicast forwarding component to
provide end-to-end reliable delivery.

2.4.10.1.4 Reliable with NACK- implosion prevention

The component described in the previous section does not prevent the NACK-
implosion problem. NACK implosion refers to the undesirable situation when an
upstream link gets congested due to excessive number of NACK packets flowing
through it resulting from the flow of several individual NACKs from downstream
receivers.

The RMTP approach to solve the NACK-implosion problem is as follows:

RMTP is based on a hierarchical structure where the receivers are grouped into
local regions or domains and in each domain there is a special receiver called
designated receiver DR which is responsible for sending NACKs periodically to the
sender, for processing NACKs from receivers in it domain and for re-transmitting
lost packets to receivers in its domain. Since lost packets are recovered by local
retransmissions as opposed to retransmissions from original sender, the end-to-end
latency is considerably reduced and the overall throughput is improved as well.
Since only DRs send NACKs back to the sender, instead of all receivers sending
their NACKs to the sender, only one NACK is generated per local region and thus
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NACK implosion is prevented. Receivers now send their NACKs periodically to the
DR in their local region.

We now describe only the modifications and enhancements made to the previous
end-to-end reliable component to yield this RMTP-like component.

The following modifications had to be made:

(a). Change in stack position: Earlier, the end-to-end reliable component was
placed above the mcast_forward component. But here we need the DRs (which are
actually core/leaf routers in the network) to act on data packets, send NACKs etc. As
on routers, data packets are always only forwarded by the mcast_forward
component and are never delivered above, packets would never reach this
component if it were placed above the mcast_forward component. So this
component has to be placed below mcast_forward.

(b). Node Types: The end-to-end reliable component is operational only at the
original sender (S) and at the end-host receivers (Rs). Here we define two more
node types DRs and NDRs (non-designated receivers).

(c). Sender: same functionality except that re-transmissions cannot be multicast;
they can only be unicast back to the sender. This is because mcast_forward is
above this component.

(d). Non-designated receivers (NDRs): This does not act on data packets, it only
passes them around. The RSM reads the sequence number from the packet and sets
the SLPM field RelSeqNo , which is then read by the TSM ( after packet turn around
by mcast_forward) and placed back onto the header.

(e). Designated receivers (DRs):  are responsible for sending NACKs periodically
back to the original sender, storing out-of-order packets in receive buffers, deliver
in-order packets to the component above and also store them in send_buffer for
later retransmission to receivers (Rs), process NACKs from receivers in their region.

(f) Normal receivers (Rs): same functionality except that the NACKs are now sent to
the corresponding configured DR.

Other components:  Unicast_Forward, TTL , Fragment , Checksum  are a few of
the other components that can/are used in the multicast data stack.

Unicast_Forward : used by the stack to send unicast packets eg : ACKs /
retransmissions
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2.4.10.2 Multicast Routing Stack

2.4.10.2.1 Neighbor Discovery

The main functionality of this component is to dynamically discover neighbors
(multicast routers) on all its interfaces.

The TSM periodically broadcasts probe packets (hello packets) on all multicast-
enabled interfaces. Each probe packet sent on a particular interface contains a list of
neighbors for which neighbor probe messages have been received on that
interface.

Packets from other components above, if any, are passed with a dummy header
NoHdr attached.

The RSM first checks if the neighbor probe packet is received on one of its locally
defined interfaces and if yes, updates in its local memory: the neighbor address and
the interface on which it is received. It then checks for 2-way adjacency i.e. if the
local interface address is present in the neighbor list of the probe packet. If present,
then a 2-way adjacency is established and neighbor is discovered on that interface.
This information is written into and maintained in the global memory data structure
Neighbor Table.

Packets with header NoHdr are not processed and are delivered to the component
above.

The RSM also provides a keep-alive function in order to quickly detect neighbor
loss. When a neighbor is discovered for the first time, the timer neighbor_expiry is
set. If no probe packet is received within the time neighbor_expiry_sweep the timer
is cancelled and this neighbor entry is removed from the global memory Neighbor
Table. On receiving probe packets, this timer value is reset. 

This component does not depend on any other component for addressing. So
address information is carried as header in this component itself. All probe packets
are sent with header Probe and all packets from component above are sent with
NoHdr.

Stack-placement: This component being a control oriented peer-to-peer
component can be placed anywhere among the DVMRP components in the stack.
For performance reasons it is recommended that this component be placed lowest
among the other multicast routing components as this sends peer-to-peer messages
most frequently.

2.4.10.2.2 Route Exchange

The main functionality of this component is to dynamically create and maintain the
routing tables at the multicast routers through periodic exchange of route exchange
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packets with neighbors. This is a RIP-like protocol component, with metric based
on hop-counts.

The TSM periodically sends route exchange packets to all its neighbors. The list of
neighbors is read from the global memory Neighbor Table. Each route exchange
packet contains a list of routes with each route comprised of a network prefix, mask
and metric. All packets from any component above are passed with a dummy
header NoHdr attached.

The RSM, for each route exchange packet received, first checks with its local route
cache if the received route is a new route or not. If new then the route is stored in
the local route cache. If not, then the received metric for the route is compared with
the existing metric after adding the cost of the incoming interface to the received
metric. If the resultant metric is better than the existing one, then the local route
cache is updated. After all the received routes are processed, the contents of the
local route cache are written to a global data structure Routing Table in global
memory. The Routing Table contains entries of the form prefix, mask, metric, next-
hop.

All packets with a NoHdr attached are just passed up to the component above.

This component does not depend on any other component for addressing. So
address information is carried as header in this component itself. All route
exchange packets are sent with header RouteExchange and all packets from
component above are sent with the dummy header NoHdr.

setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in

Stack-placement: This component being a control oriented peer-to-peer
component can be placed anywhere among the DVMRP components in the stack.
However, it needs to be placed over TTL for sending route exchange packets with
a TTL of 1.

2.4.10.2.3 Spanning Tree

In DVMRP, the poison reverse functionality and creation of spanning trees is
embedded as part of the route exchange process itself. Here the functionality is built
into a separate component. This component enables each upstream router to form
a list of dependent downstream routers for a particular multicast source. Each
downstream router informs its upstream router that it depends on it to receive
multicast packets from a particular source. This is done through periodic exchange
of Poison Reverse packets.

The TSM needs access to the global memory Neighbor Table and Routing Table.
The entries in the Routing Table are grouped based on next-hop information. All
prefixes having the same next-hop are grouped together in different lists called
poison reverse lists. Each of these lists is sent in the form of poison reverse packets
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to their corresponding next-hops (which are actually upstream neighbors for the
source networks in the list). All packets from any component above are passed with
a dummy header NoHdr attached.

The RSM on the upstream neighbor uses all the poison reverse lists it receives to
form a spanning tree for each source. Thus, this component builds a list of
downstream dependent neighbors for each source network. The tree is stored in
global memory as Source Tree.

All packets with a NoHdr attached are just passed up to the component above.

This component does not depend on any other component for addressing. So
address information is carried as header in this component itself. All poison reverse
packets are sent with header PoisonReverse and all packets from component above
are sent with the dummy header NoHdr.

Stack-placement: This component being a control oriented peer-to-peer
component can be placed anywhere among the DVMRP components in the stack.
However, it needs to be placed over TTL for sending the poison reverse packets
with a TTL of 1.

2.4.10.2.4 Pruning

The primary purpose of this component is to create and maintain the global data
structure Prune Table on each node that stores the list of pruned downstream
interfaces for each source/group pair. This along with the Spanning Tree
component constructs per source-group multicast trees at each node. (Note: the
Spanning Tree component by itself constructs a per-source broadcast tree at each
node).

The TSM is responsible for sending prune packets for a particular source-group
pair addressed to the corresponding upstream neighbor under the following
conditions:

(a). If all its downstream dependent neighbors have sent prunes and all its IGMP
interfaces are also pruned.

(b). If all its downstream dependent neighbors have sent prunes and there are no
IGMP interfaces (at multicast core routers).

(c). If there are no downstream dependent neighbors and all IGMP interfaces are
pruned (at multicast leaf routers).

For this, the TSM reads all the entries of the Prune Table periodically using a prune
timer and if needed sends a prune packet for the (source, group) upstream towards
the source.
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All packets from any component above are passed with a dummy header NoHdr
attached.

The RSM is mainly responsible for updating the global memory Prune Table. When
a prune packet for (src,grp) is received on an interface intf , it adds an core
interface prune entry in the Prune Table containing source src, group grp and
incoming core interface intf (interface to be pruned). All packets with a NoHdr
attached are just passed up to the component above. Note that the TSM reads from
the Prune Table and the RSM writes to the Prune Table.

Stack-placement: This component being a control oriented peer-to-peer
component can be placed anywhere among the DVMRP components in the stack.
However, it needs to be placed over TTL for sending the prune packets with a TTL
of 1.

2.4.10.2.5  Grafting

This component is responsible for removing the appropriate pruned branches of
the multicast tree when a host rejoins a multicast group. When a group join occurs
for a group that the router has previously sent a prune, the global Prune Table is
updated by the Join Leave component to un-prune the local IGMP interface for that
particular group.

The TSM periodically reads from the global Prune Table, and sends a separate graft
packet for a particular (src,grp) to appropriate upstream routers for each source
network under the following conditions:

(a) On leaf-routers if the interface attached to all hosts is un-pruned.

(b) On core routers if a graft packet is received on any of the previously pruned
downstream interfaces.

All packets from any component above are passed with a dummy header NoHdr
attached.

The RSM on receiving a graft packet writes to the global Prune Table to update the
list of grafted core interfaces per source-group. Thus, this component along with
the Pruning component maintains the global Prune Table by dynamically updating
the list of pruned/grafted downstream interfaces for each source-group pair. All
packets with a NoHdr attached are just passed up to the component above.

This component assumes a Reliable component underneath it for reliability of its
Graft packets. This obviates the need for this component to handle Graft ACK
packets as in traditional DVMRP.

Stack-placement: This component being a control oriented peer-to-peer
component can be placed anywhere among the DVMRP components in the stack.



The University of Kansas /ITTC 103 Innovative Active Networking Services

However, it needs to be placed over TTL for sending the graft packets with a TTL of
1.

2.4.10.3 Group Membership Stack Components

2.4.10.3.1 Join/Leave component with its control interface

Initially, the IGMP protocol was decomposed into two separate components:
Join_Leave and Query_Report. The Join_Leave component to handle user join and
leave to a multicast group and the Query_Report component to handle group
membership updates from end-hosts to leaf-routers. But the Join_Leave component
did not fully satisfy our definition of a protocol component. Its TSM did not send
packets on the wire and it had no RSM functionality. So, finally these were merged
into a single component called Join_Leave. Another interesting feature about this
component is that it is asymmetric in nature. The TSM and RSM functionality differs
depending on where the component is deployed at the end-host or at the leaf
multicast router. So, in order to make the state machines symmetric both the state
machines contain exclusive transitions for end-hosts and routers.

We describe the TSM and RSM functionality separately at the end-hosts and at the
leaf-router.

At the end-host:

The TSM responds to control event EControl of type JoinGroup and LeaveGroup.
(These events are generated by the application when the host wants to join or leave
a particular multicast group). The local group cache is updated when these events
occur to always store the current list of group addresses to which this host belongs.
The RSM responds to the Query packets from the leaf-router by sending back a
separate Report packet for each group of which it is a member.

At the multicast-leaf router:

The TSM periodically performs the following tasks on expiry of the query timer:

multicasts query packets on the local network to the "all-hosts-group".

computes the list of newly joined as well as the list of newly left group addresses on
each attached interface over the last timer interval. For each newly joined group
address on a particular interface the global memory Prune Table is updated by
grafting the interface for that group address.

writes the contents of the local router_group_cache into global memory Group
Table.

The RSM processes the Report packets received from its attached hosts and updates
the local router_group cache. Note that the local router_group cache maintains
information on list of group members on each attached interface. It should be noted
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that the component at the end-host is initialized "actively" and that at the router
"passively " through EActiveInit and EPassiveInit events respectively.

Note: For Query packets, src_addr is the address of the leaf router's interface. For
Report packets src_addr is the address of the host sending the report and dest_addr
is the address of the multicast leaf router. group_address in Report packets refers to
the group address being reported.

2.4.10.4 Testing and Performance

This section describes the nature and results of various tests and experiments that
were performed to verify correct operation of the composite multicast service
running on a reasonably sized 12-node multicast network. The tests can be divided
into two major categories, functionality testing and performance testing. In
functionality testing, the primary objective is to verify the correct operation of all
protocol components and the service as a whole. In performance testing, we
conduct test experiments to measure various network parameters like end-to-end
throughout, one-way latency, join/leave latencies and also study and observe their
variance and effect for different stack combinations, message sizes, error rates etc.
Section 2.4.10.4.1 describes the functionality test and Section 0 describes the
various performance measurement tests that were performed using composite
protocol stacks.

2.4.10.4.1 Functionality Testing

The following figure shows the test network set-up that was used.

Figure 40 Multicast Test Network

The test network consists of 8 routers (R1 to R8) and 7 hosts (H1 to H7). All links are
point-to-point 100 Mbps Ethernet.
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Addressing scheme: All core links i.e. links connecting routers, have network
address of the form 10.10.xy.0/24. where x < y. eg: the link connecting R1 and R2 is
named as 10.10.12.0/24 and the interface at R1s end has always a lower IP address
10.10.12.1 and R2 has a higher IP address 10.10.12.2. All leaf interfaces have
addresses of the form 10.n.1.0/24, where n is the router-no they connect to, e.g.:
The link between R5 and H1 is addressed as 10.5.1.1 at the router end and as
10.5.1.2 at the host-end. Knowing this addressing scheme will help in better
understanding of the test results later on in the section.

Stacks: The multicast data stack is run on all nodes (sender, routers and receivers).

The multicast routing stack is run only on the routers from R1 to R8. The group
membership stack is run on all leaf routers (R2 to R7) and hosts (H1 to H7).

Global Memory Initialization: This has to be done prior to running the stacks on
each node. So on each node the script /ensemble/global_memory/shminit is run
that allocates and initializes the various global memory objects to be used by the
stack. The script /ensemble/global_memory/sem_initall is then run to initialize all
semaphore values used.

Note: the Linux ipcs command can be used to view shared-memory and
semaphore related information.

Configuration files: node.itable and node.igmptable are 2 configuration files that are
needed by the stack to initialize their interface addressing information. Node.itable
consists of total list of interfaces and node.igmptable consists of list of leaf
interfaces.

Running the Multicast Routing stack:

The following command-line shows how to run the Multicast Routing stack on
router R1:

../demo/dvmrp_appl -remove_prop forward -add_prop neighbor_discovery -
add_prop route_exchange -add_prop poison_reverse -add_prop grafting -
add_prop pruning -pstr interface_table=bn1.itable -pstr
igmp_interface_table=bn1.igmptable -port 9500

The stack ordering from top to bottom is pruning, grafting, poison_reverse, route
exchange, neighbor_discovery over the default checksum component. The
component that generates packets most frequently is kept at the bottom-most. So
neighbor_discovery was placed at the bottom and grafting was placed at the
topmost. We expect to have a better performance improvement if this ordered is
maintained. There is no need to make use of TTL as multicast routing stack packets
are not sent farther than a hop. Also the default forward component is removed as
there is no need of forwarding. The interface information is read from the two input
files .itable and .igmptable.
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The stack is run over UDP on port no 9500. Similar commands are executed on all
routers (from R1 to R8).We now show the global memory output at 3 routers, R1,
R3 and R5. Output at other routers are similar. The output corresponds to when the
full tree is active and no pruning has started. The global memory output is self-
explanatory. From the above output it can be noted that all core and leaf interfaces
are advertised by the route exchange component. The spanning tree at R1 is empty
as downstream neighbors do not exist for any source in the network. The group
table is empty, as there are no attached leaf interfaces. Prune Table also does have
any entries has pruning has not started.

Figure 41 lists the routing table at Router 1
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Figure 42 lists the routing table at Router 3

The spanning tree displays the list of downstream dependent neighbors for each
source network/mask pair in the network. The Group Table indicates that a member
of the group 225.0.0.5 is present on the interface 10.3.1.1. This is a result of the host
H7 joining the group 225.0.0.5.
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Figure 43 lists the routing table at Router 5

The group table entry is the result of host H1 joining the group 225.0.0.5. As output
from other routers are remarkably similar we do not show the output. This output
verifies the correct operation of three Multicast Routing stack components:
Neighbor Discovery, Route Exchange and Spanning Tree as the Neighbor Table,
Routing Table and Source Tree entries are all correctly created and maintained.

To test functionality of the Pruning and Grafting components the following
sequence of events were made to occur.

Initial State: We have an un-pruned tree rooted at the source R1 as shown in the
figure 6. All the hosts have joined the group 225.0.0.5 and have started receiving
data from the source.

Event A: H1 leaves group 225.0.0.5.

Observation: We observe changes in global memory at routers R5 and R3. We
show group table and prune table contents only, as contents of other tables are not
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expected to change due to group joins and leaves. At router R5, the leaf interface
10.5.1.1 connecting

H5 and H1 gets pruned for the (source, group) pair of (10.10.12.1,225.0.0.5) after
H1 leaves. The group member table also deletes the membership entry.

At router R3, the core interface 10.10.35.1(interface connecting R3 and R5) gets
pruned. This is the result of the downstream router R5 sending a prune for the
(source, group) pair of (10.10.12.1,225.0.0.5) upwards to R3.

Figure 44 shows the pruning action after H1 leaves the group

Event B: H2 leaves group 225.0.0.5

Observation: we observe changes in group table and prune table entries at R6 and
R3.
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At router R6, the leaf interface 10.6.1.1 gets pruned, and the group member table
deletes the entry for the group 225.0.0.5. At router R3, both the core interfaces
10.10.35.1 and 10.10.36.1 get pruned.

Figure 45 shows the pruning action after H2 leaves the group

Event C: H7 also leaves the group 225.0.0.5.

Observation: We observe the effect of this leave on routers R3 and R2.

At router R3, the leaf interface 10.3.1.1 gets pruned as a result of which R3 sends a
prune upstream towards R2. The group member table is also updated deleting the
membership entry. At router R2, the core interface 10.10.23.1 gets pruned as a
result of receiving a prune on that interface from downstream router R3. At this
stage, the whole left-side of the tree is pruned. We now observed the effect of group
leaves on pruning of trees and global memory contents. Events D and E are group
re-joins. We shall observe its effect on grafting of trees next.
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Figure 46 shows the pruning action after H7 leaves the group

Event D: H1 re-joins the group 225.0.0.5

Observation: We observe the effect of this join at R3 and R2. The corresponding
branches of the tree are grafted back.

At R3 and R2, we find that the core interfaces 10.10.35.1 and 10.10.23.1 are grafted
respectively.
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Figure 47 shows the joining action after H1 re-joins the group

Event E: H2 re-joins the group 225.0.0.5

Observation: We observe the effect of join on routers R6 and R3.

At R6, the leaf interface gets grafted back again. At upstream router R3, both the
core interfaces are now grafted. At this stage multicast traffic starts flowing to both
H1 and H2. We have thus observed the effect of joins on the working of grafting
component.

Testing the Group Membership stack for functionality is fairly simple. Just check if
the leaf router's group table is updated for every host's join or leave event. The
functionality of the data stack was verified using per-component log messages and
monitoring traffic on the links using network sniffers like tcpdump. The very fact
that data was delivered successfully from end-to-end proved most of the
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functionality. The multicast data stack is rigorously tested with various network
metrics like throughput and latency. This is described in the next section.

Figure 48 shows the joining action after H2 re-joins the group

2.4.10.4.2 Performance Testing

Functionality testing only proves that the components work as intended, but gives
no indication on how fast or slow the stacks are. The multicast data stack is tested
for performance based on network measurement metrics like end-to-end latency
and throughput. Several performance measurements were made using our
composite protocol stacks. The list of performance tests that were conducted is as
follows. Each test experiment is explained in detail later with the results analyzed.

Test 1: Measurement of stack latencies at sender, router and receivers for the basic
multicast data stack for varying message sizes. The results are tabulated and plotted.
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Test 2: Measurement of per-component transmit and receive state machine
latencies for all components of the basic multicast data stack for varying message
sizes. The results are tabulated.

Test 3: Measurement of end-to-end one-way latency for the basic multicast stack.
NTP was used to synchronize the machines. We plot the variation of one way
latency with message size and number of hops.

Test 4: Measurement of end-to-end throughput for the basic multicast stack for
varying message size.

Test 5: Measurement of end-to-end throughput for the reliable multicast stack for
different link error probabilities. The results are tabulated as well as plotted.

Test 6: Measurement of join latency and leave latency. Join latency measurements
were made for varying prune depth values.

The basic multicast stack consists of the components MCAST_FORWARD,
FRAGMENT, CHECKSUM and REPLICATOR. The reliable multicast stack consists of
the components MCAST_RELIABLE, MCAST_FORWARD, UCAST_FORWARD,
FRAGMENT, CHECKSUM, REPLICATOR and RANDOM DROP. RANDOM_DROP
is a component that simulates link error and drops packets with a user defined error
probability of p.

Several factors were considered and changes made to make the components from
merely functional to relatively high-speed, low delay units.

Some of them are listed below:

• Choice of Ocaml compiler: Using Ocaml high-performance native-
code compiler ocamlopt instead of byte-code compiler ocamlc. The
native-code compiler produces code that runs faster than the byte-code
version at the cost of increased compilation time and executable code
size. However, compatibility with the byte-code compiler is extremely
high, the same source code should run identically when compiled with
ocamlc and ocamlopt.

• Reducing the number of global memory lookups. On an average each
global memory function lookup access time was measured to be about
20ms. A typical packet trace in the multicast forwarding component at a
router made about 6-8 global memory function lookups. This induces
lot of per-packet delay. To avoid such a high per-packet delay, it was
decided to use fast-lookup caches inside the multicast forwarding
component. These caches were part of the component’s local memory.
Global memory lookups are now not made for each and every packet,
they are made only once in N packets, where N is called the global
memory lookup frequency. Considering a packet flow of 1000 packets
and a N value of 100, 990 packets would use values from the cache
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and only 10 packets would use actual global memory values. Caches
are always refreshed once in N packets. For a highly stable network
where there are not many route changes or group joins or leaves one
would want to have a high value of N and for a highly dynamic
network with lot of route changes and group joins/leaves, a low value
of N has to be chosen. The uses of caches significantly improved
forwarding delays at a router.

• Order of guards:  The order in which the guards are executed at a
particular state can also affect performance. It should be taken care that
the most frequently occurring guard condition is executed first. This is
because guards are evaluated only till the first true match is found.

• Removing costly memory and file operations:  File operations are very
costly and should be always removed if possible. Several costly
memory operations were modified for better performance.

The individual tests are now explained in detail.

2.4.10.4.2.1 Test 1: Measurement of stack latencies

The stack latencies are measured at sender, router and receivers for the basic
multicast data stack for varying message sizes. At the sender, the stack latency is
defined as the time taken for an application packet, to traverse through the transmit
state machines of the sender stack till its written onto the UDP/ETH socket. At the
router, it refers to the total time spent in the Ensemble stack to forward a packet and
at the receiver it refers to time elapsed between the reception of the packet from an
ETH/UDP socket and delivery to the application.
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Figure 49 Variation of Stack Latency with Message Size

The Figure 49 shows how the stack latencies at the sender vary with message size.
All values are computed after averaging over 1000 packets and 5 runs each.
Message size is varied from 1 byte to 1300 bytes. From the graph, we find that on
the whole, latencies increase with increase in message size. This fact is mainly
attributed to the checksum component that is the only component in the stack
whose performance depends on message size. At the sender, this result is not that
evident. But at the routers we find a significant increase in latency from 113ms for 1
byte message to 143ms for a 1300-byte message. At the receiver it increases from
27.8ms to 43.5ms. The global memory lookup frequency was set to 100.

The results are also tabulated as under:
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Stack Latency

Msg Size Sender Router Receiver

(bytes) (in micro-seconds)

1 70.53 113 27.72

10 69.33 116 27.94

50 70.45 115 28.79

100 69.18 117 29.72

200 71.57 119 30.06

300 72.23 123 31.31

400 73.3 121 32.40

500 74.68 121 33.53

600 75.97 124 34.64

700 76.01 130 36.20

800 72.61 131 37.13

900 72.11 132 38.15

1000 73.11 140 39.42

1100 72 139 41.62

1200 72.62 140 42.40

1300 74.27 143 43.46

Table 13 Variation of Stack Latency with Message Size

2.4.10.4.2.2 Test 2: Measurement of Component Transmit and Receive
Latencies

In this test, we measure the transmit and receive latencies of individual components
in the multicast stack for different message sizes.
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Msg Component Latency (SENDER)

Size (in microseconds)
(in bytes) MCAST FRAG CHK REPL

1 29.57 7.98 8.01 6.28

10 32.83 8.35 8.06 6.03

50 36.15 8.18 8.44 6.31

100 34.96 7.96 8.86 6.49

200 35.86 8.15 9.89 6.63

300 30.62 12.60 10.85 6.47

400 30.73 9.84 14.94 6.45

500 27.78 12.24 16.01 7.03

600 26.86 8.78 20.89 7.90

700 26.34 9.18 17.08 11.34

800 26.56 9.22 16.62 8.65

900 26.26 8.52 18.44 7.70

1000 26.09 8.23 20.49 7.61

1100 26.12 8.30 20.23 7.94

1200 25.96 7.98 19.94 7.03

1300 27.15 8.49 20.93 7.57

Table 14 Component Latencies at Sender

Msg Component Latency (RECEIVER)

Size (in microseconds)

(in bytes) MCAST FRAG CHK REPL

1 3.06 3.193 9.693 4.568

10 3.06 3.21 10.23 5.58

50 3.06 3.21 10.32 5.59

100 3.06 3.26 10.52 4.58

200 3.06 3.17 11.68 4.61

300 3.23 3.33 12.38 4.75

400 3.13 3.19 13.39 4.68

500 3.21 3.30 14.46 4.79

600 3.29 3.31 15.40 4.79

700 3.16 3.28 16.23 4.90

800 3.31 3.27 17.70 4.86

900 3.33 3.28 18.35 5.15

1000 3.26 3.37 19.41 5.04

1100 3.84 3.42 21.22 5.18

1200 3.30 3.26 21.70 5.12

1300 3.31 3.38 22.70 5.22

Table 15 Component Latencies at Receiver

From the results, we find that the checksum component’s latency increases
significantly with message size, both at the sender and at the receiver. Other
components do not show significant increase.
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Test 3: Measurement of one-way latency

Figure 50 Multicast Hop Test Network

One-way latency is defined as the total time taken by the packet from the sender
application to the receiver application. Before taking timing measurements, all
machines have to be synchronized, so that the results reflect the correct values.
NTP[Mills1988] was used to synchronize the machines. For each measurement the
receiver and sender NTP offsets are also noted and are used while computing the
net end-to-end one way latency. One-way latencies measurements were made for
different message sizes and also by changing the number of hops. The following
test set-up was used to measure one-way latencies up to 6 network hops.

Measurements are made at the sender R1, 2-hop host H5, 4-hop host H1 and the 6-
hop host H3.
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Figure 51 Multicast Hop Test Network

The plot shows how one-way latency varies with message size and number of
hops.

As expected the end-to-end latency values increase with increase in message size
and increase in number of hops. The values are tabulated as under.
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Msg End-to-End Latency

Size (in microseconds)

(in bytes) 2-hop 4-hop 6-hop
20 506 650 895
30 603 837 943
70 634 847 1020

100 682 876 1044
200 725 894 1141
300 748 889 1147
400 759 875 1189
500 811 942 1278
600 777 978 1312
700 824 1023 1336
800 836 1089 1389
900 850 1137 1454
1000 896 1147 1690
1100 915 1254 1748
1200 1093 1372 1765
1300 1170 1460 1815
1400 1439 1622 1876
1500 1467 1626 1889
1600 1489 1708 1945

Table 16 Variation of end-to-end latency with number of hops

The message sent from the sender consists of a 20-byte timestamp followed by a
variable length message field. So the minimum message size is 20-bytes.

2.4.10.4.2.3 Test 4: Measurement of end-to-end throughput

End-to-end throughput refers to receiver throughput, which is defined as follows:

Throughput in bits/sec = (No of bytes received * 8) / (Tlast - Tfirst) seconds, where, Tlast

is the time when the last packet is received and Tfirst is the time when the first packet
is received. End-to-end throughput values were measured for 2 stack combinations,
a stack with only MCAST_FORWARD and REPLICATOR and for the basic multicast
stack.

The throughput values were measured at 4 receivers H1, H2, H3 and H4 each 4
hops away from the multicast source R1, values obtained are averaged. As we do
not have a flow control component the sender needs to be slowed down if the
receiver is not able to sustain the sender rate. A sender slow-down factor of 70 was
used for all the measurements.
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Throughput vs Msg Size
Averaged over 4 receivers, each 4 hops from multicast source
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Figure 52 Variation of throughput with message size

We find that for both curves the throughput increases with increase in message size
from 1 byte to 1300 bytes. Stack A does not have our FRAGMENT component, so
IP fragmentation comes into effect after 1300 bytes. Stack B has the FRAGMENT
component in it. We find a steeper drop in Stack B curve compared to Stack A
curve after 1300 bytes. This is due to the difference in performance of our fragment
component and IP fragmentation. We find that addition of Checksum and Fragment
in Stack B has resulted in a decrease in throughput. We achieve the highest
throughput of 43.17 Mbps for 1300-byte sized message for Stack A and a highest
throughput of 33.9 Mbps at 1300 bytes for Stack B. The increase in throughput for
both the curves is also very consistent.

The individual values are tabulated as under:
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Msg Throughput
size (in Mbps)
(in

bytes) Stack A Stack B
1 0.035 0.033
10 0.347 0.306
50 1.7 1.539

100 3.433 3.087
200 6.93 6.298
300 10.357 9.041
400 13.789 11.938
500 17.241 14.716
600 20.437 17.74
700 23.861 20.151
800 26.579 23.017
900 30.003 25.157
1000 33.484 27.568
1100 36.546 29.622
1200 39.678 32.343
1300 43.172 33.935
1400 39.051 13.748
1500 39.237 13.242
1600 42.596 15.349

Table 17 Lists variation of throughput with message size.

2.4.10.4.2.4 Test 5: Measurement of throughput for reliable multicast

The reliable multicast stack consists of 7 components viz. Mcast_Reliable,
Mcast_Forward, Ucast_Forward, Fragment, Checksum, Replicator and Random
Drop.

Throughput for the reliable multicast stack was measured by varying link error rates
using the Random Drop component. The values were measured at receivers H1,
H2, H3 and H4 which are 4-hops from the multicast source. 1000 packets were
transmitted from source each with packet size of 1000 bytes. A 1% error probability
implies that out of 1000 packets, 990 packets are reliably transmitted and 10 are re-
transmitted from the source. NACK status packets if any, are sent from all receivers
every 10ms. Re-transmissions at the sender also take place every 10ms. A dally
timer interval of 30s is used. The multicast re-transmission threshold was set at 2 i.e.
if 2 or more receivers request a packet to be re-transmitted it will be multicast on the
network, else re-transmissions are separately unicast back to each receiver.
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Figure 53 Variation of reliable multicast throughput with error rate.

For a 0% link-error probability (e), a throughput of 17.18 Mbps is achieved. For
1000 bytes the basic multicast stack gave a throughput of 27.57 Mbps (previous
test result). This reduction can be attributed to the addition of 3 more components
in the stack and buffering operations at the reliable component’s sender. No reverse
ACK flow occurs here and there are no-retransmission too. The throughput only
decreases gradually from 17.18 Mbps to 13.82 Mbps at an error probability of 6%.
A 6% error probablity in the link leads to about 60 retransmissions from source.
There is a much steeper decrease from 6% to 10% and the throughput drops to
6.18Mbps. On the whole, the throughput values are good even for high error rates.
The individual values are tabulated as under:
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Error Throughput
% (Mbps)
0 17.17

0.2 16.84
0.4 16.47
0.6 16.23
0.8 16.15
1 15.9

1.2 15.62
1.4 15.35
1.6 15.46
1.8 15.33
2 15.26
3 15.2
4 14.8
5 14.01
6 13.83
7 12.17
8 8.69
9 6.78

10 6.18

Table 18 Variation of reliable multicast throughput with error rate

2.4.10.4.2.5 Test 6: Measurement of join and leave latency

Join Latency is defined as the time taken for a receiver host to start receiving data
from the source after it has joined the corresponding group. Join Latency can be
controlled by adjusting the values of the query timer and the graft timer and it is
also dependent on prune depth (how far the tree is pruned).

The following sequence of operations occur after a host joins a group:

• The local group cache is first updated, a report packet is sent to the leaf
router on receiving a query and the global memory group table gets
updated at the leaf router. Let the time taken for this sequence be T1.

• On expiry of the graft timer, the grafting component sends a graft
message upstream, which then grafts all interfaces till either an un-
pruned branch is reached or till the source is reached. Let this time be
T2.

• Then, data has to flow from that node back to the receiver. Let this time
be T3.

The join latency is the sum T1 + T2 + T3 approximately.
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Figure 54 Prune depth of a multicast tree.

The prune timer, graft timer and the query timer were all set to 100ms. The sender
date rate was set to 10 packets/sec. The following figure shows all the 3 cases:

Join latency was measured for 3 cases, for prune depth of 1, 2 and 3.

Prune
Average Join

Latency
Depth (in milli-seconds)

1 405
2 458
3 535

Table 19 Variation of join latency with prune-depth/

As expected we find that join latency increases with increase in prune depth.
However, it should be noted that join latency is very controllable and can be
affected due to change in any of the above timer values. Making the timers expire
more frequently will definitely improve join latency but will also increase the
amount of traffic in the links because more number of query, prune and graft
messages will be sent.

Leave latency is defined as the time taken for the receiver to stop receiving data after
it has left the corresponding group. Leave latency just depends on the query timer
interval. For a query timer interval of 100ms, a leave latency of 146ms was
obtained.
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Leave latency can also be improved by increasing the query timer frequency at the
cost of more link traffic. Both leave and join latency valued reported above are
averaged over 5 runs.

We have thus described the functionality tests and performance tests that were
performed on the multicast composite protocols.

2.4.10.4.3 Comparison with Linux IP Multicast

The throughput values attained by the composite protocol implementation are
compared with those using Linux IP multicast. Mrouted[Fenner], the Linux IP
multicast implementation for DVMRP was used on the same test network. Mrouted
was installed on all router (R1 to R8). Iperf [lperf] was used to measure the end-to-
end multicast throughput.

Throughput measurements were made for varying packet sizes ranging from 10 to
2000 bytes. The sender is made to send at a maximum possible data rate, so that
there is no receiver loss. 1000 packets are sent in each throughput measurement
test. The throughput increases from 2.81 Mbps for a 10-byte packet to 95.8 Mbps
for 1400 byte packet. There is a sheer drop of throughput at around 1500 bytes
due to IP fragmentation.  Figure x illustrates the end-to-end throughput
performance of Linux IP multicast and the basic Composite Protocols multicast data
stack.

Mrouted vs Composite Multicast Throughput
Averaged over 4 receivers each 4 hops away from multicast source

for 1000 packets and 5 runs

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Packet size in bytes

Mrouted Throughput
Composite Multicast 

Figure 55 Comparison with Linux IP multicast throughput
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The composite multicast achieves a highest throughput of 34 Mbps compared to its
Linux counterpart, which achieves about 95 Mbps for packet sizes of 1300 bytes.
The fact that the composite protocol implementation is about 2-3 times slower is not
surprising.

Msg Throughput
size (in Mbps)
(in

bytes)
Linux IP

Multicast
Composite
Protocols

10 2.81 0.306
50 13.7 1.539
100 24 3.087
200 58.2 6.298
300 66.1 9.041
400 74.3 11.938
500 80.5 14.716
600 87.5 17.74
700 89.4 20.151
800 92.2 23.017
900 93.2 25.157

1000 94.1 27.568
1100 94.6 29.622
1200 95.2 32.343
1300 95.6 33.935
1400 95.8 13.748
1500 55.1 13.242
1600 55.7 15.349

Table 20 Comparison with Linux IP multicast

Given the constraints imposed by the specification methodology and limitations of
the current implementation, this is a reasonable performance penalty to pay. A few
reasons are:

• Executing a component's state machine incurs a non-trivial amount of
overhead, which the in-kernel implementation in Linux does not.

• There are no well-defined boundaries between layers in the Linux
implementation with respect to memory access and all layers operate
on a common instance of a socket buffer. Linux protocol software can
afford to perform pointer arithmetic on socket buffers and minimize
memory copies. The strict layering enforced by the composite protocol
framework makes it impossible to access the local memory of another
component.
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• Moreover, Ensemble is a user-level program and hence incurs further
overhead in sending and receiving messages compared to the Linux
in-kernel implementation.

• Finally, the Linux implementation has matured over many years of use
and improvement, whereas only limited time could be spent so far in
optimizing the current implementation of composite protocols.

2.4.11 Conclusions and Future work of Multi-cast

This work presents a novel approach of building network services from composite
protocols consisting of single-function protocol components. It demonstrates the
applicability of the composite protocol approach to wider-range of network
protocols and services, both data-oriented/data plane and control-oriented/control
plane protocols can be built and composed into stacks using this approach. This
thesis addresses one of the main challenges in building network services, inter-
stack and cross-protocol communication that is addressed through use of global
memory objects.

As a case study, a reliable multicast service is built using three composite protocol
stacks and 5 global memory objects. A multicast data stack for reliable replication of
data in the network, a multicast routing stack for dynamically creating and
maintaining neighbor tables, routing tables, spanning trees in the network and a
group-membership stack for members to join/leave multicast groups in an ad-hoc
fashion. The global memory objects are implemented as part of shared memory
which link to the stacks at run-time. They provide a functional interface and
simultaneous access to them is controlled using semaphores.

The reliable multicast service is also tested for both functionality and performance
on a medium sized 12-mode test network. The functionality tests confirm the
expected behavior of the stacks , including dynamic pruning and grafting of stacks.
Performance tests measured end-to-end throughput, one-way latency, reliable-
multicast throughput and individual per-component send and receive latencies.
The performance of composite reliable multicast is also compared to Linux IP
multicast.

This section suggest possible improvements and enhancements to this work and to
the area of composite protocols and services in general and identifies scope of
future work in this area.

• The multicast service designed and implemented here supports only
point-to-multipoint data transfer used in applications like file-transfer
and audio streaming. This can be extended to support multi-point to
multi-point multicast, which can be used in applications like video-
conferencing.

• Complex multicast protocols like MOSPF and PIM can be implemented
using this approach.
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• More composite services can be built , security protocols ,network
management protocols can be built to test the feasibility, demonstrate
component re-use and expand the library of components.

• The main focus of this thesis was to focus on demonstrate the feasibility
of the composite protocol approach to design and implement network
services, performance was not the major focus. A lot of work can be
done to improve and optimize the performance of these composite
protocol stacks and make them come into speed with IP based
implementations.

• Deployment of composite services on an active network is another big
challenge.

• Automating the process of verifying specification of components, tools
to automatically translate from specification to implementation, a
Property-In Protocol Out conversion tool are also possible areas of
improvement.
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3 Project Information

3.1 Budget Summary

The IANS project ran from June 4, 1999 through May 31, 2003. The budget was
$1,463,940 total, $1,382,750 Federal and $81,190 The University of Kansas. Table
2 shows the actual and cumulative federal expenses on a month-by-month basis.
Contributions of The University of Kansas consisted of faculty salary match during
the academic year.

Month Actual Costs Actual Cum. Month Actual Costs Actual Cum.
Jun-99 0.00 2,307.08 Jun-01 29,402.17 688,696.35
Jul-99 1,086.37 3,393.45 Jul-01 89,544.34 778,240.69
Aug-99 3,259.11 6,652.56 Aug-01 33,752.13 811,992.82
Sep-99 12,282.56 18,935.12 Sep-01 15,227.06 827,219.88
Oct-99 20,970.05 39,905.17 Oct-01 18,713.42 845,933.30
Nov-99 15,932.05 55,837.22 Nov-01 25,129.29 871,062.59
Dec-99 32,768.53 88,605.75 Dec-01 12,436.62 883,499.21
Jan-00 14,470.40 103,076.15 Jan-02 15,977.86 899,477.07
Feb-00 11,563.93 114,640.08 Feb-02 16,707.29 916,184.36
Mar-00 16,370.53 131,010.61 Mar-02 15,754.48 931,938.84
Apr-00 32,144.30 163,154.91 Apr-02 17,125.60 949,064.44
May-00 17,171.17 180,326.08 May-02 28,894.11 977,958.55
Jun-00 43,897.64 224,223.72 Jun-02 20,144.73 998,103.28
Jul-00 72,604.21 296,827.93 Jul-02 60,990.71 1,059,093.99
Aug-00 58,594.50 355,422.43 Aug-02 66,826.82 1,125,920.81
Sep-00 21,334.42 376,756.85 Sep-02 31,183.05 1,157,103.86
Oct-00 30,587.35 407,344.20 Oct-02 50,792.93 1,207,896.79
Nov-00 50,085.10 457,429.30 Nov-02 34,033.45 1,241,930.24
Dec-00 30,351.50 487,780.80 Dec-02 38,695.65 1,280,625.89
Jan-01 28,692.61 516,473.41 Jan-03 30,292.98 1,310,918.87
Feb-01 32,172.85 548,646.26 Feb-03 25,344.16 1,336,263.03
Mar-01 27,630.68 576,276.94 Mar-03 11,395.78 1,347,658.81
Apr-01 27,205.73 603,482.67 Apr-03 156.22 1,347,815.03
May-01 55,811.51 659,294.18 May-03 9,442.58 1,357,257.61

Jun-03 19,428.79 1,376,686.40

Table 21 lists the actual monthly and cumulative federal project costs.

3.2 Project Personnel

Professors Gary J. Minden and Joseph B. Evans directed the project. Research
Engineer Ed Komp helped organize the project and direct the graduate students.
Four graduate students and four undergraduate students worked on this project:
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Ravi Chamarty, Vishal Zinjuvadia, Suresh Krishnaswamy, Yoganandhini
Janarthanan, Steve Gange, Disha Chopra, Magesh Kannan, Sandeep Subramaniam,
Srujana Vallabhaneni, and Shyang Tan.

3.3 Project Equipment

The IANS project obtained general purpose computers to develop software and an
array of 12 computers to test and evaluate composite protocols.

4 Conclusion

The IANS project successfully implemented an active networking system. Our initial
ideas for a simple NodeOS and execution environment did not prove successful
when implemented. However, our work on composite protocols showed a
mechanism to implement standard protocols by composing functional components
and the ability to combine protocol components and protocol stacks into active
services. We intend to continue this work in the future.
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