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Abstract -- In this paper, we desribe mdti-displacement co-
occurrence matrices for re~enting W ice textures of SAR
imagery. Our design of co-occcurrence matrices captures
local relationships among neighboring pixels and global links
among distant pixels, an advantage over other existing
versions of co-occurrence matrices. As a result, it can
adequately represent micro textures, such as grainy details,
and macro textures, such as patchy blocks. We have
conducted experiments to compare our multi-displacement
co-occurrence matrices with other existing versions using
Bayesian linear discrimination. We have found that our
design is the most texturally representative in terms of
classification accuraci= in both training and test datasets. In
addition, we have applied this design to sea ice texture
analysis which includes detection and localization, and
subsequent image-texture mapping.

INTRODUCTION

Statistical texture analysis has been important in SAR sea
ice imagery research since, with it, sea ice regions can be
better represented and thus classified, compared to analysis
based on only intrinsic gray levels. For example, [1]
classified one SAR image (over the Beaufort Sea) to
new/fret-year ice and multiyear ice with an overall accuracy
of more than 6590 using derived textural descriptors on X-
band (HV polarization). Standard statistics and higher order
texture statistics generated from co-occurrence matric= were
used to classify SAR sea ice data with an overall accuracy of
89.5% [2]. Statistical textures have rdso been used in
classifying other sea ice imagery such as Landsat Thematic
Mapper (TM) Antarctic scenes [3]. In this paper, we
concentrate on the statistical textural contexts of SAR sea im
regions for identifying structural composition of ice-water
patterns, instead of surfacial textures that have&n used for
determining ice types.

We have chosen the gray level co-occurrence method as
our texture axudysis basis for three reasons. FWS4permptual
psychology studies 14] have shown this method to match a
level of human perception. Second, studim [5,6] have shown
this method to outperform the others in texture
discrimination. Thir& co-occurrence matrims have been
used successfully in many applications [7-10] and also in
SAR imagery class~lcation [11,12].

In tiis paper, we pr=ent a study of different designs of co-
occurrence matricm on SAR sea ice imagery. We investigate
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the effects of the quantization and displacemen~ factors on
implementing co-occurrence matrices for SAR sea ice
imagery. We also pre,sent a classification experiment using
Bayesian linear discrimination that compares different
implementations of co-occurrence matrices. Finally, we
apply the best implementation on SAR sea ice imagery to
generate textural maps.

BACKGROUND ON CO-OCCURRENCE MATRIC~

me original definition of gray-level co-occurence matrices
is shown in [7]. Briefly, the texture-context information is
s-led by the mati of relative frequencies P~ with two
neighboring pixels separated by distance d occur on the
image, one with gray level i and the other with gray level j.
Such matrices of gmy level co-occurrence frequencies are a
function of the angular relationship and distance between the
neighboring pixels. To implement co-occumenm matrices,
one needs to identify the number of quantization levels, the
orientation and displacement factors, given which one can
determine the most representative co-occurrence matrix for
certain application. An algorithm for selecting the matrix
with the highest ~2 value was proposed such that one can
determine the displacement and orientation parameters of the
optimal matrix for classification [13].

EXPERIMENTS

Our experiments were designed to assess the best
quantization and displacement values for representing SAR
sea ice textures. Before conducting the experiments, we
identiled seven sea ice texture types 1) Web-1ike, where the
image consists of mostly multiyear ice with high ridge
content 2) High-deformation, where crushing of ice floes
creates ex-e deformations, usually found at marginal ice
zones (MIZS), 3) Fractal-like, where the image consisw
mostly of new ice and melt @rids, especially at the end of
summer melt season, 4) Pebble-like, where tiny round floes
are embedded in younger ice formations, at the start of
summer melt season, 5) Smoth, where floes are minimally
deform~ with low ridge contenq 6) High-contrast, where
large dark multiyear ice floes and large refrozen young and
thin pancake ice coexis~ resulting from mobile floes that
create water lodgings and yet are stationary enough for
pancake or young ice to form, and 7) Packed, where the
image consists of packed multi year ice occasionally broken
up by leads. Beside their geophysical implications, these
texture ~s were identified also because of their frequent



occurrences during a study of a database of about 2~ SAR
sea ice images. We conducted three experiments as follows:

Experiment 1: Number of @tization Levels

This experiment used uniform quantintion. We extracted
sample sites, each 64 x 64, horn 18 images with different
textural regions. We devised a test using four textural
features (energy, contras~ entropy, and homogeneity) and six
different quantization schemes: 8, 16, 32, 64, 128, and 256
levels. The displacement was 1 and orientations were 0°,
45°, 90°, and 135°. Taking the average of the orientations
yields for each sample site a two-dimensiod vector. The
degrees of similarity or dissimilarity among samples, as
derived from the vectors, were more stable across higher
number of quantization levels, indicating that we should not
use small number of quantization levels.

Experiment 2: Displacement Parameter

The displacement, d, is important in the computation of co-
occurrence matriws. Applying a large displacement vatue to
a fine texture would yield a co-occurrence matrix that does
not capture the textti information, and vice versa. For our
experimen~ we used d = 1, .... 32. As a result, we generated a
curve for each textural feature, for each quandzation scheme.
We concluded that across quanti=tion schemes, each texturat
curve preserves nicely, indicating that it is sufficient to use
one quantiation scheme with a range of displacement vaIues
since tie dynami~ of the curves are similar.

Experiment 3: Implementations and A Comparative Study of
Co-Occurrence Matrices

Experiments 1 and 2 provided us some ideas on designing
a general co-occurrence matrix to represent SAR sea ice
textures. Combining the conclusions of the experiments, we
conjectured that a co-occurence matrix with a 64-level
quantization and a range of displacement values shotdd
sufficiently and efflcientl y represent textures in sea ice. For
SAR sea ice imagery, there are no systematic patterns based
on orientation: ice floes position themselves in all possible
orientations. We thus used 0°, 45°, 90°, and 135°. In this
experirnen~ we had three implementations of co-occurrence
matrices. The first implementation was called the mean
displacement and mean orientation (MDMO) matrix.
Textural measures are averaged over orientation and
displacement values. This design assumes that every matrix
of specific displacement and orientation values is partially
representative for each region; and that the third order
measuremen~ the average of the textural curve values, is
constructive. The semnd implementation was called the ~2-
optimal displacement and mean orientation (ODMO) matrix.
%2 values of all 4 matrices of different orientations are
calculated and averaged for each displacement value, and the
matrix accumuhting the most X2 value is the optimal matrix.
This design assumes that only the matrix whose Z2 value is
the highest with s~lc displacement is truly and sufficiently

represent.adve for the sample. The third one is called the ~2-
optimal displacement and Z2-optimal orientation (ODOO)
matrix. This design assumes that the matrix whose %2value
is the highest with sp~lc displacement and orientation is
truly and stilcientIy representative for the sample. To study
these three implementations comparatively, we used a Baye,s
classWler. A Bayes classifier estimates covariance matrices
from the different classes of training dataset and generates
classifying rules. In testing, each rule will be used to
compare an unknown instance to a certain class. The rule
that yields the largest probability of membership gives the
class of the unknown instance.

Fm4 we used 240 sample sit~, and seven texture groups.
After training, we obtained seven classifying rules. We then
re-applied all the samples as unknown instances to the rules,
and the resubstitution or training set classification accuraci~
of the MDMO, ODMO, and ODOO implementations were
90.79%, 62.28%, and 51.75%, respectively. This exercise
tells us that MDMO has the best capability in creating the
necessary inter-class decision boundaries among the seven
texture groups Second, to test the generality of our MDMO
Bayes classifier, we divided the data set into two, trained the
class~ler on one and applied the trained class~ler to the other.
The training and test set classification accuracies were
99.19% and 94. 17%, respectively. We have concluded from
these experiments: 1) The MDMO implementation is the
most representative of SAR sea ice textures, 2) The range of
displacement values as a whole is more representative than a
displacement value alone. This indicat= that MDMO, using
a third order measurement (i.e., the average of the curve), is
able to capture local and global details of a texture, and 3)
Matrices with the highest X2 value did not provide useful
information. We named the MDMO implementation Multi-
Displacement Co-Occurrence Matrix.

We have applied Multi-Displacement Co-Occurrence
Matrix to generate texture maps of SAR sea ice imagery,
thereby detecting and locating regions with higMow ridge
conten~ highflow deformation, high/low mel~ etc. For
example, Fig. 1 shows an original image and Fig.2 shows a
texture classification of the image: 53.6290 Web-like,
31.26% Fractal-like, 10.79% Pebble-like, 7.79% Smooth, and
3.56% High-conmt. The texture classification and mapping
results have been encouraging, and our planned future work
includes gathering more diversified test sets and improving
the classification power of our co-occurrence matrix.

CONCLUSIONS

We have implemented a texture representation twhnique
for SAR sea ice imagery and shown that it has more
class~lcation power than co-occurrence matrix that uses only
a single displacement value. We have also shown that a
straight 64-level quandzation scheme is able to discriminate
different textures adequately. In addition, we have also
applied this design to SAR sea ice imagery which includes



localization of surface deformation, high ridge conten4 and
melt pond regions, which is useful in sea ice geophysical
analysis.
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Fig.1 The orignal SAR image, Mar 27, 1992, at 73.46”N,
156.19”E. Copyright ESA.

Flg.2 The texture map of Fig.1. More than half (bright
regions) of the image has been classfled as Web-like.


