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ABSTRACT 
 
Independent Component Analysis (ICA) has emerged as a novel and promising new tool 

for performing artifact corrections on EEG data. In this project, we used ICA to perform 

artifact correction on three types of artifacts namely, frontal (eye), Occipital (rear-head), 

and muscle. The EEG analyzing functions of the EEG toolbox available from the Salk 

Institude (www.salk.edu) were used for the ICA decomposition. We were able to 

successfully remove the eye and head artifacts from the EEG Data. The muscle artifacts 

could not be significantly reduced or removed due to the dispersion of the muscle artifact 

over the scalp. 
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1. Introduction 

 

 

 

1.1 What is EEG? 
EEG stands for Electroencephalogram. It senses electrical impulses within the 

brain through electrodes placed on the scalp and records them on paper using an 

electroencephalograph. It is a recording of brain activity, which is the result of the 

activity of billions of neurons in the brain. EEG can help diagnose conditions such as 

seizure disorders, strokes, brain tumors, head trauma, and other physiological problems. 

The pattern of EEG activity changes with the level of a person's arousal. A relaxed 

person has many slow EEG waves whereas an excited person has many fast waves. A 

standardized system of electrode placement is the international 10-20 system.  

A common problem with EEG data is contamination from muscle activity on the 

scalp. It is desirable to remove such artifacts to get a better picture of the internal 

workings of the brain.  

In this project we will focus on removing such muscle artifacts from recorded 

EEG data using Independent Component Analysis. Figure 1.1 shows a typical EEG 

recording. 
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Figure 1.1  Typical EEG recording using an electroencephalograph 

 

 

1.2 Standard EEG Electrode placement – the international 10-20 

system 
In order to perform consistent EEG recordings, the International 10-20 Electrode 

Placement System was developed to describe the locations of electrodes on the skull. 

Under this system, the EEG electrodes are placed on the scalp at 10 and 20 percent of a 

measured distance. For example, if a circumference measurement around the skull was 

approximately 55 cm, a base length of 10% or 5.5 cm and 20% or 11.0 cm would be used 

to determine electrode locations around the skull. The skull may be different from patient 

to patient but the percentage relationships remain the same.  
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Figure 1.2 shows a typical 10–20 electrode placement looking down on the skull. 

Each site has a letter and a number or another letter to identify the hemisphere location. 

The letters Fp, F, T, C, P, and O stand for Front polar, Frontal, Temporal, Central, 

Parietal and Occipital respectively. Even numbers (2, 4, 6, 8) refer to the right 

hemisphere whereas odd numbers (1, 3, 5, 7) refer to the left hemisphere. The z refers to 

an electrode placed on the midline. The smaller the number, the closer the position is to 

the midline. 

 

 
Figure 1.2  Typical electrode placements under the International 10 –20 system 

 

 

1.3 Types of artifacts 
Severe contamination of EEG activity by artifacts such as eye movements, blinks, 

head movements, muscle, and line noise create a problem for proper EEG interpretation 

and analysis. The three types of muscle artifacts studied in this project are: 

1) Eye artifacts – they project mainly to the frontal side 

2) Rear head artifacts – they project mainly to the occipital side 

3) Muscle artifacts – dispersed throughout the brain 
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1.4 Problem Statement 

We will attempt to remove artifacts from EEG data from two data sets – data set I 

and data set II – provided by Flint Hills Scientific located in Lawrence Kansas. 

It seems desirable at first to place electrodes on scalp locations where muscle 

activity is localized (such as the frontal side for eye artifact) and then just subtract that 

from the EEG recording. However, this attempt leads to considerable loss in collected 

information and is a poor approach. A new and often preferable approach is to use 

Independent Component Analysis (also called ICA).  

Independent Component Analysis separates a set of data into its statistical 

independent components. These components can then be studied and those identified as 

artifacts can be removed.  

Chapter 2 deals with the introduction of Independent Component Analysis and 

how it can be applied to EEG data.  

Chapter 3 gives the results obtained from using Independent Component 

Analysis on EEG data. 

Chapter 4 ends with the conclusion. An APPENDIX is also included that gives a 

brief introduction to information theory and a flowchart of the algorithm used for artifact 

correction. 

  

 

 

 

 

 

 

 

 

 

 

 



 10

 

2. Method 

 

 

 

2.1 Blind Signal Separation 
 Suppose you were to eavesdrop on a party where a lot of people were speaking 

simultaneously. What would you hear? It would probably be a mixture of all the 

conversations and not very audible. Granted that those speakers closer to the listener 

would dominate over those far away but on a whole it would not be very easy to separate 

all the speakers or even identify the number of speakers if there were a lot of people in 

the room.  

This gives rise to an interesting question – can a person eavesdropping on the 

party separate all the speakers from the mixture of voices he or she observes without 

knowing anything about how many or where the people are in the room?  

The scenario presented above is commonly referred to as the ‘cocktail-party 

problem’.  Such a problem of trying to separate a set of mixed signals without knowing 

anything about the number of original signals or how they are mixed together is called 

Blind Signal Separation or Blind Source Separation. The observer is, in a sense, blind 

to the number of original signals or to how they are mixed together. If there are n-

speakers in the room and the voices are recorded by m-microphones, then we say that this 

is an n-by-m system.  

For example: Let n = m = 2 with s1(t), s2(t) being the two original source signals 

and x1(t), x2(t) being the two recorded signals. Now if the recorded signals are linearly 

related to the source signals then we can say that: 

x1(t)= h11s1(t)+h12s2(t) 

x2(t)= h21s1(t)+h22s2(t) 

Where h11, h12, h21, h22 are the unknown (or blind) mixing coefficients that produce x1(t) 

and x2(t). 
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For our work with EEG signals we will model the system as an n-by-m system 

where n=m. At first, it seems questionable to assume that EEG data recorded from m-

electrodes is made up of exactly n-statistically independent components since we 

ultimately cannot know the exact number of independent components embedded in the 

EEG data. This assumption is further discussed in section 2.4. For a large number of 

sources it is better to represent the equations in matrix form as: 

X = HS     – (2.1) 
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If we knew the mixing parameters hij,  j = 1, …, n, and if the mixing was truly linear, 

this problem could be solved simply by inverting the mixing matrix, H. But the entire 

point of Blind Signal Separation is that we know neither hij or sn(t) which makes it a lot 

more complex.  

The matrix representation in eq 2.1 suits our purpose since in EEG it is also not 

known (rather impossible to know) how the signals were mixed within the brain before 

they are picked up by the electrodes. The electrode readings are a mixture of useless 

muscle artifacts from within the scalp and useful EEG recordings from within the brain. 

An algorithm that separates the mixed electrode readings (consisting of muscle artifacts 

and useful EEG) where only the electrode potentials are known is needed.  

One way to solve this problem would be to use the underlying statistical properties of 

si(t) to approximate both hij and si(t). Independent Component Analysis (ICA) attempts 

to do just that.  

The remainder of this chapter deals with the introduction of ICA, its assumptions and 

ambiguities, and its application to EEG data. We conclude with the derivation of the Bell-

Sejnowski information maximization (called infomax) algorithm for ICA and its Matlab 

implementation. 
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2.2 What is ICA anyway? 
Independent Component Analysis, as the name implies, can be defined as the 

method of decomposing a set of multivariate data into its underlying statistically 

independent components. Hyvarinen and Oja [1] rigorously define ICA using the 

statistical “latent variables” model.  

Under this model, we observe n random variables x1, x2, …, xn etc which are linear 

combinations of n random latent variables s1, s2, …, sn as: 

xi = ai1s1 + ai2s2 + … + ainsn  for all i = 1, …, n  – (2.3) 

where aij, j = 1, …, n are some real coefficients. By definition, the sources si are 

statistically independent. The “latent variables” are the sources, si, which are also called 

the independent components. They are called “latent” because they cannot directly be 

observed. Both the independent components, si, and the mixing coefficients, aij, are not 

known and must be determined (or estimated) using only the observed data xi. 

 

The multivariate data may be obtained from a number of sources such as: 

(1) Audio signals such as the cocktail party problem introduced earlier, where ICA is 

used to separate individual speaker recordings from several microphones. 

(2) Biomedical data like Electroencephalogram (EEG) and Magneto encephalogram 

(MEG) where the goal is to remove interfering muscle artifacts such as eye blinks 

and head movements. 

(3) Images from satellites where ICA is used to extract certain features [3].   

(4) Telecommunications, especially CDMA technology [3]. 

 

The ICA latent variables model is better represented in matrix form. If                        

S = [s1, s2, s3, …, sn]T represents the original multivariate data that is transformed through 

some transformation matrix H producing X such that: 

X = HS     – (2.4) 
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Then ICA tries to identify an unmixing matrix W such that: 

W � H-1     – (2.5) 

so that the resulting matrix Y is: 

Y = WX = W(HS) = S’ � S (since W � H-1)  – (2.6) 

As stated earlier, the only thing ICA demands is that the original signals s1, s2, … sn, be at 

any time instant t statistically independent and the mixing of the sources be linear.  

 

 

 

2.3 Assumptions for the ICA model  
The following assumptions ensure that the ICA model estimates the independent 

components meaningfully. Actually the first assumption is the only true requirement 

which ICA demands. The other assumptions ensure that the estimated independent 

components are unique. 

(1) The latent variables (or independent components) are statistically independent and 

the mixing is linear.  

(2) There is no more than one gaussian signal among the latent variables and the 

latent variables have cumulative density function not much different from a 

logistic sigmoid (discussed further in section 2.9.3).  

(3) The number of observed signals, m, is greater than or equal to the number of 

latent variables, n (i.e. m � n). If n > m, we come to a special category of 

Independent Component Analysis called ICA with over-complete bases [2]. In 

such a case the mixed signals do not have enough information to separate the 

independent components. There have been attempts to solve this particular 

problem but no rigorous proofs exist as of yet [2]. If m > n then there is 

redundancy in the mixed signals. The ICA model works ideally when n = m. 

(4) The mixing matrix is of full column rank, which means that the rows of the 

mixing matrix are linearly independent. If the mixing matrix is not of full rank 

then the mixed signals will be linear multiples of one another. 

(5) The propagation delay of the mixing medium is negligible. 
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2.4 The ICA model applied to EEG Data 
In case of EEG signals we have m-scalp electrodes picking up correlated brain 

signals where we would like to know what effectively independent brain sources 

produced these signals. The ICA model appears well suited for this scenario because it 

satisfies most of the model assumptions of section 2.3. We start with assuming that EEG 

data can be modeled as a collection of statistically independent brain signals. Assumption 

(5) is valid since volume conduction in the brain is effectively instantaneous [7] and 

assumption (2) is plausible [7]. In this project, we will attempt to separate the m-observed 

EEG signals into n-statistically independent components (thus satisfying assumption (3) 

and (4)). However, it is questionable to assume whether EEG data recorded from m-

electrodes is made up of exactly n-statistically independent components since we 

ultimately cannot know the exact number of independent components embedded in the 

EEG data. Nonetheless, this assumption is usually enough to identify and separate 

artifacts that are concentrated in certain areas of the brain such as eye, temporal, and 

occipital artifacts [7]. The ICA model tends to have a more difficult time in separating 

artifacts that are more spaced out over the scalp such as muscle artifacts. 

 

 

 

2.5 Ambiguities in the ICA solution 

Since assumption (1) of the ICA model is the only requirement that is always 

strictly enforced, and because ICA is blind to the mixing matrix H and the source matrix 

S, the solution will always have the following ambiguities associated with it. For a more 

thorough discussion of the ambiguities in the ICA solution, the reader can refer to the 

book on ICA by Hyvarinen and Oja [1] 
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Ambiguities in the ICA solution: 

(1) It is not possible to measure the energies of the independent components. This is 

because since both H and S are unknown, a constant multiplying S can be 

cancelled by the same constant dividing H and vice versa:    

  X = (k)H �
�
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�

k
1 S = ���
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b

HbSaH
a

1
11

1                 – (2.7) 

Thus any combination of constants multiplying one matrix and dividing the other 

can make up the solution for H and S. To counteract for this, we fix the 

magnitudes of the independent components by assuming that all of them have 

E{si
2}=1. However, setting the magnitudes to 1 still does not help us when the 

constant = -1. We therefore conclude that multiplying an independent component 

by  –1 will have no impact on the validity of the solution. Hence, we can ‘flip’ 

any number of independent components and our solution will still be valid. 

 

(2) The order of the independent components may not be the same as the order of the 

original sources. For example, if S = [s1, s2, s3]T, the final solution may be any 

permutation of Y = [s1, s2, s3]T. The reasoning is the same as the previous 

ambiguity. Since both H and S are unknown, we can insert a permutation matrix, 

P and P-1, in the solution without changing it: 

Y = (WP-1)(PX)     – (2.8) 

where PX is the observed signals in another order and WP-1 is a new unmixing 

matrix estimated by ICA. 
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2.6 Statistical Independence, Uncorrelatedness, and Whitening 
We now very briefly look at some concepts from probability theory that are 

relevant to ICA. 

 

2.6.1 Statistical Independence 

The ICA algorithms work on the assumption that the original signals are 

statistically independent.  

Definition: If s1, s2, s3, …, sn are n-random variables and their joint probability density 

function is equal to the product of their marginal probabilities, then s1, s2, s3, …, sn are 

defined as being statistically independent: 

f(s1, s2, s3, …, sn) = f(s1) f(s2) f(s3)…f(sn)    – (2.9) 

 

 

2.6.2 Uncorrelatedness 

Uncorrelatedness is defined as, 

E{s1s2s3…sn}=E{s1}E{s2}E{s3}… E{sn}   – (2.10)  

where E{.} is the expectation operator. 

Uncorrelatedness is weaker than statistical independence. Independence implies 

uncorrelatedness, but uncorrelatedness does not always imply independence. However, 

there is a class of random variables where uncorrelatedness always implies independence. 

This is when s1, s2, s3, …, sn are gaussian random variables. We will deal with gaussian 

independent components in more detail in section 2.8. 

 

 

2.6.3 Whitening 

An important preprocessing step before sending the data through the ICA 

algorithm is whitening. Whitening is weaker than statistical independence but slightly 

stronger than uncorrelatedness. Whiteness of a zero-mean random vector, e.g. x, means 

that its components are uncorrelated and their variance equals unity. That is, the 

covariance matrix of x equals the identity matrix I: 

E{xxT}= I     – (2.11) 
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For our mixed data, X, whitening means that we linearly transform it by multiplying with 

a matrix (say V) such that the resulting matrix, Z, is white: 

Z = VX = V(HS) = H’S    – (2.12) 

An important result of whitening is that the new mixing matrix, H’, is orthogonal (i.e. its 

inverse is equal to its transpose). Whitening alone does not ensure statistical 

independence of X but, as we will see in the next section, it plays an important step in the 

separation process. It is sometimes also called sphering. 

 

 

2.6.4 Transformation of Probability Density Function 

If X is transformed into Y by some transformation matrix, then the density of Y 

can be written in terms of the original variable X as:  

)(
)()(

X
XY

yJ
pp �     – (2.13) 

where Jy(X) is the Jacobian of Y with respect to X. If X and Y are scalar-valued functions 

x and y, then the above relationship simplifies to: 

x
y
xpyp

�

�
�

)()(      – (2.14) 
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2.7 Illustration of ICA with probability density functions 

A graphical representation of how multivariate probability density functions 

change when latent variables are mixed together gives a better understanding of how ICA 

algorithms tackle the blind signal separation problem. This section is an abridged version 

of the similar topic dealt with in more detail in the Hyvarinen and Oja book [1]. The 

reader can refer to section 7.5 (pp 155) in the book for a more thorough discussion on the 

topic.  

Let us consider a source matrix consisting of two statistically independent and 

uniform random variables, S = [s1, s2]T. Figure 2.1 shows their joint probability density 

function by plotting data points from their distribution. Note that the joint probability is 

uniform on a square (since it is just the product of their marginal densities).  

 
Figure 2.1  Joint distribution of two uniform random variables s1 and s2. Horizontal axis: s1, Vertical 

axis: s2 

 

It is clear that s1 and s2 are statistically independent since knowing a value of s1 at 

any point does not in any way help in guessing the value of s2. Now lets mix these 

independent components with any 2-by-2 real valued mixing matrix, H 

�
�
�

�
�
�
�

�
�
�

	


�

�



210
105

Heg . Figure 2.2 shows the resulting density function. We see that mixing 

the independent components somewhat skews the density function.  
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Figure 2.2  Joint distribution of the mixed random variables x1 and x2. Horizontal axis: x1, Vertical 

axis: x2 
 

These two mixed variables, x1 and x2, are no longer statistically independent 

(since either variable completely determines the value if the other at its maximum or 

minimum value). We now whiten (section 2.6.3) the mixed variables with the result 

illustrated in Figure 2.3.  

 
Figure 2.3  Joint distribution of the whitened mixtures of the independent components.  

 

The whitened distribution looks just like our initial distribution (Figure 2.1) only 

rotated about the origin. It now simply becomes a matter of determining a single angle 

that can rotate the distribution back to its statistical independent form. Hence we see that 

whitening removes the ‘skewness’ from the observed data and simplifies the separation 

process considerably, which is why it is used as a useful preprocessing step in the ICA 
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algorithm. It can be shown that whitening simplifies the separation process by as much as 

50% [1]. 

 

 

 

2.8 Gaussian latent variables will not separate 
We saw in the previous section that whitening removes the ‘skewness’ from the 

data and leaves the ICA algorithm with only to determine the rotation required to bring 

the data back to its statistically independent from.  But this process does not work very 

well when the original independent components have a gaussian probability distribution.  

Figure 2.4 shows the joint probability distribution of two statistically independent 

gaussian random variables s1 and s2.  

 
Figure 2.4  Joint distribution of two independent gaussian variables s1 and s2 

 

If the data is whitened (which is always the case), then we can narrow the 

possibilities of the mixing matrix to orthogonal matrices (section 2.6.3). The resulting 

distribution when two independent gaussian random variables s1 and s2 are mixed with an 

orthogonal mixing matrix is shown in Figure 2.5. Note that both the original and mixed 

probability distributions are identical which shows that multiplying a gaussian 

distribution with an orthogonal matrix has no effect on the probability distribution. Since 
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the distribution is symmetrical, there is no way to ‘rotate’ the data back to its independent 

components. Hence, ICA cannot separate the mixed components when the latent 

variables are gaussian. 

 
Figure 2.5  Joint distribution of two independent gaussian variables s1 and s2 after being mixed with an 

orthogonal mixing matrix 

 

But what if some of the independent components are gaussian and some are non-

gaussian? In this case, ICA can separate all the non-gaussian components but the 

gaussian components cannot be separated from one another [1]. Which is why our second 

assumption (section 2.3) demanded that there be no more than one gaussian random 

variable in S. 
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2.9 The ICA Algorithm 
 Before a satisfactory derivation of the ICA algorithm is attempted it is important 

for the reader to recall some important principles and relationships from information 

theory (refer to APPENDIX–A for an introduction to information theory if necessary).  

 

2.9.1 Entropy 

The entropy H(x) of x, if x is a continuous random variable with probability 

density function (pdf)  p(x) is defined as: 

H(x) � – � )(log)( xpxp  = – E{log [p(x)]}   – (2.15) 

where E{.} is the expectation of x.  

This definition also holds for multivariate data. Hence the entropy of X = [x1, x2, 

x3, …xn]T is: 

H(X) = – E{log [p(X)]}     – (2.16) 

Entropy can be thought of as a measure of randomness in a variable.  
 
 
 
2.9.2 Mutual Information 

If entropy is a measure of randomness in a variable, mutual information can be 

thought of as a measure of sameness in a variable. If X = [x1, x2, x3, …xn]T is a set of 

multivariate data then its joint entropy, H(X), and mutual information, I(X), are related 

by: 

I(X) = �
�

n

i

i
xH

1
)(  – H (X)    – (2.17) 

This means that the mutual information I(X) is equal to the difference of the sum of all 

the marginal entropies �
�

n

i

i
xH

1
)(  and the joint entropy H(X). This should make sense in 

an intuitive way.  
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Thus, if we maximize the joint entropy H(X) it will minimize the mutual 

information I(X). And if the mutual information of a multivariate data is minimized to 

zero, then all the individual elements will become statistically independent.  

This is the reasoning used by Bell & Sejnowski [4] to derive their ICA algorithm, 

which is the algorithm we used for ICA in this project. Thus, the aim for obtaining 

statistical independence (and therefore performing ICA) then becomes to maximize the 

joint entropy H(Y) of Y.  

 

 

2.9.3 The Bell Sejnowski infomax algorithm  

We now present a brief derivation of the Bell Sejnowski Information 

Maximization algorithm [4]. We consider a simple case of a one-input one-output system 

to derive the ICA algorithm. The general multi-input multi-output system is similarly 

derived with n-dimensional matrices of vector-valued random variables in place of the 

scalar valued functions. 

Consider a scalar-valued function x with a gaussian pdf fx(x) that passes through a 

transformation function  y = g(x)  to produce the output with pdf  fy(y) (Figure 2.6). This 

is analogous to our matrix operation: 

Y = WX     – (2.18) 

For our work with EEG data we will take the transformation function y to be the logistic 

sigmoid function [7] defined as: 

ue
xgy

�
�

��

1

1)( , u = wx+w0   – (2.19)   

where w = slope of  y (also called the weight) 

 w0 = bias weight to align the high density parts of the input with y (see Figure 

2.6) 
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Figure 2.6  Transformation of the pdf, fx(x), of x when x is mixed  

with a sigmoid mixing function [4] 

 

As discussed in section 2.9.2 an increase in the joint entropy of the output, H(y), 

means a decrease in its mutual information. The entropy of the output is maximized when 

we align the high density parts of pdf of x with the high sloping parts of the function g(x) 

(hence the need for the biasing weight w0). The function g(x) is monotonically increasing 

(i.e. has a unique inverse) and thus the pdf of the output  fy(y) can be written as a function 

of the pdf of the input fx(x) as: 

fy(y)

x
y
xf x

�

�
�

)(
     – (2.20)   

The entropy of the output is given by, 

H(y) = – E{ln fy(y)}= �
�

��

� dyyfyf yy )(ln)(    – (2.21)   

Substituting (2.20) into (2.21) gives, 

H(y) = )}({lnln xfE
x
yE x���
�

�
��
�

	

�

�    – (2.22) 

We now would like to maximize H(y) of eq. 2.22 for statistical independence. Looking at 

the right hand side we see that the function x is fixed and the only variable we can change 

is y. Or more preciously, the slope, w, of y. Hence we take the partial of H(y) with respect 

to w. The second term in eq 2.22 does not depend on w and therefore can be ignored. The 

change in slope, �w, necessary for maximum change in entropy is then: 
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We now come to an important step. We would like to compute the derivative, but we 

cannot compute the expectation. Hence, we make the stochastic gradient approximation: 

x
y
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yE
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�
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�

�

�

� lnln  to get rid of the expectation [4]. The equation then simplifies to: 
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The above equation is the general form of the weight change rule for any transformation 

function y. For the logistic sigmoid function (eq 2.19), the terms in eq 2.24 are evaluated 

as: 

)1( ywy
x
y

��
�

�      – (2.25) 
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    – (2.26) 

Substituting the above equations into eq 2.24 gives the weight update rule for                   

y = logistic sigmoid function: 

�w � xyw )21(1 �
�      – (2.27) 

Similarly, the bias weight update, �w0, can be evaluated as: 

  �w0 � y21�      – (2.28) 

Following similar steps we can derive the learning rules for multivariate data [4] for a 

sigmoid function:  

 

�W � [WT]-1 + (1-2y)xT     – (2.29) 

�w0 � 1 – 2y       – (2.30) 
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2.10 The Matlab Implementation  
Equations 2.29 and 2.30 give the learning rules for updating the weights to 

perform ICA. Implementing them directly into Matlab will involve performing the 

inverse function, which is computationally very intensive. We therefore modify eq 2.29 

by multiplying it by WTW (this does not change anything since W is orthogonal): 

�W �
W

yH
�

� )( WTW 

�    �W � ( [WT]-1 + (1-2y) xT ) WTW 

�    �W � ( I + (1-2y) xTWT ) W 

�    �W � ( I + (1-2y)uT ) W, where u = xW            – (2.31) 

The bias weight update rule remains the same: 

�w0 � 1 – 2y       – (2.32) 

The proportionality constant in eq 2.31 and 2.32 is called the learning rate (lrate).  

 

In summary, the following two weight update rules are used to perform ICA in 

Matlab:  

 

Wnew = Wold + lrate [( I + (1-2y)uT )W]                – (2.33)  

w0new  = w0old + lrate [1 – 2y]               – (2.34) 

where: 

lrate = learning rate 

W = weights matrix 

w0 = bias weight 

I = identity matrix 

y = logistic sigmoid = 
u�

� e1

1  

u = W�data + w0 
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2.11 The EEG toolbox 
We used the EEG toolbox for Matlab available from the Salk Institute 

(http://www.sccn.ucsd.edu/~scott/ica-download-form.html) to perform artifact 

corrections on the EEG data. The Matlab function runica.m incorporates the Bell 

Sejnowksi ICA algorithm derived in section 2.9.3. Its flowchart is given in APPENDIX–

B. The EEG recordings are read as a matrix with the different electrode recordings in 

rows format. The strategy we used for artifact correction is as follows: 

1) Plot the data using eegplot.m 

2) Perform ICA using runica.m 

3) Study the relative strengths of the independent components projected back 

onto the scalp using topoplot.m. Make decisions on which independent 

components might be artifacts using generally accepted heuristics [7].  

4) Remove selected artifacts using icaproj.m. Plot the corrected EEG data. 

 

 

2.11.1 Visualizing EEG artifacts 

The function topoplot.m is used to study the relative strengths of the independent 

components projected back onto the scalp. Assuming W is the weights matrix obtained 

after running the ICA algorithm (runica.m), the columns of the inverse matrix, inv(W), give 

the relative projection strengths of the respective components at each of the scalp sensors. 

These plots help in visualizing the components' physiological origins. Knowing certain 

properties of different artifacts help in deciding which components can be classified as 

probable artifacts: 

1) Eye movements and eye blinks project mainly to frontal sites (near electrodes 

FP1 and FP2) 

2) Temporal muscle activity should project to the temporal sites (near T3 and T4) 

3) Occipital (rear head) movements project to the back (electrodes O1 and O2) 

 

An example of a topographical plot (viewed from the top of the head looking down) 

of an independent component obtained from topolot.m is shown below. Regions of high 
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magnitude denote concentrated EEG activity. It would tempting to classify the 

independent component in Figure 2.6 as an artifact but a closer look reveals that the EEG 

activity is dispersed towards both the frontal and temporal regions. Therefore it cannot be 

called an artifact with certainty.  

   
Figure 2.6  Topographical view of the brain showing the  

intensity of EEG recordings at a time instant 
 

At this point it is important to recall the first ambiguity of the ICA solution discussed in 

section 2.5. Since we can multiply a component by –1 without changing the solution, 

both strong red and strong blue regions demonstrate strong EEG activity. 

 

 

2.11.2 Performing Artifact Correction 

Artifact correction simply means removing a selected independent component 

from the observed EEG data. For the observed EEG data X, and the evaluated weights 

matrix W, the corrected EEG data, clean_data, is given by: 

clean_data = Winv(:,a) � ica(a,:)    – (2.35) 

where: 

Winv = inverse of W 

a = vector of independent components to keep 

ica = independent components. Obtained from W�X. 

 Max

Min 



 29

For example, let H = 
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Now, suppose we wanted to remove the independent component, s2, from the observed 

EEG data X, after evaluating W from runica.m. Then a = [1 3] and clean_data is, 

      clean_data =  Winv(:,[1 3]) � ica([1 3],:) 

  =  H(:,[1 3]) � �
�

�
�
�

�

3

1

s
s
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1

2
23
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ss
ss

ss
  and s2 is removed. 

The function icaproj.m performs artifact correction in the EEG toolbox. 
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3. Results 

 

 

 

 

3.1.1 Data Set I – EEG Data 

 

Data Set I (Figure 3.1) contains 60 seconds of data with sampling frequency Fs = 239.75 

Hz. There are 26 channels of data (although only channels 1-21 are useful scalp 

recordings). The data was collected from electrodes placed on the scalp at standard 

locations using the international 10-20 system. The EEG data is on the next page (plotted 

using eegplot.m) 

 

This data contains a seizure onset around t = 299.5 evident on T3-T5 channel with the 

appearance of rhythmic waves.  Muscle artifacts appear on all channels from about t = 

305-315 and continue longer on some (e.g., T4, F8).  Occipital (rear) head movement 

artifacts occur around t = 280-283, eye blink artifacts (Fp1, Fp2 and surrounding) around 

t = 290 and 298. 
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Figure 3.1  EEG Data from Data Set I 

Occipital 
Artifacts on 
O1 and O2 at 
t=280-283 

Muscles 
Artifacts on 
all channels 
from 
t=305-315 

Eye blink 
Artifacts on 
FP1 and FP2 
at t=290 and 
298 

Seizure onset 
on T3 and T5 
from t=299.5 
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3.1.2 Data Set I – Independent Components 
 
We ran the data through runica.m in the EEG toolbox. The resulting independent 

components are shown below. 

 
Figure 3.2  Independent Components of Data Set I 
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3.1.3 Data Set I – Topographical Projections 
 
The Matlab function topoplot.m was then used for plotting the topographical projections of 

the independent components on the next page. Following the guidelines set forth in section 

2.11.1 about selecting artifacts, we identified ICA components 3, 5, and 8 as the right 

occipital, eye (frontal), and left occipital artifacts (Figure 3.3(a),(b)). Note that both high 

red and high blue regions are artifacts due to the sign ambiguity discussed in section 2.5. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3(a)  Independent Components with their respective topographical projections of Data Set I 

 
Right Occipital Artifact 

Frontal (eye) Artifact 

Left Occipital Artifact 
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Topographical Projections of the ICA components of Data Set I using topoplot.m 
(Components 3, 5, and 8 are muscle artifacts) 

 

Right Occipital Artifact 

Left Occipital Artifact 

Eye Artifact

Figure 3.3(b)  Topographical Projections of the ICA components of Data Set I 
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3.1.4      Data Set I – Corrected EEG Data  
 
The 3 selected artifacts were then removed from the EEG data using icaproj.m. The 

resulting artifact corrected EEG data is shown on the next page (Figure 3.4). A 

comparison with the original EEG data (Figure 3.1) clearly shows that the identified 

muscle artifacts have been greatly reduced. On of the artifacts of interest that could not be 

removed were the muscle artifacts on all channels from t = 305 – 315. We tried running the 

ICA algorithm with different learning rates and with different data lengths but we were not 

able to isolate them properly. 
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Figure 3.4  Corrected EEG Data of Data Set I (compare with original data in figure 3.1)
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3.2.1 Data Set II – EEG Data 

 

Data set II is a 10-minute 22-channel EEG Data. There are three seizure onsets at t = 78, 

296, and 582 respectively. Due to the large size of the data set, we divided the data into 

three sections (t =1-90, t = 90-312, & t = 312-592) and analyzed them separately.  

 
Figure 3.5  Corrupted EEG Data Set II 

 

 

 

t = 1-90 t = 90-312 t = 312-592 
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3.2.2 Data Set II – Independent Components/ Topographical projections 

 

The three sections were separately run through the ICA algorithm and their respective 

independent components and the projections of the identified artifacts are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

ICA components for t = 1 - 90 

Figure 3.6  ICA components and projections of selected artifacts for 
t=1-90 
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Figure 3.7  Independent Components and projections of selected artifacts 
for t=90-312 and t=312-592 

ICA components of t = 90-312 
ICA components of t = 312-592 
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3.2.3 Data Set II – Corrected EEG Data 

 

As with Data Set I, we removed the selected artifacts of Figure 3.6 and Figure 3.7 from 

the corrupted EEG data given in Figure 3.5. Figures 3.8(a)–(f) show the corrected EEG 

data alongside the initial corrupted data. For t = 1-90, we were able to reveal the rhythmic 

waves (Figure 3.7(b)) from the corrupted EEG data after ICA. Rythmic waves are 

important indicators of the onset of seizures and in this case we see that ICA was 

successful in removing it from the muscle artifacts. 
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Figure 3.8(a)  Corrupted EEG Data (t=1-90) 
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Rythmic 
 waves 

Figure 3.8(b)  Corrected EEG Data (t=1-90) 
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Figure 3.8(d)  Corrected EEG Data (t=90-312) 

Figure 3.8(c)  Corrupted EEG Data (t=90-312) 
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Figure 3.8(e)  Corrupted EEG Data (t=312-592) 

Figure 3.8(f)  Corrected EEG Data (t=90-312) 



 46

4. Conclusion 

 

 

 

Studying the results from the previous chapter, it is clear that Independent 

Component Analysis is well suited to perform artifact correction on EEG data. The 

topographical views provided the first clues as to which components might be artifacts. 

These plots together with the time plots of the independent components were used to 

identify the eye and occipital artifacts. One of the unique properties of ICA is that it can 

eliminate the artifacts alone without disturbing the surrounding EEG activity. An alternate 

approach for artifact extraction could be simply subtracting the frontal, temporal, and 

occipital readings from the EEG data. But this would lead to considerable loss in collected 

information. 

We were successfully able to identify and eliminate eye and occipital artifacts from 

Data Set I and II. For Data set II, ICA was also able to reveal the rhythmic waves 

embedded in the artifacts just before the seizure onset at t = 90 sec.  

The muscle artifacts appearing on all channels for Data Set I (t=305–315 sec) and 

Data Set II (at t=78-90, t=296-512, & t=582-592 sec) after a seizure onset could not be 

removed or reduced significantly. One reason could be that these artifacts are not 

concentrated in any one region alone and hence the ICA algorithm cannot interpolate them 

as originating from any single electrode. Which is why it is difficult to get a single 

topographical or time plot of an independent component containing the muscle artifacts 

after a seizure onset. Another reason is that since the person goes into severe spasms on the 

onset of the seizures, the muscle artifacts following it are of such large magnitude that they 

completely overshadow the EEG activity originating from within the brain. 
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APPENDIX – A 

 
Mathematical Preliminaries  

 
For this project, it is assumed that the reader is proficient in the language of general 

probability theory including the concepts of joint probability, probability density functions 

(pdf), joint gaussian pdfs, expectations and moments, statistical independence and 

correlatedness, and transformation of probability density functions. Since we have 

employed several results from information theory, we will present a brief introduction and 

definition of terms such as entropy and mutual information, which were used in the 

derivation of the Bell Sejnowski Infomax algorithm. The following notes on information 

theory are taken from Tom Schneiders paper called Information Theory Primer [8]. 

 

(A-1) Information Theory 

 Information and uncertainty are technical terms that describe any process that 

selects one or more object from a set of objects. Suppose we have a device that can 

produce 3 symbols A, B, and C. As we wait for the next symbol we are uncertain as to 

which symbol will arrive next. Once a symbol arrives and we see it, our uncertainty 

decreases, and we remark that we have some information. That is, information is a 

decrease in uncertainty. Uncertainty is measured as the log (base 2) of the possible 

symbols. Thus, a device producing M symbols has an uncertainty, H, of 

H = lob2(M)       – (A1) 

The above formula for uncertainty is valid if all the symbols are equally likely. For an 

unequally likely device with symbols Mi, the uncertainty, H, is given by 

H = – �
�

M

i
PP ii

1
log2       – (A2) 

Where Pi =
iM

1 is the probability of the Mi
th symbol appearing. It is very simple to show 

that if the symbols are equally likely (i.e. Mi = M for all i) then (A2) is equal to (A1) 
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Proof: 

If Mi = M for all i, then Pi =
iM

1  

H = – �
�

M

i
PP ii

1
log2  

= – �
�

M

i MM1

1log1
2  

= – �
�

�
�

�
�
�

�
M

iMM 1
11log1

2  

= – M
MM

�
�

�
�
�

� 1log1
2  

= – log2 M
1  

= log2 M 

 

H is called the entropy of the system. For continuous variables (A2) is written as,  

H(X) =  – � )(xp log p(x) = –E{log[p(x)]}    – (A3) 

Where p(x) is the probability density function of the random variable x. 

 

If there is more than one random variable, then their joint entropy, H(x,y), is defined in 

terms of their joint probability density function, p(x, y), as 

H(X,Y) = – � � ),( yxp log p(x, y) = –E{log[p(x, y)]}   – (A4) 

The last concept of interest is the mutual information, I(X,Y), between two random 

variables. The mutual information, I(X,Y), is the relative entropy between the joint pdfs 

and the product of the product of the marginal pdfs. 

I(X,Y) = � � ),( yxp log
)()(

),(
ypxp

yxp     – (A5) 
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Note: When X and Y are independent (p(x,y) = p(x)p(y)) and the mutual information is 

equal to zero, I(X,Y) = 0. Hence, mutual information can be thought of as a measure of the 

dependence of random variables on one another. 

 

I(X1,X2,X3,…Xn) = 0 � X1, X2, X3, … Xn are statistically independent.  – (A6) 

 

Finally, it can be shown that I(X,Y) and H(X,Y) are related as, 

 

I(X,Y) = H(X)+H(Y)-H(X,Y)     – (A7) 

 

(A6) and (A7) are the fundamental relationship used in the deriving the information 

maximization algorithm of Bell & Sejnowski [4] 
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APPENDIX – B 
 

The ICA loop Flow-chart 

 

The following ICA loop flow-chart of runica.m incorporates the Bell Sejnowkski ICA 

algorithm. The following variables are used in the flow-chart: 

 

1. lrate = the learning rate of the algorithm. Taken as 1e-6  

2. blocks = the data is grouped into blocks and then processed. 

3. maxWts = 1e6. Maximum value of a weight in W at which point the ICA is restarted  

                     with a lower learning rate 

4. lowerlrate = 0.9. If the weights blow up 

5. lowerlrate2 = 0.8. If the change in weights (�W) is greater than maxWts 

6. maxsteps = 512. Any data with more than 512 steps will probably not converge. 

7. angledelta = 60. The rotation angle of the probability density function 

 

All of the above constants are heuristic values recommended by people doing ICA [7]. 
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The Bell & Sejnowski Infomax algorithm flowchart  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

While steps < maxsteps

for i=1:EndofBlocks 

u = weights�data+w0 

y =
)uexp(1

1
��

 

weights = weights+lrate*(I-2yuT)*weights

step=0; change=nochange; 
wts_blowup=0 
block=1;  
lrate=lrate* lowerlrate %restart with 
lower lrate 
weights=identity matrix; 
old wts=weights; 

weights 
> 

maxWts?

wts_blowup=1 
noChange=1 

wts_blowup 
? 

oldwtchange = weights-old_wts 
step++ 
angledelta=0 
delta=oldwtchange 
change = oldwtchange2 

End for 
loop 

?

~wts_blowup
? 

21
3 

N 

Y

Y Y

Y

N N

N
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lrate>nochange
? 

rnk = rank(data) 

rnk < chans? 
display 
(‘Data has rank <rnk>. Channels are not independent’)    

display(‘Matrix may not be invertible’) 

Step>2? angledelta = cos-1

�
�

�

�

�
�

�

�

nochangechange
olddeltadelta
*

*
 

display(‘step <step> – lrate <lrate>, wchange <change>’) 
oldwts = weights; 

angledelta >60? 
lrate=lrate�lowerlrate; 
olddelta=delta; 
oldchange=change; 

Step==1? olddelta=delta; 
oldchange=change; 

Step>2 & change<nochange?
laststep = step; 
step = maxsteps; 

Change > maxWts? lrate=lrate*lowerlrate2 

display 
(‘Lowering learning rate to <lrate> and starting again’) 

1

RETURN

2 

End 
while?

W=weights 
RETURN

3 

Y 

Y

Y

Y

Y

Y

Y

Y

N

N 

N 

N 

N 

N

N

N 
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