

The University of Kansas

Copyright © 2002:
The University of Kansas Center for Research, Inc.
2335 Irving Hill Road, Lawrence, KS 66045-7612.
All rights reserved.

Technical Report

Emulation of a Space Based Internet Communication Link:
Design and Implementation

Sandhya Rallapalli
Gary Minden

ITTC-FY2003-24350-04

September 2002

Project Sponsor:
NASA

Glenn Research Center

ii

Abstract

Space Based Internet (SBI) aims at networking in space. Apart from originating and

terminating traffic, an SBI capable satellite shall handle routing issues in satellite

system and relay traffic through a series of SBI satellites.

Space Based Internet emulation system aims at emulating networking in space. It

evaluates the SBI system in an environment similar to a satellite communication

system. The satellite data channels and the inter-satellite link properties are emulated

in the system.

The thesis work presents the emulation design of the satellite communication

interface and link properties. The architecture for Virtual Ethernet devices that

emulate satellite interfaces is provided. The emulation of inter-satellite link features

like bandwidth, propagation delay and bit error rates in the data transmissions forms

the major part of the emulation. The creation of Virtual Ethernet devices and the

emulation of communication link properties in Linux operating sytem provide

challenges and extend the scope of Quality of Service in Linux.

This paper gives the design, implementation and results of satellite communication

link emulation in Space Based Internet emulation system.

iii

Table of Contents

1 INTRODUCTION... 1

1.1 SATELLITE COMMUNICATIONS... 1

1.2 NETWORKING IN SPACE ... 1

1.3 CHARACTERISTICS OF SATELLITE COMMUNICATION LINKS........................... 2

1.3.1 Propagation Delay.. 2

1.3.2 Errors in Transmission ... 3

1.3.3 Delay –Bandwidth Product... 3

1.3.4 Noise ... 4

1.4 SBI EMULATION OF COMMUNICATION LINKS.. 4

1.5 THESIS ORGANIZATION.. 6

2 STRUCTURE OF SBI NODE ... 7

2.1 SBI EMULATION.. 7

2.1.1 SBI Node ... 9

2.2 LINUX QOS.. 13

2.2.1 Queuing disciplines... 13

2.2.2 Class Based Queuing .. 14

2.3 INTERFACES FOR LINUX QOS... 15

2.3.1 Iproute... 15

2.3.2 API for Linux QoS... 16

3 EMULATION OF ETHERNET DEVICES IN SBI 20

iv

3.1 DESIGN OVERVIEW .. 22

3.2 VIRTUAL DEVICE IN LINUX KERNEL.. 25

3.2.1 Ioctl call handling ... 29

3.2.2 Create.. 32

3.2.3 Initialize .. 34

3.2.4 Destroy.. 37

3.2.5 List... 38

3.2.6 Open.. 38

3.2.7 Close ... 39

3.2.8 Change MTU... 39

3.2.9 Change MAC address ... 40

3.2.10 Obtain the Statistics .. 41

3.2.11 Transmit data .. 41

3.2.12 Receive data .. 42

3.2.13 Modifications to Linux kernel ... 44

3.3 USER INTERFACE FOR VETH DEVICES 'VETHCTL'... 44

3.3.1 Creation .. 45

3.3.2 Destruction.. 46

3.3.3 List... 47

3.3.4 Configure .. 48

3.4 CONCLUSION.. 49

4 EMULATION OF PROPAGATION DELAY IN SBI 50

v

4.1 DESIGN OVERVIEW .. 51

4.2 PROPAGATION DELAY IN LINUX KERNEL QOS .. 51

4.2.1 Initialize .. 54

4.2.2 Enqueue... 55

4.2.3 Dequeue .. 58

4.2.4 Requeue... 59

4.2.5 Destroy.. 59

4.2.6 Modify attributes... 59

4.2.7 Display attributes.. 60

4.2.8 Modifications to Linux kernel ... 60

4.3 IPROUTE INTERFACE .. 60

4.4 API FOR QOS INTERFACE .. 61

4.5 CONCLUSION.. 63

5 EMULATION OF BIT ERROR RATE IN SBI .. 64

5.1 DESIGN OVERVIEW .. 64

5.2 BIT ERROR RATE IN LINUX KERNEL QOS .. 65

5.2.1 Initialize .. 67

5.2.2 Enqueue... 68

5.2.3 Dequeue .. 71

5.2.4 Requeue... 72

5.2.5 Set and Reset error.. 72

5.2.6 Destroy.. 73

vi

5.2.7 Modify attributes... 73

5.2.8 Display attributes.. 74

5.2.9 Modifications to Linux kernel ... 74

5.3 IPROUTE INTERFACE .. 74

5.4 API FOR QOS INTERFACE .. 75

5.5 CONCLUSION.. 77

6 INCORPORATION OF DELAY AND BER IN SBI 78

6.1 DESIGN OVERVIEW .. 78

6.2 SERIALQ IN LINUX KERNEL QOS ... 80

6.2.1 Initialize .. 81

6.2.2 Enqueue... 83

6.2.3 Dequeue .. 84

6.2.4 Requeue... 84

6.2.5 Destroy.. 85

6.2.6 Display attributes.. 85

6.2.7 Modifications to Linux kernel ... 85

6.3 IPROUTE INTERFACE .. 86

6.4 API FOR QOS INTERFACE .. 87

6.5 CONCLUSION.. 89

7 EMULATION OF A SBI COMMUNICATION LINK 90

7.1 VIRTUAL DEVICES ... 90

vii

7.2 QOS FEATURES.. 91

7.2.1 Create.. 92

7.2.2 Modify ... 94

7.2.3 Destroy.. 94

7.3 CONCLUSION.. 94

8 TESTING AND RESULTS.. 95

8.1 VIRTUAL ETHERNET DEVICE CONFIGURATION USING VETHCTL.................. 95

8.2 QUEUING DISCIPLINE CONFIGURATION USING ‘TC’....................................... 97

8.3 CONFIGURATION IN SBI EMULATION .. 99

8.4 PERFORMANCE RESULTS FOR VIRTUAL ETHERNET DEVICES..................... 102

8.5 PERFORMANCE RESULTS FOR DELAY QUEUING DISCIPLINE 103

8.6 PERFORMANCE RESULTS FOR BER QUEUING DISCIPLINE 104

9 CONCLUSIONS ... 106

9.1 FUTURE WORK .. 106

10 REFERENCES.. 107

viii

Table of Figures

FIGURE 1: ILLUSTRATION OF SPACE BASED INTERNET ENVIRONMENT 5

FIGURE 2: SBI EMULATION SYSTEM ... 8

FIGURE 3: SPACE BASED INTERNET NODE ARCHITECTURE ... 10

FIGURE 4: FORMAT OF SERIALQ QUEUING DISCIPLINE .. 12

FIGURE 5: SAMPLE VIRTUAL ETHERNET CONFIGURATION .. 21

FIGURE 6: NETWORK ARCHITECTURE WITH VIRTUAL ETHERNET LAYER.................... 22

FIGURE 7: PACKET TRANSMISSION THROUGH VIRTUAL ETHERNET DEVICE................ 23

FIGURE 8: RECEIVING VIRTUAL ETHERNET DEVICE DATA .. 24

FIGURE 9: SAMPLE ARRANGEMENT OF PACKET ENTRY QUEUE................................... 53

FIGURE 10: DELAY QUEUING DISCIPLINE ENQUEUE AND DEQUEUE............................ 56

FIGURE 11: SERIALQ AND COMPONENT QUEUING DISCIPLINES 79

FIGURE 12: PACKET FLOW THROUGH A SERIALQ QUEUING DISCIPLINE...................... 80

FIGURE 13: PERFORMANCE OF PROPAGATION DELAY QUEUING DISCIPLINE............. 103

FIGURE 14: PERFORMANCE OF BIT ERROR RATE QUEUING DISCIPLINE..................... 105

1 Introduction

1.1 Satellite Communications

Satellite Communications have developed considerably over the years to provide a

mode of transmission for data including real-time audio, video signals and earth

observation measurements. A satellite communication system is a potential medium

for broadband networks due to wide area coverage, service consistency, on-demand

bandwidth capability and ease of user scalability.

Earth Sciences Observation (ESO) satellites collect data related to land, marine

systems, atmosphere and ecosystems. Data collected is minimally processed and

stored on-board using high capacity data recorders. On coming in line-of-sight with a

Geo-synchronous relay satellite like TDRSS, the stored data is transmitted. Relay

satellites in space receive and downlink data to stations on the ground.

1.2 Networking in Space

In a networked system, ESO satellites route observation data efficiently to the

receiving ground stations through a series of satellites. When satellites perform On-

Board Processing to analyse the best routes to transfer data, networking in space is

established. It provides alternative to high data rate, high capacity recorders on each

satellite and eliminates the dependence on expensive communication services such as

TDRSS.

2

An efficiently designed satellite communication system provides a transmission path

from an ESO satellite at one end to a ground station at the other end of the earth. A

constellation of satellites can be so designed that they provide continuous

connectivity to ground stations all around the globe. An assortment of satellites from

Low, Medium and Geo-stationary earth orbit groups can be used to create desirable

satellite constellations depending on the requirements and cost factors.

1.3 Characteristics of Satellite Communication Links

The data communication links between satellites differ from terrestrial links in the

sense of medium of transmission, propagation distances and atmospheric interference

on the signals. Some of the characteristics of satellite communication links are

discussed in the following sections.

1.3.1 Propagation Delay

The data transmitted by the sources in satellite communication system is subject to

propagation delay. The main cause of propagation delay is the large distances in

space compared to typical terrestrial links. The atmosphere also causes delay in data

transmission. Large distances and other factors between a ground station and a GEO

result in a typical Round Trip Time (RTT) of 260ms. Similarly, data transfer between

a ground station and LEO results in RTT of 10-30ms and with MEO in about 100ms

[8]. In the satellite communication system, maximum propagation delay occurs

during data transfer between two GEO satellites resulting in about 550ms RTT.

3

Hence, propagation delay is one of the main characteristics under consideration in

space communication.

1.3.2 Errors in Transmission

Data transmission between satellite communication elements is prone to errors due to

various reasons [6]. Absorption in a medium is one of the reasons that cause loss of

data. In the atmosphere, absorption can occur due to rain, fog, clouds, snow, hail,

water, molecular oxygen and ionospheric effects. Dispersion, resulting due to the

movement of different frequencies at different speeds along a channel, causes

distortion of a signal. In addition to the losses due to the above factors, signal

attenuation causes bit errors. A signal travelling between a ground station and a

satellite attenuates in strength due to atmospheric gases, clouds and rainfall that

absorb the energy from the wave. The inter-satellite signals are affected by free space

loss, the loss in power of a signal as it travels through free space, resulting in errors in

the signal. The bit errors result in data due to the combined effect of the medium of

propagation, attenuation and atmospheric absorption in the transmitted signal.

1.3.3 Delay –Bandwidth Product

Due to the large propagation delay in satellite communications, the delay-bandwidth

product is more compared to local terrestrial links. The delay-bandwidth product

results in an increase in TCP window in satellite applications to store in-flight data.

4

1.3.4 Noise

One of the characteristics of a signal is the signal-to-noise ratio. Noise can affect a

signal in space due to space elements like sun, moon, galactic noise, cosmic noise and

atmospheric noise [6]. The effect of noise is predominantly on signals lower than

1GHz frequency.

1.4 SBI Emulation of Communication Links

Space Based Internet (SBI) aims at networking between ESO satellites in space. SBI

satellites are capable of forming a network in space to route data from ESO satellites

to ground stations. An SBI satellite shall process data and routing information and no

longer cache data on-board.

SBI intends to use Internet Protocol (IP) as the network layer protocol. IP is widely

used as network layer protocol in terrestrial networking. Defining a different protocol

for satellite communications using SBI leads to synchronization and updation issues

with terrestrial networking.

An SBI system is illustrated in Figure 1. An ESO collects data from area A and

transmits data to a relay satellite RS1. The relay satellite RS1 performs routing

operations and decides whether to transmit the data to the next relay satellite RS2 or

the ground station GS1. Thus, data from source S can reach destination D through a

series of relay satellites (RS1, RS2, etc.,).

Space Based Internet emulation system emulates the SBI environment. It emulates the

inter-satellite communication links and their Quality of Service attributes. The main

5

attributes of communication links under consideration – bandwidth, propagation

delay and bit error rates are emulated in the SBI emulation system. This work gives

the details of the communication link emulation design and implementation.

Figure 1: Illustration of Space Based Internet environment

6

1.5 Thesis Organization

The thesis presents the design and implementation of the emulation of a satellite

communication link. The initial chapters explain the design for the emulation of

Ethernet devices and simulation of QoS features. The later chapters explain the

implementation of the modules described in the previous sections in the SBI

emulation. The results for the implementation are provided in the final chapter.

The second chapter gives the SBI emulation system architecture, Linux QoS and the

API for QoS in this chapter.

The third chapter explains the design and specifications of Ethernet device emulation.

The design for simulation of propagation delay in SBI emulation system is described

in detail in the fourth chapter.

The fifth chapter explains the design of Bit Error Rate simulation in the SBI

emulation system.

The sixth chapter gives a detailed description of incorporation of propagation delay

and bit error rates attributes into a packet flow. It provides the QoS features for the

Space Based Internet emulation.

Chapter seven describes the integration of the satellite communication link emulation

and their QoS properties designed in the previous chapters in the SBI Emulation.

Chapter eight provides the testing scenarios, performance analysis and results for the

work described in this document.

Chapter nine provides the conclusions derived and future work possible.

7

2 Structure of SBI Node

This chapter provides a background to the work presented in this document. An

introduction to SBI emulation system is required to understand the emulation and

assignment of QoS attributes to the communication links. The first section gives an

introduction to the SBI emulation system. The second section gives a brief

description of the Linux QoS architecture that provides a background for QoS designs

provided in the later chapters. The third section gives an introduction to API for

Linux QoS used in setting the communication link parameters in SBI emulation

system.

2.1 SBI Emulation

Space Based Internet Emulation system aims at emulating networking in space. The

architecture of the SBI emulation system is mainly divided into Emulation Manager

and Node modules as shown in Figure 2.

The Emulation Manager is the centralized controller of the emulation system. It

controls the emulation scenario operations, manages the flow of messages between

the SBI Nodes via the Management Network and monitors the status of the

emulation. The Emulation Manager also controls the Node communication

parameters and the link properties in the emulation system.

The SBI Node emulates a satellite or a ground station in a space communication

system. Each interface on the Node represents a communication channel on a

8

satellite. The emulation software configures the interfaces and sets the

communication properties like the propagation delay, bandwidth and bit error rate on

each interface on the Node. Emulation Manager controls the communication link

parameters.

Figure 2: SBI Emulation System

9

Space Based Internet Emulation System architecture in detail can be referenced in

[12]. The interaction between Emulation Manager and the Nodes in the SBI

emulation system is shown in Figure 2.

The interaction between the Emulation Manager and the Node modules is performed

using data and management networks. The Data Network is used for data transfer

between the Nodes. The Management Network is used to transmit control messages

between the Emulation Manager and the Nodes.

The architecture of SBI Node is given in detail in the following section.

2.1.1 SBI Node

The Space Based Internet Node emulates Earth Sciences Observation (ESO) satellite

in the satellite communication system. Each antenna on a satellite is represented by an

interface on the Node. The number of interfaces used on the Node in the emulation

system represents the number of antennae on a satellite. An SBI Node must be

capable of originating, terminating, relaying and providing Quality of Service to data

from other nodes. The architecture for SBI Node is shown in Figure 3.

2.1.1.1 Communications Module

The Communications Module processes the messages passed by EM and passes

control to the Instrument Scheduling and Routing modules for further processing.

2.1.1.1.1 Instrument Scheduling

The Instrument Scheduling module receives messages from the Communications

Module to schedule data transmissions from the Node. A data generator is used to

10

originate traffic from the Node. In SBI emulation, data is generated using the

generator 'Netspec'.

Figure 3: Space Based Internet Node Architecture

11

2.1.1.1.2 Routing

The routing module proceses messages obtained from Communications Module. It

directly controls the routing tables on the Node.

2.1.1.2 EM Node Controller

The EM Node Controller processes control messages passed from the Emulation

Manager to the Node. It manages communication interfaces and their properties based

on requests from the Emulation Manager. On receiving messages to setup or modify

interface parameters, it contacts corresponding modules.

2.1.1.2.1 Interface

SBI emulates satellites and the communication links on the satellites used for data

transfer. A typical satellite in space has a number of communication links with

varying bandwidths installed to provide multiple data transfer channels.

In the SBI emulation system, a physical node emulates a satellite in space. An

Ethernet device on the node capable of transmission emulates a communication link

on a satellite. The concept of Virtual Ethernet devices has emerged to avoid the need

to install more than one Physical Ethernet device on a node for emulation purposes.

The concept is cost-effective and increases the scope of the number of

communication channels between two nodes than the possible number of Ethernet

cards on the nodes. Operations related to emulation interfaces are performed by

Virtual Ethernet device layer in the Linux kernel.

12

2.1.1.2.2 Interface Properties

The features of satellite communication links – bandwidth constraint, propagation

delay and bit error rate are emulated in the SBI emulation system. The properties are

introduced into emulation packet flows using the concept of queuing discipline in

Linux QoS. An introduction of Linux QoS and details required for design that follows

in the later chapters is provided in the next section.

On each Ethernet device in Linux kernel, the properties of a single queuing discipline

can be applied to packet flow through the device. Bandwidth control is applied using

Token Bucket Filter (TBF) queuing discipline that is part of Linux QoS. Propagation

delay is applied to a packet flow using Delay queuing discipline and bit error rate

using BER queuing discipline. To merge the properties of the three queuing

disciplines and apply to a packet flow, a new queuing discipline ‘serialq’ is designed.

Serialq concatenates the TBF, Delay and BER queuing disciplines in serial order. The

format of serialq queuing discipline is shown in Figure 4

Figure 4: Format of Serialq Queuing Discipline

13

2.2 Linux QoS

Linux traffic control offers Quality of Service to packet transmissions through

interfaces on a node. The traffic control system is implemented using queuing

disciplines, classes and filters. The outgoing packets are queued in Queuing

disciplines (qdiscs) before trasmitting through an interface. A Class contains a qdisc,

by default a First-In First-Out (FIFO) qdisc. A Filter is attached to a class and is used

to determine whether a packet belongs to the class based on certain characteristics.

The details of Linux QoS are available at [18].

2.2.1 Queuing disciplines

Linux QoS uses qdiscs to queue packets set for transmission on an interface. Each

qdisc has unique properties that are applied to the packets in it’s queue. Linux QoS

provides a number of qdiscs including First-In First-Out (default), Class Based

Queuing (CBQ), Token Bucket Filter (TBF), Random Early Detection, Stochastic

Filter Queuing.

Each qdisc has an element of format ‘struct Qdisc’ corresponding to it. This contains

the pointer to specific qdisc parameters, packet queue and other qdisc generic

information. Each qdisc can have a local structure to store specific information. This

information can be accessed through data pointer in ‘struct Qdisc’. Also, attached to

a qdisc is an element of format ‘struct Qdisc_ops’. The element contains the routines

used to initialize and destroy qdisc, enqueue, requeue and dequeue packets, modify

and list qdisc attributes.

14

2.2.2 Class Based Queuing

A qdisc can be class-based in the sense that a qdisc can contain classes inside it. CBQ

is one of the qdiscs that contain classes and qdiscs. This capacity of CBQ allows the

creation of a complex setting for implementing QoS on a packet flow. Filters are used

to separate packet flows into classes based on various features like the source,

destination IP address, source, destination port and Type of Service.

The process of setting up CBQ and it’s classes and qdiscs is shown:

• Create CBQ on the interface on which it is desired.

• Create the required number of classes inside the CBQ

• Create qdiscs on each class inside the CBQ. The qdiscs can be any one of the

qdiscs provided in Linux QoS including CBQ itself.

• Create a filter for each class as required to separate the packets from the original

packet flow into each class. In case of an absence of a filter on a class, any packet

can enter the class.

This section gives the details of Linux QoS. The queuing disciplines for link

properties like bandwidth, delay and ber are designed based on the Linux QoS

principles. Once the QoS modules are created, the emulaton system needs to access

them to use the qdiscs for the emulation. The interfaces provided for Linux QoS

modules are described in the following section.

15

2.3 Interfaces for Linux QoS

Linux QoS modules can be accessed using a user interface ‘Iproute’ or an application

programming interface ‘API for Linux QoS’.

2.3.1 Iproute

‘Iproute’ application provides a user interface for the Linux QoS. The qdiscs, classes

and filters can be created, destroyed and managed using the command ‘tc’ provided

by Iproute. The parameters given using ‘tc’ are passed into the kernel using netlink

sockets where further processing is done in Linux QoS modules.

The command used to create an element – qdisc, class or filter is:

tc <element> add dev <device_name> <handle_details>

<element type> <element_details>

- element is either a qdisc, class or filter.

- device_name is the device on which the element is created.

- handle_details are the parent and handle information. More details can be found

at [20].

- element_type is the type of element to be created. Ex: If a qdisc creation is

requested, cbq can be element_type.

- element_details are the details required for each element type. This information

can be found for any element_type by the command:

tc <element> add <element_type> help

16

Henceforth in this document, dev <device_name> <handle_details> are

referred to as <DEV_HANDLE>.

Similarly, the command used to destroy an element is:

tc <element> del <DEV_HANDLE> <element type>

<element_details>

Using ‘tc’, modifications can be made to QoS elements. The command is:

tc <element> change <DEV_HANDLE> <element type>

<element_details>

The use of Iproute application in accessing Linux QoS modules is shown in this

section. The delay, ber and serialq queuing disciplines are so designed that they can

be managed from user space through Iproute interface.

2.3.2 API for Linux QoS

The Application Programming Interface (API) for QoS provides a programming

interface that allows dynamic configuration of QoS attributes on an interface. The

required parameters for the creation, modification or deletion of a QoS element –

either a qdisc, class or filter are filled in defined formats and passed into the kernel

QoS modules using rtnetlink sockets. The documentation on API for QoS can be

found at [19].

The API for QoS is used to set the QoS attributes like bandwidth, propagation delay

and bit error rate on SBI node interfaces. The procedure to use the API for TBF qdisc

is described below. Any element of Linux QoS is similar to the following procedure.

17

An element of type ‘struct qdisc_gen’ is filled with required parameters. The

qdisc_options element points to the features of the queuing discipline desired for

creation, modification or deletion. The format of ‘struct qdisc_gen’ is shown:

struct qdisc_gen

{

char dev[16]; /* Device */

__u32 parent; /* parent info */

__u32 handle; /* handle info */

char qdisc_type[16]; /* Queuing Discipline type */

void *qdisc_options; /* common pointer for all queuing

discipline options */

};

As a sample, the layout of tbf queueing discipline process in the API is shown. The

parameters of a tbf queuing discipline are in the format ‘struct qdisc_tbf_usr’. The

format of the structure is given:

struct qdisc_tbf_usr

{

 __u32 limit;

 __u32 burst;

__u32 burst_cell_log;

 __u32 rate;

 __u32 mtu;

 __u32 mtu_cell_log;

 __u32 mpu;

18

 __u32 peakrate;

 __u32 latency;

};

In order to create a tbf queuing discipline, the parameters of ‘struct qdisc_tbf_usr’ are

filled and the pointer to the element is copied in the qdisc_options field of ‘struct

qdisc_gen’.

To perform operations on a class, ‘struct class_msg’ element is used. For filters,

‘struct filter_msg’ format is used in the API.

Once the parameters are filled, the values are passed into the kernel using system

calls set_qdisc, set_class and set_filter for queuing discipline, class and filter

respectively. The format is:

set_qdisc(cmd, (void *)&send_msg, sizeof(struct qdisc_gen));

The cmd can be one of ADD_QDISC, CHANGE_QDISC and DELETE_QDISC to

create, modify and delete a queuing discipline. The term send_msg is an element of

type ‘struct qdisc_gen’.

The formats for processing classes and filters are similar and can be found in the

documentation.

The system call set_qdisc passes the control to sys_set_qdisc() in

net/qos_api/set_qdisc.c. The routine corresponding to the type of queuing discipline

is called from sys_set_qdisc() to process the arguments and call kernel QoS modules

for further processing. To process tbf parameters, fill_tbf_params() in

net/qos_api/set_qdisc.c is used.

19

The design of the API for Linux QoS is provided in this section. These principles are

used in making extensions to the API to accommodate delay, ber and serialq queuing

disciplines.

This chapter gives an introduction to SBI emulation, details of SBI Node architecture

and satellite link emulation. Also, Linux QoS modules for delay, ber and serialq

queuing disciplines and interfaces for the modules are discussed.

20

3 Emulation of Ethernet Devices in SBI

The concept of Virtual Ethernet devices is introduced in the previous chapter.

Ethernet devices are used to emulate satellite communication channels in the SBI

emulation system. Instead of Physical Ethernet devices, Virtual Ethernet devices are

used in the emulation. This chapter provides the details of the design of Virtual

Ethernet Devices.

A Virtual Ethernet (‘Veth’) device is created over a Physical Ethernet (‘Peth’) device.

Each Veth device has a unique Media Access Control (MAC) address. The main

difference between a Veth and a Peth device is the absence of a physical driver in the

former. A Veth device depends completely on the Peth device it is created on for data

transfer. More than one Veth device can be created on a single Peth device. A sample

configuration using Veth devices to increase the number of interfaces on a machine is

shown in Figure 5. It shows various communication links possible with Veth devices

created over Peth devices.

A preliminary design for Virtual Ethernet Devices is presented in [15]. Some of the

structures used for Veth device emulation have a basis in the previous work.

21

Figure 5: Sample Virtual Ethernet Configuration

22

3.1 Design Overview

Virtual Ethernet devices are emulated Ethernet devices. The processing of Veth

devices is performed in the data link layer below the network layer in Linux kernel

architecture as shown in Figure 6. The Veth device layer is transparent to the upper

layers in the kernel architecture in the sense that the presence of the Veth layer does

not affect the functioning of the upper layers.

Figure 6: Network Architecture with Virtual Ethernet Layer

A Veth device is created on an existing Peth device using ioctl calls from the user

space. Once a Veth device is established as an Ethernet device, any packet transfer

through it depends on the driver of the Peth device on which it is created. Though a

Veth device emulates a Peth device, it is not a hardware device in the sense that it

does not have a driver of it’s own. Thus, a Peth device needs to be active for the Veth

devices created on it to be accessible in a network. When a packet is sent from

23

qdisc_restart to the Veth device layer, the packet is transmitted to underlying Peth

device layer as shown in Figure 7.

Figure 7: Packet Transmission Through Virtual Ethernet Device.

The architecture for receiving data for Veth devices is more elaborate because the

data is obtained on the driver of a Peth device and the control over the operations in

the physical layer is limited. The process of receiving Veth packets is shown in

Figure 8. There are a couple of issues to be dealt with in the receiving of Veth

packets.

24

Figure 8: Receiving Virtual Ethernet Device Data

• Packets destined for Veth devices arrive on the driver of the underlying Peth

device. Based on the MAC address of the destination on the packet, the packet

type is determined. Any packet destined for Veth device has the MAC address of

the Veth device and those packets are marked PACKET_OTHERHOST by Peth

device. At the network layer, PACKET_OTHERHOST packets are directed back

25

to the physical layer for forwarding to the network outside the node. Unless

processing is done to save the Veth packets, they will be discarded from the node.

• Due to the absence of a driver, broadcast packets that arrive on the Peth device

driver cannot reach the Veth devices unless specifically sent to the Veth devices

created on the device.

These two issues are dealt with by forwarding PACKET_OTHERHOST and

PACKET_BROADCAST packets from the Peth layer to the Veth layer. The

implementation is given in the following section.

3.2 Virtual Device in Linux Kernel

The Veth devices are created, destroyed, modified and managed in the Linux kernel.

The characteristics of an Ethernet device in Linux kernel are stored in the format

‘struct net_device’ defined in include/linux/netdevice.h. Each ethernet device defines

routines to open, close, set MAC address, receive data, send data and change MTU of

the device.

Apart from the fields of ‘struct net_device’, Veth devices have other elements to track

like the underlying Peth device details and a linked list of all Veth devices

vethdev_list similar to dev_base for Ethernet devices on a machine. The Veth

characteristics are stored in the format ‘struct veth_device’.

26

struct veth_device

{

char vethDevName[IFNAMSIZ];

int itfNum;

char phyDevName[IFNAMSIZ];

struct net_device *vethDev;

char srcMac[RAW_MAC_LENGTH];

struct net_device_stats *vethStats;

struct veth_device *next;

};

A short description for each term in the above structure is given below:

- The element vethDevName represents the name of the Veth device. The name of a

Veth device is of the form ‘veth#’ where # represents a number (the interface

number). The first Veth device created on a node is named veth0, the next veth1

and so on.

- itfNum is the interface number of a Veth device. For a Veth device named

‘veth10’, 10 is the itfNum. The first Veth device on a machine is assigned 0.

- phyDevName is the Peth device on which the present Veth device is created. An

acceptable phyDevName is of the format ‘eth#’ where # is a number and ‘eth#’

exists on the node.

- vethDev refers to the ‘struct net_device’ element corresponding to the present

Veth device. ‘struct net_device’ element is generic to all the ethernet devices.

- srcMac is the MAC address of the Veth device in 6-byte format.

27

- vethStats is an element of format ‘struct net_device_stats’ defined in

include/linux/netdevice.h

- next points to the next element in the list of Veth devices vethdev_list.

vethdev_list is a linked list of the Veth devices on a machine.

A list of Peth devices on which Veth devices are created is also maintained in the

Veth device layer. The list is referred to as phydev_list. The format for storing the

properties of Peth devices is:

Struct phy_device

{

char phyDevName[IFNAMSIZ];

struct net_device *phyDev;

int num_vethdev;

int (*change_mtu)(struct net_device*, int);

struct phy_device *next;

};

The elements in ‘struct phy_device’ are detailed:

- phyDevName is the Peth device corresponding to the ‘struct phy_device’ element.

- phyDev is the ‘struct net_device’ element corresponding to the Peth device.

- num_vethdev is the number of Veth devices created on this Peth device. Once the

value of num_vethdev goes to 0, the phyDev elements are reset and the entry for

the device is removed from phydev_list.

28

- change_mtu refers to the change_mtu pointer of phyDev prior to the creation of

any Veth device on Peth device. This pointer is reset when num_vethdev reaches a

value of 0.

- next points to the next element in the list of Peth devices phydev_list.

The parameters related to Veth devices passed between user and kernel space are in

the formats provided below.

For the creation of a Veth device, ‘struct veth_param_create’ defined in

include/linux/veth.h is used.

struct veth_param_create

{

int itfNum;

char phyDevName[IFNAMSIZ];

char srcMac[MAX_ADDR_LEN];

};

- The term itfNum is a number assigned to each Veth interface.

- Element phyDevName is the Ethernet device on which the Veth device creation is

desired.

- Element srcMac is the MAC address of the Veth device to be created in 6-byte

format.

29

For the deletion of a Veth device, ‘struct veth_param_destroy’ defined in

include/linux/veth.h is used.

struct veth_param_destroy

{

int itfNum;

};

- The term itfNum is the interface number of the Veth device to be destroyed.

For listing Veth devices, ‘struct veth_param_list’ defined in include/linux/veth.h is

used.

struct veth_param_list

{

 int numDev;

 char list[LIST_SIZE];

};

- The term numDev represents the number of Veth devices on the node.

- Element list is a character array set to suitable size LIST_SIZE to fill the details of

the Veth devices.

These structures are used through the implementation of the Veth devices.

3.2.1 Ioctl call handling

In the Linux kernel, ioctl calls made using sockets of protocol family PF_INET are

handled by inet_ioctl() routine in net/ipv4/af_inet.c. inet_ioctl() handles

VETHDEV_CREATE, VETHDEV_DESTROY and VETHDEV_LIST values of

30

command cmd for Veth device layer once the values are defined. The values for the

three commands are defined in include/linux/veth.h.

#define VETHIOC_ITF 0x9101

#define VETHDEV_CREATE _IOW('q', VETHIOC_ITF, struct

veth_param_create)

+#define VETHDEV_DESTROY _IOW('q', VETHIOC_ITF+1, struct

veth_param_destroy)

+#define VETHDEV_LIST _IOW('q', VETHIOC_ITF+2, struct

veth_param_list)

The structure formats veth_param_create, veth_param_destroy and veth_param_list

are used by applications to pass parameters through ioctl calls into the kernel to

create, destroy and list Veth devices.

On receiving any of the three commands, inet_ioctl() passes the control to

veth_ioctl(unsigned int cmd, void *arg) defined in net/veth/veth.c.

The arguments in arg from user space are copied into kernel space for processing

using copy_from_user(). Depending on the command cmd used, veth_ioctl() parses

the arguments and calls appropriate methods for further processing.

3.2.1.1 ioctl create

The user space arguments are copied into kernel space using copy_from_user():

copy_from_user(param_create, arg, sizeof(struct

veth_param_create));

- param_create is an element of type ‘struct veth_param_create’

- arg is a pointer containing the arguments collected in the user space.

31

veth_ioctl() parses the phyDevName element of param_create. If the first three

letters of phyDevName do not match with “eth”, an error ENODEV is returned. If the

phyDevName is valid, veth_create() method is called for processing of the arguments

and creation of Veth device.

3.2.1.2 ioctl destroy

The user space arguments are copied into kernel space using copy_from_user():

copy_from_user(param_destroy, arg, sizeof(struct

veth_param_destroy));

- param_destroy is an element of type ‘struct veth_param_destroy’

- arg is a pointer containing the arguments collected in the user space.

veth_ioctl() checks for the existence of a Veth device in vethdev_list that contains

same itfNum element as param_destroy->ITF_NUM. If no Veth device exists with

itfNum, an error ENODEV is returned. If a Veth device is found, veth_destroy()

method is called for processing of the arguments and deletion of the Veth device.

3.2.1.3 ioctl list

The user space arguments are copied into kernel space using:

copy_from_user(param_list, arg, sizeof(struct

veth_param_list));

- param_list is an element of type ‘struct veth_param_list’

- arg is a pointer containing the arguments collected in the user space.

32

veth_ioctl() calls veth_list() method for processing the request to list Veth devices

from user space.

3.2.2 Create

On obtaining control from veth_ioctl(), creation of a Veth device is handled by

veth_create(struct veth_param_create *param_create) defined in net/veth/veth.c.

A Veth device is created if valid Peth device and MAC address are given. On passing

the control to veth_create(), the following processing is done:

veth_create() checks if a Veth device exists in the vethdev_list with the srcMac

passed from the user space.

• If a device is found, EEXIST error message is returned to indicate that the MAC

address is not unique and the creation is thus stopped.

• If the srcMac requested for the creation of Veth device is unique, the process is

continued.

An element vethdevice of format ‘struct veth_device’ is created for the new Veth

device to be created. The process is described below:

• Initialize the init pointer in vethdevice->vethDev element.

vethdevice->vethDev->init = &veth_init;

• Set the Peth device on which the Veth device is going to be created in the element

phyDevName.

33

• Set the interface number for the new Veth device. The first Veth device created

on a node has an itfNum 0. For each of the remaining Veth devices, the itfNum is

the maximum itfNum of the existing Veth devices incremented by 1.

• The name for the Veth device is the concatenation of “veth” and itfNum of the

device.

sprintf(vethdevice->vethDevName,"veth%d", vethdevice-

>itfNum);

sprintf(vethdevice->vethDev->name,"veth%d",vethdevice-

>itfNum);

The remaining elements in vethdevice are filled during registration of the Veth

device. The object vethdevice is then introduced at the head of vethdev_list. The

routine register_netdevice() defined in net/core/dev.c is called to register the Veth

device.

If register_netdevice() returns an error, the creation is stopped and the error is

returned to veth_ioctl().

On success of the registration, the MAC address of the new Veth device is set. An

object hwaddr of type ‘struct sockaddr’ is required to set the MAC address. The

element hwaddr is filled with Ethernet address family and the srcMac.

hwaddr->sa_family = ARPHRD_ETHER;

memcpy(hwaddr->sa_data, param_create->srcMac, vethdevice-

>vethDev->addr_len);

The MAC address is set to the device using the routine veth_set_mac_address()

described in the later sections.

34

veth_set_mac_address(vethdevice->vethDev, (void *)hwaddr);

The itfNum of the device is then set to itfNum element of param_create and a value

of 0 is returned.

3.2.3 Initialize

The routine register_netdevice() is called to register a Veth device in veth_create().

register_netdevice() uses the init pointer of ‘struct net_device’ to initialize the

characteristics of a device. The init pointer of a Veth device is referenced to

veth_init(struct net_device *vethDev) in veth_create(). veth_init() sets the fields of

the generic device structure ‘struct net_device’.

• The routines to open and close the device are set to veth_open() and veth_close()

respectively.

• The hard_start_xmit is a function pointer used to transmit any data through the

device. The routine veth_send() is used for data transmissions through a Veth

device.

• The routine veth_get_stats() is used to obtain the statistics related to the Veth

device.

 vethDev->get_stats = veth_get_stats;

• The fields of ‘struct net_device’ that are generic to any device are set using

ether_setup() defined in drivers/net/net_init.c. Fields including change_mtu,

hard_header, set_mac_address, type, mtu, tx_queue_len and flags are set in

ether_setup().

 ether_setup(vethDev);

35

• change_mtu pointer in vethDev is set in ether_setup() to eth_change_mtu().

Since Veth devices require different processing for changing MTU, the pointer is

changed and any manipulations with the MTU of the Veth device are handled by

veth_change_mtu().

 vethDev->change_mtu = veth_change_mtu;

• Similarly, the set_mac_address is overwritten and the changes to MAC address of

the Veth device are performed by veth_set_mac_address().

 vethDev->set_mac_address = veth_set_mac_address;

• The device flags are set to BROADCAST and MULTICAST in ether_setup(). A

Veth device is by default set only to BROADCAST by re-writing the field flags in

vethDev.

• A queuing discipline is attached to each Ethernet device to queue outgoing

packets set for transmission. For a Veth device created, no queuing discipline is

set. Unless a queuing discipline is assigned to the Veth device, the default ‘fifo’

qdisc is assigned when packets are transmitted.

 vethDev->qdisc_sleeping = &noop_qdisc;

Once the vethDev object is complete, the statistics field vethStats of ‘struct

veth_device’ is allocated memory and prepared for use.

The properties of the Peth device on which the Veth device is created are also defined

in this section.

36

If a ‘struct phy_device’ element phydevice already exists in phydev_list with the name

vethdevice->phyDevName, the field num_vethdev of phydevice is incremented to

indicate the number of Veth devices on the Peth device.

If no entry exists for the Peth device in phydev_list, an entry is created. The fields in

‘struct phy_device’ are set as follows:

• The phyDevName is copied from vethdevice->phyDevName

• The ‘struct net_device’ element phyDev is obtained using dev_get_by_name()

defined in net/core/dev.c

phydevice->phyDev = dev_get_by_name(vethdevice-

>phyDevName);

• The num_vethdev field is set to 1.

3.2.3.1 change_mtu

Any changes made to the MTU of a Peth device affect the Veth devices created on it.

Hence, Peth device MTU handling should be made through veth_change_mtu(). The

original change_mtu pointer of the Peth device is stored in change_mtu field of

phydevice for restoration after all the Veth devices on the Peth device are destroyed.

phydevice->change_mtu = phydevice->phyDev->change_mtu;

phydevice->phyDev->change_mtu = vethdevice->vethDev-

>change_mtu;

37

3.2.3.2 flags

The promiscuous flag on the Peth device is set in the initialization process. If the Peth

device is not in promiscuous mode, packets for any device other than the Peth device

are rejected at the physical layer. If the promiscuous mode is set, the packets for the

Veth devices created over the Peth device are accepted. The dev_change_flags()

defined in net/core/dev.c handles changes made to flags in ‘struct net_device’.

dev_change_flags(phydevice->phyDev, phydevice->phyDev->flags

| IFF_PROMISC);

Once the fields are filled, the phydevice is introduced into the phydev_list.

If the phydev_list exists, the phydevice is placed at the head of the list. If phydev_list

does not exist, it is created.

The control is returned to register_netdevice(). It appends the new Veth device at the

tail of the device list dev_base. A return value of 0 is returned.

3.2.4 Destroy

veth_destroy(struct veth_param_destroy* param_destroy) is called by veth_ioctl() in

response to a request to destroy a Veth device. The element param_destroy, the

pointer of type ‘struct veth_param_destroy’ contains the interface number of the Veth

device to be destroyed and is passed as the parameter. The process followed to

destroy a Veth device in veth_destroy():

• The vethdev_list is scanned for an entry with the itfNum in param_destroy. The

entry is removed from the list.

38

• The phydev_list is scanned for the Peth device on which the Veth device was

created. The field num_vethDev in ‘struct phy_device’ associated with it is

decremented by 1. If the num_vethDev field reduces to 0,

o The change_mtu pointer is restored in phyDev of the Peth device:

phydevice->phyDev->change_mtu = phydevice->change_mtu;

o The physical device is removed from phydev_list.

The Veth device is unregistered by calling unregister_netdevice() in net/core/dev.c.

On successful return from unregister_netdevice(), the function call is returned with a

value 0.

3.2.5 List

When the listing of Veth devices on a machine is requested, veth_list(struct

veth_param_list* param_list) is called by veth_ioctl().

• The list field in param_list is filled with the details of each of the Peth devices on

which Veth devices are created and the number of Veth devices on each of them.

The interface number, name and MAC address of each Veth device is appended to

the list field.

• The numDev field in param_list is set to the number of existing Veth devices.

The function call is then returned with a value 0.

3.2.6 Open

When a Veth device is brought up by the ifconfig command in the user space, the

function veth_open(struct net_device* device) is invoked. A sample command:

39

ifconfig veth3 up

This routine enables the queue associated with the Veth device pointed to by the

‘struct net_device’ pointer for data transfer.

netif_start_queue(device);

3.2.7 Close

A request from the user space using ifconfig command to bring down a Veth device,

i.e., close the network access of the Veth, the veth_close(struct net_device *device)

function is called. This routine stops the queue associated with the Veth device

pointed to by the ‘struct net_device’ pointer.

netif_stop_queue(device);

3.2.8 Change MTU

Any changes in MTU of a Veth device and the underlying Peth device are handled by

veth_change_mtu(struct net_device *device, int new_mtu). The generic function for

managing changes in MTU is eth_change_mtu(). Since Veth devices are created over

Peth devices, the MTU of the Veth devices should be less than or equal to the MTU

of the Peth device on which it is created. To ensure this, the changes to MTUs of both

Veth and Peth devices are handled by veth_change_mtu().

Since the change_mtu function pointers of both the Veth device and the underlying

Peth device point to veth_change_mtu(), the request for MTU change can be from a

Veth or a Peth device. Whether the device is a Veth or a Peth device can be found by

searching the vethdev_list or phydev_list for existence of the device.

40

If the device that requested change of MTU is a Veth device,

• If the new_mtu is greater than the MTU of the Peth device on which it is created

or lesser than 68 bytes, an error EINVAL is returned.

• If the new_mtu meets the requirement specifications compared with the MTU of

the Peth device, the new_mtu is set to the Veth device.

If the device that requested change of MTU is a Peth device,

• The MTU of all the Veth devices created on it must be lesser than or equal to the

MTU of the physical device.

• If the MTU of a Veth device is greater than the new_mtu of the Peth device, the

MTU of the Veth device is set to new_mtu.

• The MTU of the Peth device is set to new_mtu.

On successful assignment of the MTU to the device, 0 is returned to the calling

function.

3.2.9 Change MAC address

On the creation of a Veth device, veth_create() sets the MAC address using the

routine veth_set_mac_address(struct net_device *vethDev, void *hw_addr). The

MAC address is given in the form of hw_addr. The MAC address is set for the Veth

device:

memcpy (vethDev->dev_addr, mac_addr->sa_data, vethDev-

>addr_len);

41

The 6-byte MAC address vethDev->dev_addr is then converted into readable format

HH:HH:HH:HH:HH:HH and stored in srcMac field of ‘struct veth_device’ element

associated with the Veth device.

3.2.10 Obtain the Statistics

The routine veth_get_stats(struct net_device* device) is called when an ifconfig

command is executed over a Veth device. This function returns the pointer to

vethStats element of type ‘struct net_device_stats’ that contains the statistics

pertaining to the Veth device. The pointer, vethStats is an element in ‘struct

veth_device’ associated with the Veth device.

3.2.11 Transmit data

When data is set for transmission on a device, the hard_start_xmit function associated

with the device is called. In case of Veth devices, veth_send(struct sk_buff *skb,

struct net_device *device) is called by qdisc_restart() defined in

net/sched/sch_generic.c. The parameters that are passed are the packet skb and the

‘struct net_device’ element of the Veth device on which the packet is to be sent.

The design for transmitting data is provided below:

• The ‘struct net_device’ structure of the Peth device on which the Veth device is

created is obtained using dev_get_by_name() in net/core/dev.c.

• If the Peth device is up, the packet structure skb is passed onto hard_start_xmit()

of the Peth device. The packet is sent over the device driver of the Peth device

and the vethStats->tx_packets field of ‘struct veth_device’ is incremented. The

42

return value obtained from hard_start_xmit of the physical device is returned to

the calling function.

• In case the Peth device is busy, a return value of –1 is returned.

3.2.12 Receive data

As described in the previous sections, the design for receiving data for Veth devices

takes into consideration the fact that processing in the physical Ethernet device layer

needs to be performed. The process of receiving Veth packets is shown in Figure 8.

When the physical device receives a packet, it calls eth_type_trans() in

net/ethernet/eth.c to set the protocol ID and packet type – host, broadcast or other host

packet. Once the packet type is set, the packet is sent back to the physical device

receive modules by eth_type_trans(). The modules then put the packet in a queue by

calling netif_rx() in net/core/dev.c as shown in Figure 8.

It is from eth_type_trans() that the Veth device layer receive modules are contacted.

Modifications are made to eth_type_trans() change the packet type of Veth packets

to PACKET_HOST and to receive broadcast data for Veth devices.

3.2.12.1 eth_type_trans

The function eth_type_trans(struct sk_buff *skb, struct net_device *device) is

implemented in net/ethernet/eth.c. The routine is used to set a packet’s protocol ID

and packet type. Modifications have been made to the routine to accommodate proper

handling of packets for Veth devices.

43

Since the packets for Veth devices have the MAC address of a Veth device, the

packets skb->pkt_type is set to PACKET_OTHERHOST and the broadcast packets

have skb->pkt_type set to PACKET_BROADCAST. The implementation is extended

and the packets that are labeled PACKET_BROADCAST or

PACKET_OTHERHOST are sent to veth_recv() in net/veth/veth.c to filter out the

packets for Veth devices.

3.2.12.2 veth_recv

veth_recv(unsigned char* dev_addr, unsigned short protocol, struct sk_buff *skb) is

called by eth_type_trans() in net/ethernet/eth.c. The parameters that are passed are

the MAC address on the packet, dev_addr, the packet protocol and the packet

structure skb.

• If the skb->pkt_type is PACKET_OTHERHOST, the MAC address dev_addr on

the packet is compared with the MAC address of each Veth device in vethdev_list.

If the packet is sent for one of the Veth devices, the packet will contain a Veth

device MAC address. Once the device is found, the skb->dev field in the packet is

set to the Veth device pointer vethDev field in ‘struct veth_device’ and the skb-

>pkt_type is changed from PACKET_OTHERHOST to PACKET_HOST. The

packet is now indicates that it’s been received for a device on the node and the

new packet type allows further processing at the network layer. The function call

is returned with a value 0. On returning to the Peth device modules, the packet is

inserted into a receive queue by calling netif_rx() in net/core/dev.c.

44

• If the skb->pkt_type is PACKET_BROADCAST, a copy of the packet is made

for each of the Veth devices over the Peth device in context. In each of the copies

of the packet, the skb->dev field is set to the vethDev field of the ‘struct

veth_device’ element associated with the Veth device. The copy is placed in the

generic receive queue by calling netif_rx() in net/core/dev.c. The function call is

returned with the return value of netif_rx().

If the packet is intended for any of the Veth devices, the statistics are updated, i.e., the

field vethStats->rx_packets in the ‘struct veth_device’ structure is modified. Any

processing of the received packet can be performed in this module.

3.2.13 Modifications to Linux kernel

The implementation of Virtual Ethernet devices is made in Linux kernel version

2.4.6. The parts of the kernel modified are listed:

- The routine inet_ioctl() in net/ipv4/af_inet.c is modified to process ioctl calls for

Veth devices.

- The routine eth_type_trans() in net/ethernet/eth.c is modified to direct Veth and

broadcast packets to Veth device layer.

3.3 User Interface for Veth Devices 'Vethctl'

Veth Devices are created using ioctl calls in the user space. The user interface

provides a command 'Vethctl' that can be used to create, destroy and list Veth devices

on a machine.

45

For the ioctl operations, a socket is created in protocol family PF_INET.

ioctl_fd = socket(PF_INET, SOCK_DGRAM, 0);

The ioctl call from the user control program is received by the inet_ioctl() function in

net/ipv4/af_inet.c. For the following ioctl commands, Veth modules are called for

further processing by inet_ioctl().

VETHDEV_CREATE - to create a Veth device

VETHDEV_DESTROY - to destroy a Veth device

VETHDEV_LIST - to list all the Veth devices

3.3.1 Creation

The format for creating a Veth device using Vethctl is:

Vethctl -c PDEV_NAME MAC_ADDRESS

- 'c' option is used to create a Veth device

- PDEV_NAME is the name of an existing Peth device on which a Veth device is to

be created

- MAC_ADDRESS is the MAC address in the format HH:HH:HH:HH:HH:HH. The

MAC address to be assigned should be unique.

Vethctl application parses the arguments given using Vethctl and fills 'struct

veth_param_create' element param_create.

strcpy (param_create.phyDevName ,argv[2]);

convMac(argv[3], param_create.srcMac);

convMac() is a routine used to convert the MAC address given in

HH:HH:HH:HH:HH:HH format to 6-byte hardware address format.

46

The element param_create is then passed into the kernel using ioctl call. The ioctl

call made to the kernel to create Veth device is

return_value = ioctl(ioctl_fd, VETHDEV_CREATE, (char

*)¶m_create);

• If the ioctl call is successful, 0 is returned from the kernel and the term itfNum is

filled in the kernel. The name of the Veth device created is the concatenation of

'veth' and itfNum. If the itfNum is 3, the Veth device created is veth3. A typical

output would be:

vethctl: Virtual Device veth3 created successfully

• In case of error, the ioctl may return a variety of error values. The interpretation

of the messages related to Vethctl is listed:

ENODEV - No physical device found with name PDEV_NAME in the list of

physical ethernet devices.

EEXIST - A Veth device already exists with MAC_ADDRESS.

3.3.2 Destruction

The format for destroying a Veth device using Vethctl is:

Vethctl -d ITF_NUM

- 'd' option is used to destroy an existing Veth device

- ITF_NUM is the interface number of an existing Veth device. If the Veth device

to be destroyed were veth4, ITF_NUM would be 4. A sample command:

vethctl -d 4

Vethctl application parses the arguments given using 'Vethctl'.

47

- If the ITF_NUM is not a digit, Vethctl returns an error.

- If the ITF_NUM is valid, Vethctl fills 'struct veth_param_destroy' element

param_destroy.

The field of param_destroy is filled.

param_destroy.itfNum = atoi(argv[2]);

The element param_destroy is then passed into the kernel using ioctl call. The ioctl

call made to the kernel to destroy a Veth device is

return_value = ioctl(ioctl_fd, VETHDEV_DESTROY, (char

*)¶m_destroy);

• On successful deletion of the Veth device, a value 0 is obtained. The output would

be:

vethctl: Virtual Device veth4 destroyed successfully

• In case of error, the ioctl may return ENODEV, the interpretation is given:

ENODEV - No device with name veth<ITF_NUM> found in the list of Veth

devices.

The other error messages are not directly related to the parameters passed using

Vethctl.

3.3.3 List

The format for requesting a list of Veth devices using Vethctl is:

Vethctl -l

- 'l' option is used to list existing Veth devices.

48

Vethctl passes an empty element of format 'struct veth_param_list' param_list to the

kernel space using ioctl call. The fields of param_list are filled in the kernel.

The ioctl call made to the kernel to list all Veth devices on a node is

return_value = ioctl(ioctl_fd, VETHDEV_LIST, (char

*)¶m_list);

On success, a value 0 is obtained. The numDev field is set to number of Veth devices

on the node and the element list is filled with the details of Veth devices in the kernel.

A typical output would be:

Number of veth devices on this host: 4

List of devices:

On eth1 : 4 virtual devices

 Virtual device Physical device itfNum Mac address

 veth3 eth1 3 00:04:86:00:15:03

 veth2 eth1 2 00:04:86:00:15:02

 veth1 eth1 1 00:04:86:00:15:01

 veth0 eth1 0 00:04:86:00:15:00

In case of error, messages that are not directly related to the parameters passed using

Vethctl may be returned.

3.3.4 Configure

The command ifconfig in the user space provides a variety of generic operations to

configure an existing Ethernet device. Some of the operations permitted using

ifconfig:

49

- Network status change - bring a device up or down

- Set IP and broadcast addresses

- Modify MAC address

- Change Maximum Transfer Unit (MTU)

- Set promiscuous mode.

The operations can be performed on the created Veth devices to configure the device

properties.

3.4 Conclusion

This chapter gives a detailed design and implementation of Virtual Ethernet devices

that emulate Physical Ethernet devices. The implementation is tested and the results

are included in Chapter 8.

50

4 Emulation of Propagation Delay in SBI

The data transmitted between satellites in space is subject to transmission and

propagation delays due to the communication link between the satellites. The

transmission delay results due to transmission through a link. The propagation delay

results due to the distance travelled by the packet from the source to the destination.

In the real world SBI system, data transmission is between two satellites or a satellite

and a ground station. Transmission delay results due to the transmission of a packet

onto the physical Ethernet medium of transfer. This is equal to

Transmission Delay = Packet Length

 Link Speed

The propagation delay is calculated using the distance between communication

elements and the rate of data transfer.

Propagation Delay = Distance between Satellites in Space

 Data Transfer Rate

The propagation delay in packet flow from a ground station to a GEO satellite is

about 130ms. It is relatively high compared to typical terrestrial network propagation

delay.

In the SBI emulation system, each Ethernet device emulates a communication

channel on a satellite with appropriate link rates and bandwidth. Hence, the two

constituents of delay in satellite environment need to be introduced into the SBI

emulation system.

51

• The transmission delay is emulated in the system by using device link rates

comparable to space communication link rates.

• The propagation distances between two nodes in SBI emulation system are

considerably lower than inter-satellite distances. Hence, propagation delay cannot

be emulated into the system using distance as a factor. Instead, it is introduced

into the emulation system before the packet flow is transmitted on an interface.

4.1 Design Overview

On each Ethernet device used as a communication link in SBI emulation, packets are

queued onto an outgoing queue before transmission. The simulation of propagation

delay is implemented by delaying packets in the outgoing queue by the amount of

propagation delay calculated for the particular interface acting as communication link

in the emulation system. The implementation is described in the next section.

The value of propagation delay inserted into packet flow can range from 1 msec to

300msec (tested values). The resolution of the delay is dependent on the system jiffy.

A typical value of jiffy is 10msec in Linux 2.4.6. The value can be changed to 1msec

to increase the resolution of propagation delay.

4.2 Propagation Delay in Linux Kernel QoS

In the Linux kernel QoS, each Ethernet device queues packets for transmission using

one of the queuing discipline (qdisc). The default queuing discipline is ‘fifo’ – First

52

In First Out. Each qdisc applies it’s own properties on the packet queue. To insert

propagation delay into a packet flow, ‘delay’ qdisc is designed.

The principle based on Linux QoS details given in previous chapters is described:

When a packet is enqueued into delay qdisc, the entry time is recorded in jiffies. The

exit time in jiffies of the packet is calculated by adding the delay value to the entry

time. The packet is dequeued at the exit time.

When a qdisc is created in Linux Kernel QoS, elements of type ‘struct Qdisc’ and

‘struct Qdisc_ops’ are attached to it. For the ‘delay’ qdisc, the relevant routines in

‘struct Qdisc_ops’ used in the functioning of the qdisc are: delay_init,

delay_enqueue, delay_dequeue, delay_requeue, delay_change and delay_destroy.

A structure of the format ‘struct delay_sched_data’ that contains the attributes of

delay qdisc is created:

struct delay_sched_data

{

unsigned long delay_jiffs;

struct delay_track *list_head;

struct delay_track *list_tail;

struct timer_list sleep_timer;

};

- The delay_jiffs field contains the relative delay value to be implemented on the

packets transmitted by the device dev i.e., the packets are delayed by an amount

delay from the time of entry into the device queue. The value is defined in jiffies.

- The list_head field points to the head of the Packet Entry Queue (PEQ). It is a list

of objects of ‘struct delay_track’ type.

53

- The list_tail field points to the tail of the PEQ as shown in Figure 9.

- The sleep_timer field contains parameters associated with the sleep of the

dequeue process till the packet at the head of the list is to be dequeued.

Elements of type ‘struct delay_track’ form the PEQ. Each element of PEQ is unique

for a set of consecutive packets that have the same exit time. The details of ‘struct

delay_track’:

struct delay_track

{

 struct delay_track *prev;

 struct delay_track *next;

 unsigned long exit_jiffs;

 int num_pkts;

};

Figure 9: Sample Arrangement of Packet Entry Queue

- The prev field points to the previous entry in the PEQ.

54

- The next field points to the next entry in the PEQ.

- The exit_jiffs field is the absolute time at which the packet(s) should be dequeued

from the packet queue.

- The num_pkts field is the number of packets to which, the fields in the entry

apply.

In the sample PEQ given in Figure 9, the prev field in entry B would be A. The next

field in entry B would be C.

The parameters related to delay qdisc are passed between user and kernel spaces in

the format 'struct tc_delay_qopt':

struct tc_delay_qopt

{

int delay_msec;

};

- The term delay_msec is the relative value of delay in milliseconds.

4.2.1 Initialize

When a delay qdisc is created on an Ethernet device, the fields of ‘struct

delay_sched_data’ are initialized in delay_init(struct Qdisc *sch, struct rtattr *opt)

defined in net/sched/sch_delay.c. An element q of type ‘struct delay_sched_data’ is

filled during initialization. The data pointer in ‘struct Qdisc’ element corresponding

to delay qdisc points to q. The term opt contains the parameters passed from the user

space.

55

The parameters are obtained in ‘struct tc_delay_qopt’ element ctl from the element

opt. The user control program passes the value of delay in milliseconds. The delay

value is converted to jiffies and stored in delay_jiffs element of q.

The list_head and list_tail point to the head and tail of PEQ and are set to NULL

during initialization. The sleep_timer is initialized to

q->sleep_timer.data = (unsigned long)sch;

q->sleep_timer.function = delay_watchdog;

Note: delay_watchdog() routine calls the netif_schedule() function for the device on

which the delay qdisc is created. Netif_schedule() calls net_tx_action() through soft

interrupts that inturn calls qdisc_run() and qdisc_restart(). This schedules the call to

the dequeue function of delay qdisc. The routines delay_enqueue and delay_dequeue

functions are shown in Figure 10.

4.2.2 Enqueue

When a packet is set for transmission by a device on which delay qdisc has been

attached, the delay_enqueue(struct sk_buff *skb, struct Qdisc *sch) routine is called

by dev_queue_xmit to enqueue the packet into delay queue. The term skb represents

the packet to be transmitted.

The struct delay_sched_data object q associated with the device on which the delay

qdisc is created is obtained from sch as:

q = (struct delay_sched_data *)(sch -> data);

56

Figure 10: Delay Queuing Discipline Enqueue and Dequeue

57

The exit_jiffs at which the packet has to be transmitted (dequeued from the delay

queue) is found by:

exit_jiffs = jiffies + q->delay_jiffs

The element jiffies gives the current system time in jiffies. Jiffies and absolute value

of delay for the device are used to calculate the exit_jiffs for the packet.

• If the PEQ is empty (q->list_tail is NULL) or if the PEQ is not empty but the

exit_jiffs of the last element in PEQ (q->list_tail) does not match with the

exit_jiffs of the packet, a new entry new_entry of ‘struct delay_track’ is made.

The fields of new_entry are filled as follows:

new_entry -> num_pkts = 1;

new_entry -> exit_jiffs = exit_jiffs

The new element is attached to the tail of PEQ.

• If the PEQ is not empty (q -> list_tail is not NULL) and the exit_jiffs of q ->

list_tail matches with the exit_jiffs of the packet, the q -> list_tail is updated, the

number of packets num_pkts in the last entry is incremented by 1.

Now that the entry for the exit time of a packet is made, the packet is enqueued onto

the packet queue defined by sch->q using skb_queue_tail in include/linux/skbuff.h.

skb_queue_tail(&sch->q, skb);

The backlog, bytes and packets fields of qdisc_delay are updated.

On successful enqueue of the packet, a value of 0 is returned to the calling function.

58

4.2.3 Dequeue

The function delay_dequeue(struct Qdisc *sch) is invoked by qdisc_restart() in

net/sched/sch_generic.c to dequeue a packet from delay queue for transmission. The

‘struct delay_sched_data’ element q associated with the device on which the delay

qdisc is created is obtained from sch as follows:

q = (struct delay_sched_data *)sch->data;

If the PEQ is not empty (q->list_head is not NULL), the q->list_head->exit_jiffs is

compared with the present time jiffies.

• If the q->list_head->exit_jiffs is greater than the present jiffies, no packet from

delay queue is dequeued. Hence, the dequeue process is made to sleep until q-

>list_head->exit_jiffs.

mod_timer(&q->sleep_timer, q->list_head->exit_jiffs);

• If the q->list_head->exit_jiffs is lesser than or equal to the present jiffies, one

packet in the entry at the head of PEQ is dequeued using skb_dequeue()

implemented in include/linux/skbuff.h. The number of packets in this entry is

decremented by 1.

skb = skb_dequeue(qdisc_delay->q);

q -> list_head -> num_pkts--;

If the num_pkts of q->list_head reduces to 0, the entry at the head of PEQ is removed

and q->list_head is updated.

The timer is set to the q->list_head->exit_jiffs to schedule a call to the dequeue

function for the next packet in the queue.

59

mod_timer(&q->sleep_timer, q->list_head->exit_jiffs);

Hence, the delay_dequeue() can be called either due to the interrupt created by the

timer or by the repeated calls to qdisc_restart() by qdisc_run(). Either way, the

exit_jiffs is compared with jiffies and packet is dequeued based on the appropriate

delay value set to it on the entry to delay queue.

4.2.4 Requeue

Once a packet is dequeued from delay queue, the hard_start_xmit of the device on

which the delay qdisc is created is called. If the device is busy, the packet is requeued

for later transmission. The delay_requeue(struct sk_buff *skb, struct Qdisc *sch)

method is called to requeue a packet onto the delay queue.

skb_queue_head(&sch->q, skb);

4.2.5 Destroy

A qdisc is destroyed upon request from user space using ‘tc’ command or when a

system is set to reboot. This action is handled by delay_destroy(struct Qdisc *sch).

The sleep_timer in ‘struct delay_sched_data’ is destroyed and the module count is

decremented.

del_timer(&q->sleep_timer);

4.2.6 Modify attributes

A modification to the delay qdisc attributes is a change in the value of propagation

delay implemented on the packet flow transmitted by a device.

60

Upon request for a change from the user space, delay_change(struct Qdisc *sch,

struct rtattr *opt) is called to change the value of delay_msec field of ‘struct

delay_sched_data’.

On obtaining the delay value from user space, it is converted into jiffies and stored in

delay_jiffs.

q->delay_jiffs = timespec_to_jiffies(&delay_value_timespec);

4.2.7 Display attributes

A request from user space to list the attributes of delay qdisc results in a call to

delay_dump(struct Qdisc *sch, struct sk_buff *skb) routine. The attribute of delay

qdisc, i.e., the value of propagation delay set to the packet flow on a device is

returned in terms of milliseconds.

opt.delay_msec = (delay_value_timespec.tv_sec * 1000) +

(delay_value_timespec.tv_nsec / 1000000);

4.2.8 Modifications to Linux kernel

The implementation of propagation delay queuing discipline is made in Linux kernel

version 2.4.6. The parts of the kernel modified are listed:

- The definition of structure ‘tc_delay_qopt’ is made in include/linux/pkt_sched.h.

4.3 Iproute Interface

An interface for delay qdisc is created using Iproute. Delay qdisc can be created,

modified, destroyed and it's attributes displayed using Iproute interface.

61

The format for setting the delay value of delay qdisc using tc command is:

tc qdisc add <DEV_HANDLE> delay delay_msec DELAY_VALUE_IN_MSEC

The term DEV_HANDLE is defined in Chapter 2.

The format for changing the propagation delay value of delay qdisc using tc

command is:

tc qdisc change <DEV_HANDLE> delay delay_msec

DELAY_VALUE_IN_MSEC

The format for destroying the delay qdisc using tc command is:

tc qdisc del <DEV_HANDLE> delay

The format for displaying the attributes of all qdiscs on the node using tc command

is:

tc qdisc show

The parameters given using 'tc' command are parsed using the routine

delay_parse_opt() created in tc/q_delay.c. The delay_msec field in 'struct

tc_delay_qopt' element is filled and passed into the kernel using netlink calls.

qopt.delay_msec = (atoi)(*argv);

addattr_l(n, 1024, TCA_OPTIONS, &qopt, sizeof(qopt));

4.4 API for QoS interface

The API for QoS is used to dynamically set the QoS attributes of interfaces. A

background on the API is given in the Chapter 2. The API is extended to create,

modify and delete delay qdisc through an interface.

62

The parameters required to process delay qdisc operations are in the format ‘struct

qdisc_delay’ similar to ‘struct tc_delay_qopt’ for compatibility.

struct qdisc_delay

{

int delay_msec;

};

- delay_msec is the value of propagation delay to be set on the interface desired.

To create, delete or modify a delay qdisc, an element send_msg of format ‘struct

qdisc_gen’ is filled with appropriate values. A pointer to delay_opt of type ‘struct

qdisc_delay’ is linked to it.

delay_opt.delay_msec = delay;

send_msg.qdisc_options = (void *)&delay_opt;

Using system call set_qdisc, the parameters are passed into kernel space. The

operations are indicated using commands ADD_QDISC, DELETE_QDISC and

CHANGE_QDISC. As a sample, creation operation of delay qdisc is shown.

set_qdisc(ADD_QDISC, (void *)&send_msg, sizeof(struct

qdisc_gen));

In net/qos_api/set_qdisc.c, a routine fill_delay_params() is created to process API

requests for delay qdisc. The user space arguments are processed and usropt of ‘struct

qdisc_delay’ format is filled.

Using rtattr objects, internal kernel QoS modules are called for further processing of

the queuing discipline.

63

fill_rtattr(&fill_param->nlm, 1024, TCA_OPTIONS, usropt,

sizeof(struct qdisc_delay));

The delay qdisc can thus be created, deleted or modified using the programming

interface. This interface is used in the SBI emulation scenario to operate delay qdiscs

on interfaces.

4.5 Conclusion

This chapter gives a detailed design for the introduction of propagation delay into a

packet flow. The Linux QoS modules are extended in the creation of delay queuing

discipline. The implementation is tested and the results are included in Chapter 8.

64

5 Emulation of Bit Error Rate in SBI

Data flow between a transmitter and receiver is subject to loss due to various factors

like attenuation, atmospheric absorptions and medium of propagation. The degree of

loss is dependent on factors like the medium of transfer and the distance between the

elements of data transfer.

Bit Error Rate (BER) is used to represent the degree of loss of data. BER is the ratio

of error bits received to the total number of bits received. If 2 bits are in error in

10,000,000 bits received, the BER is 2*10e-7.

In case of communication between satellites, data is affected by the medium of access

and the large distances for the data to propagate. Due to the great distances between

elements of data transfer in space, the BER is considerably higher than that results in

transfer between two nodes used in SBI emulation. Hence, introduction of BER into

packet flow is essential to emulate BER into SBI system.

5.1 Design Overview

The Bit Error Rate is emulated in the SBI system by introducing error in randomly

selected bits in the packet flow. On each Ethernet device used as a communication

link in SBI emulation, a queuing discipline ‘ber’ is attached. The packets transmitted

by each Ethernet device are queued onto the ber qdisc. In the ber qdisc, the number of

bits erred in a packet flow is proportional to the value of BER associated with the

communication link. The implementation is described in the next section.

65

5.2 Bit Error Rate in Linux Kernel QoS

As explained in the previous chapter, an Ethernet device queues packets for

transmission using a queuing discipline (qdisc) in Linux kernel QoS. Ber qdisc is

created to introduce bit errors into data flows through the device on which it is

created. The ber qdisc is attached to a device involved in SBI emulation and the

packet flow is erred depending on the ber value set for communication through the

device.

When a qdisc is created in Linux Kernel QoS, elements of formats ‘struct Qdisc’ and

‘struct Qdisc_ops’ are attached. For the ‘ber’ qdisc, the routines used to perform

operations on the qdisc are: ber_init, ber_enqueue, ber_dequeue, ber_requeue,

ber_change and ber_destroy.

When a packet is set for transmission on a device on which ber qdisc has been

attached, the packet is placed in ber queue. A random number generator is used to

obtain a random number between 0 and the BER value for the device. If the random

number lies in the packet data, an error is introduced into the packet. The bit

corresponding to the random number is flipped (1 becomes 0 and vice versa) and the

packet is transmitted.

On the receiver side, the packet is rejected due to the checksum failure. Since one bit

error causes a failure in the checksum, a maximum of one bit error is introduced into

a packet. As the bit error for packet flow increases, the chance of a packet getting

erred increases. Also, as the length of a packet increases, there’s a higher chance of

66

getting erred. Thus depending on the intensity of bit errors desired, bits are erred and

lead to loss of data.

In a reliable protocol like TCP, a retransmission of the packet is required for each

packet containing error. During retransmission, the error inserted into a packet is

reset, the process is reversed bringing the packet back to clean state.

The details of ‘struct ber_sched_data’ that contains the attributes of ber qdisc:

struct ber_sched_data

{

int ber_value; /* ber value given by the user */

};

- The ber_value field is the bit error value passed from the user space. The packet

flow will be introduced with error in 1 bit out of ber_value bits in data transfer.

Whenever a bit is erred in reliable transmission (TCP), the details of the packets that

are erred are recorded. Each packet details are stored in the format ‘struct error_skb’

and stored in a list err_list. The details of ‘struct error_skb’ are given:

struct error_skb_list

{

__u32 seq_num;

__u32 rand_bit;

int error_byte;

};

- The seq_num is the sequence number of the packet.

- The rand_bit field is the bit in the packet that is erred.

67

- The error_byte field is the original value of the byte in which the error is

introduced.

The parameters related to ber qdisc are passed between user and kernel spaces in the

format 'struct tc_ber_qopt':

struct tc_ber_qopt

{

int ber_value; /* 1 error per ber_value bits */

};

- The term ber_value is the inverse bit error rate to be applied on the communicatin

link.

5.2.1 Initialize

When a ber qdisc is created on an Ethernet device, the fields of ‘struct

ber_sched_data’ are initialized in ber_init(struct Qdisc *sch, struct rtattr *opt)

implemented in net/sched/sch_ber.c. Through the document, the element sch is the

‘struct Qdisc’ format of the ber qdisc and opt contains the parameters passed from the

user space. The parameters are obtained in ‘struct tc_ber _qopt’ element ctl as shown:

ctl = RTA_DATA(opt);

The value of ber passed from the user space is copied into ‘struct ber_sched_data’

element q.

q->ber_value = ctl->ber_value;

68

5.2.2 Enqueue

When a packet is set for transmission by a device on which ber qdisc has been

created, the ber_enqueue((struct sk_buff *skb, struct Qdisc *sch) routine is called by

dev_queue_xmit to enqueue the packet into ber queue. The term skb represents the

packet to be transmitted. The introduction of bit errors into packet flow is performed

in ber_enqueue(). The design to introduce BER is based on the following concepts:

• Since TCP/IP or UDP/IP protocol stacks are presently used for SBI emulation, ber

qdisc is designed to introduce bit errors into packet flows with ETH_P_IP

protocol and conforming to TCP or UDP transport layer protocols.

Note: BER applied to packets belonging to other transport protocols may cause

undesired results. Hence, other packet flows are transmitted without any

interference.

• A packet given by ‘struct sk_buff’ element skb has a length of skb->len. The first

68 bytes of skb->len are filled with network and transport layer information. The

68 bytes can be attributed to 20 bytes for transport layer header, 20 bytes for

network layer header and 28 bytes transport layer data. Even if a bit error is

introduced into these 68 bytes, there is no error introduced into the original packet

because the header area is reconstructed each time a packet is transmitted. For

further discussion, 68 bytes is referred to as HEADER_LEN and the total len of

skb->data as MAX_LEN. No bit errors are introduced into the first

HEADER_LEN area of skb->data, only the region between skb->data +

69

HEADER_LEN and skb->data + MAX_LEN is prone to errors in the BER

emulation.

• Data transmitted over UDP transport layer protocol is unreliable. No

retransmissions are requested or sent for loss of data. The sequence number on

UDP packets is not unique in a packet flow. Therefore, the error inserted into

UDP packets is not reset because the packet into which error is inserted is never

retransmitted.

• The errors introduced into some packets in the error prone region in skb->data

may not reflect in the retransmissions. If this is ignored, in the process of resetting

errors, new errors are inserted into pure retransmission packets and the packet

flow will be completely disrupted. Hence, when a retransmission for an erred

packet is found, before resetting is performed, a check is made for the existence of

the error.

The struct ber_sched_data object q associated with the device on which the ber qdisc

is created is obtained from sch as:

q = (struct ber_sched_data *)(sch -> data);

5.2.2.1 Handling IP packets

On receiving a packet at ber_enqueue(), a random number in the range 0 to q-

>ber_value is found using the random number generator get_random() from C

Standard library. get_random() is chosen because it is fast and simple compared to

other random number generators provided in the Linux kernel that take the system

state for the generation.

70

get_random() gives a random value between 0 and (2^31 –1). To map the value to a

range 0 to q->ber_value, the calculation performed is:

rand_bit = (unsigned) (get_random() * q->ber_value)

 (2^31 –1)

If the rand_bit lies within the range skb->data + HEADER_LEN and skb->data +

MAX_LEN, the following processing on the packet is done:

A new entry of type ‘struct error_skb’ err_skb_entry is created for the packet.

• The field seq_num is copied from the TCP header of the packet if the packet

belongs to TCP protocol. As explained earlier UDP protocol packet flows do not

send retransmissions, hence they are not recorded. The seq_num for UDP entries

is set to 0.

• The rand_bit field is filled with the random bit chosen for inserting error.

err_skb_entry->rand_bit = rand_bit;

• The routine err_reset() is called, the error is introduced and the field error_byte

is set in err_reset().

5.2.2.2 Handling TCP retransmissions

Retransmits for TCP packets are erred because of the errors inserted into the original

packet. Hence, they are reset to obtain the original packet. If the error is not reset, the

packet will be rejected at the receiver and retransmits have to be sent again and again.

The packet flow will not be complete. The process is described below:

When a packet is received, the transport layer protocol is determined.

71

• If the packet flow follows UDP, no further retransmission processing is performed

since the UDP does not have retransmit sessions.

• If a TCP flow packet is received, it is discovered to be a retransmission if an entry

already exists in the err_list with matching sequence number.

o If the packet is not a retransmit, no further processing is performed.

o If the packet is a retransmit, the routine err_reset() is called with required

parameters to reset the packet to original condition. The entry of type 'struct

error_skb' is then removed from the err_list.

Once the processing for normal and retransmit packets is performed, the packets are

enqueued onto ber qdisc using skb_queue_tail() routine defined in

include/linux/skbuff.h.

skb_queue_tail(&sch->q, skb);

The backlog, bytes and packets fields of sch are updated.

On successful enqueue of the packet, a value of 0 is returned to the calling function.

5.2.3 Dequeue

The function ber_dequeue(struct Qdisc *sch) is invoked by qdisc_restart() in

net/sched/sch_generic.c to dequeue a packet from ber queue for transmission. The

‘struct ber_sched_data’ element q associated with the device on which the ber qdisc

is created is obtained from sch as follows:

q = (struct ber_sched_data *)sch->data;

A packet from ber queue is dequeued by calling skb_dequeue() implemented in

include/linux/skbuff.h.

72

skb_dequeue(&sch->q);

If the dequeue is successful, the packet dequeued is returned. If the dequeue fails, a

value NULL is returned to the calling function.

5.2.4 Requeue

Once a packet is dequeued from ber queue, the hard_start_xmit of the device on

which the ber qdisc is created is called. If the device is busy, the packet is requeued

for later transmission. The ber_requeue(struct sk_buff *skb, struct Qdisc *sch)

method is called to requeue a packet onto the ber queue. As executed in enqueuing of

a packet, skb_queue_head() is used for requeuing the packet skb on the ber queue.

skb_queue_head(&sch->q, skb);

5.2.5 Set and Reset error

To set or reset error in packets, err_reset(struct sk_buff *skb, unsigned err_bit, int

*err_byte_val, int orig_retx) implemented in net/sched/sch_ber.c is called by

ber_enqueue(). err_bit is the bit in the data portion of the packet skb. err_byte_val is

a pointer to value of the byte in which error is (to be) introduced. orig_retx is a flag to

indicate if the packet is an original packet or a retransmit and is set to either

ORIGINAL or RETX.

A brief description of the process is given:

change_byte is the address of byte in the packet that’s set for change.

change_bit is a one byte variable with 1 as the change digit and 0s in the rest of the

digits.

73

change_byte = skb->data + err_bit/8;

change_bit = (unsigned char)(128 >> (err_bit%8 – 1));

If the 6th bit in 159th byte of a packet, change_byte = skb->data + 158 and change_bit

is (00000100)b.

• If orig_retx flag is set to RETX, the value of the error byte in the packet

determined by err_bit is compared with the stored value at err_byte_val.

o If the values match, the retransmit is determined the erred packet and the

value at err_bit is flipped. The err_byte_val is set to the new value of

change_byte and the control is returned.

o If the values do not match, the retransmit does not have an error and is the

original packet, so the control is returned with the packet untouched.

• If the orig_retx flag is set to ORIGINAL, the value at err_bit that was erred is

flipped. The err_byte_val is set to the new value of change_byte and the control is

returned.

5.2.6 Destroy

A qdisc is destroyed upon request from user space using ‘tc’ command or when a

system is set to reboot. This action is handled by ber_destroy (struct Qdisc *sch). The

module count of the ber module is decremented.

5.2.7 Modify attributes

A modification to the ber qdisc attributes is a change in the value of ber implemented

on the packet flow transmitted by a device.

74

Upon request for a change from the user space, ber_change(struct Qdisc *sch, struct

rtattr *opt) is called to change the value of ber_value field of ‘struct

ber_sched_data’. The parameters from user space are obtained by converting opt to

‘struct tc_ber_qopt’ format ctl using RTA_DATA(). The new value of ber is copied.

q->ber_value = ctl->ber_value;

5.2.8 Display attributes

A request from user space to list the attributes of ber qdisc results in a call to

ber_dump(struct Qdisc *sch, struct sk_buff *skb) routine. The attribute of ber qdisc,

i.e., the value of bit error rate set to the packet flow on a device is returned in the

format ‘struct tc_ber_qopt’ opt. The element opt is passed to the user space.

opt.ber_value = ctl->ber_value;

5.2.9 Modifications to Linux kernel

The implementation of bit error rate queuing discipline is made in Linux kernel

version 2.4.6. The parts of the kernel modified are listed:

- The definition of structure ‘tc_ber_qopt’ is made in include/linux/pkt_sched.h.

5.3 Iproute Interface

Iproute provides the interface to the queuing disciplines in Linux kernel. The

command ‘tc’ is used to set the attributes of queuing disciplines. These attributes are

passed into the kernel using netlink sockets. An interface for ber qdisc is created

75

using Iproute. Ber qdisc can be created, modified, destroyed and it’s attributes

displayed using Iproute interface.

The format for setting the ber value of ber qdisc using tc command is:

tc qdisc add <DEV_HANDLE> ber ber_value INVERSE_OF_BER_VALUE

The format for changing the ber value associated with a ber qdisc on a device using tc

command is:

tc qdisc change <DEV_HANDLE> ber ber_value

INVERSE_OF_BER_VALUE

The format for destroying the ber qdisc using tc command is:

tc qdisc del <DEV_HANDLE> ber

The format for displaying the attributes of all qdiscs on the node using tc command

is:

tc qdisc show

The parameters given using ‘tc’ command are parsed using the routine ber_parse_opt

(). The ber_value field in ‘struct tc_ber_qopt’ element qopt is filled and passed into

the kernel using netlink calls.

qopt.ber_value = (atoi)(*argv);

addattr_l(n, 1024, TCA_OPTIONS, &qopt, sizeof(qopt));

5.4 API for QoS interface

The API for QoS is used to dynamically set the QoS attributes of interfaces. A

background on the API is given in the Background chapter. The API is extended to

create, modify and delete ber queuing discipline through an interface.

76

The parameters required to process ber qdisc operations are in the format ‘struct

qdisc_ber’ similar to ‘struct tc_ber_qopt’ for compatibility with QoS modules.

struct qdisc_ber

{

int ber_value;

};

ber_value is the value of bit error rate to be set on the data transfer through the

interface desired.

• To create, delete or modify a ber qdisc, an element send_msg of format ‘struct

qdisc_gen’ is filled with appropriate values. A pointer to ber_opt of type ‘struct

qdisc_ber’ is linked to it.

ber_opt.ber_value = ber;

send_msg.qdisc_options = (void *)&ber_opt;

• Using system call set_qdisc, the parameters are passed into kernel space. The

operations are indicated using commands ADD_QDISC, DELETE_QDISC and

CHANGE_QDISC. As a sample, creation operation of ber qdisc is shown.

set_qdisc(ADD_QDISC, (void *)&send_msg, sizeof(struct

qdisc_gen));

• In net/qos_api/set_qdisc.c, a routine fill_ber_params() is created to process API

requests for ber qdisc. The user space arguments are processed and usropt of

‘struct qdisc_ber’ format is filled.

• Using rtattr objects, internal kernel QoS modules are called for further processing

of the queuing discipline.

77

fill_rtattr(&fill_param->nlm, 1024, TCA_OPTIONS, usropt,

sizeof(struct qdisc_ber));

The ber qdisc can thus be created, deleted or modified using the programming

interface. This interface is used in the SBI emulation scenario to operate ber qdiscs on

interfaces.

5.5 Conclusion

This chapter gives a detailed design for the introduction of bit errors into a packet

flow. The Linux QoS modules are modified in the creation of ber queuing discipline.

The implementation is extended to accommodate interfaces Iproute and API. The

implementation is tested and the results are included in Chapter 8.

78

6 Incorporation of Delay and BER in SBI

Data propagation between a transmitter and a receiver is subject to fixed bandwidth,

propagation delay and bit error rate. The designs for the emulation of propagation

delay and bit error rate are provided in the previous two chapters. For the emulation

of fixed bandwidth, Token Bucket Filter (tbf) is used. The emulation of

communication links requires the emulation of the three properties.

‘Serialq’ is a hybrid qdisc that is designed to contain more than one qdisc in serial

order. The packets passing through the ‘serialq’ will be subject to all the inner qdiscs

that the qdisc contains. In SBI emulation, serialq is created using Token Bucket Filter

(tbf), Propagation Delay (delay) and Bit Error Rate (ber) qdiscs in that order. Hence,

a packet flow through the device on which ‘serialq’ is installed is subject to tbf, delay

and ber qdisc properties. The design for serialq is explained in this chapter.

6.1 Design Overview

Serialq is implemented as a qdisc in Linux kernel. The functioning of a serialq qdisc

depends on the presence of component qdiscs on the same device as the serialq qdisc.

More than one qdisc can be created on a single device using CBQ. The required

background on CBQ is provided in Chapter 2.

The qdiscs serialq, tbf, delay and ber are created on separate classes on an Ethernet

device using CBQ. All the traffic passing through the device is directed to the class

containing serialq qdisc using filters. The direction of packet flow to serialq qdisc is

79

shown in Figure 11. The serialq qdisc contains pointers to the tbf, delay and ber

qdiscs on the same device.

Figure 11: Serialq and Component Queuing Disciplines

The design for packet flow through serialq qdisc is shown in Figure 12. On

enqueuing a packet on an Ethernet device that has serialq qdisc, it is directed to

serialq qdisc using appropriate filters. The packet flows through the component

qdiscs of the serialq during the enqueue and dequeue process.

The enqueue routine on serialq enqueues the packet on tbf queue, dequeues it from

tbf queue and then enqueues it on delay qdisc. The dequeue routine on serialq

dequeues a packet from delay queue, enqueues on and dequeues from ber queue. A

80

packet flow is thus set to follow the properties of tbf, delay and ber queuing

disciplines by the use of serialq qdisc.

Figure 12: Packet Flow Through a Serialq Queuing Discipline

6.2 Serialq in Linux Kernel QoS

An Ethernet device queues packets for transmission using a queuing discipline (qdisc)

in Linux kernel QoS. Serialq qdisc is created to merge the properties of tbf, delay and

ber qdiscs into packet flows through the device on which it is created.

When a qdisc is created in Linux Kernel QoS, elements of formats ‘struct Qdisc’ and

‘struct Qdisc_ops’ are associated with it. For the ‘serialq’ qdisc, the elements of

‘struct Qdisc_ops’ used to perform operations on the qdisc are: serialq_init,

serialq_enqueue, serialq_dequeue, serialq_requeue, serialq_change and

serialq_destroy.

81

The details of ‘struct serialq_sched_data’ that contains the attributes of serialq qdisc:

struct serialq_sched_data

{

struct Qdisc *tbf_qdisc;

struct Qdisc *delay_qdisc;

struct Qdisc *ber_qdisc;

};

- The tbf_qdisc field is the link associated with the component tbf qdisc.

- The delay_qdisc field is the link associated with the component delay qdisc.

- The ber_qdisc field is the link associated with the component ber qdisc.

The functioning of serialq relies on the existence of atleast one component qdisc. The

design for serialq allows the absence of tbf and ber qdiscs, so a serialq cannot be

complete without delay qdisc. Delay qdisc is arbitrarily chosen are mandatory.

6.2.1 Initialize

The initialization of serialq qdisc processes in two steps:

• Creation of serialq qdisc

• Creation of tbf, delay and ber qdiscs

6.2.1.1 Serialq qdisc

When a serialq qdisc is created on an Ethernet device, the fields of ‘struct

serialq_sched_data’ are initialized in serialq_init(struct Qdisc *sch, struct rtattr *opt

) implemented in net/sched/sch_serialq.c. The element sch is the ‘struct Qdisc’ format

82

of the serialq qdisc and opt contains the parameters passed from the user space. The

parameters are obtained in ‘struct tc_serialq_qopt’ element ctl from opt:

The other elements of ‘struct serialq_sched_data’ q, tbf_qdisc, delay_qdisc,

ber_qdisc are set to NULL in the process initiated by the creation of serialq qdisc.

6.2.1.2 Component qdiscs

The fields tbf_qdisc, delay_qdisc and ber_qdisc in ‘struct serialq_sched_data’

element sq are filled when the component qdiscs - tbf, delay and ber are created. The

process is implemented in cbq_graft() in net/sched/sch_cbq.c.

When a qdisc is attached to a class on cbq qdisc, cbq_graft() is called. Once the

serialq qdisc is attached to a class, every subsequent qdisc attached to one of the

classes on the device is used to set the links in sq.

In detail, when a tbf qdisc is attached after serialq qdisc is attached on the same

device, the tbf_qdisc link in sq, if not yet set, is set to the ‘struct Qdisc’ variable new

associated with tbf qdisc.

if(!(sq->tbf_qdisc))

{

if(!strcmp(new->ops->id, "tbf"))

sq->tbf_qdisc = new;

}

The delay and ber qdisc links are also set in cbq_graft().

83

6.2.2 Enqueue

The process of packet transmission on a serialq qdisc is provided in the previous

sections. The design details are given in this section.

When a packet is set for transmission by a device on which the setup for serialq qdisc

is created, the cbq_enqueue(struct sk_buff *skb, struct Qdisc *sch) is called by

dev_queue_xmit() in net/core/dev.c. The cbq_enqueue() inturn calls the

serialq_enqueue(struct sk_buff *skb, struct Qdisc *sch) routine to enqueue the packet.

The term skb represents the packet to be transmitted.

The ‘struct serialq_sched_data’ object q associated with the device on which the

serialq qdisc is created is obtained from sch as:

q = (struct serialq_sched_data *)(sch -> data);

The design to propagate the packet through the serialq components – tbf, delay, ber

qdiscs is provided below.

If no delay qdisc is associated with the serialq qdisc, the packet is dropped and a

return value NET_XMIT_DROP is returned. The presence of delay qdisc is essential

for the functioning of serialq qdisc.

If a tbf qdisc is associated with the serialq, the skb is enqueued onto tbf qdisc.

if(q->tbf_qdisc)

 q->tbf_qdisc->enqueue(skb, q->tbf_qdisc);

On success, the packet is dequeued from tbf qdisc.

tbf_skb = q->tbf_qdisc->dequeue(q->tbf_qdisc);

If tbf dequeue returns a packet, the packet is enqueued onto delay queue.

84

On success, the backlog, bytes and packets fields of sch are updated. In case of any

errors, serialq_enqueue() returns NET_XMIT_DROP.

6.2.3 Dequeue

The function cbq_dequeue(struct Qdisc *sch) is invoked by qdisc_restart() in

net/sched/sch_generic.c to dequeue a packet from the queues on the device on which

serialq is created. serialq_dequeue(struct Qdisc *sch) is called by cbq_dequeue() as

the packet flow passes through the class containing serialq qdisc. The ‘struct

serialq_sched_data’ element q associated with the device on which the serialq qdisc

is created is obtained from sch as follows:

q = (struct serialq_sched_data *)sch->data;

A packet is dequeued from the delay qdisc attached to serialq. If the delay dequeue

fails, NULL is returned to the calling function. On success, the packet dequeued is

queued onto and dequeued from the ber qdisc. The packet dequeued from ber qdisc is

returned to the calling function. In case of any errors from dequeue routines,

serialq_dequeue() returns a NULL value. In case of errors from ber enqueue routine,

the packet dequeued from delay queue is returned.

6.2.4 Requeue

Once a packet is dequeued from serialq queue, the hard_start_xmit of the device on

which the serialq qdisc is created is called. If the device is busy, the packet is

requeued for later transmission. The serialq_requeue(struct sk_buff *skb, struct Qdisc

85

*sch) method is called to requeue a packet onto the serialq queue. The routine

serialq_enqueue() is called to re-enqueue the packet onto serialq components.

serialq_enqueue(skb, sch);

6.2.5 Destroy

A qdisc is destroyed upon request from user space using ‘tc’ command or when a

system is set to reboot. This action is handled by serialq_destroy (struct Qdisc *sch).

The links to the other qdiscs – tbf, delay, ber are removed and the module count of

the serialq module is decremented.

6.2.6 Display attributes

A request from user space to list the attributes of serialq qdisc results in a call to

serialq_dump(struct Qdisc *sch, struct sk_buff *skb) routine. The attribute of serialq

qdisc on display is the device name and is obtained from sch->dev->name. The

information is returned in the format ‘struct tc_serialq_qopt’ opt. The opt is passed to

the user space.

strncpy(opt.dev_name, sch->dev->name, IFNAMSIZ);

6.2.7 Modifications to Linux kernel

The implementation of serialq queuing discipline is made in Linux kernel version

2.4.6. The parts of the kernel modified are listed:

- The definition of structure ‘tc_serialq_qopt’ is made in include/linux/pkt_sched.h.

- The initialization of serialq qdisc is set in net/sched/sch_api.c

86

- CBQ implementation is modified in cbq_graft() and cbq_dequeue_prio() in

net/sched/sch_cbq.c

6.3 Iproute Interface

Iproute provides the interface to the queuing disciplines in Linux kernel. The

command ‘tc’ is used to set the attributes of queuing disciplines. These attributes are

passed into the kernel using netlink sockets. An interface for serialq qdisc is created

using Iproute. Serialq qdisc can be created, modified, destroyed and displayed using

Iproute interface.

The format for creating a serialq qdisc using tc command is:

tc qdisc add <DEV_HANDLE> serialq

The element DEV_HANDLE contains the generic fields related to device on which

the qdisc is created and handles to the qdisc. This is defined in Chapter 2.

The format for destroying the serialq qdisc using tc command is:

tc qdisc del <DEV_HANDLE> serialq

The format for displaying all qdiscs on the node using tc command is:

tc qdisc show

The parameters obtained from the ‘tc’ command are used to fill in the field in ‘struct

tc_serialq_qopt’:

struct tc_serialq_qopt

{

char dev_name[16];

87

};

The dev_name field is nominal and does not carry any significance in the serialq

setup.

The parameters given using ‘tc’ command are parsed using the routine

serialq_parse_opt (). The dev_name field in ‘struct tc_serialq_qopt’ element is filled

and passed into the kernel using netlink calls.

strncpy(opt.dev_name, *argv, IFNAMSIZ)

addattr_l(n, 1024, TCA_OPTIONS, &qopt, sizeof(qopt));

The process for creating a serialq qdisc involves the following procedure:

• Create a cbq qdisc on the device on which serialq is desired

• Create classes one each for serialq, tbf, delay and ber qdiscs on the cbq qdisc

• Create serialq, tbf, delay and ber qdiscs on the classes

• Create a filter that directs all the traffic on the device to the class on which serialq

is created

6.4 API for QoS interface

The API for QoS is used to dynamically set the QoS attributes of interfaces. A

background on the API is given in the Chapter 2. The API is extended to create,

modify and delete serialq queuing discipline through an interface.

The parameters required to process serialq qdisc operations are in the format ‘struct

qdisc_serialq’.

struct qdisc_serialq

88

{

char dev_name[IFNAMSIZ];

};

dev_name is the Ethernet device on which the serialq is to be created.

• To create, delete or modify a serialq qdisc, an element send_msg of format ‘struct

qdisc_gen’ is filled with appropriate values. A pointer to serialq_opt of type

‘struct qdisc_serialq’ is linked to it.

strcpy(serialq_opt.dev_name, intfName);

send_msg.qdisc_options = (void *)&serialq_opt;

• Using system call set_qdisc, the parameters are passed into kernel space. The

operations are indicated using commands ADD_QDISC, DELETE_QDISC and

CHANGE_QDISC. As a sample, creation operation of serialq qdisc is shown.

set_qdisc(ADD_QDISC, (void *)&send_msg, sizeof(struct

qdisc_gen));

• In net/qos_api/set_qdisc.c, a routine fill_serialq_params() is created to process

API requests for serialq qdisc. The user space arguments are processed and usropt

of ‘struct qdisc_serialq’ format is filled.

• Using rtattr objects, internal kernel QoS modules are called for further processing

of the qdisc.

fill_rtattr(&fill_param->nlm, 1024, TCA_OPTIONS, usropt,

sizeof(struct qdisc_serialq));

89

The serialq qdisc can thus be created, deleted or modified using the programming

interface. This interface is used in the SBI emulation scenario to operate serialq

qdiscs on interfaces.

6.5 Conclusion

This chapter gives a detailed design for the creation of a unique queuing discipline

that combines more than one qdisc in serial order. The serialq qdisc implementation

results in providing an effective of tbf, delay and ber qdiscs on a packet flow. The

implementation is extended for interfaces Iproute and API. The implementation is

tested and the results are included in Chapter 8.

90

7 Emulation of a SBI Communication Link

The designs for Ethernet device emulation and the introduction of communication

link properties into packet flow are provided in the previous chapters. This chapter

gives the integration of Ethernet device and QoS emulation into the SBI emulation

system.

7.1 Virtual Devices

Virtual Ethernet Devices are created and destroyed by the EM Node Controller on

starting and close of an emulation scenario. The API created in the Device design is

used to perform these operations from the Controller.

7.1.1.1 Start

On starting the emulation scenario, the EM Node Controller creates Veth devices on a

Node. The EM Node Controller accesses the Linux kernel using ioctl calls to create

Veth devices.

A PF_INET socket is opened to perform the ioctl call operation. An element

param_create of format ‘struct veth_param_create’ is filled.

The field phyDevName is the Physical Ethernet device on which the Veth device has

to be created and the srcMac field is the MAC address of the Veth device.

VETHDEV_CREATE is the command used to indicate the creation of a Veth device.

With the required parameters, the ioctl call is made to the kernel to create the device.

91

ioctl(ioctl_fd, VETHDEV_CREATE, (char *)¶m_create);

On successful creation, the interface number of the Veth device is returned in itfNum

field in param_create.

7.1.1.2 Terminate

On receiving a signal to stop the SBI emulation scenario, the Veth devices on a Node

are destroyed. Each device is destroyed on the device using ioctl calls.

The process is the same as the creation of a Veth device. An element param_destroy

of format ‘struct veth_param_destroy’ is filled. The itfNum field is the interface

number of the Veth device to be destroyed. VETHDEV_DESTROY is the command

used to indicate the deletion of a Veth device. With the required parameters, the ioctl

call is made to the kernel to destroy the device. On successful deletion, a value 0 is

returned.

ioctl(ioctl_fd, VETHDEV_DESTROY, (char *)¶m_destroy);

The EM Node Controller creates and destroys the Veth devices in SBI emulation

environment on receiving Start and Stop messages from the EM. The Veth devices

are used as interfaces to transfer data between Nodes.

7.2 QoS Features

On startup, the EM Node Controller sets the QoS attributes bandwidth, propagation

delay and bit error rate are set on each interface on a Node. The parameters

bandwidth, the amount of propagation delay and the bit error rate value on each

92

interface are passed from the EM to the Node. An API for setting QoS attributes on

Ethernet devices is used to set the link parameters. The details about the API for

Linux QoS can be referred to in Chapter 2.

7.2.1 Create

The QoS setup on interfaces on a Node requires the creation of a set of qdiscs, classes

and a filter. The QoS elements are created using the QoS API. The procedure follows:

• Create a cbq qdisc on each desired interface with required parameters.

• Create four classes one each for serialq, tbf, delay and ber qdiscs on the cbq

qdisc.

• Create serialq qdisc on one of the classes.

The fields dev in ‘struct qdisc_gen’ element send_msg and dev_name in ‘struct

qdisc_serialq’ element serialq_opt are filled with the interface name. The parent

and the qdisc type ‘serialq’ are set in send_msg. The pointer to serialq_opt is set

in send_msg and the set_qdisc() routine is used to create the qdisc in the kernel

on the desired interface.

send_msg.qdisc_options = (void *)&serialq_opt;

set_qdisc(ADD_QDISC, (void *)&send_msg, sizeof(struct

qdisc_gen));

• Create tbf qdisc on the second class.

The field dev in ‘struct qdisc_gen’ element send_msg is filled with the interface

name. The parent, limit, burst and bandwidth and the qdisc type ‘tbf’ are set in

‘struct qdisc_tbf_usr’ element tbf_opt. The pointer to tbf_opt is set in send_msg

93

and the set_qdisc() routine is used to create the tbf qdisc in the kernel on the

desired interface.

send_msg.qdisc_options = (void *)&tbf_opt;

set_qdisc(ADD_QDISC, (void *)&send_msg, sizeof(struct

qdisc_gen));

• Create delay qdisc on one of the classes.

The field dev in ‘struct qdisc_gen’ element send_msg is filled with the interface

name. The parent and the qdisc type ‘delay’ are set in send_msg. The delay_msec

field in ‘struct qdisc_delay’ element delay_opt is set to the propagation delay

value passed from the EM. The pointer to delay_opt is set in send_msg and the

set_qdisc() routine is used to create the delay qdisc in the kernel on the desired

interface.

send_msg.qdisc_options = (void *)&delay_opt;

set_qdisc(ADD_QDISC, (void *)&send_msg, sizeof(struct

qdisc_gen));

• Create ber qdisc on one of the classes.

The field dev in ‘struct qdisc_gen’ element send_msg is filled with the interface

name. The parent and the qdisc type ‘ber’ are set in send_msg. The ber_value

field in ‘struct qdisc_ber’ element ber_opt is set to the bit error rate value passed

from the EM. The pointer to ber_opt is set in send_msg and the set_qdisc()

routine is used to create the qdisc in the kernel on the desired interface.

send_msg.qdisc_options = (void *)&ber_opt;

94

set_qdisc(ADD_QDISC, (void *)&send_msg, sizeof(struct

qdisc_gen));

• Create a filter that directs all the traffic on the device to the class on which serialq

is created.

This completes the QoS setup on an interface.

7.2.2 Modify

The communication link parameters can be modified in the emulation system to suit

the changing links between interfaces. The parameters that can be modified are the

propagation delay value and the bit error rate on an interface. The process is the same

as described in the Create section. The option ‘CHANGE_QDISC’ is used in the

set_qdisc() routine for the qdisc to be modified.

7.2.3 Destroy

On the close of the emulatin scenario, the QoS settings on each interface are removed.

The cbq qdisc created is destroyed using the API with delete option

‘DELETE_QDISC’ is used in set_qdisc() routine.

7.3 Conclusion

This chapter gives the details of emulation of communication link and properties in

the SBI emulation system. The SBI Node emulation system is tested and the resulting

setup of Virtual Ethernet devices and the QoS attributes on the devices are shown in

Chapter 8.

95

8 Testing and Results

The designs provided in the previous chapters are tested. The results are shown in this

chapter.

8.1 Virtual Ethernet Device Configuration using Vethctl

Virtual Ethernet Devices can be created, deleted and listed using the interface Vethctl.

The commands used and the results obtained are shown:

bluenode01 [2] # Vethctl -c eth1 00:93:93:30:02:02

vethctl: Virtual Device veth0 created successfully

bluenode01 [3] # ifconfig veth0 10.67.20.1

bluenode01 [4] # Vethctl -c eth1 00:93:92:30:52:02

vethctl: Virtual Device veth1 created successfully

bluenode01 [5] # ifconfig veth1 10.67.21.1

bluenode01 [6] # ifconfig eth1 192.168.10.21

bluenode01 [7] # Vethctl -l

Number of veth devices on this host: 2

List of devices:

On eth1 : 2 virtual devices

 Virtual device Physical device itfNum Mac address

 veth1 eth1 1 00:93:92:30:52:02

 veth0 eth1 0 00:93:93:30:02:02

96

bluenode01 [8] # ifconfig veth0

veth0 Link encap:Ethernet HWaddr 00:93:93:30:02:02

 inet addr:10.67.20.1 Bcast:10.255.255.255 Mask:255.0.0.0

 UP BROADCAST RUNNING MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

bluenode01 [9] # ifconfig veth1

veth1 Link encap:Ethernet HWaddr 00:93:92:30:52:02

 inet addr:10.67.21.1 Bcast:10.255.255.255 Mask:255.0.0.0

 UP BROADCAST RUNNING MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

bluenode01 [10] # ifconfig veth1 down

bluenode01 [11] # Vethctl -d 1

vethctl: Virtual Device veth1 destroyed successfully

bluenode01 [12] # Vethctl -l

Number of veth devices on this host: 1

List of devices:

On eth1 : 1 virtual devices

 Virtual device Physical device itfNum Mac address

 veth0 eth1 0 00:93:93:30:02:02

bluenode01 [13] # ifconfig veth0 down

bluenode01 [14] # Vethctl -d 0

vethctl: Virtual Device veth0 destroyed successfully

bluenode01 [15] # Vethctl -l

97

Number of veth devices on this host: 0

8.2 Queuing discipline configuration using ‘tc’

The delay, ber and serialq queuing disciplines can be managed using Iproute ‘tc’

interface. A sample configuration is given in Appendix B. The results are shown here:

bluenode01 [1] # tc qdisc add dev eth1 root handle 1 cbq bandwidth

10mbps avpkt 1200

bluenode01 [2] #

bluenode01 [2] # tc class add dev eth1 parent 1: classid 1:1 est

1sec 8sec cbq bandwidth 80Mbit 15mbps allot 1514 maxburst 50 avpkt

1000 prio 1

bluenode01 [3] # tc class add dev eth1 parent 1: classid 1:2 est

1sec 8sec cbq bandwidth 1Mbit 15mbps allot 1514 maxburst 50 avpkt

1000 prio 8

bluenode01 [4] # tc class add dev eth1 parent 1: classid 1:3 est

1sec 8sec cbq bandwidth 1Mbit 1mbps allot 1514 maxburst 50 avpkt

1000 prio 8

bluenode01 [5] # tc class add dev eth1 parent 1: classid 1:4 est

1sec 8sec cbq bandwidth 1Mbit 1mbps allot 1514 maxburst 50 avpkt

1000 prio 8

bluenode01 [6] #

bluenode01 [6] # tc qdisc add dev eth1 parent 1:1 handle 4 serialq

dev_name eth1

bluenode01 [7] # tc qdisc add dev eth1 parent 1:2 handle 5 delay

delay_msec 20

98

bluenode01 [8] # tc qdisc add dev eth1 parent 1:3 handle 6 tbf limit

120000 burst 150000 rate 1

bluenode01 [9] # tc qdisc add dev eth1 parent 1:4 handle 7 ber

ber_value 10000000

bluenode01 [10] #

bluenode01 [10] # tc filter add dev eth1 pref 10 protocol ip u32

match ip protocol 0 0x00 class1

bluenode01 [11] #

bluenode01 [11] # tc qdisc show

qdisc ber 7: dev eth1 ber_value: 10000000

qdisc tbf 6: dev eth1 rate 80Mbit burst 146790b lat 4292.4s

qdisc delay 5: dev eth1 delay_value: 20

qdisc serialq 4: dev eth1

qdisc cbq 1: dev eth1 rate 80Mbit (bounded,isolated) prio no-

transmit

bluenode01 [12] #

bluenode01 [12] # tc class show dev eth1

class cbq 1: root rate 80Mbit (bounded,isolated) prio no-transmit

class cbq 1:1 parent 1: leaf 4: rate 120Mbit prio 1

class cbq 1:2 parent 1: leaf 5: rate 120Mbit prio no-transmit

class cbq 1:3 parent 1: leaf 6: rate 8Mbit prio no-transmit

class cbq 1:4 parent 1: leaf 7: rate 8Mbit prio no-transmit

bluenode01 [13] #

bluenode01 [13] # tc filter show dev eth1

filter parent 1: protocol ip pref 10 u32

filter parent 1: protocol ip pref 10 u32 fh 800: ht divisor 1

filter parent 1: protocol ip pref 10 u32 fh 800::800 order 2048 key

ht 800 bkt 0 flowid 1:1

 match 00000000/00000000 at 8

The results show that the delay, ber and serialq qdiscs are created using ‘tc’ and the

parameters are listed using the operation ‘tc qdisc show’.

99

8.3 Configuration in SBI Emulation

In SBI emulation, Veth devices are created using ioctl calls by the EM Node

Controller in the SBI Node. The queuing disciplines are created using API developed

for the delay, ber and serialq queuing disciplines. U32 filters are used in the QoS

setup on the interfaces.

The output of a SBI emulation in the fields of Veth device creation and setup of QoS

on Veth devices is shown:

ifconfig results:

veth0 Link encap:Ethernet HWaddr 00:04:86:00:08:00

 inet addr:10.67.8.1 Bcast:10.255.255.255

Mask:255.255.255.255

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

veth1 Link encap:Ethernet HWaddr 00:04:86:00:08:01

 inet addr:10.67.8.2 Bcast:10.255.255.255

Mask:255.255.255.255

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

veth2 Link encap:Ethernet HWaddr 00:04:86:00:08:02

 inet addr:10.67.8.3 Bcast:10.255.255.255

Mask:255.255.255.255

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

100

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

veth3 Link encap:Ethernet HWaddr 00:04:86:00:08:03

 inet addr:10.67.8.4 Bcast:10.255.255.255

Mask:255.255.255.255

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

8.3.1.1 Vethctl –l:

Number of veth devices on this host: 4

List of devices:

On eth1 : 4 virtual devices

 Virtual device Physical device itfNum Mac address

 veth3 eth1 3

00:04:86:00:08:03

 veth2 eth1 2

00:04:86:00:08:02

 veth1 eth1 1

00:04:86:00:08:01

 veth0 eth1 0

00:04:86:00:08:00

8.3.1.2 tc qdisc show:

qdisc ber 8004: dev veth0 ber_value: 0

qdisc tbf 8003: dev veth0 rate 80Kbit burst 149995b lat 2147.5s

101

qdisc delay 8002: dev veth0 delay_value: 0

qdisc serialq 8001: dev veth0

qdisc cbq 1: dev veth0 rate 80Mbit (bounded,isolated) prio no-

transmit

qdisc ber 8008: dev veth1 ber_value: 1259902592

qdisc tbf 8007: dev veth1 rate 80Kbit burst 149995b lat 2147.5s

qdisc delay 8006: dev veth1 delay_value: 45

qdisc serialq 8005: dev veth1

qdisc cbq 2: dev veth1 rate 80Mbit (bounded,isolated) prio no-

transmit

qdisc ber 800c: dev veth2 ber_value: 1259902592

qdisc tbf 800b: dev veth2 rate 80Kbit burst 149995b lat 2147.5s

qdisc delay 800a: dev veth2 delay_value: 12

qdisc serialq 8009: dev veth2

qdisc cbq 3: dev veth2 rate 80Mbit (bounded,isolated) prio no-

transmit

qdisc ber 8010: dev veth3 ber_value: 1259902592

qdisc tbf 800f: dev veth3 rate 80Kbit burst 149995b lat 2147.5s

qdisc delay 800e: dev veth3 delay_value: 45

qdisc serialq 800d: dev veth3

qdisc cbq 4: dev veth3 rate 80Mbit (bounded,isolated) prio no-

transmit

8.3.1.3 tc class show dev veth0:

class cbq 1: root rate 80Mbit (bounded,isolated) prio no-transmit

class cbq 1:1 parent 1: leaf 8001: rate 1Mbit prio 1

class cbq 1:2 parent 1: leaf 8002: rate 1Mbit prio 1

class cbq 1:3 parent 1: leaf 8003: rate 1Mbit prio 1

class cbq 1:4 parent 1: leaf 8004: rate 1Mbit prio 1

8.3.1.4 tc filter show dev veth0:

filter parent 1: protocol ip pref 10 u32

filter parent 1: protocol ip pref 10 u32 fh 800: ht divisor 1

102

filter parent 1: protocol ip pref 10 u32 fh 800::800 order 2048 key

ht 800 bkt 0 flowid 1:1

 match 00000000/00000000 at 8

8.4 Performance Results for Virtual Ethernet Devices

The performance of Virtual Ethernet devices is tested by the following setup.

On two separate machines, simultaneous testing on the devices is performed under

the following scenarios:

- No veth devices

- A single Veth device on each machine

- Two Veth devices on each machine

- Three Veth devices on each machine

The results are shown:

Number of Veth

device

On Each Node

Device of

transfer

Effective Throughput

(in Mbps)

0 eth1 89.74

1 veth0 89.42

2 veth0 44.26

 veth1 44.20

3 veth0 29.28

 veth1 29.24

 veth2 29.01

103

It can be seen that during simultaneous transmission on more than on Virtual Ethernet

devices, the bandwidth of the underlying Physical Ethernet device gets divided

among them.

8.5 Performance Results for Delay Queuing Discipline

The performance of Delay queuing discipline is tested by varying the value of delay

and comparing with the average delay of 200 ping packets.

Figure 13: Performance of Propagation Delay Queuing Discipline

104

The results given in Figure 13 show that the effective propagation delay is equal to

the amount of delay inserted into a packet flow.

8.6 Performance Results for BER Queuing Discipline

The performance of Bit Error Rate queuing discipline is evaluated in this section. A

BER queuing discipline is created on a Veth device. The effect of BER on the

throughput and response times of ttcp generated packet flows are observed. On one of

the test nodes, BER value is varied from 10e-8 to 10e-5. Typical number of error

packets at any time does not exceed 60 for BER upto 10e-6. For higher BERs, error

packets also increase.

As seen in Figure 14, the throughput reduces as the BER increases in a packet flow.

Also, the response times for packet flow increase as BER increases due to increased

TCP retransmissions required to complete the flow. The application ‘ttcp’ is run with

packet flows of 10e5 packets with length 1000 bytes each. The results are shown in

the following graph.

105

Figure 14: Performance of Bit Error Rate Queuing Discipline

106

9 Conclusions

This thesis work provides the detailed design for Ethernet device emulation. It also

describes the design of Propagation Delay, BER and Serialq queuing disciplines that

contribute significantly to the Linux QoS. This provides a complete design for the

emulation of a communication link in the SBI emulation system.

9.1 Future Work

Possible extensions to the work given in this document include:

• BER queueing discipline could be extended to introduce errors into other

transport layer protocols. Presently, only UDP and TCP protocols are erred.

• Serialq has no control over the management of it’s component queuing

disciplines. The design can be modified so that the creation and deletion of the

components is controlled by serialq.

• Better handling of component tbf qdisc dequeue is required in Serialq

implementation. If tbf dequeue fails, packet cannot be freed because it is stuck in

the tbf queue. Presently, it is enqueued onto delay queue. The pointers in skb get

overwritten due to this.

107

10 References

[1] Bruce R. Elbert, The Satellite Communication Applications Handbook, Norwood, MA:

Artech House, 1997, pp 7–20.

[2] Yurong Hu and Victor O. K. Li, The University of Hong Kong, 'Satellite-Based

Internet: A Tutorial', IEEE Communications Magazine, Vol. 39, No. 3, March 2001, pp

154-162,

[3] Lloyd Wood, George Pavlou, and Barry Evans, University of Surrey, 'Effects on TCP

of Routing Strategies in Satellite Constellations', IEEE Communications Magazine,

Vol. 39, No. 3, March 2001, pp 172-180.

[4] Dennis Roddy, Satellite Communications, Second Edition, McGraw-hill, 1996, pp 89-

99, 279-296.

[5] Eylem Ekici, Ian F. Akyildiz, Michael D. Bender, 'A Distributed Routing Algorithm for

Datagram Traffic in LEO Satellite Networks', IEEE/ACM Transactions On

Networking, Vol. 9, No. 2, April 2001, pp 137-138.

[6] James Martin, Communications Satellite Systems, Englewood Cliffs, New Jersey:

Prentice-Hall Inc., 1978, pp 90-130, 257-276.

[7] Thomas R. Henderson and Randy H. Katz, University of California, Berkeley,

'Network Simulation For LEO Satellite Networks', AIAA Paper 2000-1237, 1-3.

[8] Alexander Keller, Munich University of Technology, ‘Towards CORBA-based

Enterprise Management: Managing CORBA-based Systems with SNMP Platforms’,

Proceedings of the Second International Enterprise Distributed Object Computing

Workshop, EDOC'98, San Diego, CA, USA: Munich Network Management Team,

November 1998.

[9] Saleem N. Bhatti, http://www.cs.ucl.ac.uk/staff/S.Bhatti/D51-notes/notes.html, October

1994

[10] Christy Hudgins-Bonafield, http://www.networkcomputing.com/905/905f2.html

[11] Jonathan Angel, http://www.networkmagazine.com/article/NMG20000509S0033

[12] Leon S. Searl, ‘Space Based Internet System Architecture’, February 22, 2001, pp 4-11.

[13] Leon S. Searl, ‘Space Based Internet Emulation Manager Design’, September 28, 2001,

pp 4-11.

108

[14] Leon S. Searl, ‘Space Based Internet System Requirements’, August 30, 2001, pp 4-5.

[15] Pooja J. Wagh, ‘Design for a Satellite Communication Link in a Space Based Internet

Emulation System’, June 200l, pp 38-58.

[16] http://www.celestrak.com/columns/

[17] Sandhya Rallapalli & Sujit Baliga, ‘An API for QoS in Linux’, May 2001.

http://www.ittc.ku.edu/~sandhya/courses/845proj.html

[18] Saravanan Radhakrishnan, ‘Linux - Advanced Networking Overview Version 1’,

September 1999 http://qos.ittc.ukans.edu/howto/index.html

[19] http://ipinspace.gsfc.nasa.gov/faq.html

[20] http://ai3.asti.dost.gov.ph/sat/chara.html

