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Abstract— This paper advocates using the recently introduced
Index of Variability (IDV) and a new measure, Peak Rate Variabil-
ity (PRV), to characterize the variability (burstiness) in real com-
munications network traffic over the entire range of time scales.
Further, we suggest the general hyperexponential interarrival dis-
tribution as a model suitable for network traffic and evaluate the
ability of the third-order hyperexponential model to capture IDV,
PRV, and queuing characteristics. Although the hyperexponential
interarrival distribution holds promise for network traffic mod-
eling, in part due to its analytical tractability, we conclude that
hyperexponential models with order larger than 3 will be required
to adequately model the burstiness of real network traffic.

I. I NTRODUCTION

Since the publication of [1], there has been intense interest in
the self-similarity (fractal nature) and long-range-dependence
(LRD) of communications network traffic. One mathematical
definition is that a stationary process��� is self-similar with
Hurst parameter� if it satisfies the following scale-invariant
behavior in the sense of finite-dimensional distributions [2]

�����
	����������� (1)

where � ����� is the aggregated process derived from� � by
averaging the� � values in non-overlapping blocks of� in-
stants, replacing each block by its sample mean. The constant
� ( ��������� ) is a measure of the degree of self-similarity of
the process. If��� � ������� , then the process is said to exhibit
LRD; if �!�"�#�$�%�&� , it exhibits short-range dependence. For
� =0.5, the process consists of uncorrelated samples.

One focus of past research has been on methods for accu-
rately estimating the value of� from a given traffic trace.
For example, if a process is asymptotically second-order self-
similar, we will have

')(*,+&-/.10"243 �5� ( �6	7�89�;:=<4�?>A@ (2)

and the plot of logB ' (* +&-C.ED versus logBF� D , known as the ag-
gregated variance-time plot, becomes a straight line as�?>A@ .
Hence one simple way to estimate� is by constructing the ag-
gregated variance-time plot, checking if the plot becomes “ap-
proximately” a straight line as�G>H@ , and if so, estimating
the slope of the line.

In section II, we discuss two relatively new characterizations
of network traffic variability, both of which are functions of
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time scale: Index of Variability (IDV), which is a generaliza-
tion of the Hurst parameter, and Peak Rate Variability (PRV).
In section III, we demonstrate that the hyperexponential inter-
arrival distribution can yield a variety of IDV functions. In sec-
tion IV, we construct aI=J7K order hyperexponential model from
traffic trace data and evaluate the similarity between the trace
and the model in terms of IDV, PRV, and queuing delay. We
present our conclusions in section V.

II. T RAFFIC VARIABILITY AS A FUNCTION OF TIME SCALE

A. Index of Variability

Asymptotically second-order self-similar processes are ap-
propriately characterized by the scalar parameter� and are
sometimes known as mono-fractal processes. However, for
many network traffic processes, the variance-time plot may not
tend to a straight line. These are referred to as multi-fractal
processes [3]. Hence, another metric is needed, and [4] has
suggested a generalization of the Hurst parameter, known as
the Index of Variability (IDV), that captures the degree of self-
similarity over all time scales.

IDV is related to the Index of Dispersion for Counts that has
been frequently used for describing the variability of network
traffic over different time scales. IDV is a function of time scale
(or aggregation level)L . IDV may be defined as

IDV BFL D �"�%�&� d logB ' (*,+&M7. D
d logBFL D N � (3)

From (2) and (3), we can see that when a random process
is asymptotically second-order self-similar, the IDV becomes a
constant across all large time scales at a value that is equal to
the Hurst parameter� of the process.

We now introduce a practical method for estimating IDV
from a given traffic trace. For illustration, we use traces con-
sisting of counts of Asynchronous Transfer Mode (ATM) cells
(fixed-length packets) in 5 ms intervals for a period of 24 hours.
Although the higher-level protocols and applications being car-
ried by these cell streams is not known exactly, it is likely that
these traces represent either IP over ATM or IP over Frame Re-
lay over ATM.

Assuming that a given trace is a representative sample func-
tion from a stationary, ergodic random process, we can estimate
the IDV of the process as follows. For each time scaleL , we
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consider the cell counts in the non-overlappingL -second inter-
vals to be sample values of a random variable and then estimate
the variance of the random variable. A plot of the log of these
variances vs. OQPSR8BTL D corresponds to the aggregated variance-
time plot previously discussed. Values ofL should be chosen
to be linearly spaced on a log scale, ranging from the smallest
possible value (5 ms in our case) to the largest value that allows
accurate variance estimation.

The solid line of Fig. 1 shows the resulting variance-time plot
for a particular sample trace. The largest time scale considered
is 1000 s so that variance estimates are based on no fewer than
86 sample values. Note that the curve does not tend to a straight
line as L increases. Note also that the significant amount of
“noise” in the curve would make direct estimation of the deriva-
tive exceptionally noisy. For this reason, it is appropriate to fit
a polyomial curve (U%VTW order in our case) to the variance-time
plot, as shown by the dashed line in Fig. 1. This also allows
direct computation of the derivative, and hence the IDV.
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Fig. 1. Variance-Time Plot and Polynomial Fit

The resulting IDV for the trace is shown in Fig. 2, along
with an IDV calculated for a trace of a Poisson arrival process
( � =0.5), and another trace for fractional Gaussian noise (fGn),
known to have a theoretical Hurst parameter of� =0.90. We
can see that the IDV of the latter two traces tends to their respec-
tive � values (although the fGn IDV tends to fall off somewhat,
perhaps due to approximate methods used for trace synthesis
[5]), but the IDV of the ATM traffic trace is not constant over
any significant range.

B. Peak Rate Variability

As discussed in [1], the scalar quantitypeak-to-mean ratio
is not a particularly good characterization of traffic burstiness
because the value obtained depends critically on the time scale
used for the calculation of the peak rate. Rather than dismissing
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Fig. 2. Index of Variability Comparison

peak-to-mean ratio as a means of characterizing traffic variabil-
ity, however, we propose here that it should be generalized to
Peak Rate Variability (PRV), which is the peak rate of a process
as a function of time scale (or aggregation level).

For each aggregation levelL , we calculate the average traffic
rate in each non-overlappingL -second interval, then choose the
maximum of these values to be the peak rate at time scaleL .
Plotting these as a function ofL yields the PRV curve.

PRV values can be expressed in units of bits or bytes per sec-
ond if packet lengths are considered, otherwise in units of pack-
ets per second. For the constant-length ATM cells of our trace
data, the two are related by a constant, so we choose b/s units.
Fig. 3 shows PRV curves for the ATM traffic trace (solid line), a
trace derived from a Poisson arrival process (dash-dot line), and
a trace derived from a hyperexponential model (dashed line, to
be discussed in section IV), each with the same mean rate. In
all cases, we have assumed that each packet is an ATM cell.

Note that the Poisson PRV decreases smoothly toward its
mean, as might be expected. However, the PRV for the ATM
trace data reveals some very interesting burstiness characteris-
tics. The peak rate of the ATM trace remains almost constant at
nearly 10 Mb/s from a time scale of less than 100 ms (0.1 s) to
more than 10 s, then drops rapidly for larger time scales. Even
at a time scale of 1 hour (3600 s), the peak rate (largest of the 24
1-hour average rates) of approximately 4 Mb/s is significantly
above the mean rate of 2.2 Mb/s (5183 cells/s). The PRV clearly
reveals that this ATM traffic trace, which is typical of the ones
we have observed, exhibits substantial burstiness across a very
wide range of time scales.

The PRV curves reveal details about the peak rate behavior of
traffic traces, but it would still be desirable to have a scalar mea-
sure of traffic burstiness. In our analysis of ATM traffic traces,
we have found max-to-min peak ratio, defined as the peak rate
on a 5-ms time scale (max) divided by the peak rate on a 1-hour
time scale (min), to be a useful measure. For example, for hun-
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Fig. 3. Peak Rate Variation (PRV) Comparison

dreds of ATM Virtual Circuit Connection traffic traces, we have
found a strong correlation between max-to-min peak ratio and
the minimum (1-hour) peak rate. Linear regression yields the
following relationship with a coefficient of determination ofX (
= 0.85.

OTPSR)BFXY:[Z]\^P D �`_,�%� aba 3 OQPSR8Bc� dePgfeX heig:=j XY:[ZEi D N �k� I (4)

The consistency of this relationship, if it can be shown to
hold across a broad class of connections, could allow one to es-
timate the peak rate on a small time scale from measurement of
peak rate on a large time scale. This could be extremely use-
ful for traffic management since small time-scale measurements
are quite costly relative to large time-scale measurements.

III. H YPEREXPONENTIALMODEL FORTRAFFIC

VARIABILITY

Once the characteristics of network traffic have been deter-
mined, a very important next step is to find mathematical mod-
els that exhibit characteristics similar to those found in network
traffic. This section discusses the potential utility of the hyper-
exponential distribution as a relatively simple and robust model
for packet interarrival times. Anl VTW order hyperexponential
probability density function (pdf)� � for a random variable�
(representing interarrival time in our case) is given by:
m * BFn D ��o 	

p
	 ik�8qYr]s N o (

p ( ib�)qStcs N ���u� N ov�
p �%ik�)qxwbs (5)

In this paper, we will will focus on theIeJyK order hyperexponen-
tial distribution �!z that has six parameters (o|{ and

p { ) and four
degrees of freedom since the weightso}{ must sum to unity and
we wish to fix the mean interarrival time at a particular value
�g~ p given by �g~ p �`��ov{]~ p { .

The IDV of the � z interarrival distribution can be calculated
using the methods given in [4]. Here, we illustrate the vari-
ety of IDV curves that can be obtained from the��z interarrival

distribution. We begin by considering abalanced��z distribu-
tion, which reduces the degrees of freedom to two by further
requiring o { ~ p { ���g~YI p . In Fig. 4, we allow only a single
degree of freedom by requiring 1/

p
= 1/5183 and fixingo ( =

0.75. Fig. 4 shows that the balanced� z distribution can pro-
duce unimodal IDV curves with values very close to 1.0 over
time scales spanning several orders of magnitude. Note that in-
creasing the mean interarrival time 1/

p
	 of the first term in the

��z pdf to very large values (and correspondingly reducing the
weight o 	 of this term to very small values) is required to ex-
tend the time scale region for which the IDV value is close to
1.0. Note that all of the IDV curves eventually approach the
asymptotic Hurst parameter value of� =0.5 for any hyperex-
ponential distribution. However, with large enough 1/

p
	 values

(small enougho 	 values), the balanced��z interarrival distri-
bution can be made to bepractically indistinguishablefrom a
second-order self-similar process with Hurst parameter close to
1.0.
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Fig. 4. IDVs of Balanced��� Interarrival Distribution with�=�v���S� �7� ; the�1� values of the curves range from 1e-7 for curve (i) to 0.1 for curve (vii),
incrementing by an order of magnitude for each curve.

However, as shown in Fig. 2, IDV curves of real traffic can
exhibit more complicated structure than the simple unimodal
form of Fig. 4. We now introduce a new form of the general���
distribution that we calldoubly-balancedbecause in addition to
the conditions imposed by the balanced definition, we further
requireo�{^~Yo�{u� 	 �$j for some constantj and for\����k�y�=�u�u� l,_
� . A doubly-balanced� z distribution has only a single degree
of freedom. Fig. 5 shows that doubly-balanced� z interarrival
distributions can have bi-modal IDV curves, with the value ofj
controlling the location (in time scale) of the “valley” between
the two “hills”.

IV. EVALUATION OF �!z TRAFFIC MODEL

Having established that the��z interarrival distribution can
exhibit a variety of IDV curve shapes, we proceed to more fully
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Fig. 5. IDVs of Doubly-Balanced�C� Interarrival Distribution

evaluate its suitability as a traffic model for capturing the vari-
ability present in real network traffic. The evaluation consists
of comparisons between an actual (ATM) traffic trace with a
fairly challenging IDV curve and an� z model that attempts to
match the IDV of the actual trace. The measured trace and the
model are then compared using IDV, PRV, and simple queuing
performance.

A. Index of Variability Evaluation

We begin by matching the IDV of the chosen ATM traffic
trace as closely as possible with an� z model using the AMPL
optimization tool [6]. We constrain the mean rate of the� z
model to match the mean rate of the selected traffic trace (5183
arrivals/sec), leaving four degrees of freedom in the� z param-
eter space. At each sampled point of the traffic trace IDV curve
(approximately 1000 points in all), we define the error value to
be the magnitude of the difference between the measured trace
IDV and the calculated��z IDV. The objective function to be
minimized is then defined as the maximum of these error val-
ues.

Since iterative optimization tools can only find relative min-
ima, and since our objective function contains many relative
minima, it is necessary to run the optimization program a num-
ber of times with randomly (but reasonably) chosen initial
points. This process produced a number of “solutions” with
approximately the same objective function but with a variety of
IDV shapes. We selected one from this set that seemed to match
the shape of the trace IDV the best.

Fig. 6 shows the results. The solid curve is the IDV of the
original measured traffic trace, and the dashed curve is the the-
oretical IDV of the chosen� z interarrival model. The param-
eters of the� z model are

p
	 = 82.821,

p ( = 19242,
p z =

0.01037,o 	 = 0.003701,o ( = 0.9962989, ando z ���x� ��� . We
can see that there is a reasonably good match between the orig-
inal IDV and the model IDV across most time scales, with the

largest difference coming at the largest time scales. We hypoth-
esize that a better match could be obtained with higher-order
hyperexponential models, but the analytic expressions for IDV
of such models quickly become unwieldy.
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Fig. 6. IDV Comparison Between Measured Traffic Trace and� � Model

The dotted curve shows the IDV of a synthetic trace gener-
ated using the� z model. The good agreement between the
theoretical� z IDV and the trace-measured� z IDV validates
our trace-based IDV calculation methodology discussed in sec-
tion II.

B. Peak Rate Variability Evaluation

We next compare the Peak Rate Variability (PRV) of the orig-
inal trace and a trace from the selected�
z model. For this com-
parison, we associate an ATM cell with every arrival from the
��z trace and compare PRV in units of Mb/s (which is equiva-
lent to a pkts/s PRV comparison in this case). From the pre-
vious Fig. 3 we see that the� z PRV (dashed line) falls off
smoothly like the PRV of the Poisson arrival process (dash-dot
line), but with considerably larger peak rates at all time scales,
even though the mean rates are matched. Relative to the ATM
trace PRV (solid line), the PRV match of the� z trace is quite
good at both very small and very large time scales. However,
the ATM PRV levels off at relatively small time scales before
dropping rapidly at larger time scales, resulting in significantly
larger peak rates than the��z trace at intermediate time scales.

C. Queuing Performance Evaluation

A major advantage of using the hyperexponential distribu-
tion to model network traffic is its relative ease of analysis. In
addition to obtaining closed-form expressions for the IDV of
a hyperexponential model, we can also obtain analytic perfor-
mance predictions based on the hyperexponential model. In this
section, we use G/M/1 queuing results (see, for example, [7])
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to obtain mean and variance of packet delay for an��z arrival
model with exponential service times, then compare these ana-
lytic results with simulation results for an� z traffic trace and a
real traffic trace.

As derived in [7], the total delay (queuing plus service time)
for a G/M/1 queue is exponentially distributed, hence its mean
and standard deviation are identical. Finding the parameter of
the exponential delay distribution requires solving a nonlinear
equation involving the Laplace transform of the arrival distribu-
tion, which is readily obtained for the hyperexponential distri-
bution.

In order to make comparisons with the analytic results, we
associate exponentially distributed service times with the ar-
rivals listed in the� z and real traffic trace files, even though
the real traffic trace was gathered from an ATM (fixed packet
size) link. Also, the trace files list number of arrivals in each 5
ms interval, so the simulation spaces each set of arrivals evenly
throughout the associated 5 ms interval.

Fig. 7 shows the results for total delay (queuing plus service
time) as a function of normalized load. Note that delay is on a
log scale. First, we see good agreement between the analysis
(circles) and simulation results (dashed line) for the�5z model
across the entire load range. We also see good agreement be-
tween the delays for the real trace and for the��z model at very
low and very high loads. For intermediate loads (from about
0.3 to about 0.5), the real trace simulated delays are signifi-
cantly larger than the��z model delays. This delay behavior is
foreshadowed by the PRV curve of Fig. 3, as follows.
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Fig. 7. Delay Comparison Between Measured Traffic Trace and� � Model

For a normalized load of 0.2, the service rate of the queue is
approximately 11 Mb/s, which exceeds the peak rates ofboth
the real trace and the� z trace for all but the very smallest time
scales. Thus we would expect the mean delay to be quite small
for both. Along the same lines, at a normalized load of 0.6, the
service rate of the queue is approximately 3.7 Mb/s, which is

smaller than the peak rates of both the real and the�5z trace
even for the largest time scale of one hour. The result is that
the queue grows rapidly during these relatively long periods of
time, producing huge average delays (hundreds of seconds) for
both. However, for an intermediate load of 0.4, for example,
the service rate is 5.5 Mb/s, larger than the� z peak rates at
the larger time scales, but significantly smaller than the real
trace peak rates for all but the very largest time scales. Thus
we should not be surprised at the reasonably small delays (ap-
proximately 10 ms) for the�
z model and the very large delays
(approximately 10 s) for the real trace. Clearly, a better queu-
ing match would be obtained with a model that has a PRV curve
closer to the one for the real traffic. This underscores the utility
of the PRV as a tool for characterizing traffic.

V. CONCLUSIONS

We have argued that single-parameter traffic characteriza-
tions, even those that can capture long-range dependence, are
inadequate for characterizing the complexities of network traf-
fic variability over the entire range of time scales. We advocate
measures such as the index of variability (IDV) and the newly-
introduced peak rate variability (PRV) that provide insight into
traffic characteristics as a function of time scale.

The family of hyperexponential interarrival distributions,
even though they all have asymptotic Hurst parameters of
� = 0.5, are nonetheless promising network traffic models
due to their relative analytic simplicity and the variety of IDV
curves that they can exhibit. They can, in fact, be made to be
practically indistinguishable from long-range dependent pro-
cesses with� approaching 1.0.

However, our investigations of the��z model indicate that its
four degrees of freedom limit its ability to adequately model
traffic that is highly bursty over a broad range of time scales,
such as that exhibited by ATM network traffic traces. Further
research is required into methods of order selection and param-
eter selection for the hyperexponential distribution to produce
desired traffic characteristics as measured by IDV, PRV or other
metrics.
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