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1. Summary

This is the first quarterly report for the research project, “Feasibility of Ground Penetrating
Radar for Use at MGP Sites.” During the past two and one half months, an extensive literary
survey was done to identify signal processing technique to be used for the project. The technique
of Diffraction Tomography is proposed to be used to do the post-processing after the data has been
collected using a ground penetrating radar.

Diffraction Tomography is a sophisticated signal processing technique which uses the
scattered field data to reconstruct the image of an object buried in an optically opaque medium.
This technique has been in use in the field of medical imaging for several years, and is now finding
applications in the fields of non-destructive evaluation and subsurface imaging.

In this report, the basic theory of Diffraction Tomography and the problem formulation for
this work are described in detail. An algorithm for the implementation of Diffraction Tomography
is outlined, and some basic theoretical results are presented.

In the next phase of the project, the Diffraction Tomography algorithm is proposed to be
implemented. Finite Difference Time Domain (FD-TD) code is being developed to simulate the
scattered fields from the object. The FD-TD technique is a numerical technique for solving for the
electric and magnetic field by formulating the Maxwell equations as coupled difference equations.
Any inhomogenities can be easily incorporated into the model. This technique would be used to do
the simulations and to generate the scattered field data to be used for Diffraction Tomography.



2. Introduction

This is the first quarterly report for “Feasibility of Ground Penetrating Radar for Use at
MGP Sites,” EPRI Agreement RP2879-27. This report covers the period from September 15,
1992 through December 31, 1992.

The objectives of the first phase of this project were to identify, through literature review,
ground penetrating radar (GPR) techniques capable detecting and imaging contaminates at
manufactured gas plants (MGP) and other leak sites. We have identified diffraction tomography,
an image processing technique, as the leading candidate to image spill sites. Diffraction
tomography is a post-processing technique that analyzes the radar data and generates a sub-surface
map.

We are preceding to develop a diffraction tomography computer code. This code requires
GPR data to image the spill site. To over come the lack of radar data, we are also modifying an
existing finite difference - time domain (FD-TD) electromagnetic computer code. The FD-TD
algorithm is a very powerful electromagnetic code which will simulate the radar data. We will use
FD-TD to generate the signals the radar collects at a spill site. With this code we will be able to
model any type of spill located at in any type of background material.

In the following section we outline the basic theory of diffraction tomography. We will
wait to the next report to outline the basic theory governing the finite difference - time domain
algorithm.



3. Technical Formulation

The fields of non-destructive evaluation and detection of objects buried in opaque media
have been the focus of research for many years. Various techniques have been proposed and
applied to different problems over the years. The technique to be used for a specific problem
depends on the application. Medical imaging, non-destructive evaluation of objects, and
subsurface imaging are some of the areas in which these techniques have proved to be extremely
useful.

The purpose of this study is to identify and apply a technique for detecting and imaging
subsurface contaminates such as leakage from underground storage tanks. These leakages form a
plume near the storage tank and contaminate the surrounding area. The existin g techniques involve
digging core samples from the surrounding area and analysing them. The use of a ground
penetrating radar is proposed to take the measurements of the scattered field which are to be utilized
in the imaging technique.

For subsurface imaging, two of the most powerful techniques currently used are those of
holography and diffraction tomography. In holographic techniques, the underground object is
imaged by measuring the reflected field at the surface of ground. Fresnel-Kirchoff or Fraunhoffer
diffraction theory is used for the analysis and the development of the reconstruction algorithms for
microwave holography [1],[2],[3]. In this technique, a Synthetic Aperture Radar or a pulsed radar
is used and the image of the object is computed from the correlation between the received signal
and a reference signal. The object information is recorded as an interference pattern between an
illuminating wave which is identical to the reference signal, and the wave scattered by the object
being imaged. This interference pattern is known as a hologram. The illumination of this pattern
by the reference signal produces a real and a virtual image of the object. This technique is usually
used with higher frequencies. Since the signal used for reconstruction of subsurface objects is the
signal reflected from the object, best results are achieved with metallic or other objects which result
in strong scattering.

Diffraction tomography is the generalization of the computer tomography technique which
has been in use in medical imaging for several years. The diffraction effects are incorporated to
account for the lower frequencies used in these applications. The image is reconstructed by taking
the projections of the object for various angles of incidence.

Computer Tomography can loosely be defined as the technique of reconstructing the image
of an object embedded in an optically opaque background from the slices of the image which



represent the projections of the object. These slices of the image are obtained by measuring the
effect of the object on an applied field. Using this technique, an N-dimensional object, which can
be represented by its N-dimensional Fourier transform, can be reconstructed from the (N-1)-
dimensional Fourier transforms of its projections [3],[4],[5]. For the case of a 2-dimensional
object, the Fourier transform of the field taken along a line represents the Fourier transform of the
projection of the object along that line. By measuring these projections of the object along different
lines ( directions), the object can be reconstructed from these 1-dimensional Fourier transforms.
The applications of tomography can be broadly classified into two major areas, medical
tomography and goephysical tomog:raphy.

The depth of penetration required for this project necessitates the use of lower frequencies
because of the high attenuation at higher frequencies for wave propagation in ground. This,
combined with the fact that tomographic techniques result in better quality of objects buried in
attenuating media when the contrast between the object and the background medium is not very
high, makes tomography a more appropriate technique for this application. The issues of
resolution and frequency of operation are discussed in detail in a later section.

The technique of Computer Tomography has been applied to medical imaging for several
years. The field of medical tomography has been well studied. In medical applications, since the
depth of penetration required is not very large and thus attenuation in the object does not pose a
severe limitation, X-rays are used to reconstruct the image. Because of the high frequencies used,
diffraction effects can be neglected and the straight-ray models work reasonably well. Using these
models, the Fourier transform of the field along a direction perpendicular to the direction of the
incident wave gives the Fourier transform of a slice of the object along this direction according to
the projection slice theorem as shown in Fig. 1. By rotating the transmitter and the receiver 360
degrees around the object, if sufficient number of measurements are made, the object can be
reconstructed from these slices.

The application of the tomographic techniques to geophysical problems is relatively new
and 1s not as well documented. In geophysical applications, the simple straight-ray models cannot
be élpplied because of the high attenuation suffered by the higher frequencies [4]. This necessitates
the use of lower frequencies. At lower frequencies, the diffraction effects play an important part
and can no longer be neglected. Another problem in geophysical tomography is the inhomogeneity
of the background medium. Further, unlike medical tomography, the view angles available are
limited since the transmitter and the receiver cannot be rotated 360 degrees around the object.
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Fig. 1. The projection slice theorem in medical tomography

Because of the limited availability of the viewing angles, and the presence of diffraction
effects, the geophysical tomographic analysis and its applications are more complicated than the
medical tomographic applications. In the presence of diffraction effects, the problem of
geophysical tomography reduces to solving a nonlinear inverse scattering problem. Simplifying
assumptions are made about the scattering properties of the object to solve the problem. These
include the assumption of a homogeneous background, and the weak scattering model ( Born or
Rytov Approximation). The weak scattering model works well even in the presence of a single
stron g scatterer.

In this project, geophysical tomography techniques are used to reconstruct the image of the
spill from the underground tank at a depth of a few meters below the surface. Since the
frequencies used cannot be very high, diffraction tomography has to be applied for this problem.
For diffraction tomography, a result similar to the projection slice theorem of medical tomography
can be stated as follows [4],[5],[6]: The 2-dimensional Fourier transform of the object along a



semicircular arc is related to the Fourier transform of the scattered field along a straight line
tangential to the arc as shown in Fig.2. This result can be utilized with forward and back-
scattering to reconstruct the image of the object from the 1-dimensional Fourier transforms.

One of the most popular techniques used for this class of problems is the back-propagation
algorithm proposed by Devaney[4]. But due to the use of spatial filtering operation utilized for
image reconstruction by this algorithm, it is computationally very intensive. A direct interpolation
scheme has been used by some people to solve similar problems [7]. A similar interpolation based
algorithm is used here to solve the problem. The interpolation scheme is modified to make it
applicable to the back-propagation case for geophysical tomography.
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Fig. 2. The relationship between Fourier transforms of the object and the scattered field for
diffraction tomography.



I. Problem Formulation

For geophysical tomography, the transmitters and the receivers can be arranged in three
possible configurations. One way is to have either the transmitters on the surface of the ground
and the receivers in a borehole or the transmitters in the boreholes and the receivers on the surface.
This is known as the offset VSP ( vertical seismic profiling) configuration. Another possibility is
to have both the transmitters and the receivers in boreholes around the object. This is known as the
borehole-to-borehole configuration. A third arrangement is to have both the transmitters and the
receivers on the surface. It is observed that borehole-to-borehole arrangement gives a better
coverage of the object in the k-space. Since the quality of the reconstructed image is directly
related to the k-space coverage, better images can be achieved with this arrangement. But for
geophysical applications, offset VSP provides an arrangement which is easier to implement, and
results in images of satisfactory quality for most applications. For the work presented here, the
VSP arrangement has been used for this reason, but the results can be used for the other

configurations also. The issue of k-space coverage is discussed more elaborately in a later section.
A. Plane Wave Synthesis

Consider the offset VSP arrangement, with the receivers located at x=1 as shown in Fig.3
and the sources located on the surface of ground. If the sources are line sources, each source will
generate a cylindrical wavefront propagating downwards. Sincethe incident wave is assumed to
have a plane wavefront in tomographic analysis these wavefronts need to be combined to obtain a
plane wavefront. This can be achieved by a process similar to slant-stacking used in geophysics.
Instead of having all the sources emit at the same time, a technique similar to the one used in
synthetic-aperture radars can be used to generate a plane wave using just one source. The waves
from the source at different source locations along a straight line on the surface can be added, with
the phase varying linearly along the line of transmitter locations. The waves are combined at the
receivers to synthesize plane waves at the receiver.

Let the number of transmitter locations be N, located along a straight line on the surface
froin left to right. Let the transmitter spacing be "d" and the incident wavevector be k = ks
which makes an angle ¢ with the positive x-axis. sg is a unit vector along the direction of the
incident wavevector. If the additional distance travelled by the wave transmitted from the nth
location compared to the wave transmitted from the (n-1)t location is AR, the phase difference
between signals from these two successive transmitter locations A¢ can be written as

A¢=%AR=%dcos¢=dk-x €9

10
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where k-x represents the scalar dot product between the vector k and the unit vector x which
points along the direction of positive x-axis. The surface of ground is assumed to be parallel to the
x-axis. The scattered field at the ih receiver due to the synthesized plane wave is then given by

N-1
Si= X Yin exp(jnAg) 2
n=0

where Yin is the measurement at the ith receiver when the transmitter is at the location n, and S; is
the plane wave response at the receiver location i. Using this synthesized plane wavefront, the
equations required for image reconstruction can be formulated.

B. Diffraction Tomography

A 2-dimensional electromagnetic scattering problem can be solved by considerin g the scalar
wave equation instead of the vector wave equation. Using the scalar wave model, and considering
a 2-dimensional object, the time dependent wavefield satisfies the inhomogeneous Helmholtz
equation. Thus the Fourier amplitude of the time dependent wavefield u,(r, ®) will also satisfy the

inhomogeneous equation
(VZ2+k2) u(r, ®) = -o(r, ) uy(r, m) 3)

where uy(r, w) represents the Fourier transform of the z-component of the total electric field. o(r, t)

= k2 - ko2 is the object profile and it has a 2-dimensional Fourier transform

“+co
Ol m) = J. o(r, t) exp(-j @ t) dt @)
The incident plane wave is of the form
ui(r) = Up(t) exp(j k sor) )

where Up is the complex amplitude at the origin, and k is the wavenumber in the background
medium. Since the total field at any point in space can be written as a sum of the incident field and
the scattered field,

u(r, ®) = ui(r, ) + ug(r, ®) 6)

12



Let the spatial Fourier transform at r = ry (x=1, y) of the total, incident, and the scattered field,
U(x, w), Uj(x, ) and Ug(x, ) respectively, be defined as

+eco

Umn(x, ®) = _[ um(y, @) exp(-j K y) dy =1 S f

-oQ

The Helmholtz equation can be simplified using the Green's function. Using the boundary
conditions and converting the differential equation of (3) into an integral equation, the Fourier
transform of the total field can be expressed as

ui(r, o) = Up(w) exp(j k sor) + j o(r', o) w(r', ®) G'(Ir - r'hdr’ )

where G'(Ir - r'l) is the Green's function for Eq.(3) in the absence of the scatterin g object. The
Green's function is

G~ 1 '|)=§L1H0(2)(klr 1) )

where Hy@)(kIr - r'l) is the zero order Hankel function of the second kind. The vector
r'=x'x+y'y represents the source vector, and r=xx+yy represents the field vector. The plane
wave expansion of the Hankel function Ho@(kIr - r 'l) along the line of observation r=rg=lx+yy

is given by
—+oco
Ho@kr - 1) =L [ el x5 y) #7001 x ©)
iy G
where

For a general wavevector k, x and vy represent the components of k along two orthogonal
directions. The physical meaning of these two components in the context of this problem is
explained in more detail in the next section. Substituting Eq.(8) into Eq.(7)

u(r, m) = Ug(m) exp(j k spr) + E"}J. o(r', m) u(r', ®) Hy@(klr - r ')dr' (11)
The first term represents the incident field, and the second term is due to the scattering by the

object. Eq. (11) expresses the total field in terms of the incident field and the scattered field due to
the presence of the object with the profile O. Since the total field u, depends on the object profile

15



O, the second term on the right hand side of Eq.(11), which has both the object profile and the total
field inside the integral, makes this equation a non-linear equation in the object profile O.

14



II. Solution Techniques

The direct scattering problem consists of solving the non-linear equation (11) for the total
field ug for a given object profile. In the inverse problem, Eq.(11) is solved for the object profile
when a set of field measurements is given. Thus the inverse scattering problem in geophysical

tomography consists of evaluating the object profile from a set of measurements of the total field
along a fixed line x=l for different angles of incidence.

This problem is difficult to solve in a closed form without any simplifications. But by
making the assumption that the scattered field is small compared to the incident field, equation (11)
can be solved for the object profile. Since this assumption is equivalent to assuming that the object
is a weak scatterer, it is known as the weak scattering approximation. The assumption of weak
scattering can be incorporated here into the problem by using either the first order Bomn
approximation or the Rytov approximation. The first order Born approximation consists of
approximating the total field on the right hand side of Eq.(11) by only the incident field, i.e., by
assuming the effect of the second term on the total field to be small compared to the contribution
from the incident field. This assumption would be valid if both the magnitude of the object profile
and the total object volume are small. This gives the field at the line of observation ro(x=l) as

u(rg, ®) = Ug(w) exp(j k sorp) -

J;IUO((J)) J. O(r', o) exp(j k so-r") Hy@(klrg - r 'dr' (12)

Instead of using the Born approximation, which is a Taylor series expansion for a small object
profile, the Rytov approximation can be used. Rytov approximation is a less restrictive condition
and has been reported to give better results. For the Rytov approximation, the total field is
expressed as [10]

u(r, ®) = Up(w) exp (j k' + j w(r, ) (13)

where y(r, o) is the perturbation on the complex phase of the signal and it has a spatial Fourier
transform (K, w) at r = ry. In the Rytov approximation, the effect of scattering is included in the
complex phase, which is expressed as k-r + y(r, @). The perturbation term for the Helmholtz

Eq.(3) under the Rytov approximation is given by

Wy(r, @) =—'j—J- o(r', o) ui(r', ) G'klr - r 'hdr" (14)
uj(r, )

Substituting Eq.(8) in (14)

15



y(r, ®) = % exp(-j k so-T) J. O(r', ) exp( k sor") Hy(kIr - r ')dr" (15)

The field along the line of observation is obtained by substituting r = rg. Eq.(12) and (15)
represent the relationship between the object and the scattered field for the Born and Rytov

approximations respectively. Note that the integrals in both the equations are the same. Denoting

the integral by 2 Qu(y, W), where the subscript ¢ represents the angle of incidence of the plane
wave,

Qoly, @) = %J. O(r', ) exp(j k sor") Ho@)(kIrg - r 'hdr (16)

y is used in place of r in the argument of Qg since the x coordinate is fixed (x=1) at r = ry. In the
above equation, Qg(y, @) represents the data which is used for the evaluation of the object profile.
Substituting the Hankel function expansion from Eq.(9) in (16)

+o0
Qo(y, w) =j i} J explj (K (y-y) +yd-x)}].
O(r', w) exp(j k spr") dk dr' (17)

Eq.(17) can be rearranged as

J. exp(j K y) dg

_expGyD) 1
Qy(y, ®) g

“+co

{ J. explj ((kspy- %) y' + (kspx - v) x)] O(r', w) dr'} (18)

- 00

The first integral represents the inverse spatial Fourier transform of the term in the curly brackets.
Define a new vector w as

w =k (s - sp) (19)
where s is a unit vector defined as

S=1(YX+KY) (20)

Eq.(20) defines x and 7y as the y- and x- components respectively of the wavevector ks. The locus

of points defined by w is a semicircle of radius k and centered at -ksg. Taking the Fourier
transform of Qgy(y, ®) from Eq.(18),

16



T'he 1-dimensional Fourier transform of the field is related to the 2-dimensional Fourier
transform of the object taken along the semicircles defined by Eq.(19) by [7]

g G
O(w) = . CJE}:I)( LY D Us(x) for Born Approximation

2 yexp[-j(y - ksox)1] w(x - ksoy) for Rytov Approximation
(22)
where the argument ® has been dropped for notational convenience without any loss of

information.

From Eq.(22), it can be seen that the 1-dimensional Fourier transform of the field taken
along the line x=1 is related to the 2-dimensional Fourier transform of the object profile taken along
a semicircle of radius k and centered at -ksg. This represents the basic result of diffraction
tomography. Thus, by measuring the scattered field for many different angles of incidence, the
Fourier transforms of the object are obtained along the corresponding semicircles. The object
profile can then be reconstructed from the scattered field. Fig. 4 shows three such semicircles for
¢ =0, -m/2, and -%w. For the case of offset VSP, the angles ¢ would vary from O to -x. So the
points in the k-space at which the data is available would all lie on semicircles which have their
centers in the first or the second quadrant. For each value of ¢, there will be a different semicircle.
Note that tangents to all the semicircles are parallel to the line of observation. yand x can be seen

as the projections of the wavevector ks on the x- and y-axis respectively.



Fig. 4. The semicircles in k-space over which the Fouri

er transform of the object is obtained.




The points along the other half of the circles can be obtained if there is a set of receivers on
the other side of the transmitter locations (x=-1). From this analysis, it can also be seen that the
object coverage would be better for two boreholes at x=+1 with set of transmitter locations on the
surface. The k-space coverage for the various cases is shown in Fig.5. Note that the centers of all
the semicircles lie on a circle of radius k and centered at the origin of the k-space as shown in
Fig.4. This implies that even if measurements could be made along all possible orientations of the
receiver array for various angles of incidence ¢, the coverage in k-space would still be limited to a
circle of radius 2k. This results in a loss of the sharper features which correspond to higher spatial
frequencies during reconstruction of the image.

For the case of weakly scattering objects, most of the scattered field would lie in the
forward direction. This is another reason for the image quality being better for offset VSP and
borehole-to-borehole arrangements, as compared to the the case when the transmitters and the
receivers are both on the surface of ground. Although the best image quality would be achieved
with borehole-to-borehole tomography, having receivers in two boreholes on either side of the
object significantly improves the k-space coverage for offset VSP, which results in better image
quality. For most applications for which weak scattering approximation is valid, the standard
offset VSP arrangement provides images of sufficient quality and a simpler practical
implementation. This was the reason for the selection of offset VSP as the scheme used for this
work. It should be noticed here that for a strong scatterer, since most of the scattered field would
lie in the backward direction, having both the transmitters and the receivers on the surface may
proifide the best images even though the k-space coverage is lesser than in the case of the other
arrangements.

In the case of medical tomography, the transmitted plane wave and receiver array are
always parallel to each other, but the receiver axis itself rotates around the object. This results in
tangents to all the semicircles passing through the origin in k-space for all values of ¢. This would



Itis interesting to note that the cases of forward and reflection tomography are enmplemcntary to
each other in the sense that the data obtained in the two cases is alon.g the two complementary
semicircles which constitute the full circle for any given direction.

From the above discussion, it is apparent that the image obtained by using diffraction
tomography would be inherently a low pass version of the object. Further, the image quality
would be poorer in the regions of lower k-space coverage. The k-space coverage would depend
directly on the frequency of operation. In geophysical applications, since attenuation mmse:s a
limit on the frequency, image quality has to be sacrificed. But even with this limitation, lma:gm of
sufficient quality can be obtained. However, it is important to choose a high enough frequency to
satisfy the resolution criterion and to sample along the receiver axis at a rate higher ﬁlan the ‘

Nyquist rate.
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Offset VSP with two boreholes Transmitter and receivers
both on the surface

Fig.5. The k-space coverage for various cases for a complex profile.
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propagate the field backwards into the object. For each measurement, the spatial filter is applied to
the data and the results of all these operations are combined to form the image of the object. But
because of the use of the spatial filter at each step of reconstruction, this algorithm is
computationally intensive. Since the amount of computation would have a direct bearing on the
speed of the algorithm, and hence on the practical implementation of the algorithm, a
computationally faster algorithm is desirable. Direct interpolation approach was chosen for this
work for the same reason.

All the calculations are performed in the Fourier space in the direct interpolation based
algorithms. As seen earlier, the field measurements are related to the object profile in Fourier space
by Eq.(22). The image of the object can in principle be obtained by Fourier inversion of the data.
Before going on to reconstruct the object, it is necessary to convert the data which is obtained over
a grid of semicircles to points on a rectangular coordinate system. The image can then be obtained
by a direct Fourier inversion of these points. A direct transformation scheme is derived here to
convert the data points from a semicircular grid to a rectangular coordinate system (u,v). This
transformation is similar to the coordinate transformation used for the case of forward tomography.

A. Coordinate Transformation

Let each point on the semicircular grid be defined by its (x, ¢) coordinates where ¥ is the
projection of the scattered wavevector on the y-axis as defined in Eq.(10), and ¢ is the angle that
the incident wavevector makes with the positive x-axis, as mentioned earlier. Thus each set of
incident and scattered wavevectors can be uniquely identified by its « and ¢ coordinates. Note that
the x and ¢ values do not represent the polar coordinates. As the angle ¢ is varied over the range
of allowed values, x can take values between -k and +k. The cases of negative and positive values
of K need to be treated separately as they result in slightly different transformation equations.



cos(p - 6) 2%% 26)

This implies

(@) O<x<k (b) -k<x<O

Fig. 6. The geometry for the coordinate transformation.




Vu2 + 2

d=m+ cmsr‘i("—_ﬁ{—) . ’Ea.n-'l%) (29)

Eqs.(28) and (29) give the desired transformation from (K, ¢) coordinates to (u, v) coordinates for
O<x<k. For -k<x<0, from Fig.6(b),
K =-ksin B (30)
O m-l(‘a-’) (31)
and cos(B+0)= -2%

Vu? + v2,

or B=cos (75— - anl() (32)
Substituting Eq.(32) into (30),

Vo2 + v2,

k=-k sin{cns’li—r—) - tan.'l({-)} (33)

The expression for ¢ in terms of u and v is given by

n-0=0+20
or d=m-p-20

which gives

d=m- cas-l(T—) 4 tan_-l(;:!;;) (34)

Egs.(33) and (34) give the transformation for negative values of k. It is apparent from Eq.(23)
and (30) that x always lies between -k and k for all real values of k. Eq.(28), (29), (33) and (34)
define a one-to-one transformation between the (x, ¢) and (u, v) coordinates.




Bilinear interpolation is one of the most popular techniques used for generating the missing
data for image reconstruction and is the technique which is proposed to be used in this work.
Although this technique also has the interpolation errors associated with other interpolation
schemes, it appears to give fairly good results for image reconstruction using diffraction
tomography. A very brief description of the bilinear interpolation technique used is presented here.
The reader may refer to [7] and [8] for a detailed description of this material.

The operation of bilinear interpolation can be represented by a filtering operation. For
image reconstruction using Eq.(21) and (22), O(w) is directly related to the data Qy(x). The
transmitted plane waves would be uniformly spaced in the angular coordinate ¢. Further, since the
receiver spacing is uniform along the y-axis, the data would also be uniformly spaced in k. Thus
the data obtained would be uniformly spaced in the (%, ¢) coordinates, which would result in non-
uniform sampling on the semicircular arcs. The bilinearly interpolated values of the function
Q¢i(Ki), given NyxNg uniformly spaced samples of this function, are given by

Ne N
Qp(x) = 21 ﬁl Qe;(xi) hi(x - k3) ha(¢ - ¢y) (35)
= J:
where
1 el [kl<A
T e (36)
0 otherwise
and
ol
@ =4 ' " 3¢ lol<ag (37)
0 otherwise

Ax and A¢ are the sampling intervals for ¥ and ¢ respectively.



have an effect on the quality of the reconstructed image. Since the basic assumption made in the
analysis of diffraction tomography and object reconstruction is the validity of the Born or Rytov
approximation, this technique works best for the case when the scattering by the object is weak.
However, it would also work well for the case of an isolated scatterer. This performance of this
technique is not known for the case when the area being imaged has multiple strong scatterers.
This provides the most severe limitation on image reconstruction using this technique.

Even when the weak scattering approximation is valid, since the image obtained is
inherently a low pass version of the object, there is a loss of the sharp features of the object [8].
The k-space coverage can be increased by using higher frequencies, but in geophysical
applications, the attenuation increases significantly at higher frequencies. This imposes a limitation
on the maximum frequeny that can be used.

For a given frequency, there are gaps in the k-space coverage provided by the offset VSP
configuration. These gaps in the k-space coverage result in artifacts along this direction. The
image quality can be significantly improved by placing receivers on both sides of the object, thus
eliminating these gaps in the coverage. However, the offset VSP gives images of sufficient quality
despite lower k-space coverage.

In view of all these limitations, the parameter selection for diffraction tomography is of
critical importance [8]. By the right selection of parameters, the image quality can be significantly
enhanced.

The frequency of operation has a direct bearing on the resolution. It has been observed that
to resolve a feature of spatial extent R, the wavelength has to be less than approximately four times
R, i.e,

> |

> 0.25 (38)
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the image is periodic in the angular coordinate ¢ with period 27, the minimum number of distinct
plane waves required to reconstruct the object can be obtained from the circular sampling theorem
[9]. If K is the highest angular frequency in the object, the object can be reconstructed from the
data if there are at least (2K + 1) samples in each period. In case of objects having an infinite or
very large K, an approximate value of K can be obtained which will result in satisfactory image
quality.

If 2A 1s the spatial extent of the object, the maximum cartesian grid spacing in frequency is
Au = 1/(2A). Let B be the approximate isotropic bandwidth defined as the radius of the region of

k-space coverage. Then the approximate maximum angular separation is

Au
Ap = B

If the number of samples for each projection are N, Ad can be written as
2
Ad~ 7 41)

From the circular sampling theorem, the minimum value of A¢ is also equal to

21 T .
NomEL X i

Comparing Eq.(41) and (42), a sufficiently high value K for good image reconstruction is

TN

= T =2nAB (43)

Eq.(43) gives the minimum number of samples in ¢ which need to be taken for good image

reconstruction.

In addition to satisfying the conditions mentioned earlier in this section, care has to be taken

to minimize the interpolation errors and the errors due to the synthesis of the incident plane wave
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reconstruction of the image.

Geophysical tomography is a powerful technique for reconstructing images of underground
objects. Although similar to medical computer tomography in principle, it is more complicated due
to the diffraction effects which cannot be neglected at the frequencies which are used for
geophysical applications. The limited number of viewing angles available also result in
deterioration of the image along the direction of gaps in k-space coverage. Despite this and the
other limitations mentioned in the earlier sections, images of good quality can be obtained by this
technique.

The recipe for reconstructing the image of the subsurface spill using direct interpolation in
diffraction tomography can be summarized as follows:
1. Select the various parameters ( frequency, receiver spacing, etc.) according to the limitations
and the desired performance.
2. Synthesize a plane wave using Eq.(1) and (2).
3. From the Fourier transform of the measured field, evaluate the Fourier transform of the object
profile along the semicircular arcs using Eq.(22).
4. Use the chosen interpolation technique to generate the interpolated values of the object profile.
5. Determine the points on the rectangular grid in frequency domain at which the object profile is
desired.
6. Convert these points into corresponding (¥, ) coordinates usin g the transformation equations
(28), (29), (33) and (34).
7. Assign the interpolated values to the Fourier transform of the object profile at these points.
8. Take the inverse Fourier transform to obtain the object profile.

Some of the related areas which need further research are the extension of diffraction
tomography to strong scatterers and its performance in the presence of an inhomogeneous
background, and the effect of polarization.
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