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ABSTRACT - Ground-penetrating radar (GPR) is a
mature remote sensing technique used to obtain spatial
location and reflectivity information on subsurface features
from data collected over the surface. Various imaging or
migration techniques have been used to refocus the scattered
signals from the x-f domain or image space back to their true
spatial location in the object space. The goal of this
presentation is to outline a class of generalized GPR
migration algorithms that are firmly based on the
clectromagnetic theory and radar principles. The
development of these algorithms is based on a matched-filter
response. By presenting migration in terms of a matched
filter and electromagnetic theory, further understanding of the
physical processes involved within GPR collection and
imaging are gained. In particular, we present the necessary
assumptions required for the development and application of
a class of two- and three-dimensional vector migration
algorithms for bistatic and monostatic radar configurations,
Finally, a bistatic three-dimensional polarimetric simulation
is presented using the finite-difference time-domain.

INTRODUCTION

Since most GPRs use broad beamwidth antennas, the
energy reflected from a buried structure is recorded over a
large lateral aperture. As a result, the only information that
can be directly interpreted from a single time response is
range. Wave migration is a common application that is used
to refocus these time responses, which were recorded along
an aperture on the surface, to their true spatial location. This
transformation into the x-z domain redistributes the energy in
such a manner that these scattering events are migrated to
their location within the ground.

Many of the migration algorithms used for GPR originated
within the geophysical community and were developed with
seismic applications in mind. Even though the wave
excitation, scattering, and measurement associated with these
two practices are quite different, these techniques are readily
used because they often accomplish the initial goal of
producing an image. However, there still exists certain
assumptions and approximations that allows their use to be
extended to GPR. In the following section, a matched-filter
migration algorithm is developed for GPR applications.

The development of this algorithm is based on a matched
filter. The idea of a matched filter can be explained as the
correlation of the received signal with an expected or
estimated signal from a specific target. If this correlation
produces a large value, then it is likely that the target is
present. The implementation of the matched filter involves
an estimation of this expected signal and an interpretation of
the convolution. When linear scattering theory is used to
determine the expected signal and additional assumptions are
made, the resulting convolution takes on the form of a
forward scattering problem.

DEVELOPMENT

The implementation of a matched filter includes estimating
the expected response, H(w), and convolving this response
with the recorded data. In the development of the presented
algorithm, this expected response is determined from the
scattered field from a point target within the ground.
Referring to Fig. 1, r” is the location of the transmit antenna,
r’ is the location of the point scatterer, and r is the location of
the receive antenna. Using vector notation and assuming
point-like apertures, the scattered field can be written as [1]

H{" v’ r, (o)=u,ar (r,x, w)z)-(r'ﬁi(r',r', o, 6
where u, and u, are the polarizations of the transmit and

receive antennas, respectively, G is the electric-field dyadic
Green’s function [2], and O is the object scattering matrix.

Fig. 1. Basic ground-penetrating radar configuration with
transmit antenna, r”, receive antenna, r, and scatterer, r’.
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The dyadic Green’s function expresses the electric field
due to an impulsive current source, while the object scattering
matrix relates the induced current within the object to an
incident electric field. In most cases only the diagonal
components of the object scattering matrix are considered,
but for polarimetric applications, the off-diagonal
components must also be included.

Bistatic Configuration

When the recorded signals, R(r,w), of a bistatic survey are
applied to the filter shown in (1), the migrated image, S(r"), is
expressed as a convolution of two fields evaluated at time
zero. This is equivalent to multiplication and integration in
the frequency domain,

S@;)=[Ey, ', 0)-E, (¢, 0o @
where
M __
E,, 0, 0)= 3,6 r,., 0) [k €, )b, 3)
m=1

is referred to as the back-propagated electric field and
E; (t',0)=G{".r", @) T, @

is the incident electric field. Here, T(®w) is the transmit
waveform. The back-propagated field is interpreted as a
means of propagating the scattered fields back to the original
object locations within the ground. This field is calculated by
reversing the recorded data in time and reintroducing these
time-reversed signals as current sources at their respective
receiver locations. Since superposition of current sources
applies to electromagnetic waves, the back-propagated field
usually accounts for the recorded data from a complete
receiver array, shown by the summation over m in (3).

Monostatic Configuration

When the recorded signals of a monostatic survey are
applied to the filter shown in (1), the migrated image is
expressed by the back-propagated field only.

E,, ()= ia(zr’,zrm, ®)- [R* @, co)]x,dco )

m=l1

This is a direct result of the “exploding reflector model” [3],
which provides an alternative explanation of the scattering
processes involved within a monostatic configuration. More
specifically, this equivalent model is represented by removing
the transmit antenna, replacing the scattering objects by
simultaneously stimulated sources, and increasing all the
dimensions by a factor of two. The model accounts for the
two-way travel time of the original configuration by a one-
way travel time across twice the distance.

Polarization

As stated ecarlier, the object scattering matrix can be
modified to test for depolarization characteristics of the
object. For an object with no depolarization characteristics,
the object scattering matrix would be the identity matrix,
while the off-diagonal components would account for various
types of depolarization. For example, an object that
depolarizes an x-directed electric field into y-directed
induced currents would contain an object scattering matrix of
the form

0= (6)

S = O
o o o
o o o

The implication of the object scattering matrix on the
migration algorithm is seen in the convolution operation. The
matrix defines which component of the incident and back-
propagated vector fields are to be convolved. For the matrix
shown in (6), the x-component of the incident field would be
convolved with the y-component of the back-propagated
field.

VARIATIONS OF THE MIGRATION ALGORITHM

Different variations of this migration algorithm are a resuit
of the specific method used to propagate the incident and
back-propagated fields. In general, any forward scattering
technique can be used to evaluate these fields, but some
techniques will offer specific advantages in certain
applications. For example, if a large area is to be imaged, a
simple scalar forward scattering technique may be necessary
due to time and memory constraints, while if a small area in
the near field of the transmit or receive antenna is to be
investigated, a more complicated vector solution of the wave
equation may produce more accurate results.

SIMULATION

A three-dimensional simulation was conducted using the
finite-difference time-domain (FDTD) method as the means
of wave propagation. The FDTD method provides a solution
of the vector wave equation allowing the inclusion of
polarimetric measurement. Additionally, the FDTD method
allows any a priori knowledge such as elevation changes or
inhomogeneities to be included into the simulation.

As shown in Fig. 2, the FDTD space consists of a
homogeneous ground, with a relative permittivity of four, and
two 0.75-m perpendicular conducting rods, which are
modeled by forcing the tangential electric field to zero. The
first rod is at a depth of 0.3 m and oriented in the y-direction,
while the second rod is at a depth of 0.45 m and oriented in
the x-direction. Four sets of measurements were conducted
including x-x, x-y, y-X, and y-y polarizations of the receive
and transmit antennas, respectively.
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Fig. 2. Top view of the FDTD configuration.

The transmit antenna was located at x equal to 0.55 m and y
equal to 0.55 m, while a two-dimensional receiving array was
spaced every 3 cm on the surface. For every receive-transmit
polarization, an appropriate model was chosen for the
scattering matrix as shown in (7)-(10).

X-X receive-transmit polarization:
1 00
0=(0 0 0|=0,, 0]
000

X-y receive-transmit polarization:
O=o0,, ®

y-X receive-transmit polarization:
O=o0, &)

y-y receive-transmit polarization:

0=o0,, (10)

RESULTS AND CONCLUSIONS

The resulting images are shown in Fig. 3 for the y-directed
rod and Fig. 4 for the x-directed rod. In each figure there are
four images for each receive-transmit polarization
combination. Several things can be seen in these images.
First, as expected, the x-directed rod has a strong tendency to
induce currents in the x-direction, while the y-directed rod
has a strong tendency to induce currents in the y-direction.
Another interesting result is seen in the y-y image for the
second rod (lower-right image in Fig. 4). Although the
directed rod exists at this depth, use of the y-y polarization
brought out a sidelobe of the higher y-directed rod. We have
discussed a class of GPR migration algorithms, developed on
a matched-filter response basis, in order to understand GPR
physical processes better. We have shown necessary
assumptions for various radar configurations and presented a
bistatic, 3-D polarimetric simulation using FDTD.
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Fig. 3. Images for the y-directed rod at a depth of 0.3 meters.
X-X (top left), x-y (top right), y-x (bottom left), and y-y
(bottom right).
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Fig. 4. Images for the x-directed rod at a depth of 0.45
meters. x-x (top left), x-y (top right), y-x (bottom left), and
y-y (bottom right).
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