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1. Introduction

This technical report presents a technique for SAR sea ice segmentation. The objective is to
determine the number of classes and the composition of each class in the image automatically. The
underlying implementation approach is dynamic local thresholding, divided into regional histogram
computation and selection, Gaussian curve approximation, bimodality filtering and optimal
threshold determination, significant threshold selection and assignment, regional interpolation,
pointwise interpolation, and N-ary decision, as discussed in (Haverkamp et al. 1995). However,
we have designed a different significant threshold selection strategy, based on multiresolution.
Given the significant thresholds and preliminary segmentation, the spatial attribute variety is
computed. Our clustering method is a spatial clustering technique that we call the Aggregated
Population Equalization (APE) that acts upon the attribute variery. This method has two modules,
one for merging classes, and the other for splitting classes. In this paper, our focus lies on the

multiresolution significant threshold selection approach and the APE method.

2. Multiresolution Significant Threshold Selection

Our new significant threshold selection strategy is based on data reduction adapted from (Sczan
1990) and it detects peaks in the histogram. Here, we assume that the peaks are the threshold
points where the image should be segmented. Several peak detection algorithms have been
proposed in the literature, either for data reduction, segmentation, or enhancement.

One inherent problem in histogram-based peak detection is noise. Histogram tracing
algorithms are sensitive to noise and may detect, as a result, spurious peaks. Several techniques
have used histogram smoothing prior to processing; for example, Rosenfeld and Torre (1983)
proposed smoothing the histogram before computing its convex hull. Also, Horowitz (1977)
smoothed the waveform of electrocardiogram using a piecewise linear curve approximation
through a split-and-merge approach. The granularity or the closeness of fit ol the approximation
was controlled by the user: the closer the fit, the less smoothed the wavetorm was. Others have
used embedded smoothing mechanisms within the processing module. Eklundh and Rosenteld
(1979) proposed a peak detection algorithm using difference operators of various sizes applied at
all points of the waveform. Our new technique in this paper is also a multiresolution approach.

The basis of our technique is the utilization of the cumulative distribution function (cdf) of
the histogram to detect peaks, which has been proposed to eliminate noise eflects while processing



the histogram. For example, Boukharouba ez al. (1985) located peaks using the zero-crossings
and local extrema of a peak detection signal determined from the curvature of the cdf. To obtain
the peak detection signal, the authors fitted the cdf to a Chebyshev polynomial. Subsequently,
Sezan (1990) refined the method to lessen computational intensity and reduce the number of user-
specified parameters. In what follows, we describe Sezan's method in detail and present our own

multiresolution version of the method.
2.1. Cumulative Distribution Function and Peak Detection

As reasoned in (Sezan 1990), the concept of using the cumulative distribution function to detect
peaks is as follows. First, generate a peak detection signal from the image histogram. Then,

locate the histogram peaks using the zero-crossings of the peak detection signal and the local
extrema between the zero-crossings. To obtain the peak detection signal, 7], the histogram, /4. is

convolved with the peak detection kernel, K,:

Na=k,®h (1)
where h = H,(t), the histogram, in our application, and

Ko=0®A, (2)
where O is a differencer such that
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where the parameter £2 is assumed to be odd, and the extent of A, is  —2. Combining

. Equations 2, 3, and 4 yields
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[ (Q- _
—(9—1+w+1ji, Ll PP
2 Q 2
:J(E]_l_’ =0 . (5)
2 /Q
[—E"a)]—l— lco<2l_
L 2 Q 2

Sezan (1990) referred to the parameter €2 as the peak-detection parameter. This parameter is
particularly important in determining the sensitivity of the algorithm to noisy peaks in the
histogram. Figures 1 and 2 show the smoother and the peak detection kernel, respectively, [or

Q=11
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Figure 1. The smoother, A, (@), for -4 < W <4, and A, (@)= 0 otherwise
(Equation 4).

According to Sezan (1990), the convolution with the differencer approximates first-order
differentiation. For an ideally smooth histogram, the peaks could be located from the sign and the
zero-crossings of the convolution of & with 0. However, practically, such histogram does not

exist and smoothing must be applied prior to differencing. The smoothing is as tfollows. Ata
' particular bin, say, @,, the convolution of the peak detection kernel with the histogram results in



the difference of the weighted sum of histogram values at (€2 —1)/2 bins prior to @, and that of
histogram values at (Q —1)/2 beyond @,. Therefore, as the value of €2 decreases, the
convolution mask or interval essentially becomes smaller, and thus is more sensitive to local
variations. For larger s, the averaging effect is greater and only large peaks give strong

responses to the algorithm.

5/11

4/11
’3/11
2/11
1/11
-5 4 3 2 -1
0

) 1 2 3 4
/11

-2/1 l
-3/11

-4/11

-5/11

Figure 2. The peak detection kernel, k,, (@), for =5< w <4, and x, (w) =0

otherwise (Equation 5).

To implement the above strategy, Sezan (1990) formulated that the detection signal in
Equation 1 could be generated from the image cdf via a simple averaging operation. He showed
that

Nya=C~Ca=K,®h (6)

where C is the cdf of A, and C, is the convolution of the cdf ¢(@) with the uniform rectangular

window,
wo(w)=1Q,—(Q-1)2<0(Q-1)/2 (7)
such that
(Q-1/2
Ca(@)= Y c(w—k)wy (k). ®)
k=-(Q-1)/2

Equation 8 can be separated into three parts:



Q-2

c(@)= S c(o-kw (k)+c(@)w,(0)+ Y c(@-kw,(k).  ©

k=—(2-1)/2 k=1

Expressing ¢(@ — k) in terms of the histogram, A(®), we have

c(w)- Sh(l), k>0

c(w-k)= e . (10)
c(w)+ Y h(l), k<0
I=a+1
Substituting Equation 10 into Equation 9, we obtain
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Note that since ), W, (@) =1, we have
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Thus, 7, can be rewritten as
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Expanding the above expression for the values £ =3,5,7,..., K, where K, is odd, we have



() = 3 (@)~ h(o+1)
ns(w)=%(h(a)—l)+2h(w)—2h(a)+l)—h(w+2))
1(Mw-2)+2hw-1)+3hw)-
777(60):7[311 J
(w+1)-2h(@w+2)—h(w+3)
K, -1 K. -1
hho—| —2—-1|{+28o—-| 22—=-2| |+
T LG G ) A G
K| K, -1

+-—2——h(w)+---—h[a)+K"_lj

From the above equations, we observe that 7], (@), Q=3,5,7,..., K, are the result of
convolving A{ @) with K, where K is exactly the definition found in Equation 5, with
Q=3,5,7,...,K,. Therefore, N, =c—C, = K, ® h, as stated in Equation 6.

Thus, we have obtained an implementation approach based on cdf of the histogram, which
corresponds to convolution of the signal with a kernel. Sezan (1990) further postulated several

principles to estimate the start, end, and maximum points of the peaks as the tollowing.

* A zero-crossing (similar to that of Laplacian second order derivative), of the peak detection
signal, 7], to negative values—a negative crossover—signifies the start of a peak. The

bin value, @, at which the negative crossover occurs is defined to be the estimate of a starr
point. Thus, the start point of the Ith peak is @, ; the next negative crossover al the bin

®;,, estimates the start of the next peak, and so on.

* A zero-crossing of the peak detection signal, 7], to positive values—a positive

crossover—following a negative crossover estimates the bin values at which the peak
reaches its maximum. The maximum of the i th peak is @,".

* The bin value between two successive negative crossovers, @, and @, at which the
detection signal, 7], achieves its local maximum is defined to be the estimate of the end

point of the peak. The end point of the I th peak is @



Practically, since the histogram is discrete and so is the detection signal, the zero-crossing of a
signal can occur in two situations. If the signal attains the zero value, then the exact point of the
zero-crossing can be obtained. For a crossover, the bin value of the leader ol the transition
becomes the crossover point location. Given these considerations, the i th peak can be represented
by a triplet of (a)f ., 0] > Figure 3 illustrates an ideal detection signal and the triplet

parameters.

0.0

A B C D

Figure 3. Anideal peak detection signal and the parameters of the peaks. Suppose

that we are at the 7th peak. A is the first negative crossover point, and it is the start
of the ith peak, @;. D is the second negative crossover point, and it becomes the

start of the I +1th peak, @;,,. C attains the maximum value between the two start
points, A and D, and it thus estimates the end of the i th peak, @, . Finally, B is

the first positive crossover point following the first negative crossover point: the
location of the maximum of the I th peak, @".

Given the definition and implementation means of peak detection, Sezan (1990) applied
them to histogram-based image data reduction. The author defined the peaks as

Q

P,={{w;, 0, 0),i=12,..N,} (15)

where Np is the number of peaks found in the histogram. The author used the peaks to derive a

set of thresholds,

T,={t:t,=ve, +(1-v)w,,.i=12,...N,-1;0svs<1}. (16

i+1?

The parameter U was used as an adjuster to finalize the location of a threshold between two peaks.
By setting U to zero, the author declared that each peak location was a threshold and grouped gray



level clusters C, = (0, ; -1), G, = (a);,a); —1), ....and CN,, = (a);p Y 1), where
I___ was the total number of intensity levels. To generate the final quantized image, the author

assigned to each cluster the intensity at which the associated peaks attained their maxima, such that
L(C)=ar. (17)

To eliminate neighboring peaks in close proximity, a closeness criterion, €, was used
to merge them. Given the triplets of two peaks, (a)f, ", w; ) and <Cz),."+I NN > if

—w'<e (18)

then the two peaks were merged into a single peak with an updated triplet of

€

(@, max(@",@!,), ;). (19)

2.2. Multiresolution Peak Detection (MRPD)

One inherent disadvantage of Sezan's algorithm is the determination ol the peak detection
parameter, £2. As indicated before, if this number is small, then the algorithm responds Lo local
variations and noise. On the other hand, if this number is large, then the algorithm may overlook
legitimate peaks because of the averaging effect. We propose a new method called the
Multiresolution Peak Detection (MRPD) to address this issue, utilizing the advantages of the
multiresolution approach in handling details and noise. The concept underlying our approach is as
follows: First, we create a multiresolution map of the histogram peaks. Second, we track each
peak through the scale space to assess each peak's significance. Third, we filter out spurious
peaks and localize significant peaks. The essential part of this concept lies with the assessment of
peak significance—we use a weighted neighborhood to fuse together difterent scales of
information, as will be elaborated in the following. The MRPD algorithm has been designed based

on several assumptions:

» Peaks found at a low-level resolution are more significant than the peaks found at a high-

level resolution. This concurs with the normal usage of multiresolution in the literature.



* Peaks found in high-level resolution are more accurate in terms of localization than the
peaks found in low-level resolution. This also concurs with the concept of multiresolution.

* Neighboring peaks suggest a dominant peak. A peak is more significant if it is surrounded
(in a 2- or higher-dimensional space) or flanked (in 1D space) by other peaks than a peak
without such neighbors. Viewing this assumption from the noise modeling angle, a single
peak is more likely to be a noisy assertion than a cluster of peaks.

* The significance of a peak is proportional to its height.

With the above assumptions, we have designed a multiresolution peak detection algorithm,
with its block diagram illustrated in Figure 4. We describe each module in detail in the following
subsections. The first module generates the cumulative distributed function from the histogram.
Then, the second module computes the maximum peak detection parameter, £2, . such that a
multiresolution map can be created using £2=3,5,7,...,Q__ . The fourth module tracks the
peaks to assess their significance. The fifth module merges adjacent peaks. Finally, a filter is used

to extract a set of peaks to become the set of significant thresholds.

Generate CDF

v

Compute € max

v

Create Multiresolution Map

v

Track Peaks

v

Merge Peaks

v

Select Peaks

v

Figure 4. Block diagram of our multiresolution peak detection algorithm.
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2.2.1. Generate the Cumulative Distribution Function

After the optimal threshold selection, we obtain a set of thresholds 7' = {tn Y TEAEN vy } and

0 <1, <255, where N, is the number of regions with a computed threshold value. The
objective of the MRPD is to extract from 7 a set of significant thresholds, T',. First, a histogram

of thresholds is computed:

H ()= #(t=1) t=0...255. (20)

t; €T
From the histogram, the cumulative distributed function (cdf) is obtained

cdf,(0) = H,(0)

cdf, (t) =cdf, (t—1)+ H,(t)  t=1..255 (20

2.2.2. Compute the Maximum Scale Size

To create a multiresolution map, we apply the peak detection algorithm to the histogram several
times with different values of the peak detection parameter, or scale in our application.
Theoretically, the minimum scale size is 1, which involves no averaging and no involvement of
neighbors in the signal. Practically, we set the minimum scale size to 3. Thus, the highest
resolution level of the map is when the cumulative distributed function has been smoothed with a

scale size of 3. To determine the lowest resolution level, we have designed a strategy to compulte
the maximum scale size, or £2__ . Suppose we define a subset of T called the nonzero threshold

set, such that
Tnonzera = {tlHT(t) # O} (22)
We then further define the range of the threshold set T as

R, =max(T,,, . )-min(T,, )+l (23)

nonzero nonzero

Our initial computation for the maximum scale size is the smallest odd number, €2, that satisfics

11



Q> —RL (24)
b4

The denominator ‘¥, a number greater than 0, is called the Ideal Domain Class Number (IDCM).
The IDCM is the scientist's assessment of the number of classes in an ideal histogram of a
particular domain. At a glance, one might argue that IDCM is simply a transformation of the peak
detection parameter used in Sezan (1990). They are different. Originally, Sezan (1990) used €2,
the peak detection parameter, to control the averaging effects, and thus this parameter directly and

significantly influenced the number of detected peaks. In our case, the key tactor in determining
the number of potential peaks is the range of the histogram, K. Ideally, the maximum scale size

should be the range of the signal, which is R,. Thus, in general, if R, is large, we have a higher
probability of finding more peaks than when R is small. However, with the image intensities
ranging in 256 levels, the maximum scale size could be 255 if we use R, as € . Thatimplies a
resolution map of 127 scale levels! Hence, we introduce the use of the IDCM. This parameter
improves the efficiency of our algorithm computationally without damaging the accuracy of the
scale space. Another advantage of using IDCM is that it allows the incorporation of domain
knowledge into the peak detection process. This flexibility allows scientists to customize our new
program to segment images when the number of classes is known « priori and 10 estimate the
normal number of classes. For example, if the research domain is document processing which
involves only two classes of intensity levels, one might want to set the IDCM to 2. Note that by
setting the IDCM to 2 does not guarantee one and only one detected peak. However, with such a
low ¥, one can expect a low turnout of detected peaks and number of segmented classes. In
addition, if the domain deals with imagery with number of classes varying within a range, onc
might want to set the IDCM to a number closer to the upper limit of that range. This imposes a
slight control on the number of detected peaks. For SAR sea ice imagery, onc normally deals with
1 to 8 classes in an image. We thus set ‘¥ 10 6 in our implementation. This reduces the maximum

number of scale levels to 21 using the equation:

-1 2s)

2

N

Scale

where R is an integer denoting the range of an item, e.g., histogram, image, ctc. The
denominator 2 is used because we only use odd values for our scale size. A briel run through of
our calculation is as follows: R is 255 for maximum image range. Divide 255 with 6 yields 42.
Since we are looking for an odd number greater than 42.5 (Equation 24), we use a ceiling function

12



to obtain 43. Divide 43 with 2 yields 21. And the floor function of 21.51s 21. 21 1s thus the
maximum number of scale levels for our multiresolution map. Even though the ideal domain class
number is six, we have detected as many as 30 peaks in some threshold histograms, showing that

Y improves the computational efficiency and does not constrain the search for peaks.

The process of obtaining €2__ is as follows. First, we obtain the initial € using
Equation 24. Then, we apply a smoothing operation to the threshold histogram, H ., to derive a

€ .. -smoothed histogram:

14(Q e -1)/2

2 H.(i)

Hy (1) ==l=t 26)

max

From H,, ., we obtain the nonzero version of T,

T, = {H{Hra (1) %0}, @7)

and the smoothed range,

R, =max(T,o )= min(T,e..s_ ) 2

T-Qnux

Then, we compare the ranges, R, (Equation 23) and R, (Equation 28), such that i

Q
R, —-R> —? (29)

then we reduce €2__ by 2 and reconsider Equation 29 until the condition is satistied. If the
condition is satisfied, then we have computed the final £2__ . This condition is important Lo

prevent over-averaging of the histogram that shortens the intensity range of the image
considerably. Without this condition to refine €2 __ , we might have tail-erosion clfects where

pixels of intensities at both ends of the spectrum are not segmented correctly. Also, if the initial
and final £___are different, then we note that our best choice (the initial value) of §2_ has not

qualified, and we set a Boolean variable range_compress to TRUE. This variable is used later to
promote thresholds into the significant threshold set. Given the final £, we compute the

number of scale levels as

13



— Qmax _ Qmin +1 (30)

Nscale
2

This number is the same as the one of Equation 25 when £ is 43, and €2 is 3 such that
N_,, is2l.

scale

2.2.3. Create Multiresolution Map

After obtaining Qm, we are ready to generate the multiresolution map using
Q=3,57,...,Q__ . Now, for each value of €2, given the cumulative distribution function

(Equation 21), we compute the average cumulative distribution function as follows!:

+(02-1)/2

> cdf (i)

cdf po(t) = L‘;’;— (31)

We obtain the peak detection signal from Equations 21 and 31:

nn(t):CdfT(t)—CdfT.n(t)~ (32)
Given the signal, we proceed to find the peaks, and each triplet (cu NOMNON > accordingly.
Note that the index I denotes the peaks locally for each resolution level. To be able to propagate
the peak information and track the peaks, we must translate the index to a common axis such that
detected peaks are not confused throughout the scale space. To do so, we use the intensity or the
threshold histogram bin to tag each peak. Specifically, we define @!" as the location where the
I th peak occurs. The translation is as follows. We create a quadruple, parallel set of peaks and
their descriptions for each resolution level Q, (P, S, E, W), that describes a peak's existence,

starting point, ending point, and weight. Thus, for a peak located at @, we have

(0")=1, (33)

' practice, the first €2 and the last €2 bins of the histogram will nol be averaged. Instead, the average
cumulative distribution function at these bins will be the cumulative distribution function ol these bins. Actually,
most SAR sea ice images do not occupy the whole range of intensity capacity and thus, most lower and upper ends
of the 256-level range have zero-valued frequencies. This simplifies the computational task.

14



(a),'") = ®,, and (34)
E (o])=w;. (35)

The local weight of a peak is based on its cdf difference with its neighbor and its height (the
frequency of the bin):

(36)

Wﬂ(a)."’)— na (@)~ na(@ ~1) +

)
o na(or 1] (i) W

The first term in Equation 36 measures the dominance of the peak—the magnitude of the positive
cross over. The higher the magnitude (the greater the difference), the more the term approaches |[.
The second term measures the significance of the peak—the frequency of the bin in the onginal
threshold histogram. The denominator is a normalization factor. max(H - ) is the height of the
tallest peak in the histogram and thus H:r( " )/max HT) is always less than or equal 10 1. In
addition, since we are summing the weights throughout N, levels, we divide the significance

term with N In other words, the first term measures the relative height of a peak while the

scale *

second the absolute height of a peak. Comparing the two terms, we see that the first term factors
more heavily into the equation. This is consistent with our analysis. A peak is better defined when
it is higher than its neighbors than when it is simply high. For each (P, S, E, W), there are two

important subsets. First, the set of peaks is defined as:
=(P,S.E,W|P(t)=1,1=0...255) . (37)
Second, the set of non-peaks is defined as:
N, =(P,S,E,W|P(t)=0,r=0...255)_. (38)

Note that P, "N, = and P, UN_ = (P S E, W)Q. This completes the translation. The
multiresolution map starting from €2 to £

max

15



(P,S,E,W),_
(P,S,E,W),

(P.S.E.W)q,, .
M = e (39)

nnin ‘nrmx

win +2

(P.S.EW),__,
(P,S,E,W),_

2.2.4. Track Peaks through the Scale Space

To track peaks, we analyze the multiresolution map, M, . Ateach scale level €2, our task is

to examine the neighbors of a peak to improve the weight or significance ot the peak. Thus, for a
peak situated at ¢ in the set of P, we increase its weight:

-1 1 1+HQ-1)/2 :
W;)(t)':WQ(t)-f— Z P.Q—(])_{_Pﬂ(t)_}_ z Pn(/)
j=i=(Q-1)/2 (_] — t' ford l./ - [(

(40)
As it has been noted in previous section, when P_(j) € P, itis 1; when P (j)e N, itis 0.
The two summation terms collect the neighboring peaks as evidence for ¢ as a peak, weighted by
the distance of those peaks from . This satisfies one of our principles in significant threshold

selection that a peak is more likely if it is found in a cluster of other peaks than if it is isolated. The
single term P_ (1) acts as a self-assurance weight. Across M o we accumulate all weights

to obtain

Q [

W, o ()= X W, (1) 1=0..255 (41)
Q=Q

For a same location ¢, it may not be a peak at all scale levels. Thus, P, () may be 1 or 0. By

adding the term into Equation 40, we assure that if an isolated peak at # exists across the scale
space often enough, then it will be preserved as a peak. More about this is described in the next
sections. Equations 40 and 41 represent our tracking strategy.

16



We define tracking as a process of collecting or fusing information across the scale space
(Witkin 1984). There are three general approaches. First, by following the information at the
lowest resolution level to the highest or until such level that the current trail has no way o
continue. This approach selectively links the information between each scale level and the decision
is Iocal. This is usually employed in edge detection, from detection to localization, and is known
as focusing (Hummel et al. 1987, Bergholm 1987, Sjoberg and Bergholm 1988). This type of
scale space tracking has also been utilized in characterizing and reasoning about the validity of edge
pixels (Mallat and Zhong 1992, Lu and Jain 1992, and Kakarala and Hero 1992) and feature
extraction (Jackway and Deriche 1996). Another approach is by means of interpolation that links
all information points together to form a continuous sheet. Compared to the first, this approach 1s
less selective, and it aims at utilizing and moderating the whole surface of the scale space. This has
been used in wavelet representation of multiresolution (Yaou and Chang 1994, Reissell 1996).
The third approach also uses the whole scale space but without modifying the information points.
This group of tracking techniques is the most popular. For example, Greenspan er al. (1994)
generated power maps of different resolution levels and computed a set of features for each level.
The authors then collected all features and produced 15-dimensional feature vectors as inputs o a
K-means clustering algorithm to learn discrimination rules. Goudail ez al. (1996) ted vectors
generated from different resolutions of an image into a neural network to train the network to
perform face-recognition. Atiquzzaman (1992) generated several layers of resolution, computed
the Hough transform for each layer, and added the results in the accumulator arrays. The author
showed that this multiresolution Hough transform, coupled with parameter range reduction,

improved the speed of the process significantly.

There are other scale space tracking approaches. Whitten (1993) solved numerically the
partial differential equations that delimited the scale space trajectory of the system. Rosin and West
(1995) proposed using various saliency factors such as edge strength, length, and curvature to
complement the map of multiscale distance transform in edge detection. Whitaker and Pizer (1993)
employed a technique of edge-aftected dittusion, similar to the focusing approach above, where
blurring was limited by the presence of edges as measured at the scale of interest. The authors
repeated the process and measured gradients at successively smaller scales (o trace a trail through
scale space. This allowed them to preserve accurate boundary information and selectively remove
objects that fell below a scale of interest. With the same flavor as the previous work, Koplowitz
and DeLeone (1996) improved the focusing approach by incorporating the theory of data
transmission. The authors designed a progressive system to go from coarse Lo fine resolution
levels such that the same number of bits of transmission was preserved. Gunsel er al. (1996)
designed a nonlinear multiscale boundary detection method that balanced the tradeofl between the

17



detection and localization goals. The authors utilized multiscale representation of coupled Markov
random fields and applied a stochastic regularization scheme based on the Bayesian approach.
This allowed a robust integration of boundary information extracted at multiple scales
simultaneously. In a different setting, Heitz et al. (1994) used a multiresolution relaxation
algorithm to minimize global energy function over nested subspaces of the original space of
possible scales. Gauch and Pizer (1993) studied comprehensively multiresolution representation
of ridges and valleys in an image for image processing. Based on vertex curve and watershed
analyses, the authors used Gaussian blurring to create a multiresolution map. To track the critical
points across scale levels, the authors employed a fast heuristic. Given an intensity minimum at
position (x, y) at blurring level /,, the authors followed the image gradient downhill from position
(x, y) inlevel [, +1 until another intensity minimum was encountered. If there were duplicates
arriving at the same position, the extremum with the shortest distance was sclected as the normal

link, whereas the other links were recorded as annihilation links.

Our tracking strategy is similar to the third general approach in which all information points
at each scale are used constructively to generate the final results. The detection factor at low
resolution levels is implied when we increase a peak's weight by involving the neighboring peaks.
This is because at high resolution levels, a peak has more neighboring peaks than it does at low
resolution levels. A peak at low resolution levels prompts a collective eftort of its neighboring
peaks to enhance its own significance. The localization factor at the high resolution levels is
implied when we use the self-assurance term to determine the frequency of a detected peak.

2.2. Merge Adjacent Peaks

Given the tracked peaks and the fused weights, an «q,..» itis possible to have adjacent peaks due

to shifting in locations across the scale space. Suppose while tracing the W, . for all bins, we
locate a pair of adjacent peaks, situated at £, and ?_, . such that W, (l, o) ) >0,
Woo oo (tc(Z)) >0,and 1, =1, +1, where the subscript ¢(®) denotes a continuum. Upon

locating such event, we look ahead from 7_, to locate the end of ¢(®),at 7 ., such that

(Nl‘('i)
Wy o (1)>0 =t ...t (42)

min >=%n C(l)“' C(NC(.))’

and
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min *

W, o (tc(w + 1) =0, 43)

where Nc(.) is the number of points in the continuum. Usually, Nc(.) is 2. Given the continuum,

we compute a new sum of weights

N
Wffm,ﬂm = 21 L ([c(i) ) (44)

We also identify the peak that yields the greatest height:

=t

tc(v),max (i)

t )2W

Qi Lo ( c{i)

ty) =1 N (45)

Q'min ‘Qnm (

To consolidate the continuum and create a new peak, we do the following:

Wooao(ty)=0  i=L. N, i#t

War o (fuomn) = W o - (46)

win > % max min

c(»).max’

There are two implied goals accomplished by this scheme. First, it enhances the significance of the
new peak by absorbing weights of the neighboring peaks. Hence, a cluster ol insignificant peaks
may be able to become one significant peak after merging. Second, it sharpens the localization of

peaks by pinpointing the location of a peak out of a group.

2.2.6. Select Peaks

All nonzero values of W, o are technically peaks. But, in practice, some of these peaks may

min Hax

be considered noise. Thus, we set a standard to filter out weak peaks. We compute an image-
dependent test such that a significant peak must be greater than or equal to the following qualifier:

W i =0,N,_.. (47)

qualify

The qualifying weight, un aipy» 18 directly proportional to the number of scale levels used. The
adjuster @y, is currently set at 0. This choice of value is based on an ideal view of the

multiresolution map. Suppose there is a smooth and obvious modality in the threshold histogram.
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Then, the peaks are clearly defined without neighboring peaks. In addition, across scale levels, the
peaks, ideally, occupy the same location. Now, we propose that for a peak to be significant in an
ideal situation, it must at least exist half of the times in the multiresolution map. If the number of
scale levels is 6, then it must exist at least in 3 resolution levels. To have more peaks, one can
relax the adjuster by lowering it, and vice versa. This adjuster does not influence the process of
peak detection. However, it does affect the number of selected peaks as a final result.

In addition to the selection, we employ one heuristic to promote thresholds to significant
peaks. If the Boolean variable range_compress is TRUE, meaning that the £, used has not

been the initially chosen scale size, and if H,(¢)# 0 and H,, (£)=0, and  is not adjacent to

other peaks, then promote f to a significant peak. If there is such a 7, that implies that within the
interval with the size of €2, there are no other peaks, weak or significant. It also implies that

max *
the # must have been eliminated due to some compression in range, that is, tail-erosion. So, this
second heuristic increases the range of the set of the significant thresholds (peaks) and provides

one or two representative peaks for pixels occupying both ends of the histogram.

After selection and promotion, the significant peaks are grouped into a set of significant
thresholds T’y = {Ts1 Y P } where [V, is the number of significant thresholds.

3. Aggregated Population Equalization (APE) Spatial
Clustering

Here, we introduce a new spatial clustering algorithm called the Aggregated Population
Equalization (APE) to treat imagery data. There are three key components for clustering using the
APE: (1) a ranked axis with intervals (RAI), (2) a spatial population, and (3) a set of merging and
splitting algorithms. In the following we describe the underlying concept of the APE, the three key

components, and the implementation of APE in this application.
3.1. The Underlying Concept of the APE

In a spatial population, each entry is a relationship between a label and another. This relationship
could be the average spatial distance, correlation, entropy, conditional probability, and other
measures between the two labels. This relationship reflects how a label behaves in the population.
A label could populate the image in a centralized, scattered, interspersed, or parasitic manner. For
a centralized label, its pixels concentrate at places forming large communities. A pixel al the core
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of this type of population is usually shielded and has no contact with pixels of other labels.
However, a pixel living at the edge of the population has contacts with pixels of other labels. For a
scattered label, its pixels populate the image in small, yet noticeable, groups, and these groups are
distant from each other. Unlike a centralized label, a pixel within of a scattered population has
contacts with pixels of other labels since such a population does not have a strong core. For an
interspersed label, it must have another label such that pixels from both labels mix in population;
together they are a strong population. In this case, a pixel has contacts with its similarly-labeled
pixels and pixels from its counterpart in roughly the same distribution. For a parasitic label, its
pixels do not scatter unrestrictedly, but linger along the fringes of another population. These pixels
do not form a population, and they actually have more contacts with pixels of other labels then with
themselves. Figure 5 depicts different types of population behavior.

Figure 5. Four types of population behavior. (a) Label A is a centralized
population, (b) Label A is scattered among other populations, (¢) Labels A and B
are interspersed populations, and (d) Label B is a parasitic population occupying the
fringes of Label A.

Given the above four types of population behavior, we define several terms in the

following.

* A population is a label of pixels such that a spatial relationship can be established among its
pixels and also with other labels of pixels. The label is an interval on a ranked axis with
intervals such that the populations can be ordered along the axis.

* A population core is a region of a population that comprises densely of pixels that belong to the
population. Note that strictly speaking, every population has a core if we introduce the
difference between a weak core and a strong core. A strong population core thus has a high
density of within-label pixels; a weak core has a low density.
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* Anaggregated population is a collection of populations.

Given the definitions, we are ready to discuss the underlying concept of the Aggregated Population
Equalization. In the space of populations, for members that are not strong, they form alliances and
unite to become a strong population. This action is population aggregation, and the product is an
aggregated population. On the other hand, a population can be subjected to population
disintegration if it is overly dominant or diverse. The result is a group of smaller populations. The
Aggregated Population Equalization is the process of obtaining an equilibrium of strong and weak

populations such that every aggregated population is similarly strong.

This concept sees some analogies in today's world. For population aggregation, we see
that business companies striving to survive or eyeing at greater share of the market either
collaborate through joint ventures or mergers. Workers form unions to be able to leverage with
their employers. Collegiate basketball teams form conferences to improve competitiveness and
revenues. Countries form economic unions or sign trade-related pacts to create bigger business
and trade zones. Countries also form military and defense alliances for regional strength and
stability. On a smaller scale, people form teams to work on a project, bands to play music, cle.
Thus, the behavior of aggregated population is always observed in our society. We can also
observe the same behavior in different life forms, animals, plants, bacteria, etc., and such
examples are too numerous to count. To list only a few, zebras and giraffes live together to form
better defenses against predators. Insects, such as bees and ants, work in groups to build their
colonies. Piranhas hunt together so that they can attack preys with size much larger than an
individual piranha. On the other hand, we notice that at times a human group, be it a business
conglomerate, or a sports team, or a music band, becomes too dominant and disintegrates duc o a
combination of differences within members of the group and external factors such as Lthe intention
of another population in trying to aggregate a member of the group. As a result, a human group,
be it academic, artistic, business, cultural, industrial, political, scientific, theological, or social,
sometimes becomes too diverse in its operations, opinions, ideologies, practices, or platforms that

a division results.

The activity in the population during the Aggregated Population Equalization process
depends on the characteristics of the populations, rules of the populations, and the [reedom ol
movements among members of the populations. An aggressive company may launch a hostile
takeover to gain control of another company. A cooperative, multi-party political alliance may be
able to defeat a strong individual party to gain control of a government. The treedom of movement
allows members of a population to switch to another conveniently and maybe even with incentives
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to do so. To prevent a population from becoming volatile, there are rules—sometimes 10 slow or

restrict the process towards the aforementioned equilibrium—to regulate the movements.

Now we ask the question: why is the concept of the Aggregated Population Equalization
useful for spatial clustering? Let us assume that there are N preliminary-segmented classes in the
image. However, for these classes to be meaningful and useful, or competitive in our population
picture, each should have a strong population. (The strength can be measured in numbers,
textures, intensities, or other statistical descriptors.) To do so, some of the N classes form an
aggregated class. That aggregated class is what we are looking for in our definition and application
of spatial clustering. In our opinion, the spatial relationships within imagery data are important in
determining the number of classes and the distribution of each class. They can be used to
characterize classes of pixels and gauge the strengths of the classes. With this in mind, we turn to
the characteristics of imagery data. Pixels of an aggregated class or population stay together and
that is what human observers detect as well. In SAR sea ice analysis, geophysicists observe a
patch of roughly homogeneous region more easily than a noisy one. They can also identity a class
with higher confidence when the pixels of similar characteristics concentrate at a same place. Thus
if there is a population with a weak core, human observers tend to group it Lo a neighboring
population to form a more noticeable aggregated population. If we can capture this process by
which sea ice geophysicists analyze sea ice imagery, then we can create meaningful segmentation!
This realization of human vision cognition and the observation of the natural behavior of
population aggregation and disintegration are the two key ideas behind the concept of the APE.

3.2. Ranked Axis with Intervals

A ranked axis with intervals or RAI is a measuring stick where pixels can be initially labeled in
order. Between each label, there is an interval such that there may be more than one members
sharing the same label. There is also a precedence in the set of labels such that each pair of labels
can be completely ordered. In our case, the set of significant thresholds, 7, forms the RAI [or
this implementation. Strictly speaking, the content property of our RAI is intensity, and the
intervals are governed by the locations of significant thresholds. To obtain these intervals, we
have employed histogram-based algorithms. The MRPD algorithm in this paper can create such
intervals. Other existing techniques in 1-D signal processing, and more specifically in histogram

processing, can also be used.

Given a ranked axis with intervals, we are able to initially label the image pixels along the

axis. This preliminary labeling or segmentation allows the image to be viewed as groups of pixels,
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reducing noise effects and computational burden. In this application, we have used only one RAL
In general, one may have multiple RAlIs. Special care has to be taken to integrate different

preliminary segmentations as a result.

The requirement that the axis must be ranked ensures two things: a convenient search
implementation for good mergers, and the coherence within merges. One of the difficulties in
region merging is to determine which pair of regions to merge. The search for an optimal merger
is nonlinearly polynomial. To avoid such combinatorial problem, for a given label, we search only
its neighbors for possible merging, and the neighborhood is defined by the ranked axis with
intervals. So, using T’ as an example, we see that c(lj <p < lk) can only be merged with
C(ﬂ,]._l <p, < /'Lj) or ¢(A, £ p, <A,, ). The coherence within merges is also achieved by
this requirement, i.e., that pixels of non-neighboring labels cannot be merged. Thus, cach

resulting merge is coherent in terms of a continuum of the axis range. In our case, our axis lies

along the intensity: a class that combines c(/lj <p < /lk) and c(A, < p, <A, )is

forbidden. Thus, the within-class intensity is always closed and inclusive.
3.3. Spatial Population

The spatial population captures the spatial relationships among the initially labeled pixels, and 1t
also specifies the neighborhood of each label. This implies that the Cartesian coordinates of the
pixels must be utilized. With this implication, our spatial clustering differs from other clustering
strategies. We claim that not only are the attributes that describe an entity important, but also the
spatial relative location of that entity to others in a space. In normal imagery data analyses, the

space is the Cartesian 2-D space.

There are only three requirements for a descriptor used to build the spaual population.
First, it should be a function of two labels. Second, the variance of the values of the function of a
label and itself should be non-zero. Suppose the descriptor is correlation. Then the function ot a
label and itself is simply the auto-correlation; and that of a pair of different labels the cross-
correlation. Let us say that the descriptor is the average distance between its two elements. Thus,
the distance between a label and itself is always zero. As a result, the variance is zero, and this
descriptor is not allowed. This second requirement is necessary to ensure activitics in the spatial
population. Remember that as we characterize a population, we measure its strength and ook at 1ts
population core. The function of a label and itself retlects the population core. If this value is
always a constant, then all populations will be equally strong, and no movements will be observed
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during the APE. Third, the function should capture the spatial information between the two labels.
Here we describe two general approaches: local and global. A local spatial descriptor analyzes
each pixel of a population within its neighborhood. With this we introduce locality into the
measure, and the spatial information is preserved. For example, suppose we have a dominance
measure that declares the most dominant class within a neighborhood. For a strong population,
this dominance measure will return the label of that population most of the times, and this
frequency can be used as an indicator for population strength. A function of a label and itself will
thus have a non-zero variance. A function of a pair of different labels will depend on how closely
the two classes intersperse. A global spatial descriptor evaluates all pixels of a population within
the frame of the image. For example, we can use a more elaborate distance metric than that
mentioned above. Suppose the distance metric measures the average distance between each pixel
of a label to another pixel of another label. Thus, a function of a label and itself will have a non-
zero variance. For a strong population, we have a small distance value. For a weak population—
one of those scattered populations for example—the value will be large. Of course, when the
neighborhood of a local descriptor gets larger, it approaches globality; and when the working area
of a global descriptor is divided into smaller and more manageable regions, it approaches locality.
There exist numerous measures such as moments, correlation, and other statistics that can be used
to capture spatial information. As for this particular application ol the APE, we have chosen to use
a local descriptor to build the spatial population.

3.4. Merging and Splitting Algorithms

The merging and splitting algorithms shoulder the task of achieving the equilibrium of the spaual
population. The two can work simultaneously or sequentially. In this section, we point out two
different approaches for merging and splitting. The first one is regularory in which rules are used
to dictate the movements within the populations. So, the decisions [or merging and splitung are
made by a centralized algorithm. The second approach is voluntary in which each population
works on its own to achieve strength. Thus, the decisions for merging and splitting are made by

each population.

The regulatory approach is the common approach to clustering. We do not discuss it here
in detail. However, a few points are worth mentioning. The merging algorithm's objecuve 1s
population aggregation. Thus, it must know how to measure the strength of cach population.
Subsequently, it selects the weak populations for aggregation. It must also be able 1o stop the
aggregation process based on some criterion. Usually, an ideal equilibrium is impractical to
achieve. Therefore, a relaxed equilibrium should be used. In addition, when merging, only the
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neighboring labels or populations along the RAI can be merged; and an aggregated populauon is
allowed to merge with neighboring populations of its leader and trailer populations. The splitting
algorithm's objective is population disintegration. Thus, it must be able to measure the diversity of
each population. For populations with high diversity, the algorithm must know how to divide it
into smaller populations. In addition, the algorithm must decide whether to absorb the smaller

populations into other populations or let them stand alone.

The voluntary approach has its concept in distributed Artificial Intelligence (DAI). In this
case, each population initiates and decides its own movements. This approach assumes that cach
population has its own drive to achieve strength by looking for cooperations with other
populations, and if it becomes too diverse to survive, it disintegrates into two or more populations.
In fact, each population is now an agent in a controlled environment. The communications among
the agents are restricted to spatial relationships and population strengths. Similarly, a measure for
diversity must be designed so that a split is beneficial to the survival of an agent. Again, a
provision must be installed to prevent total chaos when a complete equilibrium is impossible to
achieve. This approach involves different branches of behavioral sciences and models more
closely how the real world (and nature) works: there are certain rules in place, and, at different
scales of viewpoint, each population is an agent of its own working to improve itself. Granted that

in our spatial clustering, we restrict the options to merging and splitting.

In this application, we have chosen to use the regulatory approach for its case of
implementation. Although the voluntary approach to the APE spatial clustering is an interesting
subject and deserves further examinations on multi-agent and distributed Artificial Intelligence, a

study of this has not been undertaken in our research.
3.5. Our Implementation of the APE

After the MRPD, we have the set of significant thresholds, T, = {T‘“ T Ty } Note that

the intensity is our ranked axis with intervals and the thresholds are the intervals. Also, since

Ty, <Tj,,, the axis is completely ordered, or ranked. With this set of thresholds, we perform

regional and pointwise interpolations according to the method outlined in (Haverkamp er al. 1995)
obtain N thresholds for each pixel. Then we segment the image into N, +1 classes with labels

0...N,. The second component of the APE is the spatial population. Initially, each class is a
population, 7T;, such that the label of the population,
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I(m;)=1. (48)

Define the spatial descriptor as SD(l(n’i ),l(ﬂj )) or SD(i, j) in our labcling convention. A

spatial population, II, is then a matrix of

SD(0,0)  SD(0,1) --- SD(O,N,-1)  SD(O,N,) |
SD(1,0)  SD(1,1) SD(1,Ny)
I, = : : . (49)
SD(N, -1,0) SD(N, —1,N,)
| SD(N,,0) SD(N,.N,) |

For a commutative function, SD(i, j) = SD(, i), the matrix is triangular. For a non-

commutative function, the whole square matrix is necessary. In our application, we use a local

spatial descriptor, using a local neighborhood of a 3 X 3 window as 9( D 1) of apixel p.. To be

consistent, we translate the variety curve in terms of the language of our spatial population:

# pixels

§° S &(e(p) T JoElela)d 1)
SD(l’j) = VTs(k-n)(l—l) = = )”Pi’m’é’ ’ (30)

2 &(c(p.) T

i=}

where £(a,b)={1 ifa=b;0 if a#b}, c(p)isthelabel of pixel p, i=T,, . and

Jj =1—1. So the descriptor describes how one label behaves with another label. The function of
a label and itself is the probability of that label having itself as a neighbor in a delined
neighborhood. The stronger the core of a population, the higher this probability 1s. Converscely.
for a population that has a weak core, the probability of the label having itselt as a neighbor is low.
For a pair of interspersing populations with labels { and j, SD(i, ) and SD(/,{) might be
high. For a parasitic population with a label { at the fringes of another population j, SD(i,i)
should be low and SD(, j) should be high. Note that the descriptor variety is non-commutative.

Now, we are ready for the merging and splitting algorithms. Each aggrcgated population,
ﬁ'v, and its member populations
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z, ={1(7:,.),1(7:,.+1),...,l(n].)} (51)

S(z,)=1(=)=1i, (52)
E(frv)zl(nj)=j, (53)
(7)) = 2. SD(i,i), (54)

(55)

e(7,)=[sD(I(,, ). U(7,.) - 2(7.))

Equations 52 and 53 denote the starting and ending population labels, respectively, ol an

aggregated population. Equation 54 describes combined individual strengths of the aggregated
population. Our strategy of merging is to first locate the most dominant population, 7r . To
measure the strength of a population, we use the reflexive function value, SD(i,7). Formally,

7rmax=7rx|SD(l9l)2SD(j9j) j;_'(:)]V5 (56)
we search for aggregated populations that match the strength ol the most

Having located 7,

dominant population. The difference in strength between 77__ and an aggregated population 7T is

max

the error of the aggregated population, described by Equation 55.

To relax the ideal equilibrium requirement, we use a Least Over-Commitment Stralegy
(LOCS). This strategy is borrowed from the planning research in Artificial Intelligence (Rich and
Knight 1991). In planning, to avoid combinatorial issues, a commitment can he partially satistied
to generate incomplete solutions for a nearly decomposable problem. Then, these solutions are
repaired to improve the final results. The commitment in our case is to produce an aggregated
population with a combined individual strength, Z(fcv ) equal to SD(Z (7. )., )) or

E(ﬁ'v) = 0. Suppose during a current merging process that we have a set of populations

T, = {l(?ti U7, ). ..,l(ﬂj )} and Z(7,) < SD(l(nmax )i, )) Under the Least Over-
Commitment Strategy, if the inclusion of 7, into 7T, yields a combined individual strength that is

greater than SD(I (ﬂ:max ), [ ( . )) then it should be the last member of the aggregated
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population, E ( 7'i'v) =] ( T, ) = j +1. This relaxation enables us to design a fast merging

algorithm; it also avoids the combinatorial problem of equilibrium optimization.

3.1. Generate Clusters of Aggregated Populations—Merging

To generate a cluster of aggregated population, we move along the ranked axis with intervals in
two directions—top-down and bottom-up, creating two clusters C , and CT. Note that

I PR ~4 =t ot ~1 , o
Ci —{71:0,75l ,...,ﬂNcl_]},and CT = {72:0,71:1 ,...,IthT_]},where NQ and NCT are the

number of aggregated populations in the two clusters, respectively. To generate C %

1. Move from the top of the ranked axis to the bottom (0 — N ).

A. If the next population is 7T__, then the current aggregated population is complete and

max

initiate a new aggregated population.

B. If the current population is 77 , then make it a single-member aggregated population
and initiate a new aggregated population.

C. If the current Z(ﬁ'v ) so far has exceeded or equaled to SD(Z (7 e )> (70 s )) then
the current aggregated population is complete and initiate a new aggregated population.

D. If the current population is 7T, , then the current aggregated population is complete,

and the cluster is also complete.
2. For each completed aggregated population, 7T,, compute its quadruplet (S, E.Z.€), .

A similar algorithm can easily be derived from the above to generate CT ( I, ) by counting from
the bottom to the top of the axis (N, — 0), and replacing Ty, in Step 1D with 7. From this
algorithm, we observe the following. First, 7__ is made an aggregated population with itself as
the only member of the aggregation. This concurs with our APE concept: since it is alrcady the
strongest population, it has no drive to improve itself. However, as we shall sce later, it 1s
possible for 7t to recruit or be recruited by another aggregated population o improve local
population coherence. Second, there is no guarantee that every aggregaled population will have
e(ﬁ:v) 2 0. The aggregated populations completed under conditions 1.A and 1.D usually fail 1o
meet the commitment. The degree of the failure will be relieved a little during the refinement
process. In general, this merging algorithm is fast and guided by the ranked axis and the
commitment criterion. It eliminates optimization issues that accompany any merging algorithm.

Now we have to decide which cluster to use, and refine the selected cluster.
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3.2. Select the Best Cluster

If the two clusters, C , and C'T, are exactly the same, then the merging process is completed and

no further refinements or adjustments are needed. However, if they are not, we evaluate the error

of each cluster:
e(C)=Y &(a) (57)

and

N

S(Cf)z i

-1
i=0

e(ﬁf). (58)

We select the cluster whose error is the smaller and refine it at a later stage. If the errors are the

same, then we use a tie-breaker system:

1. Compute the maximum individual errors,

e(m!)ze(m) u=0..N,, (59)

and
el =e(ﬁf)fe(fzf)28(ft:) u=0...N,. (60)

2. Compare the two errors. If the two errors are different, then the best cluster is the one with
the smaller maximum individual errors, and we exit from the tie-breaker system.
3. Compute the maximum individual errors from the reduced sets
~ = of 2t i =1 1o f =7 7 : .
{nu }/{ﬂv |8(7L‘V ) = enm} and {7[“ }/{ﬂv ’e(nv ) =€ } respectively. Designate
i

max *

the new errors as e,fm and € It both errors are defined, repeal step 2. 11 one of the
errors is undefined, that means one of the clusters has a greater number of aggregated
populations. The cluster with the less number of aggregated populations is the best cluster

and we exit the tie-breaker system.
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So, after this stage, we will have selected the best cluster. If it turns out that the two
clusters are exactly the same, then we assume that the configuration of aggregated populations is
optimal and perform no refinements. Otherwise, the selected cluster has to be refined.

3.3. Refine the Selected Cluster

As in planning, this refinement stage is to repair the partial solutions (aggregated populations) o
satisfy the commitments better. There are three refinement operations in our application: (1)
migrating border populations, (2) solidifying the dominant population, and (3) absorbing
insignificant populations. The first operation is always performed while the other two are only
carried out when certain conditions are met. These three operations are performed sequentially.
Note that in the following discussions, the cluster referred to is always the selected cluster unless
specified otherwise; so the superscript that denotes the direction of the merging process is

discarded.

A. Migrating Border Populations

This operation is used to reduce the overall amount of errors by locally migrating one population
from an aggregated population to another. This operation is applied to all aggregated populations

except 7T, .

For an aggregated population 7. if v# N.—land 7, # 7, then we have the

following assignments:

(61)

In effect, we are trying to migrate S(7,,, ) into 7,. If

e(m,)+e'(m )+e(m,,). (62)
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then we confirm and execute the migration. On the other hand, given an aggregated population
7w,if v#0 and Ty 7)1 % T then we have the following assignments:

max ’

S,( Av—l) = S(ﬁv—l)
E(rw_)=E(7m_)-1
(irv-l) A(frv-l) ) o
S'(z,)=8(x%,)-1=E(%,.,)
E’(ftv) = E(ﬁlv)
In effect, we are trying to migrate £ ( frv_l) into 77,. Similarly, if
e'(m)+e'(xm, ) <e(m,)+e(m,,). (64)

then we confirm and execute the migration. For 7, we apply Equations 61 and 62; for er‘--l‘

Equations 63 and 64; for other aggregated populations, we apply all four equations.

B. Solidifying the Dominant Population

It is possible to have a tiny, highly concentrated patch of pixels that ends up as the 7 .
Conceptually, such a population, although extremely strong, needs to absorb other populations o

solidify its dominance to survive. Thus, for this operation, we have two tasks. First we have o
decide whether 7T, needs strengthening. During the generation of the spatial descriptor variely,

we tally the number of pixels that belong to each population, such that

N, =#pli(p,)=Ur) p el (65)

i

Define the number of pixels of the largest population as max(N x ) A 7 needs strengthening
if

N, <{max(N,). (66)

The parameter { is set at 1% or 0.01. So, in other words, if the strongest population in the spatial

population has at least 1% (in terms of numbers) of the largest population in the spatial population,
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according to our implementation, then the strongest population survivesZ. Otherwise, we solidily

. it by migrating it into one of its neighboring aggregated populations. The decision is based on the
spatial descriptor. Suppose the population ranked before 7, is 7, and that ranked after is

r,,. If

SD(I(IL'M )., )) > SD(I( 7 ). (7, ). 67)

then 7, is migrated into the aggregated population with E (fr) =] ( r,. ) Otherwise, T, is
migrated into the aggregated population with E ( ﬁ'v) =] (n'pm ) As aresult, 7t has been

solidified. It is possible that this merger might introduce a super-strong aggregated population.

But there are two things that may offset that super-strong status. First, for this merger Lo take
place, 7, must have a small population. So the merger in effect does not produce visually

super-strong segmentation classes on a spatial imagery data. Second, note that during our merging
process, we always complete an aggregated population if the next population is 77, . Often, this

results in a population with Z(f[v) < SD(I(?L’max ),l(nnm )) and, thus, again, the merger docs
not actually produce a super-strong aggregated population. From a reversed angle, we lorbid
merging of 7T . during the merging process because if 77 has a large population, we do not
‘ want any merger with 77 to become a super-strong aggregated population, and if 7T hasa
large population, we do not want to contaminate the population with other weak but substantially
large populations. As we shall see that during the final stage of refinement, we do allow such

contamination from a weak and small population.

C. Absorbing Insignificant Populations

If an aggregated population, 7T, satisfies the following conditions:

S(7)=B(z.

H v

(m)#l(m,,)
N, < Cmax(N,,, )

m N

(68)

2 This is based on our experience on working with SAR sea ice imagery. For other real world applications, the
‘ percentage might vary. Indeed, an extremely dominant population might be less than 1% of the largest population
yet it is able to maintain an equilibrium in some environment.
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then it is insignificant. Since it has only one member population and is not the 7, , that implics

that it is also a weak population. So, we absorb it into its neighboring aggregated population.
There are three possible scenarios. First, if v =0, then it is the remnant of a bottom-up merging
process, and it is absorbed into 7T,,,. The number of aggregated populations and indices within
the cluster are adjusted accordingly. Second, if v = N, —1, then it is the remnant of a top-down
merging process, and it is absorbed into 7T,_,. Third, if it does not match the first two scenarios,
then it must be the remnant of a pre-maturely completed population when coming to a neighboring
population whichis 7, . So, it is absorbed into 7, . This is the contamination that we have
mentioned above. In our modeling of the real world, we see this absorption of insignificant
population into a stronger population as a natural tendency of seeking protection and assistance for
growth and survival. In image segmentation, such an insignificant and weak class is actually
negligible in terms of human vision capability because the number of pixels belonging to that class
is extremely small, compared to the largest population, and the pixels do not form concentrated
regions. On the other hand, such an absorption improves visual interpretation of the image
because the pixels of the absorbed class enhance the compactness of the abhsorbing population.

3.4. Disintegrate Diverse Populations—Splitting

To measure diversity within an aggregated population, we first perform the necessary mergings, as
a result of above processes, to the image. This is done by re-labeling the pixels of the preliminary
segmented image, generated by the dynamic local thresholding module. After merging, we
compute the diversity of each aggregated population. In what follows, we first discuss what
constitutes a diverse population. Then, we use a non-deterministic assignment strategy to re-label

pixels.
A. Diversity Measure

Our diversity measure is based on a local neighborhood of a pixel, Q(pl , ]), same as that of the

spatial descriptor used in building the spatial population. Supposed a member of the neighborhood
isqe 9(17,-’1)- We define

o(p..J)=#(l(q)=J) (©9)

such that the number of pixels with the label j within the neighborhood of a pixel p, s ()( D5 )

From this definition, we can extend it to accumulate the results of all pixcls of a same label:
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H,, =#(o(p,.j)=k) I(p,)=ip, el. (70)

Equation 74 provides us a count of the frequency of all pixels, with a label [, having j asa

neighbor k times. Then we compute the probability

Hi'k
P =——"Y _ p el (71)

v #(i(p,)=1)

This probability tells us the behavior of the pixels within a label. Our concept behind these

definitions is as follows. Suppose there is diversity within a label (or a population), i, such that
there are member pixels with close contacts with pixels of another label, j. Then, P, will be

high for at least one value of k 2 4. (We use 4 since it is half of the number of neighboring pixels
ina 9( p,.,l) neighborhood.) That indicates that some members of the label [ are interspersed

with the members of the label j. If there exists such a label, then we perform population
disintegration on it by splitting it into two. For a strong population, the regional cores will indicate
high P,;,,k 2 4. Atthe edge of these regions, we will have an increase probability of P .

However, the probability is negligible. Hence, no disintegration is carried out. In the modeling of

real world, this signifies a very strong, highly concentrated organization.

In this application, we use a threshold called diversity threshold, T, . such that,
formally, if a population with the label i has a probability
o(p..1)
2

P, >T

diversity

jEik=

then the population is split. The constraint j # [ is in place to prevent splilling a strong core since
as described above, P, ,k =4 is normally high. The constraint k 2 ’0( D, 1)' / 2,or k=24 in

our case, is in place to ensure only high-contact relationships between two labels are analyzed.
Note that P, ;, for k <4 is usually high. The value of 7', . was obtained experimentally. It is

now set at 0.17.
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B. Non-Deterministic Disintegration

After the identification of a diverse population, we split it into two via a non-deterministic
approach. Again, we look at the local neighborhood 9( D;» 1) to compute

o(pi,l(p,. )) =#(l(q) = l(p,.)) for I( p,) equal to the label of the diverse population. Then a
random number is generated in the range of O.. |9( Di» 1), If the random number is greater than
O(p,., l(p,. )), then the pixel is flagged for re-labeling. Thus, if a pixel is highly surrounded by its
"compatriots”, then 0( D>l ( D )) is high, and the probability of a random number greater than this

number is low—indicating that the probability of such a pixel being flagged is low. This is the
non-deterministic part of the disintegration process. After all pixels have been examined, the
flagged pixels are given a new label. Another alternative is to assign the pixels the label of the
next-in-rank population, effectively migrating them into the next population. Our current

implementation adopts the former strategy.

4. Conclusion

In this application, we have achieved several objectives. First, we have designed an unsupervised
image segmentation technique, combining image processing and spatial clustering, for SAR sea ice
image analysis. As a secondary achievement, we have shown that the integration of image
processing and machine learning methodologies is practical and viable in unsupervised
segmentation. Second, we have improved our dynamic local thresholding in terms ol automation
and handling of various images. Third, we have designed a peak detection method called the
Multiresolution Peak Detection (MRPD) that automatically detects peaks in a histogram. This
method can also be viewed as an image quantizer and enhancer. Fourth, we have created an
innovative spatial clustering concept, called the Aggregated Population Equalizatuon (APE). This
concept is based on a modeling of the real world behavior of weak and strong populations within
certain environments. We have provided the three key components of the APE and how one may
go about computing them. We have subsequently implemented the APE spatial clustering using a
Least Over-Commitment Strategy and aggregation and disintegration procedures. To conclude, we
have successfully implemented an unsupervised image segmentation technique. We call this
technique ASIS for Automated Sea Ice Segmentation.
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