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Abstract—The PRISM (Polar Radar for Ice Sheet Measurements) 
project at the University of Kansas is developing intelligent radar 
sensors for the measurement and study of the mass balance of the 
polar ice sheets.  An important component of PRISM is an 
intelligent, autonomous Synthetic Aperture Radar that can 
reason about its operating mode (monostatic vs. bistatic) and 
frequency, based on a variety of environmental and sensor-
related factors. The PRISM sensors are placed on autonomous 
robotic vehicles (“rovers”) that use the sensor and environmental 
information to decide about what paths to traverse, how to 
traverse them, and at what speeds. In our work, we have 
implemented the reasoning component of the autonomous radar 
and the rovers, using intelligent agents and Bayesian networks.  
This implementation is the first ever of a dynamically modifying 
adaptive radar and mobile data collection system based on 
autonomous rovers for accurate polar ice sheet measurements. 
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I.  INTRODUCTION 
The Polar Radar for Ice Sheet Measurements (PRISM) 

project at the University of Kansas is developing autonomous, 
mobile, intelligent radar sensors for the measurement and study 
of the mass balance of the Greenland and Antarctica ice sheets. 
Based on these measurements, researchers involved in the 
project will provide data to the scientific community to 
improve the understanding of ice sheet dynamics and the 
ability to create ice sheet models that would determine the 
contribution of melted ice to sea level rise. 

The primary sensors developed consist of a Synthetic 
Aperture Radar (SAR) and a wideband, dual-mode radar. The 
SAR can operate in bistatic or monostatic mode and at three 
different frequencies – 60, 150 and 350 MHz. It is used to 
generate two-dimensional reflectivity maps of the bed for 
determining basal conditions, including the presence and 
distribution of basal water. The wideband, dual-mode radar 
employs a radar depth sounder for measuring ice thickness and 
mapping deep internal layers and an accumulation radar for 
mapping near-surface internal layers. The radar sensors are 
integrated into a complete information system consisting of 
two vehicles – an automated rover and a manned (tracked) 
vehicle. These vehicles are configured with the necessary 

communication and navigation systems to collect data from the 
sensors and route them back to a central location for further 
processing, analysis, and storage.  

 

 
 
 
 

 
 
 
 

 
 
 
 

 

Figure 1.  Monostatic/Bistatic SAR (adapted from [1]). 
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The SAR transmitter, the monostatic SAR receiver, and one 
dual-mode radar are operated on the manned vehicle. The 
bistatic SAR receiver and another dual-mode radar are operated 
on the automated rover.  The rover moves in nearly straight-
line paths (along the base vehicle) during monostatic SAR 
measurements and makes cross-track transects during bistatic 
SAR measurements. Figure 1 illustrates the monostatic/bistatic 
SAR measurements, and shows the transmitter/receiver 
positions and the rover transects in bistatic SAR mode.  

The PRISM sensors are equipped with onboard intelligence 
that provides them with the ability to autonomously decide 
where and how to measure. The onboard intelligent system 
must dynamically determine the appropriate operating mode 
and frequency of the SAR, distance of the vehicles from the 
center of the measurement swath, cross-track transect length 
and along-track spacing of the rover in bistatic SAR mode, the 
speed and scan path (sequence of way points) of the rover, 
based on the measurements made by one or more of the sensors 
in real-time. The system must fuse any recently collected 
sensor data with a priori information, for example from 
satellites like RADARSAT, and other image data to determine 
the “optimum” sensor configuration for imaging the bed. It 
must handle uncertainty in the environment and sensor data, 
and make decisions depending on multiple criteria like 
potential scientific benefits, available system power and 
computing resources, wear and tear, and quality of judgment in 
terms of confidence in the different data inputs, and so on. 

We have developed an intelligent sensor and rover 
controlling system based upon a multiagent collaborative 
architecture that involves a number of distinct data collection 
and data dissemination agents that function continuously and 
autonomously in a distributed computing framework. The 
agents that control the rover and the radar sensors consult a 
probabilistic inference engine to make environmental and 
sensor-related decisions. We have used Bayesian networks to 
model dependencies between the different decision inputs and 
outputs of the intelligent system. Explanation rules (criteria) for 
fusing multiple data sets and making decisions have been 
coded in terms of conditional probabilities. Decision-making is 
based on the axioms of classical probability theory. 

II.  BAYESIAN NETWORKS 
A Bayesian network can be considered as an important 

paradigm of expert systems. It is a probabilistic system that is 
used to model a domain containing uncertainty in some 
manner. Based on Jensen’s definition, a Bayesian network 
consists of the following [2]: 

 A set of variables (nodes) and a set of directed 
edges between the variables. 

 Each variable has a finite set of mutually exclusive 
states. 

 The variables together with the directed edges 
form a directed acyclic graph. (A directed graph is 
acyclic if there is no directed path A1 → … → An 
such that A1 = An) 

 

 Edges between nodes reflect the dependency 
(cause-effect) relations within the domain. These 
effects are normally not completely deterministic. 
The strength of an effect is modeled as a 
probability. Hence, to each variable A with parents 
B1,,…,Bn in the Bayesian network, there is attached 
the conditional probability table P(A|B1,..,Bn). If A 
has no parents, then the table reduces to 
unconditional probabilities P(A).  

Fundamentally, Bayesian networks are used to make 
probabilistic inferences – the process of computing / updating 
the posterior marginal probability distributions of a set of 
variables of interest when information or evidence of other 
variables in the network comes in. Making an inference in a 
Bayesian network is based on the notion of evidence 
propagation. The mathematical basis for this is the Bayes 
theorem: 

)(A) / P(BP(B|A) . PP(A|B) =                         (1) 

In a Bayesian network, any node can receive information. 
The inference method does not distinguish between inference 
in or opposite to the direction of edges. Also, simultaneous 
input of information into several nodes will not affect the 
updating algorithm. Unlike the updating methods of rule-based 
systems, the updating method of Bayesian networks uses a 
global perspective, and if the model and information are 
correct, it can be proved that the method calculates the new 
probabilities correctly according to the theory of probability 
[3][6]. 

III. THE PRISM BAYESIAN NETWORK 
The decision-making process of the PRISM intelligent 

system is highly complex and dynamic.  Apart from any source 
information collected by the sensors in real time and other a 
priori information, the decision-making process is influenced 
by several other criteria. While a small part of the decision-
making process is deterministic in nature, a major part of it is 
probabilistic. It is these probabilistic rules of decision-making 
that have been coded into conditional probabilities, and the 
dependencies between the decision variables have been 
represented as a Bayesian network. 

In the PRISM Bayesian network, the leaf nodes represent 
decision outputs, the parent (ground) nodes represent decision 
inputs (from the sensors, satellites and other data sources) and 
other (the non-leaf and non-ground) nodes represent 
intermediate decision parameters. Some intermediate nodes 
that transform observed beliefs into actual beliefs are called the 
actual input (or actual belief) nodes. 

Links between nodes identify causal-effect or dependency 
relationships that have been quantified by the use of 
conditional probability tables. The conditionals specify the 
prior joint distribution of the nodes. They also serve as means 
for coding explanation criteria. They enable a decision input 
(or state) to be preferred over another and also assign 
confidence values when combining them. They are also used to 
transform observed beliefs into actual beliefs. 



Figure 2 shows a section of the PRISM Bayesian network 
that determines the actual level of interest of an experiment in 
the site being measured. This influences the choice of the SAR 
mode (bistatic vs. monostatic). Four inputs, namely, the level 
of interest shown by the science community in the site (X1), 
PRISM SAR data (X2) and Satellite SAR data (X3) indicating 
the extent to which the site is a potential transition zone (a 
varying flow regime) or contains one or more transition zones, 
and the velocity magnitude or motion vector (X4) extracted 
from the Satellite SAR velocity maps are combined to yield an 
estimate of the experiment’s actual level of interest (highly 
interesting, moderately interesting, not so interesting, etc.) in 
the site (X5).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Example of a PRISM Bayesian network 

When combining these decision input variables, X1 is to be 
treated at a higher weight than X2 and X3 that are to be treated 
equal to each other and at a higher weight than X4. Also, a 
value of “H” (high) for a decision input variable is to be 
weighed higher than “M” (medium), which in turn is to be 
weighed higher than “L” (low). Such priority or preference 
over inputs and decision states is coded in terms of conditional 
probability values.  

For example, if decision input variable X1 is reported to be 
“H” then decision output variable X5 is “H” irrespective of 
what is stated by the other input variables X2, X3 and X4. But, if 
X1 is reported to be “L”, then the values of X2, X3 and X4 will 
influence the value of X5, with X2 and X3 influencing X5 more 
than X4. Thus, 
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    (2) 

where a value of “X” for variables in equation (2) denotes 
“any” (H/M/L).  

Table I and II show two different sections of the conditional 
probability table for the decision output variable X5. Table I 
illustrates the case where variables X2, X3 and X4 have very 

little influence on X5, as X1 is “high”. Table II illustrates the 
scenario where variables X2, X3 and X4 influence X5, with X1 
being “low”. Again, the influence of X2 and X3 on X5 is greater 
than that of X4 on X5.  

TABLE I.  CONDITIONAL PROBABILITIES FOR NODE  X5 WITH  X1= H 

X1 High 
X2 Low 
X3 Low 
X4 High Medium Low 

High 0.92 0.90 0.88 
Medium 0.02 0.04 0.02 

Low 0.06 0.06 0.10 

TABLE II.  CONDITIONAL PROBABILITIES FOR NODE  X5 WITH  X1 = L 

X1 Low 
X2 High 
X3 High 
X4 High Medium Low 

High 0.70 0.65 0.65 
Medium 0.05 0.10 0.05 

Low 0.25 0.25 0.30 
 

Conditional probabilities enable transformation of observed 
beliefs into actual beliefs. For instance, the PRISM intelligent 
system associates a certain level of uncertainty to the measured 
(or observed) sensor and environmental input values, 
depending on the nature of the source/input. Such uncertainty 
can be coded and represented as conditionals in the conditional 
probability table of the corresponding ground node in the 
PRISM Bayesian network.  

Table III shows one such conditional probability table. It is 
that of node “Actual Scientific Interest”, and is based upon the 
prior probability distribution of the corresponding ground node 
“Observed Scientific Interest”. 

TABLE III.  CONDITIONAL PROBABILITIES FOR AN ACTUAL INPUT  NODE 

Observed 
Actual 

High Medium Low 

High 0.90 0.05 0.02 

Medium 0.08 0.90 0.08 

Low 0.02 0.05 0.90 

 

IV. IMPLEMENTATION & WORKING 
The PRISM Bayesian network application is built upon the 

HUGIN Researcher V6.4 Java API library and is capable of 
inter-operating on the Linux and Windows platforms. The 
Bayesian network structure of nodes and edges has been 
constructed upon an object-oriented belief model comprising of 
HUGIN classes and class collections. Nodes and conditional 
probability tables have been defined using a special purpose 
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language – called the NET language that is provided by the 
HUGIN system to textually specify a Bayesian network. The 
HUGIN API provides functions to parse and generate text files 
containing such descriptions. These files can also be interpreted 
by the HUGIN GUI, which can be used to view and edit the 
specified Bayesian network [6]. 

Intelligent agents receive and propagate input evidence 
(source data) in the Bayesian network as follows: They first 
analyze and transform source data into what are called as 
“decision states” or “input states”. They then identify the 
corresponding input (parent) nodes in the Bayesian network 
and populate the nodes’ conditional probability table by setting 
a value of 1 to the input state observed and a value of 0 to 
others. Observed inputs and beliefs are transformed into actual 
values based on the prior probabilities of the ground nodes and 
conditionals specified in the probability tables of the actual 
nodes. Finally, the intelligent agents call HUGIN functions to 
propagate evidence in the network and compute the posterior 
marginal probability distributions of the output nodes. 

Evidence is propagated and the conditional probability 
distributions of the nodes are updated using the sequential 
learning method (also referred to as adaptation) developed by 
Spielgelhalter and Lauritzen [4][5] and implemented by the 
HUGIN system [6]. After propagation of evidence is complete, 
the revised beliefs or conditionals of the output nodes represent 
the certainty of the decision output, which is then treated as its 
rank (or risk value) that enables the choice of the best possible 
decision alternative.  

V. RESULTS & CONCLUSION 
The complete PRISM intelligent system architecture and 

the Bayesian inference engine has been implemented and 
demonstrated on autonomous rovers and simulations of radar, 
and other data sources that have not been completed as of the 
writing of this paper. We have simulated the measurement and 
interpretation of such hypothetical and unavailable inputs using 
software “dummy” agents. For available inputs we have written 
“wrapper” agents to collect and distribute real-time data from 
existing sources.  

Experiments have shown the feasibility of our approach and 
the success of our implementation, both in a general and in a 
near real-time setting. We deal well with most typical decision-
making scenarios that may arise during the project’s ice sheet 

measurements. The strength of probabilistic reasoning using 
Bayesian networks has effectively been demonstrated for the 
project. With source inputs being uncertain and changing 
unpredictably, the intelligent system comes up with the best 
possible decisions. Input evidence is being correctly entered 
and propagated. The conditional probability tables get 
effectively updated/adapted and yield correct and revised 
beliefs on propagation. The conditionals have effectively been 
used as means of specifying confidence in decision 
inputs/states and coding decision criteria and preference values.  

The implementation and results prove significant especially 
in cases when the same property is being measured by more 
than one source and the values need to be combined to yield a 
composite estimate of the property. The system is to be 
extended to include real data sources that replace simulations 
of radar data and a few other rover sensors. 
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