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Executive Summary

In this investigation, we examined the issues associated with using ground-
penetrating radars for detecting and imaging subsurface contaminates. By developing
advanced electromagnetic signal processing techniques, we have shown through computer
simulations that ground-penetrating radars are capable of detecting and imaging low
contrast contaminates, characteristics associated with hydrocarbon contaminates.

A ground-penetrating radar, or GPR, is an electrical device that detects buried
objects (targets) by transmitting and receiving electromagnetic energy. The detection
process begins by generating an impulsive signal, typically on the order of 50 nanoseconds.
This short-time signal is radiated by the transmit antenna forming the incident
electromagnetic field in the ground. A portion of the incident field is reflected, or
scattered, off any buried target and the radar records this scattered field. By comparing the
incident field to the measured scattered field, a GPR is capable of obtaining information
about a particular target.

The strength of the signal received by the GPR depends on several factors such as
the contrast between the background soil and the object, the depth of the object, and the
amount of ohmic loss in the soil. Generally, the larger the electrical contrast between the
object and the background medium, the larger the scattered signal. The deeper the object
is, the smaller the received signal becomes. This is due mainly to attenuation of the
electromagnetic fields as they propagate through the soil. The amount of attenuation, or
ohmic losses, depends on soil type and the operating frequency of the radar. Overall,
attenuation increases with frequency and the amount of water in the soil.

- A traditional GPR employs separate transmit and receive antennas, which are
usually collocated in a so-called monostatic configuration. The GPR generates and
transmits pulses at a set periodic rate on the order of 100 pulses per second. The received
signals are recorded and displayed. A GPR determines the distance to a target, and thereby
detects a target by measuring the time it takes the transmitted signal to travel from the radar
to the target and back again. Most GPR systems do not perform any type of signal
processing on the received signals. If a buried object is located at a particular depth below
the ground, the received signal will be relatively large at the corresponding time-range.

Typical hydrocarbon contaminates form low contrast plumes (objects) with most
background soils. A convention monostatic GPR employing no signal processing will have
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difficulty in detecting and mapping such objects. However, if a bistatic confi guration in
which the transmit and receive antennas are moved around separately, and advanced signal
processing is used, hydrocarbon contaminates can be detected and imaged.

In this investigation we developed advanced signal processing techniques capable
of imaging low contrast targets. These techniques are based upon formulating the
subsurface imaging problem as an inverse electromagnetic scattering problem. We solve
the inverse scattering problem using either the Born iterative technique or diffraction
tomography. To properly image a buried target requires that data be taken at many
transmit/receive locations. For each separate location of the transmit antenna, data must be
recorded at several locations around the transmit antenna. Further information on the
target, and therefore better images, are obtained if the receive antenna is place in a vertical
borehole near the object in conjunction with surface locations.

To test the theories developed in this investigation, we programmed a ground-
penetrating radar simulator using full-wave electromagnetic techniques. Our GPR
simulator is based upon the finite-difference time-domain algorithm which is a direct
numerical implementation of Maxwell’s electromagnetic equations. Our simulator
properly accounts for the air-to-soil interface and can model heterogeneous soils and
targets.

We tested the Born iterative and diffraction tomography imaging algorithms using
data generated by our GPR simulator. Our simulations show that low contrast objects can
be imaged where traditional monostatic GPRs failed. The imaging algorithms we
developed provide information on the object’s shape as well as an estimate of its electrical
properties. Estimates of the object’s electrical properties can be used in classifying the
object. We began a preliminary investigation in classifying subsurface images using
artificial neural networks. Although strictly preliminary at this time, it does appear that
neural networks are useful in classifying certain types of buried objects.

If developed to their full potential, the theories and techniques presented in this
report could be used in generating accurate subsurface images of suspected spill sites.
These images or underground maps would be a valuable tool in determining the extent of a
site cleanup.

v



Acknowledgment

The authors gratefully acknowledge Mr. Kenneth J. Ladwig, Vice President,
Science & Technology Management, Inc., for his support, guidance, and management
throughout this project. We also wish to express our thanks to Mr. Wade Graves,

Manager, Electric Research & Development, Kansas Public Lighting, for suggesting this
research topic.



Contents

Section Page
L VRO BRCINLL et bt spprnnes v e bbb ps s cs v s ssnsss oot s 1
1L BACKGROUND INBORMATION..........omsssismsisssssessmsnssresstorensamsrsmsrasssnentoans 3
1L iy B 2 REO SOO N RS 1 08 ( SONT O NN S N 6
A. TARGET MODELING AND SOIL CHARACTERIZATION.............. 6

B. GROUND-PENETRATING RADAR SIMULATOR........c.coeeevreeeennn. 7

a. The Finite-Difference Time-Domain Technique................coorunee..... 8

b. The University of Kansas FDTD Code........cooueveueueueeeeieceeeerrnneenen. 12

¢. Simuldted Radar ReMIMS......cimmeassimsesmesssssisssssassssabsssrisionssass 14

C. SUBSIERANCEIMAGHNG:. . ...ii o vosissioiismmisssmmsstamsminsssssensssssastns 21

a. Formulation of the Inverse Problem...........ccooevievevieeeieeeneieeceeennee ik |

b. Image Generation by Diffraction Tomography.........cccceuerrvevrerreennnee 24

c. Image Generation by Constrained OptimizZation..........cccoevevevennnn... 28

d. Image Generation by the Born Iterative Technique.......................... 32

e. Simulations of Subsurface Imaging.........cccceeeeevcievecieecrecececnen 33

D. TAROGET CLASSIFICATION. .t s stonersssbssmsmsiincssmmssmsssssissasimsdsns 49

a. Major Steps for Target Classification.............oveveveiieeeieeseneeeseseens 50

b, Fealtlte EXUBOUOIL ... ooicissivnnrsinssssossast ssssssnivnsss sxvrisssiisninssssmsiannsans 51

¢. A Neural NetWork CIaSSIfIEr. ... crcimisrosremmmmmenmesmmassssnrssssssasssnsssssassons 52

o DElmme SIEONIING it peitbiasnrssimaiinbsrismminsdes Db e 55

R L N P TN, 5 S SRl i 56

f. A Probabilistic Neural Netwark Classifier... ... mimeseiosmonsssives 59

g. Comparison of the Performance between the FNN and the PNN...... 61

IVe . IR R TIN5 s S i b 2 63
V. e B e B L0 SN NS e TR L NS VISR 65
WL S REEERRE NS L sl b e st B e s s S st i mrm e asemebin 67

Vi



List of Illustrations

Figure Caption Page
1 A rectangalar FDTDMUBENIES] BTIA.... i smniossinssisiss cvsessssosessssaimmsmnnss 10
2. The FDTD unit cell showing the electric and magnetic field evaluation

10.

1 g

12.

i3.

14.

e (0 L N S S T o 10
Typical ionoSEtC GPRISECUD. i oo icssmsessive s sssmsvonstisnsai bossssies sedessssains 13
A schematic diagram of the FDTD GPR simulator............cccccoevevvevereernn.. 15
A pulse-echo profile for a single underground point target................c..c.o........ 17
A pulse-echo profile for two horizontal underground point targets................... 18
A pulse-echo profile for two vertical underground point targets........................ 19
A pulse-echo profile for two underground point targets..........o..evvvevevrvruernnenn. 20
Two-dimensional geometry for inverse scattering formulation...................... 22
The projection slice theorem in medical tomography.........ecveveevevcueevieveenen.. 25

The relationship between Fourier transforms of the object and the

seattered field for diff raction tomMBBIAPINY. ... ....cmciisimasivmiiismmssssmbmsmmre tioss 27
Line source located above a dielectric interface........ccccvevveevevnneiiiccniieieenenn, 30
Born iterative scheme for subsutface IMABING. . ....ciiiumsimminsisosissesiiisissssaneons 32

Ground soil models: (1) homogeneous soil; (2) stratified layers; and (3)
homogeneous soil with a discernible water table.............c..ocoeviveeieeeisieeennnn. 33

vii



15a.

15b.

15c.

15d.

16.

17.

18.

19.

20.

2L

22,

23,

24,

25. -

26.

27.

28.

2%,

it T R RN U | O T S IS ey 35
G R R N e AR 35
i i R TS SRUERIE. s SRR N SR R S 36
et oo T ot D e USRS SO AR T T U S 36
Offset vertical seismic profile GPR simulator geometry..............o..co.oveeveeuneene. 37
< g e T ST e SR 0 L RS O o (RSN 40
e e S TR T N Tt ) o e O SR 41
s SRR R R e TR O SR |8 L R ) R 41
ot T D R M SRR NS 18 ISR 8t I G YRR Sl O - 42
SITARBITG S s iisiseat s sussinisonsesmsamsomihe b ns e AR P i S s i o e 42

=T R SRR TN (O SRR I T A o T e 43
SRR Al o el b SO i Bl LR oL MR 43
L R e e S S UL R NN G N 44
Simlaion I, 1. o B I A e e s ok 44
SIMBIATON B0, ..o oo iivnmmssisrinentonereisin comam ot tnne s vesiays s o poassvsasissnadindus s mpsen 45
SIBUORIININ tntore s B e B T e e R e i, o B T 45
008 YT TR S L N S R S RN ay e 46
SURTEREION U300 i lnieselissoms soieastissin st A S s A ek o o e s e 46

viii



30.

31.

32,

33.

34.

35a.

35b.

36.

37

38.

39,

Table

2.

Sriofilics e T L R G SRR e S R DS SN T 47
S A RSN (T TS e NS S 47
T o L A SR N /L) Sy S N 48
<572 LI T R R O 0 M O S T 48
Construction of a feature vector using 119 samples of the 2D spectrum.......... 52
Architecture of a feed-forward artificial neural network.............cccoevreeveemnnn... 53
Input and output configuration of @ NEUTON..........cceeeeeieeeieiieeeeeeeeere e, 54
Block diagram of the ANN-based classification scheme.............cccocevveverureennn... 56
Success rate (%) vs. SNR for the Bayes classifier and FANN.............cocooo....... 58
BRIt olia PP o i insibions sl Siomss ke s g memasmea e s bt 60
Success rate (%) vs. SNR for the PNN and FANN.......ccovvevveveeeeeeeeeee e 62
List of Tables

Caption Page
T e L T T N VRSN | IO (R W IOl AT RS 34
Stmulalon BEBUEH ool it i it st aissorsbsbssonsinbssin 39

ix



I. INTRODUCTION

A problem facing utility companies today is identifying and locating spill sites and
buried objects. Underground objects include gas and electric lines, discarded trans-
formers and oil tanks. Over time, some of these objects may start to leak their contents.
When PCBs and oil leak, for example, a site assessment is called for. If the site is
contaminated, a general cleanup of the site may be required. Currently, soil core samples
are needed to determine if a spill has occurred. Once a potential site has been identified,
many samples are required to adequately test for spills. Even then, there is no guarantee
that part of the site has not been missed. Therefore, a better method of site assessment of
suspected spill zones is needed. This report will discuss the use of ground-penetrating
radars to detect, image, and classify subsurface contamination.

Ground-penetrating radar (GPR) techniques have been used for over 20 years to detect
and locate subsurface objects. The areas of application are diverse and include geological
prospecting, civil engineering site investigations, highway investigations, polar ice sheet
investigations, as well as the detection and location of buried pipes, cables, and barrels.
Recent advances in RF and digital electronics, polarimetric signal processing, as well as the
computational power of microprocessors, make GPR a prime candidate for the detection and
mapping of subsurface contaminates.

GPR offers the potential for rapid, non-invasive mapping of subsurface features.
A radar is an extremely sensitive electronic device that generates, transmits, and receives
electromagnetic waves. The operation of a radar is straightforward. An electromagnetic
wave is generated by the radar and transmitted into the ground. When the incident wave
strikes any discontinuity, a scattered wave is reflected back to the radar and the radar
records this signal. By comparing the incident and scattered waves, it is possible to infer
information about the object that scattered the wave. These objects may be discrete, such
as pipes and barrels, or distributed, such as a chemical plume or coal tar.

The purpose of this report is to show that ground-penetrating radars are useful in
detecting subsurface contaminates such as coal tar located at manufactured gas plant sites.
This reports concentrates on a numerical simulation of two-dimensional GPR data.
Subsurface maps, or images, are generated and classified from the simulated data.

Images are generated by solving an inverse electromagnetic scattering problem using



either diffraction tomography or a Born iterative method. The images generated from the
radar data are then classified using artificial neural networks.

This study presents a detailed analysis on four major aspects of detecting
subsurface contaminates using ground-penetrating radars: (1) modeling the background
soil and subsurface contaminates; (2) developing an electromagnetic GPR simulator using
the finite-difference time-domain technique; (3) generating subsurface maps using
specialized inverse electromagnetic scattering techniques; and (4) classifying images
using neural networks.



II. BACKGROUND INFORMATION

A scattered wave is generated whenever an incident electromagnetic wave encounters
a change in an electrical constitutive parameter in the soil. There are three constitutive
parameters that characterize all material. They are permittivity, permeability, and
conductivity. Most soils are non-magnetic and, therefore, no change in the permeability is
expected. Atlow frequencies, below roughly 20 MHz, the conductivity is the dominant
constitutive parameter, while the permittivity is the dominant parameter for operations above
20 MHz. When the conductivity is the dominant constitutive parameter, the electric and
magnetic fields diffuse through the soil. On the other hand, when the permittivity is the
dominant parameter, the electric and magnetic fields propagate through the soil. Wave
propagation and diffusion are two different phenomena, and different systems are used to
explot their individual characteristics. In this investigation we rely on wave propagation in
the soil.

Most GPR systems rely on wave propagation and, therefore, operate in the 100- to
1,500 MHz range. Electromagnetic sounding systems, on the other hand, are desi gned to
operate when diffusion is the dominant mode of advancing the electric and magnetic fields.
Both systems have advantages and disadvantages, which are mainly linked to the issues of
depth of penetration and resolution. Both systems rely on measuring a scattered si gnal of
sufficient strength. These issues are explained below.

The strength of the scattered wave received by the electromagnetic system depends, in
part, on the contrast in constitutive parameters between the background soil and the scattering
object: the greater the contrast the larger the scattered wave. In addition, the shape of the
object also contributes to the strength of the scattered wave. A large flat plate will scatter
electromagnetic energy differently than a long thin pipe. By knowing the characteristics of
the desired class of targets, for example long, and thin for pipes, it is possible to tailor the
radar design to preferentially detect that class of target over all other objects.

Many factors influence the design of any probing radar. The principal constraint on
the design process is the set of electromagnetic properties (permittivity, permeability, and
conductivity) of the medium under test. These parameters, in conjunction with the required
depth of penetration and resolution requirements, place limits on the operating frequency of
the radar. Resolution is the ability of the radar to distinguish between two closely spaced
targets. A radar has two types of resolution, range resolution and horizontal resolution, which



are orthogonal to each other. Range resolution is proportional to the inverse of the received
signal bandwidth, which is the difference between the highest and lowest f requencies of the
received signal. Therefore fine range resolution requires a transmitted waveform having a
large bandwidth. The horizontal, or cross-range, resolution of the radar is determined by the
antenna beamwidth: the narrower the beamwidth the finer the horizontal resolution. Cross-

range resolution can be increased by using synthetic aperture processing.

There are trade-offs associated with transmitting broadband waveforms. All soils
attenuate electromagnetic energy, and the attenuation usually increases with increasing
frequency and moisture content. If large penetration depths are required, the transmitted
waveform should be low in frequency. However, large signal bandwidths are impossible to
obtain when transmitting low frequencies. Therefore a trade-off between range resolution
and depth of penetration must be made. Since GPR systems operate at higher frequencies,
GPR provide better resolution than electromagnetic sounding systems. However, sounding
systems can detect objects much deeper than GPR.

Frequency-modulated continuous-wave (FM-CW) radars and impulse radars are two
types of radars used in GPR applications requiring broadband waveforms. Since both radars
are broadband, they have good range resolution, but the methods by which they obtain the
broadband signals differ. The impulse radar can be thought of as a time-domain approach,
while the FM-CW radar uses a frequency-domain approach. An impulse radar generates and
transmits a very narrow time pulse. A narrow time pulse has a very broad signal spectrum
leading to a broadband waveform. The major problem associated with the impulse radar is
the antenna design; antennas tend to be narrowband devices. When a narrow time signal is
transmitted through a narrowband antenna the antenna rings or oscillates. Ringingis a
problem because it can mask targets. To overcome ringing, the antennas on impulse radars
must be loaded, reducing the overall efficiency. In addition to low efficiency antennas,

impulse radars have low duty cycles and thus require higher amounts of peak power.

An FM-CW radar obtains its broad bandwidth by directly generating a signal that has

a broad spectrum. This is accomplished by continuously sweeping the transmitted f requency
from some low value, f low » [0 @ high value, f high’ at a typical sweep rate of 100 Hz. The

resulting bandwidth is then fhj gh'f low” Since the FM-CW radar is continuously transmitting, it

has a duty cycle of 100% thus requiring lower peak power than impulse radars.



The advantages the FM-CW radar have are antenna design, transmitted spectral shape,
and a better suitability for certain types of signal processing. Since the radar transmits a
continuous wave, the antenna design for an FM-CW radar is simpler than that for the impulse
radar. The FM-CW radar also provides easier control over the transmitted spectral shape of
the waveform. The transmitted waveform is continuously swept in frequency between preset
limits. Any fluctuations in antenna gain can easily be compensated, allowing for any desired
spectral shape. Control of spectral shape is important in many signal processing techniques
used to extract target information. The received signal is then mixed with a portion of the
currently transmitted signal giving a difference frequency, which depends on the target depth.
This type of signal recovery preserves both the amplitude and phase of the backscattered
signal.

A variant of the FM-CW GPR is the stepped-FM radar. Instead of continuously
sweeping the frequency between preset limits, as in FM-CW radars, the frequencies generated
by a stepped-FM radar are discrete. The frequency band is divided into N segments, where
N is usually a power of 2, and the radar steps through the frequencies. The advantage of
stepped-FM radars is the repeatability and stability offered by inexpensive, synthesized
sources that are commercially available. Synthesized sources are usually phase-locked thus
allowing for coherent processing.

The three types of GPRs just described-impulse, FM-CW, and stepped FM-usually
have separate transmit and recieve antennas. In most applications, the two antennas are
located in close proximity to each other and the radar is refered to as a monostatic radar.
More information about the target may be obtained if the transmit and receive antennas are
moved separately about the object. When the antennas are displaced from each other, the
radar is said to be in a bistatic mode.

Since one of the goals of this project was to image subsurface contaminates, a bistatic
mode of operation was selected. The bistatic mode of operation lends itself to better images.
In the following section the details of the analysis of the project are presented.



III. ANALYSIS
A. TARGET MODELING AND SOIL CHARACTERIZATION

Realistic models of soil and contaminants are necessary for testing the capability of
any GPR system. Soil and contaminant properties have been investigated in detail in the past
and the reader is referred to [1] for a thorough description. A brief overview of the soil and
contaminant properties is provided here.

Ground soil usually contains three main constituents: solid soil particles (having a
dielectric constant between 4.5 and 5.5), air-filled pores, and water. Soils are classified
according to the percentages of the three primary components it contains: silt, clay and sand.
These components are categorized according to particle size. The dielectric properties of soil
vary immensely, depending on the geographic location, particle size and moisture content.
Usually, dry soil has very low conductivity. However, the amount of moisture in the soil
greatly alters its electrical properties. Due to the high dielectric constant of water, the
presence of moisture in soil considerably slows down the propagation of EM propagation in
ground. Also, in many cases water has very high conductivity. Thus, EM waves are severely
attenuated by the presence of moisture. This results in the depth of penetration decreasing
significantly with increase in the moisture content of the soil.

The majority of hydrocarbon contaminants have very low conductivity and can
essentially be considered lossless. The dielectric constant of these contaminants usually falls
between 1.5and 6. In many cases, these contaminants take one of the two shapes: they either
form a downward plume that gradually mixes in the soil and spreads out, or they make a well -
defined plume flowing sideways. In the presence of a well-defined water-table, this plume
floats on the water-soil interface due to its immiscibility with water.

We have developed a general-purpose GPR simulator, capable of predicting the radar
returns for a variety of soil and target models. Due to the large variation in soil properties and
expected targets, we have concentrated on analyzing several canonical models. These
models, although not exhaustive in number, do provide information on the ability of GPR in
accessing contamination sites.

For the simulations presented in this report, one of three soil models was used: (1) a
homogeneous ground; (2) a ground having a well-defined water-table such that there is an



abrupt change in the dielectric constant of ground at the soil-water interface and; (3) a ground
with dielectric constant increasing linearly with depth to model a gradual increase in the
moisture content of soil with depth. For an inhomogeneous ground, the soil was modeled as a

stratified (planarly layered) medium, with the permittivitty of each individual layer being
constant.

All material media, including soil, are characterised by three electromagnetic
parameters: the permeability, permitivity and conductivi ty. The effect of these parameters
can by accounted for by calculating the Green’s function for the media. A Green’s function
physically represents the fields generated in the media due to a unit source. The Green’s
function plays the same role as the system impulse response in system theory.

Due to the wide varations in soils and subsurface objects throughout the country, it is
not possible to run simulations on all combinations of soils and targets. Because of this we
have limited the number of soil models to three, and consider four canonical targets in this
investigation. A discription of the target and soil models are presented later in the report.

Recently a computer code has been developed by researchers for EPRI that predicts
immiscible contaminant transport in subsurface systems [2]. This PC-based program, called
VALOR, uses a two-dimensional, finite-difference technique to model the flow equations for
contaminants. VALOR predicts the flow of the contaminant in any given soil for which the
soil and contaminant properties are given. We have recently received the documentation for
the software, and plan to use this code to model the contamination flow in soil for future
work.

B. GROUND-PENETRATING RADAR SIMULATOR

An important part of our development of ground target identification algorithms has
been a GPR simulator that is capable of predicting the radar returns of realistic objects. The
development of such a simulator is a challenging problem in itself, since the wave equations
that predict the evolution of the incident and reflected fields are complex vector equations.
Also, the ground itself complicates matters, since it is a large, penetrable object that must be
modeled correctly.

Problems of this sort are called forward-scattering clectromagnetic problems, since the
transmitted fields and the object are known. A number of techniques exist for solvin g



forward electromagnetic problems. Of these, we chose the finite-difference time-domain
(FDTD) technique for our GPR simulator. This technique has been used extensively since
the early 1980's to solve a wide range of electromagnetic problems and has a number of
attractive features for solving electromagnetic scattering problems. The most important
feature for our purposes is that it is not encumbered by the presence of dielectrics in either the
target or the background medium (the ground, in our case). Since the ground is an important
factor in the nature of the radar returns, this is a most attractive feature.

In the sections that follow, we outline the basic aspects of the FDTD technique. This
will be followed by a description of the capabilities of our FDTD code and the presentation of
simulated radar returns calculated by this code.

a. The Finite-Difference Time-Domain Technique

The FDTD technique was developed in 1966 by Kane Yee [3], but it was not until the
mid 1970's that computer storage capabilities had risen to the level necessary to solve useful
problems. Since that time, FDTD has become one of the most popular numerical techniques
used for time-varying electromagnetic problems and has been the subject of numerous papers
and books [4-7].

The FDTD technique follows directly from Maxwell's equations, which are the
fundamental equations that relate the electric and magnetic fields, E and H, respectively, to

the current and charges that ultimately cause them. In differential form, Maxwell's equations
read:

VXE = - u@ (1)
ot

VXH = J+¢ 9E )
ot

where J= o E is the current density, measured in amperes per square meter, and u, ¢ and o

are scalar parameters called the permeability, permitivity and conductivity of the medium.
Also, VX is called the curl operator, which, in Cartesian coordinates, operates on vectors

according the formula

dE, @E 6E_ oE dE, OE
VXE=|—-— |4 +| . L4 4|2 g ©)
dy 0z 0z ox| Y ox dy




where E_ E »and E_are the X, y, and z components of the vector E, respectively, and ﬁ

ﬁy, and Q are unit vectors in the X, y, and z directions, respectively. According to (1) and (2)

the time derivative of H is controlled by the curl of E, whereas the time derivative of H is
controlled by both the curl of E and the current density at that point.

The FDTD technique starts by dividing a three-dimensional region of space into
rectangular cells, as shown in Figure 1. Each cell is numbered according the indices (I,J,K)
along the x, y, and z axes, respectively, and have dimensions Ax, Ay, and Az along the x, y,
and z axes, respectively. Within each cell, the six possible components of the E and H fields
are sampled at distinct points in time. Figure 2 shows the field points within each cell. As
can be seen, the E and H fields are interlaced in space, which makes it possible to perform the
curl operations efficiently.

A system of six difference equations for the six components of the electric and
magnetic fields can be obtained by evaluating the time and space derivatives numerically. To
accomplish this, electric fields are sampled at integer multiples of the time step, 1 =nAz,
where At is the time step Conversely, the magnetic fields are sampled half integer multiples

of the time step, ¢ = (n+2)At As an example, the equation for the x component of the

magnetic field at 1= (n+§)At is:

172 n-1/2 At (1 n n
H, (1K) =H, (LK) +;{5 [EIK) - Ej1i+1.K0)]

p L [E“(I,J,K+1)-E“(I,J,K)] . 4
diz ALE T y

As can be seen, the new value of the H\S\do5(x) at ¢ = (n+\F(1,2)) At depends upon the
previous value of H_at 1= (n-%)At, as well as the values of two nearby E field components at

H_ atr=nAr. Using equations like this, the sample values of the H field components at one

point in time can be calculated from E and H field sample values at previous points in time.
Similar equations can be derived for each component of the E field in terms of previously

calculated E and H field values.
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Figure 2. The FDTD unit cell showing the electric and magnetic field evaluation points.
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Using these field advance equations, the general FDTD technique proceeds by
sequentially evaluating the magnetic fields over the entire solution space and then the electric
fields at the next half-time step. This "leapfrog" process is repeated for the entire time history
of the waveforms, producing time-marching solutions of the fields within the solution space.
This procedure describes the basic FDTD field-advance algorithm. However, in order to
perform useful calculations, several other issues must be addressed. These include the
specification of the object, the incident fields, and the field-advance equations at the edges of
the solution space.

To specify the object, all that is necessary is to specify the appropriate material
parameters (£, 4, and o) in each cell where the object appears. Since the cells are
rectangular, the object that is specified is a "stairstep” equivalent of the actual object. As long
as the cell size is small, the errors incurred by this stairstep approximation are minor. The
properties of the ground are specified in exactly the same way-on a cell-by-cell basis.

The incident fields can be specified in a number of ways, depending upon the nature
of the source and where it is located. If the source is a known current distribution (such as a
line source) that is relatively close to the scatterer , the time history of these currents can be
added to the curl-H equation (2) and forced directly in the field-advance equations. On the
other hand, for sources that are distant from the object, the incident field is usually a plane
wave and is known a-priori. For this case, the FDTD solution space is divided into two
regions. The region immediately surrounding the object is called the total field region, where
the fields calculated by the code are the total fields, which are defined as the sum of the
incident fields plus the fields scattered (i.e., reflected) by the object. The region that
surrounds the total field region is called the scattered field region, and only the field actually
scattered by the object is calculated. Dividing the fields in this way allows the fields close to
the outer boundary of the solution space to be outward propagating, which is necessary in
order to reduce nonphysical, numerical reflections at this boundary.

Another issue involves the outer boundary of the solution space. The problem here is
that the standard FDTD field advance equations require a knowledge of the fields surrounding
a point. This knowledge is not possible at the outer boundary, since ficlds beyond this
boundary are not stored. As a result, other means of advancing these ficlds must be used.
These techniques are called absorbing boundary conditions, since they absorb the outward
propagating waves without causing nonphysical, numerical reflections. Although a number
of techniques have been devised, the most popular one is one developed by Mur [8], which

11



uses the electromagnetic wave equation to estimate the magnitude and propagation direction
of the fields near the outer boundary and, from these, calculates the fields along the outer
boundary. This technique is often augmented with an additional correction scheme developed
by Fang [9]. Using these techniques, numerical reflections from the outer boundary are
typically -30 dB down from the amplitude of the incident fields.

Finally, even though the FDTD technique calculates fields in the time domain, steady
state field amplitudes can be obtained easily. This is accomplished by recognizing that the
time-domain waveforms are the convolution of the incident field waveform and the system
transfer function. Hence, we can obtain the steady state response at any frequency simply by
taking the Fourier transform of a given waveform and dividing it by the Fourier transform of
the incident field waveform. In this way, the response due to a steady state source of any
frequency can be obtained from a single time-domain calculation.

b. The University of Kansas FDTD Code

The FDTD computer code used in our investigation was developed as an outgrowth of
the FDTD code development that has been an ongoing activity at the Radar Systems and
Remote Sensing Laboratory at The University of Kansas for the past ten years [10]. In order
to model the specific geometries needed for this project, several modifications were made to
our existing code. Most of these modifications were related to the presence of the ground,
and the antenna sources used to illuminate the targets.

Since our target identification study dealt with two-dimensional geometries, our
FDTD code was specialized to model two-dimensional fields. As is well known in

electromagnetic theory, fields that do not vary along an axis (say, the z axis) can be divided
into two separate classes. The first is called TE fields, which consist of three components:

Ex, Ey, and HZ. The second class consists of TM fields, which also have three components:
Hx, Hy, and E , Hence, a two-dimensional FDTD code only needs to deal with three field

components at a time, rather than six. This is a significant simplification. The determining
factor of whether the fields are TE or TM depends upon the nature of the source. For the

electric line source transmitting antennas used in our studies, the fields are always TM.

Figure 3 shows a schematic of a typical GPR in a monostatic set-up. Here, the
antennas, object, and ground are all drawn inside a rectangular, two-dimensional FDTD cell

12
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Figure 3. Typical monostatic GPR set-up.

space. The source of the incident fields is a wire current (i.e., line source), located just above
the ground interface. The cells that contain the ground are shown with light shading, and the
object is shown with heavy shading. At the outer boundary of the FDTD cell space, the
absorbing boundary conditions are invoked numerically to close the cell space. Since the
incident fields are generated close to the object, there is no need of a total field/scattered field
boundary, and total fields are calculated in each cell of the cell space.

The first choice to be made when running the FDTD code is to choose the cell size. In
general, the smaller the cell size chosen, the more cells are necessary to model the scatterer
and the surrounding ground. A small cell size increases the computational accuracy but also
increases the computational resources, since more cells are needed and a smaller time step
must be used. Another consideration is that the cell dimensions can be no larger than roughly
1/10 of the smallest wavelength component present in the transient waveforms. Hence, the
cell size must be chosen carefully in terms of the object size and the transient waveform used
to describe the incident fields.

13



Limitations of the maximum object size that can be analyzed by this (or any other
FDTD) code are set by the available memory. Simply stated, the memory requirements of a
two-dimensional code grow in direct proportion to the total number of cells used in the FDTD
lattice. At present, our code runs on a Sun Sparc 10 workstation, with 96 megabytes of
random access memory. With this machine, we can analyze a cell space up to 100x100
square meters for a radar frequency of 150 megahertz without using virtual memory.

Our code is capable of modeling both homogencous grounds and stratified grounds.
If future investigations were to require that the ground vary along the horizontal axis,
appropriate modifications to the code could be easily implemented (at the cost, however, of
increased computational resources). Also, both lossy and lossless grounds can be modeled.
This is accomplished simply by choosing the correct value of the permitivity € (measured in
farads per meter) and conductivity o (measured in semans per meter) for each cell.

Once the material parameters of each cell are fixed in the code (including the air,
ground, and object), a time waveform is chosen for the current flowing on the line-source
antenna. This current controls the incident field and is chosen so that this field has frequency
components that fall within the range of interest. Usually, it is best for this waveform to
have no DC component so that the very low frequency components of the incident field are
small enough to allow the absorbing boundary condition to work well (since the outer
boundary must be several wavelengths from the scattering object).

c. Simulated Radar Returns

In this section we present typical results from the FDTD GPR simulator. As
mentioned earlier in the report, a GPR can be operated in one of two modes: (1) monostatic,
in which the transmit and recieve antennas are colocated, and (2) bistatic, in which case the
two antennas are separated. For the simulations presented in this section, we limit the mode
of operation to the monostatic mode, which was selected because this is the mode most often
used in the field. As discussed later in the image generation section, the bistatic mode
provides much more information about the target. Therefore, the bistatic mode is used for
image generation.
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The geometry of the GPR simulation is shown in Figure 4. Here, a monostatic radar
traverses along the ground above the object. As it traverses, it emits pulses with its
transmitting antenna, and receives echoes from its receiving antenna. When these pulse
amplitudes are plotted vs. the delay time and the radar position, a series of lines are obtained
that indicate how the strength of the echo varies. Plots like these are commonly called
pulse-echo plots.

We now present several pulse-echo profiles, Figures 5 through 8, which illustrate the
resolution capabilities of a GPR system. The object considered in the pulse-echo profile of
Figure 5 is a rectangular, dielectric cylinder with £ = 6.0 and 0.5 m sides is buried a distance

d =3.7 m below the surface of a homogeneous, lossless ground with e.=3.0. The

transmitted pulse is a 24 nsec doublet, which has the same shape as the bottom horizontal
trace in this pulse-echo plot. As can be seen from each line in this plot, the received
waveforms are also doublets, since there is only a single target. However, the relative delay
of these waveforms are functions of the radar position, and the minimum delay is obtained
when the radar is directly over the object.

The object considered in the pulse-echo profile of Figure 6 consists of two rectangular
cylinders buried side by side, each with the same characteristics as in Figure 5. These
cylinders are separated by 2 m and are buried 4.7 m below the ground surface and the radar
pulse width is again 24 nsec. This example illustrates the cross-range resolution of the GPR.
When the radar is at a position of 1m or 8m, the two extreme values, the received waveform
clearly displays two targets. However, when the radar is located midway between the targets
at a position of 4m, the returns from the two targets arrive at the radar at the same time. At
this position the radar cannot resolve the two targets. By looking at the entire pulse-echo
profile, however, it is possible to tell that two targets are buried at the same depth.

Air 1>

Ground N
\\

Buried Object

Figure 4. A schematic diagram of the FDTD GPR simulator.
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The object considered in the pulse-echo profile of Fi gure 7 consists of the same two
cylinders, this time buried on top of each other. This example demonstrates the radar’s range
resolution capabilities. The first is 2.5 m from the surface, and the second is 4.5 m f rom the
surface. For this case, the received time signals clearly show the presence two pulses. The
first is due to the shallow target and the second is the response of the deeper cylinder.

Finally, the object considered in Figure 8 bears similarities to the previous two
objects. Here, two cylinders are buried side by side at different depths. The pulse-echo plot
for this case contains effects of both their vertical and lateral displacements, but the vertical
displacement is most readily seen by the eye. Two separate returns are clearly identifiable
between positions 1m to 6m. However, beyond 6m the distance to both targets is
approximately the same. The returns from both targets arrive at the radar at the same time
and the radar no longer can resolve them.

Once we developed the capability of accurately predicting the radar returns for a GPR
system, our next task was to process the simulated data and generate subsurface images. The
pulse-echo profiles that are typically used to display GPR data become very complicated for
heterogeneous soils with multiple targets. The purpose of image processing is to generate
accurate maps or subsurface profiles. These maps can then be used in the site cleanup
process. In the following section, we introduce two techniques for generating these images.
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Figure 5. A pulse-echo profile of a single underground point object.
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Figure 6. A pulse-echo profile of two horizontal underground point objects.
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Figure 7. A pulse-echo profile of two vertical underground point objects.
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Figure 8. A pulse-echo profile for two underground point objects.
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c. SUBSURFACE IMAGING

The goal of an inversion algorithm is to generate subsurface images from measured
data. Inversion techiques fall into two general groups: those that attemp to locate and define
the object boundaries and those that attemp to construct an object profile. In addition to
providing location and boundaries, the object profile also provides estimates of the object’s
constitutive parameters. Among the techniques used to located the object and its boundaries
are synthetic aperture imaging [11] and microwave holography [12, 13]. Techniques that are
useful in generating object profiles are diffraction tomography [14-16] and the iterative Born
technique [17]. An excellent review of most of these techniques is provided in [18]. In this
investigation, we concentrated on obtaining estimates of object profiles from GPR data.
More information is obtained on the target if both its boundaries and constitutive parameter
are known. This additional information is useful in automatic target classifications
algorithms, which are discussed later in the report.

The techniques for image reconstruction fall under a broader class of problems
generally known as the electromagnetic (EM) inverse sacttering problems. In an inverse
problem, the incident and the scattered fields are known, and the objective is to reconstruct
some physical properties of the target. For the imaging techniques investigated here, the goal
is to recover the permittivitty profile of the object from the scattered electric fields. The
measurements of the fields are available only at points external to the object. Since an
infinite number of objects can produce the same fields at a finite number of points outside the
object, the solution to inverse problems is inherently non-unique.

Several techniques are available for solving EM inverse scattering problems. A
majority of these technques are based on linearizing the problem through a weak scattering
assumption. Under this assumption, the scattered field is assumed to be small compared to
the incident field. Tomography and constrained optimization-based techniques are two of the
most popular methods of solving the inverse problem using linear approximations. The latter
technique can also be applied iteratively to solve a nonlinear problem. Application of both of
these techniques for subsurface imaging are presented in this section.

a. Formulation of the Inverse Problem

Consider the geometry of the two-dimensional problem depicted in Figure 9. The
geometry consist of two half-spaces characterized by the constitutive parameters {h., sl}
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Figure 9. Two-dimensional geometry for inverse scattering formulation.

and {uo . sz(r)}. Region 1 is a homogeneous half-space and corresponds to free space.

Region 2, representing the ground, is an inhomogeneous half-space. An inhomogeneous
scattering object of finite size with permeability and permittivity M, - &r) is located in region

2. Our goal is to generate an image of the scatterer by solving the inverse scattering problem.
We follow a procedure similar to that in [17] by developing an integral equation for the object
profile.

The total field ¢(r) satisfies the scalar wave equation,
. A M
V" +kT (0} ¢(r) =q(r) ©)
where q(r) are the sources and the wave number is given by
fmzuo g r € Region 1

k(1) = { o, e () € Region2 ©)

wzuo g(r) r & scatterer
-



For TM polarization the total field, ¢(r), represents the z-component of the electric field.

Define a background wave number corresponding to the half -space problem with the
scattering target absent as

wzuo £ r € Region 1

Kym=q ©)
@ u, e (r)  r&Region2

Adding and subtracting kzb(r) to (5) results in
{V? +K% (0}4(r) = q(r) - O(r)p(r) ®
where the object profile O(r) is defined as

O(r) = k) - k() ©)

By introducing a Green’s function g, (T, r’) that satisfies the equation
2 2 k] ¥
{V° + K5 kg, (r 1) =-8(r - 1), (10)

the solution for the total field ¢(r) can be expressed as
¢(r) =- f dr[q(r’) - O(r) §(r') g, (r, ). (1)
The incident field produced by the sources in the absence of the scatterer is
¢. (r)=- fdr’q(r’)gb(r, il (12)

Therefore (11) becomes

or)=¢, (r)+ f drO(r)$(r)g, (r, ') (13)



Since the total field is the sum of the incident and scattered fields and the scattered field is the
only field containing information about the object, (13) is re-written as

¢ (0= f drO(r)¢(r')g, (r, ') (14)

The total field inside the scatterer is a function of the object profile making (14) a
nonlinear integral equation of the first kind in O(r). In its present form, (14) is difficult to
use in solving for the object profile because the inverse problem is ill posed [19, 20] and
inherently non-unique by virtue of the equivalence principle.

During the course of this investigation, we examined two different techniques for
generating subsurface images: diffraction tomography and constrained optimization or
regularization. Diffraction tomography is an extension of medical X-ray tomography and
accounts for diffraction effects resulting from the use of low frequency signals. Constrained
optimization is a technique that allows incorporation of a-prior information of the object in
the image-generation process. In the following sections, we discuss these two techniques and
outline their strengths and weaknesses.

b. Image Generation by Diffraction Tomography

Tomography may be loosely defined as a process of reconstructing an object’s image
from projection measurements made around the object. Projections are a measure of the
effect the object has on the applied electromagnetic field. Using this technique, an N-
dimensional object, which is represented by its N-dimensional Fourier transform, can be
reconstructed from the (N-1)-dimensional Fourier transforms of its projections [14-16]. The
basis for imaging with tomography is provided by the projection-slice theorem. This theorem
states that for an N-dimensional object, the (N-1)-dimensional Fourier transform of the
measured projections along a line are mapped into a slice of the N-dimensional spatial Fourier
transform of the object. By measuring projections along lines surrounding the object, the
Fourier transform space of the object is filled out. The next step is to invert the N-dimesional
spectral data. The applications of tomography can be broadly classified into two major areas;
X-ray tomography and diffraction tomography.



Computer tomography has been applied to medical imaging for several years. The
field of medical, or X-ray, tomography has been well studied. In medical applications, high
energy X rays are used in reconstructing an image. Because of the high f requencies used,
diffraction effects are neglected, and the straight-ray models work reasonably well. Using
these models, the Fourier transform of the field along a direction perpendicular to the
direction of the incident wave gives the Fourier transform of a slice of the object along this
direction according to the projection slice theorem as shown in Figure 10. By rotating the
transmitter and the receiver 360 degrees around the object, a sufficient number of

measurements can be made, and the object can be reconstructed from these slices.

projection

\
X B \ B

Spatial Domain Fourier Transform

Figure 10. The projection slice theorem in medical tomography.



The application of tomographic techniques to geophysical problems is relatively new.
In geophysical applications, low frequency electromagnetic waves must be used due to the
high attenuation suffered by higher frequencies. When the wavelength of an incident wave is
close in size to the scattering objects, differaction effects play a dominant role. A diffraction-

corrected version of tomography, called diffraction tomography, accounts for these effects as
is used in subsurface applications.

Diffraction tomography is the generalization of X-ray tomography. In this technique,
diffraction effects are incorporated to account for the lower frequencies used. For diffraction
tomography, a result similar to the projection slice theorem of medical tomography is utilized
to reconstruct the image of the object from the one-dimensional Fourier transforms of the
field. This can be stated as follows: the two-dimensional Fourier transform of the object
along a semicircular arc is related to the one-dimensional Fourier transform of the scattered
field measured along a straight line tangential to the arc as shown in Figure 11. The image is
reconstructed by taking the projections of the object for several angles of incidence.

Once the spectrial domain data of the object profile is obtained, an inversion
algrothim is required to get the data back into the object space. One of the most popular
algorithms used in diffraction tomography is the backpropagation algorithm proposed by
Devaney [14]. This algorithm reconstructs the object by using a spatial filter to propagate the
fields backward into the object from the receivers. A direct interpolation scheme has also
been used by some people to solve similar problems [21]. In this technique, the object is
reconstructed by interpolating the Fourier transform of the object onto a rectangular grid and
then using the standard inverse Fourier transform techniques to recover the object pofile.
Although the concept behind the direct interpolation is simple, interpolation onto a
rectangular grid requires a complicated coordinate transformation. The backpropagation
algorithm was used for the work presented here. The formulation of diffraction tomography
and the backpropagation algorithm are discussed in detail the seond and third quarterly
reports for this project [28, 29].

The biggest advantage of diffraction tomography is its simplicity and elegance. The
well-developed concepts of Fourier transform and other signal processing tools are used in
this technique to reconstruct the object. Diffraction tomography provides a computationally
fast and efficient method of solving the inverse problems. For these reasons, this technique
was investigated in the first part of this project.
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Figure 11. The relationship between Fourier transforms of the object and the scattered field
for diffraction tomography.

However, the various assumptions used in the development of diffraction tomography
limit its applicability in many subsurface imaging applications. A major limitation of the
technique is the inherent assumption of weak scattering. This limits the maximum constrast
between the object and the background material, as well as the overall size of the object. A
second limitation is the fact that the reconstructed image is inherently a low-pass version of
the original object. Thus, sharp transitions and finer features of the object are lost in the
reconstruction process. The biggest limitation of diffraction tomography in imaging shallow
subsurface objects is the assumption of a homogeneous background. This assumption,



although valid for deeply buried objects, greatly limits the application of the technique for
generating accurate images.

Most of limitations associated with diffraction tomography can be overcome by using
a technique based on constrained optimization. For this reason, a constrained optimization-
based technique was investigated and developed during the latter portion of this project. The
details of this technique are now presented.

c. Image Generation by Constrained Optimization

The general inverse scattering problem, as mentioned ealier, is an ill-posed problem.
One technique used in solving ill-posed problems is regularization. Regularization, or
constrained optimization, is based on replacing the ill-posed problem with one that is well
posed. We use a general Tikhonov regularization procedure to obtain the object profile [20].
Rather than solving the problem

A0 =d, (15)

the Tikhonov procedure solves the problem of minimizing Il AO - d llz, under the constraint
I LOI%= constant, where £ is a suitably chosen linear stabilizer and llsli? is the 1, norm. An
equivalent statement of this procedure is [22]

min {Il R0 -d 1% + p2Il LOIZ} (16)

where p is called the smoothing parameter. The larger the value of p the smoother the image
while smaller values of p generate higher fidelity images. In the above equations A is the

operator in (14), O is the object profile, and d is the scattered field data ¢Sca. The solution of
(16) is [22]

0=(A*A+ 2L L) Axd (17)

The selection of the stabilizer L is arbitrary and is required because of the small
eigenvalues of A in (15). The stabilizer increases the eigenvalues of the system to the point
were the system is no longer ill posed. The selection of L2, along with the smoothing
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parameter, dictates the degree of smoothness in the solution. A good overview on selecting a
stabilizer is provided by Twomey [19].

Equation (17) can be solved numerically by a discretization of the problem. This is
done by first dividing the region of space into pixels and then expanding the object profile
into a set of N expansion functions of the form

N
(r) = nzl a fn(r) (18)

where a_ are unknown constant coefficients and the expansion functions f r‘l(r) are given by

1 ren®pixil
o)== (19)

0 elsewhere

Using (19) in (14) and assuming the field remains constant over each expansion function
results in

N
6_(n= 2 3,007) [T (g, (r. 1) (20)
n=
If a total of M receiver-transmitter pairs are used, (20) may be put into matrix form as
[A]O=D D)
where D is a M-element column vector containing the measured data, O is an N-element

column vector containing the unknown coefficients and [A] is an NxM matrix whose

elements are given by

Aij: () r" gb(rj, r’) de’ (22)
i

The regularized solution for the object profile is

O= (A*A+ 12L*L) 1a*d (23)
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In our solution we use a first difference stabilizer L, which requires a certain degree of
smoothness in the first derivative of the object profile [19].

Solutions to the inverse problem require evaluation of an integral of the background
Green’s function over each pixel as given by (22). The appropriate Green’s function for GPR
work depends upon the soil characteristics and the placement of the recievers. Consider the
half-space problem depicted in Figure 12. A transmitter is located in region 1, which
represents free space, while a scattering object is placed in region 2 representing the soil.

Receivers may be placed either on the air-to-soil interface or down a borehole. Let the
receiver location and an observation point inside the scatterer be denoted by r*= axx’ + ay

andr = ax+ ay, respectively. If the soil is modeled as a homogeneous half-space and if
the receiver is located in region 1, the desired Green’s function is
40

T\
2uq

go(r, r') = ety - U;Y i A (x-X) d) (24)

whereas if the receiver is located in region 2, the Green’s function is

400

gir ) = J' 2%15 [eh O-Y)+ R et O+ A E-X)dn (25)

region 1

transmitter e
b.¢

® reciever
scatterer

region 2

Figure 12. Line source located above a dielectric interface.
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Equations (24) and (25) represent plane-wave spectra where T()) in (24) is the transmission
coefficient from region 1 to region 2 and R(A) in (25) is the reflection coefficient in region 2

from of the air-to-soil interface.

Direct evaluation of (24) or (25) using the plane-wave spectrum formula for the
Green’s function is not practical. It can be seen from these expressions for the Green's
function that it cannot be evaluated in closed form in either case. Furthermore, the
permittivitty of medium 2 in (25) is higher than the permittivitty of medium 1. Thus, this
expression is difficult to deal with when the angle of incidence becomes larger than the
Brewster angle. But when a predominant wavenumber can be separated from the rest of the
spectrum, and the angle of incidence for this predominant wavenumbser is not too large,
simplified expressions for the Green's function are obtained as

go(r, 1) ~ J%; T(A) Ho® (k1 Iryl) 26)

for receivers on the surface, and
gu(r. ) = 7 [HoD (K Irg) + R(A) Ho@ (k1 Ir2) @7

for the receiver locations in the borehole. Here A is the predominant wavenumber, rj is the

distance between the points (x,y) and (x',y"), and r3 is the distance between (x,y) and (x',-y").

Unfortunately, the assumption of small angles of incidence is not valid for many cases
in the imaging problem since the receivers need to be spread out for better angular coverage
of the object. Thus, some other technique for the evaluation of the Green's function is needed
for use in the inverse problem.

Instead of evaluating the Green’s functions analytically in (24) and (25), the Green’s
functions may be obtained numerically by utilizing FDTD and a Fourier transform. Once the
Green's function is evaluated, its integral over each cell in the object is evaluated numerically
by assuming its variation within a cell to be linear. We use this technique of evaluating the
integral of the Green's function for the work presented in this paper.
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d. Image Generation by the Born Iterative Technique

In this section we develop a solution for the object profile based on the Bom iterative
technique. The Bomn iterative method requires successive solutions to the forward scattering
problem followed by the inverse scattering problem. The forward scattering problem is

solved using FDTD while a regularized solution is sought for the inverse problem.

The details of the Born Iterative procedure are explained in [17]. Briefly, the
technique consists of the following. The object profile is recovered from the measured or
simulated radar data by first using a Born approximation. This amounts to a linear solution to
the inverse problem and provides good quality images under weakly scattering conditions.
The first estimate of the object profile is fed into the FDTD code to update the total field in
the scatterer. These fields are substituted back into the inverse scattering problem and (20) is
once again inverted using regularization techniques. This iterative process of going back and
forth from the forward scattering problem to the inverse scattering problem is repeated until a
specified error limit is reached. The error limit is reached when the total field calculated by
the FDTD code with update object profile agrees to within a given tolerance level of the
measured (simulated) radar data. The solution procedure is depicted in Figure 13.

Generate simulate solve inverse
profile — | adardata |—®=1 Pproblem under
Born approx.

Y

fields
solve forward compare updated within By
problem with | g! fields with tolerance
updated profile measured fields ?

solve inverse
problem for
profile w/
updated ficlds

Figure 13. Born iterative scheme for subsurface imaging.
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e. Simulations of Subsurface Imaging

In this section we present several two-dimensional simulations of subsurface image
generation using constrained optimization and the Bom iterative technique. Since it is
impossible to perform simulations on all possible combinations of soil profiles and targets,
we focused on the various combinations of three soil models and four object confi gurations.
The three soil models are: (1) a homogeneous ground with dielectric constant of 5; (2) a
stratified ground where the dielectric constant increases in a linear fashion with depth; and (3)
a ground with a discernible water table at a depth of 6.6 m. Illustrations of these models are
shown in Figure 14 and their characteristics are tabulated in Table 1. The four object models
are: (A) a downward plume with a storage tank; (B) a sideways plume with a storage tank;
(C) a downward plume only; and (D) a sideways plume only. These canonical objects are
shown in Figure 15.

air .
air
stratified
homogeneous soil model
soil

I 2

air

homogeneous
soil

water table

3)

Figure 14.  Ground soil models: (1) homogeneous soil; (2) stratified layers; and (3)

homogeneous soil with a discernible water table.
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Soil Model Number

Characteristics

1 Homogeneous soil with a dielectric
constant of 5.

2 Stratified model with 166 layers.
Dielectric constant varies linearly from 4
at the top layer to 7 at the bottom layer.

3 A water table located at 6.6 meters.

Homogeneous soil above the water table
with a dielectric constant of 5.

Table 1. Soil model characteristics.
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The geometry of the simulations is depicted in Figure 16. The overall EDTD lattice is
240 cells by 240 cells with free space accounting for the top 40 cells. The object space is
limited to a 16-by 16-cell area located inside the FDTD lattice. Images are generated at 75
MHz. Each cell in the lattice is 10 cm and the overall object space is 2.4 x 2.4 meters.

Two different antenna configurations are considered. In the first set-up, both the
transmitters and receivers are located on the surface. An off-set VSP is used in the second

configuration with the transmitters located on the surface and the receivers located in a
vertical borehole. A total of five transmitters, modeled as electric line soures spaced four
wavelengths apart, are used in all simulations. Images are generated using the 75 MHz
component of the z-directed scattered electric field measured at nine receiver locations for

A

Object Space 16x16 cells

40 cells Transmitter spacing = 40 cells free space

' X X X X X
A J\ ¢
%
soil 100 cells ®
o
100 cells 2
L o= &

200 cells

o
%
9

Receiver spacing = 20 cells

240 cells

Figure 16. Offset vertical seismic profile GPR simulator geomety.
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each transmitter location.

The object space is characterized by 256 unknowns and there are a total of 45
measurements. A quantitative measure of the quality of the reconstructed image is obtained
through the root mean-squared error defined as

f f [e(r)-e, (r)dxdy

f j; [sr(r)]zdxdy

MSE =

(28)

where sr(r) is the true dielectric constant, er(’)(r) is the reconstructed dielectric constant after

thei® iteration, and S is the object space. The root mean-squared error for all the
simulations fell in the range of 6% to 11%.

Table 2 list the soil background, target, antenna configuration, and figure number for
all the simulations performed in this section. The simulations are grouped into sets to
illustrate direct comparisons between various techniques. The first three simulations
illustrate the differences when a GPR is operated in the monostatic mode (with no image
processing), the bistatic mode with both antennas on the surface and image processing
applied, and an offsct VSP configuration again with image processing applied. In these
simulations a leaking storage tank forming a downward plume buried in homogeneous soil.

In the second set of simulations, Simulation Numbers 4 and 5, the surface-to-surface
antenna configuration is compared to an offset VSP configuration for a leaking storage tank
forming a sideways plume buried in homogeneous soil. This set of simulations shows that
offset VSP offers slightly better resolution compared to when the antennas are placed only on
the surface. The third and fourth sets of simulations, Simulation Numbers 6-7 and 8-9, again
compare the surface-to-surface antenna configuration to the offset VSP configuration for

downward and sideways forming plumes.

The fifth set of simulations, Simulation Number 10-13, are each of the four canonical
models buried in inhomogeneous soil with the antennas placed in an offset VSP
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Simulation Figure Antenna
Number Set Soil Model | Target | Number Placement

1 1 A ¥ Surface(monostatic)

2 1 1 A 18 Surface(bistatic)

3 1 A 19 Offset VSP

4 1 B 20 Surface(bistatic)

o] 2 1 B 21 Offset VSP

6 1 c 22 Surface(bistatic)

74 3 I C 23 Offset VSP

8 1 D 24 Surface(bistatic)

9 4 1 D 25 Offset VSP

10 2 A 26 Offset VSP

11 2 B 29 Offset VSP

12 3 2 & 28 Offset VSP

13 2 D 29 Offset VSP

14 3 A 30 Offset VSP

15 3 B 31 Offset VSP

16 6 3 C 32 Offset VSP

17 3 D 33 Offset VSP

Soil Mode] Target Model

1 - Homogenous A - downward plume with tank
2 - Stratified B - sideways plume with tank
3 - Water Table C - downward plume only

D - sideways plume only
Table 2. Simulation Test bed.

configuration. This set of four images illustrates that the imaging technique works well even
if the background soil is heterogeneous. Provided that the proper background Green’s

function is selected, the images generated by this technique do not degrade in quality.

The sixth sct of simulations, Simulation Number 14-17, again correspond to each of
the four canonical models. This time, however, they are buried in homogeneous soil located
above a walter lable. Images were generated with the antennas placed in an offset VSP
configuration. This sct of simulations again shows that images can be generated even in the
presence of a water table.
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Figure 17, Simulation 1.
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D. TARGET CLASSIFICATION

We have shown in the previous sections how a buried object’s shape and dielectric
properties can be recovered by solving an inverse electromagnetic problem. Often, the shape
of the reconstructed image is a distorted version of the target’s actual configuration. There
are a number of reasons for such distortions: the effect of noise on measured data, deviation
from the assumed background Green’s function, the number of independent measurements,
and the wavelength of the incident radar signal, to name a few. For images that contain
multiple targets of similar size and shape, these distortion effects could easily confuse a
person’s ability to determine what is in the image. To overcome this problem, we
investigated the use of an automated classifier to identify, or classify, objects located in the
subsurface images. In the following sections we outline the work we performed on object
classification using artificial neural networks and compare its performance to a traditional
Bayes classifier.

Artificial network networks (ANN) have been used extensively in the remote sensing
community over the last several years for pattern and object classification as well as radar
data inversion [23-25]. A neural network consists of massively parallel interconnected
neurons with a non-linear activation function. ANNSs can be trained to form complex
decisions regarding the classification of objects from distorted or noisy data [25]. These
networks do not require a-priori information about the distribution of the input data. In this
investigation, we found that a properly trained ANN can provide high classification success

rates, even in the presence of much noise.

A number of steps are required before an ANN can be used to classify subsurface
objects. First, the network must be trained using a number of examples or training patterns
from each class that comprise a data base. Each object or pattern is referred to as a member
of a class. Training of an ANN is performed with the feature vectors for which the desired
outputs of the network are already known. Each feature vector consists of the samples of the
spectrum obtained from the image of a subsurface target. The weights of all the connections
inside the network are initialized to random values and are iteratively corrected according to
the error between the computed output and the desired output at each step. The back
propagation algorithm [23] is commonly used in adjusting the weights. In this technique, the
error at the output is propagated backward toward the input layer to adjust the weights.
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The training data for classification problems consist of either the measured data or
some derived information about the target. In remote sensing the measured data are usually
the total electromagnetic field measured at discrete points around the target over a particular
frequency band, while the derived data could consist of a reconstructed image of the object or
its spectral information. For example, one test pattern might be a thin contamination film
located on top of the water table, while a second test pattern might be a chemical plume
dispersing downward. The network should be trained for all possible contamination profiles
that might be encountered. Once training is finished and actual data are presented to the
neural network, the network produces an output vector. The unknown pattern is then
classified by finding the best fit between the unknown pattern’s output vector and the output
vectors of the test patterns in the data base. A key to a robust classifier is to have as large a
data base as possible.

The conventional Bayes classifier has been used successfully over the past few
decades in pattern classification problems [26]. In this scheme, the classifier is first trained
with a set of feature vectors representing several examples from different classes. During the
training process, a test-vector is applied at the input of the classifier, and the classifier
computes a weighted distance between the test-vector and the mean value of the training
vectors from all classes. The Bayes classifier then identifies the test-vector as a member from
the class for which the weighted distance attains a minimum value. The major drawback of
this scheme is that it requires a-priori knowledge about the distribution of the input data. In
most practical cases, it is difficult to acquire an exact knowledge about the probability
distribution function of the input data, especially when a limited amount of data is available
from each class.

In this section the basic steps of image classification are discussed. We introduce two
types of neural networks, a feed-forward neural network and a probabilistic neural network,
and compare their performance in subsurface target classification with a traditional Bayes

classifier.
a. Major Steps for Target Classification

In this investigation, two different types of subsurface targets from the pervious
section are considered for classification purposes. For Target A, Simulation 2, 3, and 10 (as

shown in Table 2) are used and for Target B, Simulation 4, 5 and 11 are used. These six
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images or patterns are used to train a classifier so that the classifier can recognize noisy
versions of the patterns corresponding to Target A or Target B with a very high success rate.
The entire pattern recognition or classification process can be divided into three major
steps[26]:

1. Feature extraction from different classes of subsurface images.
2. Training a classifier using the feature vectors.

3. Testing the performance of the classifier using the feature vectors that are
not used during the training process.

These three steps are discussed in detail in the following sections.

b. Feature Extraction

In the examples shown in previous section, reconstructed images of each subsurface
object consisted of 16x16 pixels. The mean intensity value of each image is subtracted from
the individual pixel-intensity values, and a new 16x16 pixel-intensity distribution is obtained
for that image. Since the two-dimensional spectrum of an image is useful in many image
classification problems, a feature vector is constructed using the samples of the spectrum of a

subsurface image. The feature vectors of different classes are used to train a classifier.

A spectrum is estimated by computing the magnitude of the two-dimensional discrete
Fourier transform (2D DFT) of the pixel-intensity distribution of each image. Out of the 256
(16x16) elements of the two-dimensional spectrum, only 119 samples are selected to
construct a feature vector (see Figure 34). Using this procedure three different feature vectors
are extracted for each type of subsurface target, corresponding to three different backgrounds.
These feature vectors are then used to train a classifier. In the next section we describe a
neural network classifier that is successfully used to classify subsurface targets in a noisy
environment.
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Figure 34. Construction of a feature vector using 119 samples of the 2D spectrum.

¢. A Neural Network Classifier

In recent years feed-forward artificial neural networks (FANNSs) [23] have been used
successfully in system classification problems [24, 25]. Often, a FANN is found to provide

higher successful classification rates than that achievable by a conventional statistical

classifier. This superior performance of a FANN has been attributed to the fact that the
FANN learns from the data itself, as is believed to be done by a human being. A FANN is

also found capable of forming complex non-linear decision boundaries in the feature space,

enabling correct classification of the unknown patterns even in a noisy environment. In this
investigation, a FANN is trained to classify two different classes of targets from their feature

vectors.

A FANN can be trained to learn about the decision boundaries in the feature space.

For a FANN, learning involves iterative adjustments of the synaptic weights so that the

network can map the input pattern to the desired output pattern. In this investigation, a
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FANN is trained using a back-propagation learning algorithm [23]. The architecture of the
FANN that is used in this investigation is shown in Figure 35a .

Output signals

Output layer (2 nodes)

Input layer
(119 nodes)

Input signals

Figure 35a. Architecture of a feed-forward artificial neural network.
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The FANN consists of layers of interconnecting nodes, where each node or neuron in
a given layer sums up all the signal values applied at the input of the neuron and produces an
output value governed by a nonlinear sigmoid function (see Figure 35 b). This output is fed
to the nodes in the upper layer, after being multiplied by the synaptic wei ghts wij. The total
input to a given node i is given by [23]

net; = ¥ w;0; + by, (29)
i
where wij is the weight connected between the node i of one layer and node J of the adjacent

lower layer; bj is a bias weight at unit i, and Oj represents the output from node j of the lower

layer. The output from node i is obtained as [23, 24]

1.0

" Te e v

O;

Figure 35 b. Input and output configuration of a neuron.



In the feed-forward architecture, the output from the nodes of the input layer is fed to
nodes in the hidden layer, and the output from the hidden layer are fed to nodes in the output
layer. Thus, the outputs from the nodes in output layer can be computed for all input patterns
using (29) and (30), repeatedly. This FANN can then be trained with examples from different
classes to classify unknown patterns.

d. Training a FANN

In this investigation, a FANN is trained using a back-propagation learning
algorithm[23]. The training set consists of three examples each for Targets A and B. We
assumed that the feature vectors corresponding to Target A belong to class 1 and those

corresponding to Target B belong to class 2. The step-by-step procedure of training the
network is summarized below:

1) Select a feature vector that is a member of the ith class and apply it at the input
of the network. Set the target or desired output value from the ith node of the
output layer to “1” and that from all the nodes in the output layer to “0.”
Compute the output values from the nodes in the output layer in the feed-
forward manner [23] and calculate the error term associated with the ith node in
the output layer as:

d; = O;(1- O X tp; - Oy), 31)

where tpj represents the target output value for node “i” in the output layer.

Calculate the error term associated with the nodes not in the output layer as

8 = 0;(1-0;) Y dywy; . (32)
k

2) Adjust the synaptic weights as

Awij(n) = T]E)]OJ + OtAWij(n — 1) 5 (33)

where the indexes represent the iteration number. The constants 1 and o

represent the learning rate and the momentum term, respectively.
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3) Repeat steps 1) and 2) using a member from all classes.

4) Repeat steps 1) to 3) using all feature vectors from all classes.

5) Repeat steps 1) to 4) cyclically until the network converges. The condition for
convergence is that the actual output values should be within 0.1 of the desired

values for all feature vectors used during the training process.

e. Test Results

The testing process is summarized in the block diagram shown in Figure 36. Initially,

a “crisp” logic-based decision-making algorithm is used to classify the input test patterns.

According to this scheme, a noisy feature vector from the ith class is applied at the input of

the network, and the output from the output nodes of the network are computed in feed-

forward manner [23]. A successful classification occurs if the output from the ith node of the

output layer belongs to the state “high” (or > 0.9) and all other outputs from the output layer

belong to the state “low” (or <0.1). A misclassification occurs only if the kth node from the
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Figure 36. Block diagram of the ANN-based classification scheme.
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output layer reaches the state “high” when the input feature vector belongs to the class “i.”
All other output configurations result in an unsuccessful classification. Using the set of
optimal weights that are obtained after training the FANN and the previously mentioned crisp
classification scheme, the performance of the network is tested as a function of the SNR of
the subsurface image. During testing, 50 different noisy images are generated for each SNR
by adding white Gaussian noise sequences to each unperturbed image. Thus, 50 different
noisy feature vectors are made available for each unperturbed image at SNRs from 40 dB to 0
dB, in steps of 0 dB. The result of the testing process is shown in the Figure 37.

We also trained and tested a Bayes classifier with the same feature vectors used by the
FANN, and the result is presented in Figure 37. It can be seen that the FANN provided a
higher success rate than the Bayes classifier for SNRs less than or equal to 10 dB. The
apparent success of the FANN is often attributed to the fact that a neural network learns from
the data itself and, thus, does not require a priori knowledge of the probability density
function of the input data. The Bayes classifier, however, assumes a Gaussian distribution of
the input data.

In order to improve the success rate achieved by the FANN, a decision about the input
pattern class is made using a minimum distance criteria. According to this scheme the target
output vectors from the two classes are considered as t1=( 0,1) and t2=(1,0), respectively.
During the testing process, the actual outputs from the nodes in the output layer are used to
construct an output vector O=(01,02). The input feature vector is classified as a member of
class 1 if the Euclidean distance between the vectors O and tq is smaller than that between O
and t2. Otherwise, the input pattern will be classified as a member of class 2. The success
rate obtained by this method is also plotted in Figure 37. It can be seen that the minimum
distance classification scheme provided nearly a 100% success rate over the 40- to 0-dB
range. This is a significant improvement over the performances achieved by the Bayes or
FANN with a crisp logic-based classification scheme. These results clearly indicate that the

neural network has the potential for finding applications as a subsurface target classifier.

Even though a FANN provides an impressive success rate in classifying subsurface
largets, it often takes considerable amount of CPU time during the training process.
Sometimes a FANN gets stuck in a local minimum and the network fails to converge to an
acceptable solution. To overcome this problem, a Probabilistic Neural Network (PNN) has

been proposed|27]. The PNN basically uses half of a complete iteration to learn about the
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Figure 37. Success rate (%) vs. SNR for the Bayes classifier and FANN.

decision boundaries in the feature space. In the next section a PNN is introduced and its
performance is compared with that of the FANN.
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f. A Probabilistic Neural Network Classifier

In recent years a Probabilistic Neural Network (PNN) has been found to be useful in
solving real-world pattern recognition problems. A PNN is designed to function on the basis
of the estimation of the probability density functions (PDFs) for various classes as learned
from the training samples [27]. It has been shown that the PNN learns about the PDFs of
different classes from the sampled data almost instantaneously and uses the PDFs to compute
non-linear decision boundaries between its classes.

The architecture of a PNN consists of neurons distributed over the three layers as
shown in Figure 38. The input layer consists of N neurons where N is the fixed dimension of
the feature vectors used for training or testing the network. The nodes in the input layer are
often used to normalize the input feature vector X such that [|XIl=1. The normalized vector X
consists of elements xX where k varies from 1 to N. The output vector from the input layer is
fed to all the nodes in the hidden layer after being multiplied by the synaptic weight vectors

&6 9%

Wij. The index “i” represents the class number, and the index “j” represents the example

number of that class. The elements (Wij k) of a weight vector Wij actually represent the

elements of a feature vector from the class “i” of the jth example, which is available during
the training process. Thus, during training, if “q” examples are available from each of the “p”
classes, the total number of nodes to be used in the hidden layer is r=pxq. From Figure 38, the
total input to a node in the hidden layer is given by

N

X.Wij= xK wij k. (34)
i1

The input-output relationship of each node in the hidden layer is governed by [29]
= 2]
OS = exp(X.Wu = ].)n, o (35)

where s=1,2.....r, and o is the smoothing factor that is chosen by the user. Since both X and

Wij are normalized, it is expected that when a test vector from class i is applied at the input
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Figure 38. Architecture of a PNN,

of the PNN, the outputs from the hidden nodes that belong to the class i will have values close
to unity. The outputs from the other nodes in the hidden layer will depend on the angle

between the test vector X and the training vector Wij in the multi-dimensional feature space.
The outputs from all the nodes in the hidden layer that belong to the class i are fed to the ith
node of the output layer. Thus, the total number of nodes in the output layer is set to be equal
to the total number of classes available (i.c., =p). Each node in the output layer sums up all

the signals coming from the hidden layer and produces one output value. The test vector is

60



then classified as a member from the class i if the ith node of the output layer provides the
maximum output value.

In this investigation, three different feature vectors from each of the two classes are
used to form the weight vectors W 11° W12, Wl3’ W2 1 W22, W23. The first subscript of W
identifies the class and the second subscript identifies the example number of that class. Each
weight vector has 119 elements, which is equal to the dimension of the feature vector. These
weights are connected between the input layer and the hidden layer as shown in Fi gure 38.
The input layer of the PNN consists of 119 nodes and the hidden layer consists of 2 (classes)
X 3 (examples) =6 nodes. The output layer consists of two nodes as shown in Fi gure 38. The
PNN is then tested with the same data set used for testing the performance of a FANN, and
the success rate is presented in Figure 39.

g. Comparison of the Performance between the FANN and the PNN

It can be seen from Figure 39 that for an SNR greater than 10 dB, the PNN provided a
100% success rate. For SNR less than 10 dB, the success rate achieved by the PNN depends
on the value of the smoothing parameter o. It can be seen from Figure 39 that for 6=0.4, the
success rate came very close to that achieved by a FANN. We believe that it is possible to
find a value of o for which a PNN will provide a success rate greater than or equal to that
achieved by a FANN. Since the success rate achieved by a PNN depends on the choice of the
smoothing factor o, one might consider this fact as a drawback for the PNN-based
classification scheme. However, it has been shown that a good value of & can be found fairly
quickly for most practical problems [27]. It has also been shown that the classification rate
does not change dramatically with small changes in the value of . Two other limitations that
are inherent in this approach are that (1) the entire training set needs to be stored for its use
during the testing process, and (2) the amount of computation necessary to classify a test
pattern increases with the size of the training set. However, due to the availability of cheap
memory elements and fast CPUs, the PNN-based classification scheme may not impose any

serious limitations.

In some areas, a PNN is found to provide major advantages over the FANN. A PNN
learns from the data in real-time since it does not require supervised learning. Furthermore, a
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PNN does not suffer from the local minima problem which, is a major problem for FANN
when trained with the back-propagation leaming algorithm.

T e e S s e

-
L e — — =

) o cieralt LY RO ey, L o SR kil

N WSl ey SN TR

; : : ~ ==> nf:inimum (fiistance I;:ANN
Tl datcis A R LY whoo Sl

;... ==> PNN with sigma =:0.5

average success rate (%)

g1 IR ey SR R ., D b e

50 SR Iy WGt or - Tyl O IR QYR
0 5 10 15 20 25 30 35 40

Signal-to-noise ratio (dB)

Figure 39. Success rate (%) vs. SNR for the PNN and FANN.



IV. IMPLEMENTATION

As discussed in Section II, Background Information, there are at least three ways to
implement a ground-penetrating radar: impulse radar, FM-CW, or stepped FM. We propose
that a stepped FM approach would be the best selection and outline our rationale in this
section.

In addition to receiving a scattered field from a buried object, a radar receives other
signals as well. These various signals fall into one of three categories: systemic signals,
noise, and clutter. Systemic signals include the fields reflected from the air-to-soil interface
and a possibly a signal directly coupled between the antennas. These undesired si gnals can be
removed through various signal processing techniques using any of the three GPR types.
Noise, another undesired signal, enters the radar through noise present in the soil, nearby
electromagnetic sources (TV and radar signals for example), and noise generated in the radar
itself. Techniques exist to reduce noise depending on the type of GPR used. The last type of
undesired signal is clutter. Clutter is loosely defined as any signal received by the radar that
is not the desired target signal or noise. Clutter will be generated by any inhomogeneities in
the ground. For example, any rocks buried in the ground near the desired target will generate
a scattered field and contribute to clutter.

The effects of noise, quantified in terms of signal-to-noise ratio (SNR), can be reduced
depending on the type of radar and signal processing used. An impulse radar overcomes
noise by transmitting high power signals. For the two types of variable frequency radars,
FW-CW and stepped FM, coherent integration can be used to improve the SNR. In coherent
integration, a number of individual returns are added in phase. The net effect of this process
is that signal power adds, whereas the noise power, being random, remains the same. The
stepped FM radar using a phase-locked frequency synthesizer offers better performance
compared to an FM-CW radar.

Clutter is a much more difficult problem for GPR than is noise. In fact, clutter
ultimately limits the performance of most GPRs. As mentioned above, clutter is signals
received from undesired targets. Since the desired targets and clutter targets are non-moving,
coherent integration will not improve the signal-to-clutter ratio (SCR). Certain types of
advanced signal processing can improve the SCR depending on the type of clutter. We did

not thoroughly investigate techniques to improve the SCR in this investigation.
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The imaging algorithms presented in this report use monochromic, or time-harmonic,
fields. In other words, the images are generated using a single frequency. For this reason the
SNR performance of the stepped FM radar will outperform the impulse radar. The amount of
noise entering the impulse radar is proportional to the radar’s bandwidth: the larger the
bandwidth the more noise enters the system. On the other hand, the bandwidth of the stepped
FM radar can be made much narrower. The combination of coherent integration and a

narrower frequency band of operation provides better SNR performance in the stepped FM
GPR.

A key factor in using the imaging algorithms presented here is the selection of the
frequency of operation. Unfortunately, there is no optimum frequency using GPR systems.
The choice of frequency depends on several factors including the background soil, the desired
resolution of the system, and depth of the suspected targets. The attenuation of
electromagnetic waves at a given frequency will be higher for clay soils than that for sand or
silt soils. In general the amount of attenuation increases with higher frequencies. Therefore,
a GPR must use lower frequencies at spill sites with clay soils. In addition, the deeper a
target is buried the lower the frequency must be to overcome attenuation.

A stepped FM GPR with a large system bandwidth but a small instantaneous
bandwidth could easily be built. The desired operating frequency band could be selected and
optimized based upon the soil type present at the site. This is another reason for selecting the
stepped FM radar over the impulse GPR.



V.  RECOMMENDATIONS

If developed to their full potential, the theories and techniques presented in this report
could generate accurate subsurface images of suspected spill sites. These underground maps
would be an invaluable tool in determining the extent of a suspected spill site. Additional
work is required, however, before the imaging algorithms could be used in the field. In this
section we outline a possible course for future work in this area.

Before any field experiment is performed, a number of laboratory experiments should
be undertaken. Unlike field experiments, laboratory experiments provide a means to control
carefully the experiment. The soil, contaminates, and hardware can be carefully monitored.
We recommend that a scale model be developed for the ground-penetrating radar, soil, and
contaminates.

A scale model for studying ground-penetrating radars has recently been reported [30].
The model is one-third full size and is used with an impulse GPR having significant
frequency content within the range of 150 MHz to 1.5 GHz. The unique feature of this set-up
is an oil-in-water emulsion used to represent various soil types. The constituents of the
cmulsion are oil, saline solution, and an emulsifier. By properly selecting these ingredients,

the emulsion can be made to simulate the electrical properties of any soil.

A similar approach could be developed to test the imaging algorithms presented in this
report. A large tank could be constructed to hold the emulsion and radar hardware. Any
number of contaminates, pipes, or storage tanks could be placed in the emulsion. In addition,
clutter could be added to test the performance of the algorithms as a function of signal-to-
clutter ratio.

An advantage of performing such a laboratory experiment first is that the GPR would
not have to be built. Instead, a vector network analyzer could be used as the GPR. While the
laboratory experiment is under way the imaging algorithms should be extended to handle
three-dimensional data. No new theories need to be developed for this, instead some
additional programming is all that is required.

As an additional feature in helping predict GPR returns over contaminate plumes, a

small study could be undertaken to incorporate the VALOR code [31] and our GPR
simulator. VALOR is a PC code for simulating two-dimensional immiscible contaminate
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transport in subsurface systems. This code was recently developed by researchers at The
University of Michigan and was sponsored by the Electric Power Research Institute. VALOR
uses a two-dimensional finite-element technique to predict the flow of organic liquids in
heterogeneous soils with horizontally aligned stratum. Our GPR simulator and imaging
algorithms also work on horizontally stratified heterogeneous soils. The output of VALOR
would be used to generate an electrical parameter (permittivity, permeability, and
conductivity) map of the soil and contaminant flow. The merging of these two codes would
be a powerful tool useful in predicting GPR returns from spill sites.
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