The University of Kansas/

p Information and
| Telecommunication
Technology Center

A Technical Report of the
Networking and Distributed Systems (NDS) Laboratory

A General Model for Designing Unsupervised
Segmentation Techniques in Image Analysis

LeenKiat Soh

ITTC-FY98-TR-11810-04

August 1998

Project Sponsor:

Naval Research Laboratory

Copyright © 1998:

All rights reserved.

The University of Kansas Center for Research, Inc.
2291 Irving Hill road, Lawrence, KS 66045-2969.

A General Model for Designing Unsupervised Segmentation Techniques in
Image Analysis

Leen-Kiat Soh

Abstract

This paper describes a general model for unsupervised image segmentation. We outline the
process of imagery investigation in five stages: inspector, clues generator, determiner, justifier,
and mapper. We discuss in details the functions of each stage and possible solutions for its
design. Also, we focus on issues such as data filtering, information extraction and abstraction,
clues organization, and knowledge interpretation and verification. In addition, we apply the
model to several image segmentation approaches, ranging from knowledge-based systems to
clustering. This discussion shows how our model provides the framework for designing an
unsupervised image segmentation technique given a chosen implementation approach. By
addressing explicitly the problem of unsupervised image segmentation in a general framework,
we demonstrate that our model contributes towards automation in image analysis. Finally, we
show the relationships between our model and knowledge discovery in databases (KDD) and
why our model could be of importance in improving automation and segmentation quality of
KDD processes.

1 Introduction

The primary objective of this paper is to describe a general model for unsupervised image
segmentation. Traditionally, image segmentation is a process of pixel classification; the image is
segmented into subsets by assigning the individual pixels to classes (Rosenfeld and Kak 1982).
In this paper, we concentrate on visually separable classes measurable in syntactic quantities
such as spectral, spatial, structural, or textural descriptors. Semantic attributes such as isa-
hierarchies, predicates, positional relations and ancillary data are excluded from this discussion.
Usually, these semantic attributes are helpful in image classification—giving meaningful and
practical labels to the segmentation classes. By our definition, classification is one type of
segmentation but segmentation is not classification. Some segmentation techniques, however,
are classification techniques when syntactic information is sufficient to achieve such objective.
Pavlidis (1977) defined image segmentation as follows. Suppose y is the grid of sample

points of an image, I. The set of coordinates

(i,)i=02,..,N, =1,j=02,..,N, -1,
where N, is the number of rows and N, the number of columns. Let @ be a non-empty subset
of y consisting of contiguous pixels. Then a uniform predicate P(¢x) is one which assigns a

boolean value to &, based upon properties derived from the image / ((z) J)) for the pixels of & .
Furthermore, P has the property that if £ is a non-empty subset of &, then P(«) = TRUE
implies always P(ﬂ) =TRUE . Given the above definition, a segmentation of the grid y for a

uniformity predicate P is a partition of y into disjoint non-empty subsets of ¥,,¥,,...,¥y_, such
that:

N-1
o Ur=,
2) ;0 i=0,1,...,N —1 is connected,
3) P(y,)=TRUE fori=0,,...,N-1, and
@ Py, Uy,)=FALSE fori# j,

where ¥, and ¥; are adjacent. Zucker (1976) described the above conditions as follows. The

first condition requires every pixel be in a region, indicating that the segmentation algorithm
must process every pixel in the image. The second condition implies that regions must be
connected. The third condition requires that all pixels within a region must satisfy a uniformity
measure. The fourth condition expresses the maximality of each region in the segmentation, that
is, each region is maximally uniform by itself. Note that this definition by Pavlidis (1977) does
not apply to all image segmentation techniques. For example, edge detection, a segmentation
branch, assigns two labels to an image: edge pixels and non-edge pixels. The set of all edge
pixels is not required to satisfy the uniformity criterion, and neither is the set of all non-edge
pixels.

Over the years, many surveys have been conducted in the field of image segmentation (Fu
and Mui 1981, Haralick and Shapiro 1985, Pal and Pal 1993). However, none of these surveys
have provided a process model for unsupervised image segmentation, which is the focus of this
paper. With the increase in the amount of imagery data, ranging from satellite to photographic
images, generated everyday in today's world, streamlined manual processing of images has

become unfeasible. Unsupervised image segmentation thus is an image processing area of great
importance and need. By definition, an unsupervised image segmentation technique is able to
determine the number of classes in the image and assign classes to the pixels automatically.
However, unsupervised image segmentation is difficult to accomplish since the number of
classes in an image is highly variable (especially in remotely-sensed imagery of natural scenes),
and different classes may mix and impede clear separations (Soh and Tsatsoulis, to appear). In
the imagery domain of highly textured regions or simple scenes, in which segmentation classes
are well defined, several unsupervised image segmentation techniques have been proposed, such
as iterative dominance clustering (Goldberg and Shlien 1978), random field models (Panjwami
and Healey 1995, Won and Derin 1992), fuzzy clustering (Nguyen and Cohen 1993), local
Bayesian (Peng and Pieczynski 1995), and maximum likelihood (Cohen and Fan 1992). These
techniques are not readily extensible to complex and ill-defined images such as satellite imagery.
There are other unsupervised techniques including those discussed in machine learning
(Carbonell 1990, Shavlik and Dietterich 1990) and knowledge discovery in databases (Fayyad et
al. 1996b) that can be adopted for image segmentation. Here we propose a general model for
designing an application of unsupervised image segmentation that makes use of methodologies
of the various disciplines.

In this paper, we outline a general model for designing such a technique. This model is
called the Data Investigation Model for Unsupervised Segmentation (DIMUS). In what follows,
although classification and segmentation are used interchangeably, keep in mind that the primary
objective of this paper is to study image segmentation and not classification. The outline of this
paper is as follows. First, we discuss the DIMUS in detail, addressing issues of its various
stages. Next, we compare our model to different implementation approaches in image
processing. This section demonstrates the generality and applicability of the DIMUS. Then we
discuss the roles of that unsupervised segmentation can play in Knowledge Discovery in
Databases (KDD) and its importance in organizing databases. Finally, we conclude the paper.

2 The Data Investigation Model for Unsupervised Segmentation (DIMUS)

The objectives of the DIMUS are as follows: (1) to enhance the distance among pixels of
different classes, (2) to handle a variety of image types in terms of resolution, texture,
composition, etc., within the same domain, (3) to provide a justification metric to examine its
results, and (4) to determine the number of classes in the image. The first objective requires that
the technique be able to increase the separations among different classes. The second objective
requires that the technique’s effort in unsupervised segmentation be non-trivial and the technique
be general and applicable to various scenarios of the same domain. The third objective allows
specialization of the technique through justification or refinement such that a set of tools can be
devised to target specific data efficiently. The fourth objective is the most important—it requires
that the technique be able to determine the number of classes in the database, thus discarding the
need for human intervention. Figure 1 shows the five-stage model of the unsupervised image
segmentation: inspector, clues generator, determiner, justifier, and mapper.

The inspector inspects the image to determine the general characteristics of the image to
provide directions for the other stages in the model. The clues generator, given the knowledge of
the general characteristics, scrutinizes the characteristics to generate useful properties, called
clues. The determiner takes as inputs the clues and determines the number of classes. The
justifier reviews the result of the determiner and, if necessary, corrects it. The mapper links the

clues to the original data space so that a segmentation can be performed given the class
information.

* raw image

INSPECTOR

* extracted information

CLUES
GENERATOR

¢ clues

CLASSIFIER

a description of classes and
the number of classes

JUSTIFIER

an updated version of classes
and the number of classes

MAPPER

a transformation link to
segmentation

Figure 1. The Data Investigation Model for Unsupervised Segmentation (DIMUS).
2.1 Inspector

An inspector identifies the general characteristics of an image. It inspects all pixels of the image
and generates an impression of the pixels. It is with this impression that the clues generator is
able to generate useful clues for later stages. An inspector should be able to filter out
unnecessary data, extract information, and abstract the information if necessary. In the
following, we will describe these three functions and their purposes. Note that the three
functions resemble the preliminary tasks of a law-enforcement inspector: weeding out non-
essentials, interviewing/interrogating witnesses or suspects, extracting information, etc.

2.1.1 Data Filtering

Suppose we have an image with N, number of pixels. A dataset in general may suffer from

incomplete data, inaccurate data, unknown data, errors, and noise. For imagery data, we are
usually faced with inaccurate and noisy data. For example, satellite images such as Synthetic
Aperture Radar (SAR) imagery suffer from speckle noise (Raney 1985). Such speckle noise
should be suppressed or removed to provide better basis for further processing. Sometimes there
might be occluding factors in the image as well. These factors inhibit the true characteristics or
distributions of the image from being directly obtained.

In addition to noise, poor quality imaging conditions could contribute to occluding factors.
Effects are such as poor contrast, small dynamic range, intensity sloping from one side of the
image to another (due to inconsistent illumination, different incidence angle, etc.), overexposure,

and underexposure. We argue that by looking at the data at a higher order, we are able to
implicitly reduce the effects of occluding factors. For example, if we transform the image into a
power spectrum (e.g., D’ Astous and Jernigan 1984) and represent the information in the image
with spikes in the frequency domain, we are able to focus on the characteristics of the image
more directly than otherwise. Similarly, if we examine the histogram of the image and derive
higher description of the histogram (such as parametric curve-fitting), we are able to ignore noisy
peaks and valleys of the original histogram. Note that many noise-removal (Duran et al. 1987,
Lee 1983, Mastin 1985) and image enhancement (Gauch 1992, Hummel 1977, Hummel and
Zucker 1983, Paranjape 1992) techniques have been proposed and can be applied explicitly as a
data filtering module.

Besides noisy and occluding data, an image could have redundant data. Data that are
negligible should be filtered out from further processing to reduce computational burden and to
increase interpretability. In addition, in registration tasks where two images are compared,
regions not encompassed by tie-points are sometimes considered redundant and are discarded.
As another example, for remotely sensed sea ice analysis, images may contain islands and inland
shores which are irrelevant. These regions are usually filtered out by registering the image with
its geographical coordinates and masking out the land regions from further processing.

2.1.2 Information Extraction

After data filtering, the transformed image is ready for information extraction. The goal is to
extract from the data usable and reasonable information for further processing. Usable data
allows the direct manipulation of the information. Reasonable data allows application of goal-
specific tasks. For example, suppose we want to compare and adjust two images by their average
intensity values. First, we filter the data to smooth the two images, I, and I,. Then we

calculate the mean value of each image. This calculation is what we mean by information
extraction. The extracted information (i.e., the mean values) is usable since now we can compare
the two images by, say, the difference of the two numbers. It is also reasonable since we can
apply different image processing tasks based on the difference between the two numbers: for
example, if I, is brighter than I,, then increase the average intensity of I, by half of the

difference; if I, is brighter than I, then decrease the average intensity of I, by half of the

difference.

Information extraction can also be viewed as feature extraction to some degree. Suppose we
are given a simple image processing task. The goal is to recognize patterns to answer the
question "What are the shapes of the objects in the image?" Suppose we use a binary
thresholding method to filter out non-object pixels. As a result of the data filtering phase, we
obtain the object pixels. Then we apply feature extraction to extract contiguous pixels as
individual regions obtaining crucial information about the image. The extracted information can
be used and reasoned with in order to answer the question posed as the problem statement.
Further manipulation to the regions such as boundary analysis can be treated as clues generation
in the next step of our DIMUS.

To illustrate further, consider the task of building gray level co-occurrence matrices (Haralick
et al. 1985) of aregion. In this case, if we choose to approach noise removal implicitly, we can
utilize a quantized co-occurrence matrix. This is because quantization has the characteristics of
removing noise. As a result, the matrix is the filtered representation of the region. If we
compute texture features such as energy, entropy, contrast, homogeneity, and correlation, then
we are extracting information. Sometimes, the extracted information may be overwhelming in

volume. For example, if we implement the co-occurrence matrix using a range of displacement
and orientation values, we could end up with a vector of large length for each texture feature. (If
there are 32 displacement values and 4 orientation values, then there are 128 combinations,
yielding a vector of 128 elements.) Then we need information abstraction.

2.1.3 Information Abstraction

We apply information abstraction to obtain a summary of the extracted information. This is
needed only when the extracted information is deemed to be voluminous and a more concise
representation is better for the clues generator at the next stage. For example, to describe a
Gaussian curve, one can either plot the curve with some minute interval between each unit of the
abscissa axis and the ordinate axis, or, on the other hand, completely describe a Gaussian by
simply supplying the mean and the standard deviation values given the Gaussian equation. By
supplying the two parameters, we have achieved information abstraction. In the example of
implementing co-occurrence matrices, one can apply information abstraction by, say, computing
the average of the 128 combinations.

Note that information abstraction must not deteriorate the quality of the extracted information
in terms of its usable and reasonable content at a later stage. For example, suppose we are to
describe a boundary of an object and the object has /N, boundary pixels. We can apply

information abstraction by fitting the object boundary with a polynomial (e.g., Sklansky et al.
1972). If the specific task is to describe the general shape of the object, then this abstraction
might be effective. However, if we are to locate the convex and concave curves of the boundary,
then this abstraction might prove disastrous since the piecewise polynomial segments have
resulted in reduced resolution. So one must be aware of the effects of over-abstraction on the
task.

In addition, in order for the information to be reasonable, one must be careful in balancing
between the aggregates and the abnormalities. For example, suppose we are to summarize a
signal in a signal processing task. Suppose the signal oscillates at a constant frequency and
magnitude; then we can say the waveform is operating at a certain frequency and magnitude.
This is an abstraction by fotal aggregation, in which a set of higher-order measurements are
taken of the data without considering any individuality. However, if the signal oscillates at a
constant frequency but occasionally with significant energy bursts or changes in phase, or other
abnormalities, one must now consider how to represent the waveform adequately. If we choose
total aggregation, then we lose possibly valuable information in the abnormalities. If we choose
total abnormalization—that is to describe the whole waveform in detail, then we are faced with
too much information. Sometimes the abnormalities are desirable; sometimes they are not. This
dilemma can be found in image processing as well. If we are to find intensity lines or ridges in
homogeneous regions, then these pixels of lines or ridges are abnormalities, and they are
desirable. If we are to find homogeneous regions, then these lines or ridges are undesirable
abnormalities. Usually, information extraction employs partial aggregation and partial
abnormalization.

Information extraction and abstraction can also be viewed as a representation problem in
Artificial Intelligence (Woods 1975, Brachman 1985). We must deal with issues such as data
relevance and importance, types of content property (or attributes), level of granularity of the
representation of the information, and the frame problem (McCarthy and Hayes 1969).

2.2 Clues Generator

There are two essential components to segmentation: implementation approach and content
property. The implementation approach serves as a mechanism that drives the set of content
properties. The content property serves as a means by which pixels of the image are judged and
provides the basis on which the implementation approach operates. For example, thresholding is
one implementation approach, the gray levels of the image is one content property, and gray
level thresholding is one image segmentation technique. In this module, the set of content
properties is determined for a successful application of the DIMUS. One can derive theoretically
or discover experimentally the adequate set of content properties that can increase the separation
among inter-class pixels and the similarity among intra-class pixels. Also, this is a module
where domain knowledge can be inserted to influence the search for a set of good content
properties. For example, if we are working with highly noisy images, then we might want to use
statistical or frequency domain textures as content properties since their higher-order properties
are more robust than first-order statistics. Suppose we know that the pixels form distinct local
neighborhoods for different classes, then we might want to try spatial analysis to measure and
identify those neighborhoods. In object-background segmentation for detection of linear objects
such as airplanes, one might want to use symbolic properties to locate potential airplane
structures and subsequently enhance them. The selection of a set of good content properties is
also a major issue in Artificial Intelligence (AI) research areas such as knowledge representation,
expert systems, data mining, and machine learning. In knowledge representation, one must
determine what information one should collect and represent so as to be descriptive of the event
or object. In building rules or cases for an expert system, one would ask what attributes are
important and useful. In data mining, we analyze the issues of how one should pre-process and
transform the data into usable information from which meaningful knowledge can be extracted.
Similarly, in machine learning, one focuses on certain attributes of a new instance and certain
attributes that are worth learning. In image segmentation, we want to know how we should
extract information and clues from the image. Should we use the original image, or should we
transform the image first? For example, if we choose to use thresholding as our implementation
approach, we are faced with the question of what content property (or properties) we should
threshold upon.

In this module, clues are generated given the information produced by the inspector. The
generation process can examine the image by following the guidelines of the extracted
information, or examine the extracted information directly, or both. Note that the clues can be
organized in several ways with the extracted information. For convenience, we call this
organization of the extracted information and clues clues. In the following, we discuss two
operations of the clues generator. First, we describe clues organization. Its task is to generate
clues and combine them with the extracted information. Second, we describe clues refinement.
Its task is to refine the clues for the consumption of the determiner.

2.2.1 Clues Organization

Clues organization is important in providing a cohesive organization of clues such that they can
be effectively utilized by the determiner. The organization of the extracted information and the
clues can be described in several modes of relationships. Also, how the clues are generated and
dictated by the extracted information will be described as the guided-search and transformed-
search strategies.

First, the extracted information can serve as a guideline for generating clues. For example, if
the extracted information indicates that the image is highly textured, then a textural analysis can
be applied to the image to generate textural clues. To illustrate further, suppose we implement a
knowledge-based segmentation technique. The control of flow of operations is governed by
several rules, triggered by matching antecedents. Each rule may correspond to a certain type of
extracted information regarding the image: if the image’s average contrast is very low, then
increase it before analysis; if the extracted information indicates the existence of only one class
in the image, then stop further processing; and so on. This in effect is a guided-search for clues.

Second, the extracted information can serve as the basis for clues. For example, suppose as a
result of the inspector module, the extracted information is a multiresolution pyramid of the
image. A tracking analysis across different resolution levels can be applied to the pyramid to
identify, say, true and false edges (Sjoberg and Bergholm 1988). To illustrate further, by
applying our model to the technique in (Panda and Rosenfeld 1978), the inspector module
essentially created a gray level-edge value two-dimensional space as the extracted information.
From this two-dimensional space, the authors generated clues which were a threshold between
the dark and bright regions, a threshold dissecting the high-gradient regions, and a two-
dimensional line connecting the two thresholds. This in effect is a transformed-search for clues
because the clues were extracted from the transformed space of the original image.

Third, the extracted information can serve as a modifier for the clues. A modifier can
function as a weighting factor or a probability factor. For example, suppose after the inspector,
we achieve an initial segmentation of different regions. Each region has its own group of pixels.
The sizes of these groups can serve as weights used in, say, relaxation to compute compatibility
coefficients (Peleg and Rosenfeld 1978, Pelillo and Refice 1994). The sizes can also be treated
as prior probabilities for Bayesian modeling of image classes (Yu and Berthod 1995) and initial
guesses of probabilities of a multivariate Gaussian mixture.

Fourth, the extracted information can serve as an organizer to arrange the clues into a usable
form for the consumption of the determiner module. There are several ways to organize the clues
and the extracted information:

A Hierarchy

The extracted information can be used as parents for groups of clues. To illustrate a hierarchy
application, consider different transformations of the original image as part of the tasks of the
inspector module. These transformations could be of edge operators to create a list of gradient
images. To each gradient image one can apply thresholding to obtain strong edges, and region
filling to obtain a segmentation. Therefore, each gradient image spawns two child images—edge
image and region image. As a result, a hierarchy tree is formed, and information can be passed
up and down the tree to finally arrive at a consistent conclusion. Another example of hierarchy
organization is associated with the multiresolution approach as in a pyramid. A pyramid is an
organization of information extracted from the image. During the clues generation phase, each
pyramid (or resolution) level is subjected to processes such as blob detection, histogram
manipulation, and thresholding. The resulting clues are then attached to each corresponding
resolution level in a hierarchy. Another form of hierarchy is with the utilization of multispectral
images. Each band of spectrum corresponds to part of the extracted information, and
measurements (or clues) computed correspond to each band's children in the hierarchy.

B Description

Each set of clues can be used to describe each item of the extraction information. For example,
in representing textures using local extrema, suppose that the inspector module produces local
minima and maxima. Then, by analyzing the neighborhood surrounding each extremum, one can
derive a list or vector of properties to describe that extremum. Also, in a region growing scheme,
the inspector module first conducts a fast growing of regions based on initial guesses of seeds.
The clues generator then can compute properties such as homogeneity, gradient, average
intensity, and size for each region. This list of descriptors or clues thus describes the extracted
information. Furthermore, in edge-based segmentation technique, an inspector might generate
edges as the extracted information of the image. Then, the clues generator can compute edge
strength, edge length, edge connectivity, and neighborhood gradient for each edge segment such
that the next module can classify true segments accurately.

C Relation

Each clue (or set of clues) and each item of the extracted information are paired (or linked) in a
relational table. Suppose the clues generator generates a set of clues. Each set is a vector of N
elements. By linking each element to an item of the extracted information, an N +1 relational
table is created, which can be visualized as a N +1-dimensional space. For example, applying
our general model to (Abutaleb 1989), the inspector module generated a 1-D space by computing
the entropy of the original intensity. Then, the clues generator generated another dimension by
computing the entropy of the average of the neighborhood of a pixel. Thus, linking the two, a 2-
D space was achieved. The relational organization differs from the description organization in
the following: The descriptors in the description organization describe an item (of the extracted
information) that cannot be manipulated in further analysis because each is similar to a label.
However, in the relational organization, the items of the extracted information are actually
manipulatable entities.

D Channeling

In this setting, the sets of clues are for different purposes and will be fanned out to different
channels. For example, suppose the extracted information consists of three classes: background,
objectl, and object2. After the clues have been generated for each class, the background class
can be channeled to a background analysis to analyze noise, and both the object classes can be
channeled to task-specific analyses. Note that channeling, as a result, separates the clues and
does not treat them as a constructive conglomerate. This type of inspector—lues generator
relationship usually is involved with a system of different task-specific modules, which at a later
stage, may or may not fuse together all its results.

Note that, as hinted above, a set of clues can consist of several types of content properties
such as frequency-based, spatial, statistical, and symbolic. Each property in turns can have
several measurements. For example, suppose we use symbolic and statistical properties to
describe a region. The symbolic properties may include size, shape, boundary wiggliness, etc.
The statistical properties may include homogeneity, entropy, mean, standard deviation, etc.

2.2.2 Clues Refinement

In the clues generator module, in addition to the organization of the extracted information and
clues (hierarchy, description, relation, or channeling), its tasks include transformation and
selection of the organization into a format usable by the determiner in the next stage. We call
those processes clues refinement. These two operations share similar objectives as information
extraction and abstraction in Section 2.1 of this paper. Note that determiners may use different
methodologies and strategies. They may take different sets of clues, or work better on a specific
set of clues, or require certain forms of clues.

For example, suppose the task is to extract round objects from the image. Suppose the
inspector and clues generator produce a group of boundaries. The determiner is a neural network
to be trained to recognize the behavior of round objects. The clues fed into it then will be, say,
the chain code (Freeman 1974) of each contiguous boundary pixel. However, for a large object,
its boundary can be of hundreds and thousands of pixels. To feed all these boundary pixels into a
neural network is not viable since it will complicate the architecture and increase the training
time for network convergence. Thus, either a transformation or a selection is needed to reduce
the computational burden. One option is to transform the boundary by replacing a boundary
segment with a single pixel at the average Cartesian coordinates of all pixels within the segment.
This is transformation. Another alternative is to sample the boundary by taking every n th point
of the boundary. This is selection. Either way, the objective is to reduce the number of inputs
into the neural network.

To illustrate further, suppose the inspector and the clues generator produce a description
organization such that each region in the segmented image has numerical values of homogeneity,
contrast, entropy, and energy. Suppose the determiner we choose to use is a symbolic
determiner; let us say, a rule based system which qualifies its antecedents in the following
manner: if the region’s entropy is HIGH then perform action 1, etc. Thus, we need to transform
the numerical values into symbolic values. Suppose each attribute is to be divided into five
classes: VERY LOW, LOW, AVERAGE, HIGH, and VERY HIGH. We can use the mean of
each group as the threshold for AVERAGE, while one standard-deviation away as the LOW and
HIGH regions, and the two or more standard-deviations away as the VERY LOW and VERY
HIGH regions. This is statistical translation. Another alternative is through visual judgment
(e.g., Carbonell 1990) in which the regions are judged, assigned the symbolic labels (VERY
LOW, LOW, etc.), and then the average measurements of the similarly-labeled regions are used
to threshold each label. This is visual translation.

Other transformation techniques include reduction, projection, translation, convolution, and
other mathematical and statistical manipulations. Attribute reduction, for example, allows fewer
attributes to be considered; resolution reduction, on the other hand, allows fewer instances to be
considered, as exemplified by the neural network case above. Another example in reduction is
quantization where different values occupying a certain interval are treated as one value.
Projection, for example, allows a multidimensional space to be analyzed in one particular
dimension. Translation allows measurements to be converted into if—then rules, induction trees,
constraints, ranked sequence, symbols, etc. For example, in the relational organization, suppose
we have N items. We can perform a translation such that the maximum of each dimension is
replaced with a symbol or a higher-than-usual number to enhance these maxima's differences
from others during the classification. Convolution allows different masks to be applied to the
clues. For example, suppose we have a description organization and we treat the vector

10

describing each item of the extracted information as a signal. Then, we can use known
distribution-based masks, or 1-D spatial masks to refine the signal.

2.3 Determiner

The determiner assigns classes to the clues, and thus determining the number of classes in the
image and the clues that make up each class. As we have mentioned, the responsibility of the
unsupervised segmentation in the DIMUS lies with this module. The task of determining the
number of classes and finding the classes falls upon the algorithm that implements the
determiner. Here we describe several unsupervised segmentation techniques which have been
used in knowledge discovery of databases, machine learning, and image processing.

Unsupervised segmentation distinguishes itself from image segmentation solely because of
its ability of performing segmentation automatically. This ability can be derived from different
disciplines. For example, ISODATA (Ball and Hall 1967, Holt et al. 1989) and K-Means
(Hartigan and Wong 1979, Le Hegarat-Mascle et al. 1996) and its fuzzy variants (Hall e? al.
1992, Lim and Lee 1990, Trivedi and Bezdek 1986) are based on numerical taxonomy;
histogram smoothing (Lee and Jurkervich 1989, Smith 1996) is based on speckle noise model of
remotely-sensed imagery; AutoClass (Cheeseman 1990) is based on Bayesian probability;
COBWEB/3 (Thompson and McKusick 1993) is based on conceptual clustering (Kolodner 1983,
Fisher 1987, Lebowitz 1987, Gennari et al. 1990, Thompson and Langley 1991) and incremental
learning; non-linear regression (Acton 1996) is based on regularization theory (Poggio et al.
1985, Marroquin et al. 1987); multi-thresholding (O’Gorman 1994) is based on peaks in the
imagery; SNOB (Wallace and Dow 1994) is based on minimum message length (Rissanen 1978,
Leclerc 1989, Rissanen 1989, Cook and Holder 1994); and some are based on the self-organizing
behavior of neural networks such as the adaptive resonance theory or ART (Carpenter and
Grossberg 1987), the learning vector quantization (LVQ) algorithm (Kohonen 1989), and the
self-organizing map (SOM) method (Kohonen 1989). Some of these segmentation techniques,
such as histogram smoothing, non-linear regression, and multi-thresholding, have been tailored
for imagery data; while the others for numerical data. However, bear in mind that techniques
dealing with numbers are still applicable to imagery data as long as we are able to extract
meaningful, representative numerical attributes from the images. This process is indeed a key
stage in any processing areas: signal, speech, data, image, etc.

Some of the techniques use a similar approach that allows for their automation. The
algorithm first uses an initial number of classes to find clusters of data, then evaluates the
clustering based on an optimization metric, and repeats with other number of classes. Finally,
the algorithm selects the number of classes that yields the best score. As a result, that some of
these techniques are computationally expensive has prompted several authors to introduce
assumptions, reductions, and local optimizations that deviate from the original concepts and
theories.

Each of the above approaches can be used as a determiner. The basic tasks of a determiner
are to analyze the clues, derive from the clues the number of classes and the composition of each
class, and classify the clues accordingly. These functions can be extremely complicated and
intractable when the number of dimensions (the set of content properties) is large, and a
consistent classification—or determination—cannot be achieved without a concerted framework.
In what follows, we describe the components of a determiner. Note that in other literature, the
determiner is sometimes identified as a unsupervised technique that is able to determine the
number of classes within the data and groups the data accordingly. The technique may be a

11

neural network, a clustering algorithm, a linear regression, a histogram-based peak-detection
module, or one that is based on other methodology. To avoid confusion and to be more
representative, we have chosen to use the word determiner instead of classifier, and preferred
determination to classification.

2.3.1 Components of a Determiner

There are four essential components that build a determiner. First, the determination system
starts with a starting condition from which it begins analyses on the clues. Second, it has a
stopping condition that commands the analyses to stop automatically. Note that for many
supervised determiner, the starting condition is provided by the user, sometimes specifically for
each set of data, or the stopping condition is determined by the user’s human judgment of the
result. Third, it has an evaluation metric to justify inter- or intra-class operations for data
maneuvers. Fourth, it has an underlying process that controls the flow of the system. Note that
we use AutoClass, COBWEB/3, and SNOB as representative implementations of Bayesian
clustering, conceptual clustering, and minimum message length (MML) principled clustering,
respectively.

A Initial State

A determiner starts with an initial condition from which it can evolve to arrive at the goal state
when a stopping condition is satisfied. Table 1 shows a list of initial states of the unsupervised
systems discussed above. A popular approach that transforms a supervised segmentation
technique to an unsupervised one is to use a range of initial values, process each accordingly,
evaluate each result based on a devised goodness of clusters, and pick the best result.
ISODATA, K-Means, AutoClass, and SNOB have taken this approach. Another popular
approach is to use a pre-processor to compute and provide the initial guesses of classes such that
iterations are not necessary. For example, Hartigan (1975) chose seed points by splitting
variables (or content properties) with large variance to obtain initial cluster means in K-means
clustering. Again, ISODATA, K-Means, and Minimum Message Length have been implemented
with pre-processors.

Note that COBWEB/3 does not require specification of the number of classes. Due to its
incremental learning nature, it creates a hierarchy of best evaluation without the need for the
knowledge of classes a priori.

Initial State

ISODATA The number of clusters and initial cluster points are (1) randomly
selected, (2) a range of values to be iteratively processed, or (3) pre-
determined using other methods.

K-Means The number of clusters and initial cluster means are (1) randomly
selected, (2) a range of values to be iteratively processed, or (3)
predetermined using other methods.

Histogram Iterative noise-removal filtering to find the number of peaks (which
Smoothing corresponds to the number of classes)

12

Bayesian Start with the number of classes that are to be higher than the expected
(AutoClass) number of classes, and then process iteratively a range of configuration
values from there

Conceptual Not required; simply the set of initial data instances

Clustering

(COBWEB/3)

Nonlinear Specify control parameters in the simulated annealing process and the
Regression segment length of the piecewise constant feature

Multi-Thresholding | Specify the flatness deviation (for curve analysis) to control the number
of peaks allowed to qualify

Minimum Message | Estimate the number of classes and class structures, and process a range
Length (SNOB) of values

Neural Networks In general, start with a set of initial weights for the links among nodes in
the network

Table 1. Unsupervised segmentation systems and their required initial states.
B End State

An unsupervised segmentation system is able to stop on its own. Thus, it decides when the
clustering process is deemed satisfactory. There are several approaches to achieve this decision
making. First, one uses convergence of certain measures. In ISODATA and K-means, if each
cluster stabilizes to a certain location, then the group of such clusters is said to have converged.
In SNOB, an MML-principled system, the system stops when the total message length
converges. Second, the system stops when all data points have been processed. A system of this
sort usually employs incremental learning. It views each datum, absorbs the influence of that
datum into the learning memory by strengthening existing information, introducing new
information, or resolving conflicting information, and updates the learning memory before
processing another datum. Conceptual clustering and three implementations of neural networks
discussed here follow this pattern of learning. Third, the system stops when the optimal solution
has been found. Usually, this type of approach involves solving the combinatorial problem via
searches such as hill-climbing, simulated annealing, and other mathematical techniques. First, a
function based on several variables is formulated to describe the goodness of the results; that is,
it achieves an optimum when the result is best. Then, an updating scheme of the variables is
derived, this defines the search space. The search ends either when the result has converged or
when an extremum has been located. Table 2 shows the systems and their corresponding end
states.

ISODATA Convergence of the average response patterns

K-Means Convergence of the cluster means
Histogram Stage 1: Convergence of the root mean square change in data values
Smoothing after iterations of noise removal filtering

Stage 2: After all data have been converged to a peak

13

Bayesian When the range of initial configuration values has been exhausted
(AutoClass)

Conceptual When all data instances have been processed; for each data instance, the
Clustering search ends when all operations have been exhausted

(COBWEB/3)

Nonlinear When the optimal solution of the energy function has been achieved
Regression

Multi-Thresholding | When all histogram bins have been masked out

Minimum Message | Convergence of the total message length
Length (SNOB)

Neural Networks ART, LVQ, SOM: When all data instances have been processed; for
each data, the search ends when all existing reference vectors have been
visited

Table 2. Unsupervised segmentation systems and their end states.
C Evaluation Metric

The evaluation is necessary to provide a justification and selection for actions such as merging of
two classes, splitting of one class, pruning of a class, etc., during the determination. For
example, suppose we are to merge a class with one of its neighbors. One approach is to compute
the similarity measure of the class with each of each of its neighbors. Such evaluation metric
could be Euclidean distance, Kolmogorov-Smirnov distance (Rosenfeld and Davis 1979).
Mahalanobis distance (Mahalanobis 1936), Hausdorff distance (Le Moigne and Tilton 1995),
vector degree of match metric (Baraldi and Parmiggiani 1996), root mean square (RMS) error,
and other hybrid variants. After evaluating each pair of classes, one picks the lowest score as the
most similar pair. Another approach is to compute the effects of such merging within the
system. For example, COBWEB/3 accepts the inclusion of a new instance into the concept
hierarchy by propagating its occurrence throughout the tree and producing new probabilities on
which a category utility function is based. SNOB calculates the resulting total message length to
examine the effects of data movements on the system globally. Table 3 shows the systems and
their evaluation metrics.

There are two popular measurements used to decide whether merging or splitting should take
place. The measure is called the intra-group variability (or within-group, within class
variability). It measures either (1) the differences between all members of the group with the
mean of the group, i.e., the variance, or (2) the differences between each pair of different
members in the group. If this measurement is greater than some experimentally pre-determined
threshold, then the group is split into two. The second measure is called the inter-group
similarity (or without-group, without class similarity). It measures either (1) the differences
between the means of the two involved groups, or (2) the differences between each pair that
consists of one member of a group and one member of the other group. If this measurement is
lower than some experimentally pre-determined threshold, then the two groups are merged into
one. There are variants to these two measurements. Indeed, content properties discussed in
region merging and splitting (Horowitz and Pavlidis 1976) are suitable for this task.

The evaluation metric also allows the system to formulate an optimization strategy to achieve
the best solution—the result which achieves the best score on the evaluation metric. For

14

example, in our example of nonlinear regression (Acton 1996), the author derived an evaluation
metric called the energy function to measure the solution quality of the image, and used the
simulated annealing process to obtain the optimal solution. In our example of Bayesian
classification, Cheeseman et al. (1990) computed prior distribution of the parameters and used an
integral approximation process to obtain the relative probability of a certain number of classes.
This approach is more global and thus can be considered order-independent at the expense of
higher computational burden, compared to those using a distance metric.

Another approach is incremental. For example, in COBWEB/3, the evaluation metric, the
category utility, is constantly updated after processing each data point. This evaluation metric
provides a principled tradeoff between specificity of a class (exclusiveness) and generality of a
class (inclusiveness). In a determiner system, if a class is specific, then it is highly-informative;
if a class is general, then it is descriptive and thus able to tolerate noisier data points. This utility
picks at each data point the best action to perform: creating a new node, absorbing the data point
into an existing cluster, merging two similar clusters, or splitting a cluster. Thus, at each data
point, the solution based on the category utility score is locally optimal. However, each solution
is not guaranteed to be globally optimal. Hence, this method is order-dependent. Table 3 shows

the systems and their corresponding evaluation metrics.

System

Evaluation Metric

ISODATA Euclidean distance and related intra-group variability and inter-group
similarity

K-Means Various distance metrics and related intra-group variability and inter-
group similarity

Histogram Stage 1: 2-standard deviation (2-sigma) range statistics when locating

Smoothing peaks
Stage 2: Directional spatial distance in the histogram when labeling
pixels

Bayesian Probability of the number of classes and the prior distribution of the

(AutoClass) parameters

Conceptual Category utility

Clustering

(COBWEBY/3)

Nonlinear Energy function

Regression

Multi-Thresholding | The goodness of a peak of a Gaussian-based sliding profile of an image

Minimum Message | Total message length

Length (SNOB)

Neural Networks ART, LVQ: Various distance metrics
SOM: Various distance metrics and spatial distance of the output nodes

Table 3. Unsupervised segmentation systems and their evaluation metrics.

15

D Underlying Process of Operations

A determiner has a control of flow which guides the clustering or segmentation process by
determining which stage the system is in and what operations the system should be performing.
The basic three steps of operations are (1) assign classes to the data, (2) evaluate the resulting
configuration, and (3) perform necessary operations on the classes or data. There are two
common approaches to carry out these operations. First, one can perform iterations. By limiting
the number of classes within a range, the system iterates by using different initial states. Then, it
picks the configuration that yields the best result to be the solution. ISODATA, K-means,
AutoClass, and SNOB have used this approach. Second, a modular processing has also been
used to have a pre-processor, the classification, and a post-processor. Histogram smoothing,
nonlinear regression, and SNOB are modular processing systems. These systems allow the
initial states to be derived during pre-processing and refinements of the end states during post-
processing. Third, a one pass system such as incremental learning has been utilized. This type
of systems scans each data point in sequence and the process is completed after the last data
point has been examined. COBWEB/3 and several neural network architectures fall into this
category. Table 4 shows the systems and their corresponding underlying process of operations.

System ‘ Underlying Process of Operations

ISODATA Iteration: Assign classes, evaluate classes, split and merge classes, and
pick the best at the end of iteration

K-Means Iteration: Assign classes, evaluate classes, move data from class to class,

‘ an pick the best at the end of iteration

Histogram Perform iterative filtering to obtain the number of classes, process each

Smoothing data instance to obtain association of classes

Bayesian Increase the number of classes if all resulting classes have significant

(AutoClass) probability, and vice versa, search for the parameter attribute values,
approximate the relative probability of that number of classes

Conceptual Process each data point, evaluate each possible configuration: merging,

Clustering splitting, and creation, pick the best configuration and execute it, iterate

(COBWEB/3) until all data instances have been processed

Nonlinear Process each data point by calculating its content property, setup the

Regression energy function, perform simulated annealing to obtain the optimal
solution

Multi-Thresholding | Create histograms of horizontal and vertical runs, determine sliding
profile, identify peaks, filter peaks, and threshold the data with the

qualified peaks.
Minimum Message | Iteration: Assign classes, compute total message length; After
Length (SNOB) convergence, perform partial assignment, splitting, merging, and pruning
Neural Networks Process each data point, updates the weights forward and/or backward,

iterate until all data instances have been processed

. Table 4. Unsupervised segmentation systems and their underlying processes of operations.

16

For operations, normally, there are the merging of two classes, the creation of a new class,
the splitting of a class into two, and the absorption of a data point into an existing class. For
example, two classes are merged in COBWEB/3 if the resulting configuration of the whole
concept hierarchy scores the locally best category utility. In the ART neural network
implementation, if the incoming data point is found to be significantly different from the existing
class vectors, a new class is created with the data point as the mean. In ISODATA, if the within-
group variability of a class or cluster is found to be higher than a threshold, then the cluster is
split into two at the mean. In K-means, for each data point, if the distance between itself and its
parent cluster’scentroid is larger than the distance between itself and another cluster, then the
data point is merged with this other cluster. There are additional operations such as pruning to
trim the structure off of residual classes.

2.4 Justifier

The concept of work of a justifier is different from most determination systems that we have
discussed above. Strictly speaking, it does not deal with the data to make sense out of them.
Instead, a justifier interprets the classes—a higher level of representation—and validates them.
The interpretation is a process of establishing some sort of understanding about the classes; while
validation is a process of applying knowledge to the interpretation to resolve inconsistencies and
refine the determination. In the next subsection, we will describe several types of knowledge
that can be used in the justification processes. Then, we will discuss the two sub-processes in
greater detail.

Note that justification is sometimes necessary. This is because the determiner may not be
domain- or application-specific. For general determiners such as COBWEB/3, the underlying
approach and implementation are not related to a particular application domain. In addition,
there are no facilities to support the (convenient) infusion of domain or application knowledge—
helpful constraints or rules cannot be applied—into the determination process. Nevertheless, it is
possible to incorporate the justification process into the determiner as the similarity or
dissimilarity criteria. In doing so, even though we can eliminate considering useless classes and
speed up the clustering process, this implementation does not have the generality and flexibility
of our two-stage version. Under our modular modeling, a determiner validly identifies all classes
in the data, and there may be a bank of justifiers with particular applications. This fanning-out
alternative is thus more general. In the following, we will discuss several useful types of
knowledge. Then, we will devote a subsection to describe a number of approaches to
justification.

Before leaving this discussion, bear in mind that we must not lose sight of what the objective
of this DIMUS is. Its primary task is to automatically segment a database into separate classes,
based on the content properties derived from the data. This DIMUS is not designed to achieve
classification. However, one may supplement the model with a powerful justifier by providing
large amount of domain and application knowledge. Then the task of the model becomes
classification: assigning data points into meaningful, semantically correct classes. This fine line
between segmentation and classification is sometimes elusive or blurred: if the segmentation is
powerful and effective, then the classification can be omitted; if the segmentation is preliminary,
then the burden of labeling data points correctly (in terms of semantics) lies on the classification
phase.

17

2.4.1 Types of Useful Knowledge

It is true that at this stage, from the standpoint of the determination algorithm, all classes and the
number of classes are valid. However, some classes may not be correct, complete, justifiable, or
desirable for a particular domain or application. To help improve the quality of determination, a
justifier derives useful hints from two major types of knowledge bases: domain knowledge and
application knowledge. Suppose we are given an optical character recognition (OCR) task as the
domain, and suppose further that we limit our work on recognizing handwritten, Arabic as the
application. Suppose a determiner system has segmented the image into N classes. The domain
knowledge tells us that there should be optimally only two classes: the text and the background.
Thus, we can assert a constraint that regroups the classes into two:

If the Euclidean distance between the adjacent pair of classes C,, and C ,, is the
largest among all adjacent pair of classes

then Merge first m < N classes into C, and later N — m classes into C,.

Given the two classes, one may be able to refine the text regions further. For example, the letters
of the Arabic alphabet consist of mostly curvilinear segments. This application-specific
knowledge may be used to include image pixels which has been classified as background:

If asegment of background pixels has intensity levels close to the text and
the segment lies on a curve extended between two nearby text regions
then Assign the segment to the text class.

As shown in the above two constraints, one may use domain and application knowledge to
improve the quality of segmentation or classification before further processing such as
recognition and matching.

Another type of knowledge is data-related. Suppose we have a set of clues in the description
format and a particular attribute, say, A,, is more important than others in differentiating classes.
Note that we judge importance based on domain and application knowledge, not numerical or
statistical implications. Now, assuming that the determiner has located N number of clusters,
and two of such clusters have similar A,, during the justification process, one may derive a

constraint from the knowledge base that

If two clusters have similar A, and
the Euclidean distance between them is within a pre-determined threshold
then Merge the clusters as one.

With this constraint, one can assert preference and favoritism towards attribute Ai , thus

involving the knowledge base. Scalar constraints can be used to justify symbolic attributes. For
example, suppose that attribute size has possible values of very small, small, average, big, and
very big. Suppose the determiner, based on the size and other attributes, has grouped several
instances of different sizes (very small and very big) into a same cluster, which may not be
justifiable. Thus, a scalar constraint as the following may be of use:

18

If acluster has members of very small size and very big size
then Split the clusters into two.

For imagery data, to counter sporadic fragmentations and holes in classified regions, spatial
constraints may be used. Suppose after determination, a region of class C, consists of holes of

another class, C ;- Some application knowledge may require the extraction of compact regions
for image processing purposes, thus a constraint as the following may be of use:

If aregion of class C, contains holes of another class C,
then Assign the holes to class C,.

This example also illustrates the difference in domain and application knowledge, which has
real-world applications in, say, sea ice image analysis. Suppose the image is of Synthetic
Aperture Radar (SAR) sea ice imagery, and the region is a large multiyear ice floe. The domain
knowledge tells us that during winter, the floe looks bright because of high backscatter. On the
surface of the ice floe, there might be melt ponds (with low backscatter) and linear ridges (with
even higher backscatter). These two features are small and create holes within the multiyear ice
floe region. Under the domain knowledge, if the determiner finds three classes within this
region, it is perfectly acceptable. However, if the application is to locate compact ice floes, then
one must eliminate the holes created by the melt ponds and linear ridges. In general, domain
knowledge in sea ice research provides geophysical observations regarding the intensities of ice
types, textures, contexts, etc.; whereas application knowledge might focus on extracting
multiyear ice or other ice types only, ice classes or other geophysical sea ice features. As
illustrated, application knowledge is thus more goal-oriented than domain knowledge.

Knowledge can be incorporated into constraints or rules as shown above, and also weights or
probabilities, thresholds, and algorithms.

A Weights or Probabilities

Weighting factors in equations can be based on the knowledge regarding certain types of classes.
For example, suppose after numerical clustering, an equation is used to combine different
attribute values in order to, say, compute the total contributing factor of all these attribute values.
A case in point is the determination of different types of environment pollution sources. Suppose
we are given a task to classify regions based on their pollution strengths and sources. Pollution
factors such as chemical plants, farming pesticides, automobiles, factories, etc., are measured
such that each region is described by an attribute vector. After determination, the cities are
labeled by their patterns of pollution. Perhaps, regions of one class have higher percentages of
automobile pollution than others; or regions in industrial areas consistently have higher
percentages of factory-related pollution cases. Next, the domain knowledge can be used to
reclassify the regions within each class (or as a whole) the total damage of the combined
pollution factors. Domain knowledge provides information such as how many units of pollutants
are emitted by a chemical plant normally, how many units of pollutants are emitted per vehicle,
etc. This information can be used as weights in a global equation to classify the regions into
different classes of pollution load. Similarly, we can use knowledge to derive probabilities from
the numbers to refine determination.

19

B Thresholds

Knowledge has been implemented as thresholds in many classification or segmentation
techniques. These thresholds can either be knowledge-based or empirically determined. A very
common approach to justification is to merge and split classes found by the determiner. To do
so, the inter-cluster or intra-cluster measurements are used. Whether a merge or a split is called
for is based on these measurements—whether they are lower or higher than some thresholds.

C Algorithms

With more complexity, knowledge can also be represented as algorithms. These algorithms
perform class interpretation to transform the raw class information to a level such that the
knowledge can be applied. In (Canny 1986), the extraction of edge pixels was refined by first
segmenting the edge pixels at a oI level, where @=2...3, and T is a threshold found during
the determination process. Then, for justification of the determination, the author used an
algorithm called hysteresis that promoted pixels with edge values greater than 7 and also pixels
lying on the same contour of the existing labeling to edge pixels. As a result, the occurrences of
streaking and isolated false edge pixels were reduced. Also, for example, if the domain
knowledge tells us that the edges should be linear, then we could use the Hough transform
(Hough 1962) to fill in the gaps between detected edge segments. In some cases, arbitrary
shapes could also be imposed to detect edge pixels (Ballard 1981).

2.4.2 Class Interpretation

This step prepares the class information for interpretation and interprets it. Note that to interpret
the classes, one can examine either the raw class information or the transformed class
information. The raw class information consists of the number of classes and the classes, as
described by their attribute vectors. The interpretation process of this type is straight forward
and does not require additional processing. The transformed class information is more
complicated. For example, one possible transformation is spatial relationships of the classes in
the image. Contextual statistics can be computed to establish links among the classes. Based on
these links, one can decide whether to merge or split classes. Some of the techniques that we
have mentioned in dealing with information extraction and clues generation apply here.

2.4.3 Class Validation

This module actually performs the operations to change labels of the data points, given the
interpreted information of the classes. There are three essential approaches to class validation:
(1) verification, (2) refinement, and (3) conflict resolution.

A Verification

The task of this step is to either preserve or discard. It examines conflicts between the
interpreted class information and the knowledge base. If the application calls for one particular
class and ignores other classes, one may discard the verification process on other classes by
grouping them all together. If the application is interested in analyzing only the class with the
largest number of members or a certain transformed class information, then the class can be

20

singled out for further processing. If there is a maximum number of classes for a certain type of
imagery (for example, for SAR Amazon images, there are three classes: river, forest, and
swamp), then any determination with a larger number of classes should be rejected.

B Refinement

While verification is passive, refinement is active. This step modifies the determination by
pruning the classes, merging similar classes (especially between one large region and its smaller
neighbors), splitting a class, migration of borderline data points between neighboring classes, etc.
To allow for a simpler representation, pruning is sometimes used to eliminate small, insignificant
classes. Merging and splitting are common approaches as a post-determination processor to
improve the compactness of classes and eliminate noise effects. As for refining the borders of
neighboring classes, for example, Lim and Lee (1990) used a fuzzy C-means algorithm to refine
segmentation by migrating ambiguous data points among clusters to their nearest neighboring
clusters.

C Conflict Resolution

In the verification approach, the conflicts are between the domain or application knowledge and
the interpreted class information. In conflict resolution, however, a conflict is between the
different outputs of a determiner. An order-dependent determination system, given the same set
of data but ordered differently, will yield different determination results or configurations. The
classes will be different, and sometimes even the number of classes varies. There are several
ways to go about resolving such inconsistencies or conflicts. First, one may select the best
overall determination by imposing a measure of goodness on the classified configurations. One
possible measure of goodness is the product of specificity and generality of the classes.
Specificity requires the attribute values of each class to be unique, while generality requires each
class to have as many members as possible. Second, one may use knowledge-based rules or
constraints to favor one particular configuration over the other. For example, suppose the
application requires the classes in the configuration be compact (spatially) or homogeneous
(texturally), then the configuration with the better such measurement wins out. A variant of this
approach is to selectively comb through each determination output to find the best class, and then
iteratively find the second best class and so on. At each iteration, once the best class is located,
data points assigned to the class are masked out from further consideration. These data points
are said to have been drafted by the best class. Thus, the compactness or homogeneity of the
remaining classes (without the drafted data points) can be recalculated for each determination
output, and the process iterates until all pixels have been drafted. Third, one may pick the class
by its frequency. Suppose a data point is assigned class C, the most number of times. We thus

assign it to that class. One question surfaces as to how to identify each class in different
configurations since a class C, in one configuration may not correspond to a class C, in another

configuration. In this case, one may use the centroids to determine whether the two classes are
similar. Fourth, one may combine the configurations by preserving the similarity and migrating
other borderline points via refinement. Each data point that has been classified similarly through
out different data orders will not be re-assigned. However, for a data point that belongs to a class
in one configuration, and another class in another configuration, refinements such as described
above can be used to migrate it.

21

2.5 Mapper

After we have justified the classes and updated the number of classes, we have segmented the
transformed image space. At this mapper stage, we perform the actual segmentation on the
imagery data. After the inspection and clues generation, the clues (onto which the determination
and justification are applied) are some content properties transformed from the original data.
Thus, the class information may not be readily applicable to segmentation on the original data, if
that is the goal. In some segmentation, the objective is to determine the number of classes in an
image. Thus, a mapper is not necessary. On the other hand, in addition to the determination of
the number of classes, some segmentation tasks require the identification of the classes. Such a
process includes localization and description. Localization tells us where each class occupies in
the multidimensional space. Description tells us how each class behaves in the multidimensional
space. Again, these tasks do not require the service of a mapper. In image segmentation,
however, a mapper is often needed to perform the segmentation—assigning classes to image
pixels based on the mapped class information.

The necessity for a mapper depends on the roles of the clues as labeling factors. Denote the
clue that describes a data item x, as C,. Note that a data item could be a region, a segment, a

pixel, a number, or a feature of other types. Further, C; is a vector of attribute values

{ai,1 NPT e } ,and N, is the number of attributes. A mapper is required when there exists
a partition of the vector C; as the primary clues and the rest as the secondary clues. We denote
the set of the primary clues of C, as /1(C,.) such that)»(Ci) € C,, the set of the secondary clues

as T(C,.) , such that /1(C,.) N T(Q) =(J and A(Ci)) T(C,.) = C;. Formally, a mapper is required

when ﬂ(C,.) # O and T(C,.) # . We define a set of attributes as the primary clues, A(Ci), when

the data can be segmented without ambiguity using this set of attributes alone. In other words,
leader attributes can completely segment a database. For example, in an image, if the intensity of
the pixels can be used to generate consistent segmentation, then the attribute intensity is a
primary clue. Then why do we need the secondary clues? There are two situations that require
the usage of a secondary clue: refinement and determination of the primary clue. For refinement,
a secondary clue is used to assign borderline data items into classes determined dominantly by

the attributes in the /I(Ci) . To understand the second case, one must realize that even though a
database can be segmented by using the primary clue alone, it is not guaranteed that the classes
can be found using the A(Ci) alone. For example, suppose we are given a task to find out how

many classes of different sinusoid signals there are in a database. Each signal has attributes
average magnitude and frequency. In this case, assume that the signals can be completely
segmented using magnitude and frequency alone. So, these two attributes become the primary
clues. However, is a signal of magnitude 1 dB and frequency of 50 Hz within the same class of a
signal of magnitude 1.5 dB and frequency of 46 Hz? How much tolerance do we give to a class
to include different signals? We need more information about the database and more information
about the signals. So one may derive signal-to-noise ratios (SNRs), variance of the magnitudes,
maximum peaks, phase, etc. from the signals to classify the magnitude and frequency into
groups. Consider image segmentation where each pixel is a data item. Assume that the image
can completely be segmented using intensities alone. Thus, the attribute intensity is the primary
clue. But in an 8-bit image with 256 intensity levels, how do we find classes based on simply the

22

intensity? We need an additional basis that tells us, for example, to group intensity levels 0 to
157 into one class, and intensity levels 158 to 255 to another class. This additional basis is
provided by the set of content properties, and, more specifically, by the secondary clues.

Our mapper performs two tasks: map the class information to the dimension of the attributes
of the primary clues, and segment the data with the attributes of the primary clues. One solution
of this mapping behavior is hierarchical reduction—reducing as much as possible different
attributes to one single focus point (for example, the intensity) and then applying secondary
discriminations. If there is no focus point found for the reduction, we will resort to a focus
complex to which more than one descriptions of the data are used. This iterative process allows
the primary clue set to be examined to filter out negligible attributes. Another mapping behavior
is to ensure that every data item is described with all attributes of the primary clues. Suppose the
data item is a single point, be it a pixel in an image. In addition, suppose a textural measurement
has been computed of a region of pixels. Thus, a single point within this region does not have a
direct textural measurement. If we segment the image using the textural attribute, then we must
label each pixel with some sort of textural value. If the regions are overlapping, a pixel could
then be assigned the average of textural values of the regions that it is a part of; if the regions are
non-overlapping, a pixel could be given the textural value of the region that contains it; etc. Asa
result, all pixels can be labeled.

3 Application of the DIMUS to Implementation Approaches

As mentioned above, a segmentation techniques has two components. One of them is the
implementation approach. There are generally two types of implementation approaches: formal
and informal. Formal approaches involve mathematical, statistical, probabilistic, or fuzzy
modeling of the image, including the signal and noise components. These are approaches such
as estimation via maximization, stochastic relaxation, and fuzzy sets. They employ strong
theoretical foundations such as those of Gaussian, Bayesian, Markov, etc., and allow theoretical
manipulations that treat signal and noise formally. Informal approaches usually involve raw
handling of the image based more on common sense and experimental characteristics. These are
approaches such as knowledge-based systems, neural networks, split and merge, multiresolution
and pyramid, region growing, thresholding, and clustering. They use intuitive, logical
impression of the image (and its domain) and, through experiments, develop processing quality
informally. Note that both types of approaches sometimes work hand in hand, and sometimes
pre- or post-process each other.

This section describes the different approaches in the framework of the DIMUS. As a result,
we show that the DIMUS is general and applicable for a variety of image segmentation
approaches.

3.1 Knowledge-Based Systems

Knowledge-based segmentation techniques usually evolve around three phases. First, a pre-
processing stage that initially segments the image. Second, a feature extraction stage that
computes desirable properties of the features found in the segmented image. And finally, a
reclassification system applied domain knowledge based on the properties to improve the
segmentation. Some knowledge-based segmentation techniques in the literature include (Binford
1982, Wilkinson and Megier 1990, Ton ef al. 1991, Wang 1993, Haverkamp et al. 1994,
Haverkamp et al. 1995). For this implementation approach, the inspector module can function as

23

described in Section 2.1 of this paper. Its clues generator is the module that extracts attributes
from the data, which can be numerical, symbolic, or imagery. These clues will be subjected to
refinement such as translation and transformation. The determiner is then a knowledge-based
system, which can be a rule-based, or a case-based, or a model-based system. Since if we have
chosen to use a knowledge-based system, this indicates that we are able to gather strong
knowledge regarding the classes in the data. Thus, the determiner should be able to determine
the number of classes in the data and the composition of each class. As we have discussed,
justification is needed for domain- and application-specific tasks and may not be necessary. For
a knowledge-based system, the mapper’s task is to relate the final, stable output of the system
back to the data. For example, suppose each input to the determiner is a region with different
properties. Suppose the determiner is a rule- based system, and labeling rules are fired when
triggered by certain combinations of properties. This results in a labeling of each region, and the
number of classes. The mapper then uses this class information to process the image, assigning
pixels of each region with the correct label.

3.2 Neural Networks

The inspector and clues generator modules of this approach follow the guidelines outlined in
Section 2 of this paper. The clues generator is used to produce an input vector for each data
instance. However, to satisfy the requirements of our determiner, the neural network design
considered must be of types such as ART, LVQ, and SOM, as discussed above. The justification
and mapping processes then proceed accordingly.

3.3 Estimation via Optimization

This methodology takes pixels of an image as observations e of certain dataset, D, given a known
probabilistic or statistical hypotheses set, &, and estimates the parameters p from the data D =e.
There are basically two general categories of such estimation. First, the maximum likelihood
approach estimates by maximizing the probability D = e given p = h. Second, the maximum a
posteriori (MAP) approach estimates p = h for which the posterior probability of 4, given D = ¢
is maximum. The inspector in this approach models the image or the data using either Bayesian
(Geman and Geman 1984), Gibbs (Derin and Cole 1986), Gaussian (Hassner and Sklansky
1980), or Markov fields (Derin et al. 1984). Then, the clues generator extracts from the model
essential parameters and descriptors. A determiner of this sort looks at the model-based
descriptors and derives the number of classes from them. Given the justified class information,
the mapper can then invoke the optimization process. Through optimization, pixel classification
can be finalized. Note that in this case, the mapper performs the segmentation by following an
optimization algorithm, such as simulated annealing (Kirpatrick et al. 1983), upon the supplied
content properties. We also assume that the optimization algorithm is initialized with the number
of classes in the image.

3.4 Regularization Theory
Assuming that an image is corrupted by noise and blur, segmentation information can be derived
by imposing continuity and conformance constraints in the context of reconstructing an image

from pixels. By regulating this ill-posed problem with such constraints is the basis of the
regularization theory (Torre and Poggio 1986, Marroquin et al. 1987). Examples of this

24

regularization theory approach include the scales determination for edge detection proposed by
Jeong and Kim (1992) and the non-linear regression, unsupervised segmentation technique
described by Acton (1996). First, the inspector is responsible of transforming the image into a
usable and reasonable platform. Then, the clues generator extracts content properties that build
the energy function. Given this energy function, the task of the determiner is simplified to
optimization. This optimization process thus must be able to differentiate and label pixels. The
justifier and mapper modules then proceed accordingly if necessary.

3.5 Mathematical Morphology

The language of mathematical morphology is set theory. Sets in mathematical morphology
represent the shapes of objects in an image. With its definitions in set theory, many operations
such as dilation, erosion, opening, closing, region filling, edge extraction, thinning, and
thickening can be used to improve the quality of image segmentation. The original work was
developed by Matheron (1975) and later extended by Serra (1982, 1986). Here, we describe one
example of using mathematical morphology in image segmentation, according to the DIMUS
framework. Consider the edge detection approach that uses multiple versions of blurred images
and multiple window sizes. The output of the inspector then is the blurring resolutions created
by applying morphological operators of different sizes to the image. The clues generator then
create dilated and eroded images from the resolutions. These clues are then fed into a determiner
to determine the number of classes and the make-up of the classes. Justification is inserted if
called for. Finally, the mapper uses the class information to label the original image, possibly
linking the different resolutions together.

3.6 Relaxation

The goal of relaxation (e.g., Hummel and Zucker 1983, Kittler and illingworth 1985) is to
improve the quality of image segmentation mainly by incorporating the knowledge of the
neighboring areas to improve the classification confidence of the area of interest. It provides
globality during the initial segmentation phase and locality during the iterative re-assignment
phase. It is able to achieve global consistency through a parallel exploitation of contextual
information, which is expressed quantitatively in terms of a set of compatibility coefficients
(Peleg and Rosenfeld 1978, Pelillo and Refice 1994). For this approach, the inspector carries out
the necessary data filtering, information extraction, and information abstraction tasks. Then, the
clues generator derives confidence calculations and compatibility measures for every pixel in the
image. The determiner then takes in these descriptors to determine the number of classes in the
image. In many relaxation technique, the number of classes is either pre-determined or ignored.
When ignored, the segmentation takes place locally without a global restriction. This is
sometimes desirable and practical if the image is highly homogeneous. For noisy images,
relaxation should be guided to speed up its convergence by preventing over-fragmentation.
Finally, given the class information, the mapper then performs the relaxation. Thus, in this case,
we have assigned the mapper a vital role. Its objective remains the same: linking the class
information back to the image. However, the process involved is generally more significant.

3.7 Split and Merge

Splitting is done by iteratively partitioning an image into several segments until each region
satisfies a homogeneity test. On the other hand, merging is done by merging regions together if

25

the segments satisfy a homogeneity test. The split and merge (Horowitz and Pavlidis 1976)
approach has been implemented with numerous modifications over the years (Brice and Fennema
1970, Feldman and Yakimovsky 1974, Chen and Pavlidis 1979, Beaulieu and Goldberg 1989,
Pavlidis and Liow 1990, Le Moigne and Tilton 1995). The inspector conducts the split and
merge procedure on the image, dividing the image into regions based on some homogeneity
criterion. Then, the clues generator computes, for each region, a vector of content properties.
Using the description organization, the input is fed into the determiner. The justifier and mapper
modules follow accordingly if necessary.

3.8 Multiresolution and Pyramid

Image analysis at a fine resolution yields noise and unnecessary details and at a coarse level
distorts local deviations. Therefore, multiple scales of resolution are considered to counter these
two problems. The representation of multiple scales of resolution is usually fulfilled by a
pyramid structure. At the highest resolution level of the pyramid is the original image. In
general, the second highest resolution level is the shrunk image by a certain scale &, and so on.
For a more detailed treatment of pyramids, please refer to (Rosenfeld 1984). Some applications
of multiresolution in segmentation include (Tanimoto and Pavlidis 1975, Bergholm 1981, Hong
and Shneier 1984, Meer 1989, Bouman and Liu 1991, Muzzolini et al. 1993). For this approach,
the inspector builds the pyramid of the image. Then, the clues generator computes the set of
content properties, based on the resolution levels and other transformations. This multiresolution
clues are used in the classification to determine the number of classes. Finally, the justifier and
mapper modules follow accordingly if necessary.

3.9 Fuzzy Sets

The idea of using fuzzy sets (Zadeh 1965) in classifying images stems from the fact that different
classes of objects co-exist spatially. For example, an aerial image of an urban area could be an
area of buildings and trees and so could a suburban area. The distinction between the two areas
is the proportion of buildings and trees in the mixtures. Several applications of fuzzy sets in
image processing include (Pal ez al. 1983, Murthy and pal 1990, Pedrycz 1990, Caillol et al.
1993). An example of using fuzzy sets in data investigation is as follows. First, the inspector
perform data filtering and information extraction on the image. Then, given the information, the
clues generator extracts content properties. The clues refinement tasks involve visual or
statistical translation to obtain fuzzy membership curves for data instances. Then, we may use
the Fuzzy C-Means algorithm mentioned in Section 2 of this paper to classify the data into
different classes. Finally, the justifier and mapper modules follow accordingly if necessary.

3.10 Region Growing

The basic idea of region growing is as follows: a seed is chosen, and then a region is grown from
the seed. The growing process assigns the same label to a neighboring point of a seed if the
neighbor is similar to the seed. The similarity criterion is a measurement of distance in terms of
some property such as intensity, homogeneity, convergence, etc. Several region growing
applications in the literature are (Haralck and Kelly 1969, Jarvis and Patrick 1973, Haralick and
Shapiro 1985, Gauch and Pizer 1993). First, the inspector locates seeds for growing. This might
involve data filtering to remove noise and information extraction to pinpoint the potential seeds.
Then, the clues generator grows the seeds until all pixels in the image have been assigned in

26

contiguous regions. Furthermore, the clues generator also computes different attributes for each
region. Similar to split and merge, these regions, each attached with a vector of descriptors, are
fed into the determiner. Finally, the justifier and mapper modules follow accordingly if
necessary. A popular justifier approach is to merge neighboring regions together to improve
compactness and increase boundary strength.

3.11 Edge Detection

A possible implementation of this approach is to use the inspector to compute the gradient of the
image and extract the edges. From these edges, further refinement is performed to ensure
closedness, and region filling is thus applied by the clues generator. In this case, for most image
segmentation work, the inspector and the clues generator have completed the work. However,
for unsupervised image segmentation, we are interested in the number of classes in the image—
that similar regions should be considered as one class. As a result, the clues generator proceeds
to generate attributes from each region, and the determiner uses the clues to determine the
number of classes. This is one unique characteristic and strength of our DIMUS, motivated by
its objective of unsupervised segmentation. Finally, the justifier and mapper modules follow
accordingly if necessary.

3.12 Thresholding

The inspector of this approach transforms the image and the clues generator extracts clues from
the transformation. Then, given the transformation, the determiner produces the number of
classes and also the number of corresponding thresholds. The justifier can merge the thresholds
based on domain- or application-specific constraints. Finally, the mapper performs the
thresholding task, which could be multidimensional. For more detail of an implementation of
DIMUS using thresholding, see (Soh 1998).

3.13 Clustering

Clustering is the grouping of similar objects in a multidimensional space (Fisher 1987, Goldberg
and Shlien 1978, Nguyen and Cohen 1993, Postaire et al. 1993, Thopson and McKusick 1993,
Uchiyama and Arbib 1994, Wong and Posner 1993, Wu and Leahy 1993). This implementation
approach provides the most natural setting for the implementation of DIMUS. In general, the
issues addressed by clustering resemble the inspector, clues generator, and the determiner
modules. Given a set of content properties describing an object—a pixel, a region, a segment, or
other image elements, a clustering algorithm categorizes each object into different groups, with
members of the same group similar to each other, and objects from different groups dissimilar to
each other. As long as the determiner is an unsupervised clustering algorithm, we can fully
describe such an approach in the framework of the DIMUS.

4 Unsupervised Segmentation and KDD

Segmentation is a process of data classification in which data instances are divided into subsets.
Up to now, there has been no work in defining segmentation in databases and no discussion of its
importance in data mining. In this paper, we define what segmentation is in databases, identify
the differences between this approach and other conventional methodologies, argue why it is

27

essential in knowledge discovery in databases (KDD), present a general model for unsupervised
segmentation of databases, and describe two applications designed and implemented based on
the model. In the following discussions, we view KDD as a process that includes data
management, warehousing, data mining and analysis, and interpretation. Meanwhile, data
mining is considered as the module that performs the actual knowledge extraction (or pattern
recognition) part of KDD. These viewpoints follow the KDD model outlined in (Fayyad et al.
1996b).

4.1 Definitions

In the literature of knowledge engineering and database management, segmentation can be
viewed as data chunking, clustering, or knowledge discovery. Each identified segmentation class
is a piece of discovered knowledge, described by a certain set of attributes, rules, functions, or
other forms of properties. In image processing, where segmentation is virtually the basis for all
applications such as detection and classification, segmentation is viewed as a process of pixel
labeling in which pixels are data instances, as mentioned above in the introduction section of this
paper. Extending the definitions of image segmentation (Pavlidis 1977, Zucker 1976) to our case
that deals with databases, we define segmentation as follows:

(1) Every data instance of the database must be within a segmentation class.

2) No segmentation class is isolated.

(3) All data instances within a segmentation class must satisfy a uniformity measure.

(4) Each segmentation class is maximally uniform by itself.
The first condition requires that every data instance of the database be processed and labeled as a
result of segmentation. However, in practice, databases are subjected to filtering and selection to
weed out data instances not pertinent or even occluding to the segmentation process. Thus, the
relaxed version of the first condition is that every data instance that qualifies for the
segmentation process must eventually be labeled. The second condition follows from the first.
If there exists an isolated segmentation class (with no neighboring classes), then that implies that
either there is only one segmentation class in the database or the segmentation class is
surrounded by unlabeled data instances. In the latter case, that signals a violation of the first
condition, and that means the segmentation is incomplete. In the former case, if the objective of
the segmentation is to discover knowledge regarding the composition of the data instances from a
single database, then grouping the whole database as one single class does not amount to any
beneficial discovery. But, if the objective of the segmentation is to examine a bank of databases,
that information might be helpful in telling us how the databases differ. The third condition
requires each segmentation be consistent and describable by a set of certain properties. In
database segmentation, this measure can be represented in rules, conjunctions and disjunctions,
predicate logic, attribute value sets, and functions. The fourth condition follows from the third.
It emphasizes the requirement of having distinctive segmentation classes. For example, if one set
of rules fully describes a segmentation class, then that set of rules must not describe another
class, and other data instances may not fall under the coverage of that set of rules. However, in
some designs, fuzzy representation, probability, and non-deterministic decision are allowed to
assign a data instance into two or more segmentation classes. So, the relaxed version of the
fourth condition should be that each segmentation class is probabilistically or fuzzily maximal by
itself. This accommodates for the possibility of other data instances corrupting the class by
chance, and of its own data instances migrating from the class by chance as well.

28

The above definitions of segmentation in databases differ from those in data mining and
KDD. In the latter research areas, the objective is to mine the data and extract knowledge; and
hence it does not require that every single selected data instance be labeled. In segmentation,
every selected data instance is required to be explained and represented. This imposes a more
rigorous constraint on the knowledge to be discovered. There are several advantages of adhering
to this definition when we perform KDD or data mining, compared to conventional guidelines
and systems. First, the resulting knowledge is more general in the sense that since it has to cover
all data instances in the selected portion of the database. This translates to complete data
warehousing and cataloging. In cases where each data instance must be indexed and stored, our
segmentation definitions thus provide a set of design goals for constructing a data warehouse.
Second, since all data instances must be accounted for as required by the definitions, a system
abide by the definitions is efficient in terms of data usage. Third, guided by the conditions, data
miners do not have as much freedom in excluding data instances from analysis based on their
intuitions and experiences as they do when working from the conventional KDD or data mining
viewpoints. This implies less influence of biases and inconsistencies from data miners during the
mining or the design process. This restrain potentially allows more objective observations to be
mined from the database. However, by considering the whole database, we face the risk of
responding to noise or redundant data instances. In practice, data filtering or selection is used to
clean or target a desired subset of the database, as mentioned above. Conversely, the above
definitions pose several weaknesses. First, it is harder to achieve a complete segmentation since
it requires the system or data miner to completely describe the database. This might result in
over-generalization and over-fitting for some data instances, and the discovered knowledge
might not be as insightful as obtained from a system focused only on a specific subset of the
database. Second, it is more computational intensive due to its coverage of the whole database.
In the following, we show areas where segmentation could be used to improve the KDD results.

4.2 Segmentation in KDD

Now, we have defined our viewpoint of segmentation, we turn our attention to its roles in data
mining and KDD. The increase in the quality and speed of computer-aided tools, the reduction
in cost of data storage and processing, customer customization, the computerization of masses,
and the realization that databases contain valuable (but obscured) information have called for
data mining in commercial and governmental activities. Moreover, the increase in the amount
and speed of data collected and distributed, the establishment of the information superhighway in
terms of communications and connectivity, the availability of computer software and resources
have similarly pushed for research and applications in data mining in scientific areas.
Segmentation, as defined above, has many different roles when examined in the framework of
KDD, from pre-processing tasks such as indexing and management to final analyses such as
knowledge discovery and interpretation. In the following, we outline several areas where
segmentation can be used to improve the products of KDD.

4.2.1 Data Access

First, there is a need to access data. Without access to data, the intelligence and utility of many
operational Artificial Intelligence (AI) or knowledge-based systems are compromised. To
improve accessibility, we usually encounter two issues: (1) data starvation, and (2) data
indexing. The first issue suggests the number of data instances to be stored in the database, as to
not to incur starvation on the knowledge base. In segmentation, we deal with all data instances

29

and thus no starvation. In addition, segmentation provides a basis for indexing data. It has been
used to catalog images such as the SKICAT system (Fayyad et al. 1996a) and the content-based
cataloging at IBM. It can also be used to generate metadata for cataloging database repository
such as business data warehouses, digital image libraries, and multimedia document libraries
such as websites and webpages.

4.2.2 Data Abstraction

Second, there is a need to abstract data. In general, data abstraction reduces noise effects and
allows the end users to view the database at a higher level. In corporate companies or research
laboratories, a re-organization or summary of data for end users such as colleagues or computer-
aided tools is usually needed to report and summarize findings and progress. Business
intelligence applications such as decision support systems (DSS) and executive information
systems (EIS) benefit from segmentation because of its descriptive power and its
completeness—segmentation attaches a vector of properties to each class, and each data instance
is labeled under a class. Not only is data abstraction desired for clarity and interpretability, it is
also desired for logistic reasons. Faced with the avalanche of data generated everyday,
segmentation can be used to abstract data to improve efficiency in data delivery, transmission,
and storage. Finally, data abstraction has been used in forecasting, prediction, and understanding
in data analysis, and matching, presentation, and classification in image processing.

4.2.3 Data Management

Third, there is a need to manage data, particularly data warehouses and data marts. Data
warehousing is the means for managing a data interface and storage for user access, delivery,
maintenance, and analysis. Corporate data warehouses may sometimes become an amalgamation
of various departments and sources such that customized or in-depth mining is hindered. In view
of this, there have been efforts to compartmentalize data warehouses into data marts. Due to its
smaller and more restricted coverage of databases, data marts provide flexibility in
customization, operation, and data mining, in addition to requiring a lower maintenance cost.
Segmentation is a process naturally suited for such compartmentalization. It allows hierarchical
refinement of a class at different granularity levels.

4.2.4 Data Analysis

Fourth, there is a need to analyze data. Data needs to be analyzed in order to be useful.
Databases are multidimensional, and multidimensional relationships among hundreds of
attributes can be difficult to detect and identify without segmentation. In databases, we define
data analysis as the task of investigating data under the guidance of human experts. After
segmentation, each class will be associated with a vector of properties. Experts interpret these
vectors to draw conclusions and record observations.

4.2.5 Data Exploration
Finally, there is a need to explore data. Data exploration differs from data analysis. The latter is

sometimes guided by human expertise within the domain of the data. The former, however, is
mostly guided by human expertise in the data mining process with no or minute amount of

30

knowledge about the data domain. For example, a database consists of protein segments
analyzed by a bio-chemist is usually influenced by his or her familiarity with the data; whereas
upon exploration by a knowledge engineer or data miner, the result is usually a product guided
by the person’s experience in deciding the methods of filtering, transformation, clustering
strategies, etc. Therefore, while data analysis provides us with practical and sensible knowledge,
data exploration gives us an alternative or fresh look at the data and previously unobserved
knowledge. Again, segmentation can play a major role in data exploration.

Recent advancement in building digital libraries [Wilensky 1996, Smith 1996], in which data
is stored and managed such that indexing and retrieval are made convenient, has increased the
importance of metadata extraction. Metadata is a set of high-level data that describes another set
of low-level data. In one scenario, the low level representation of a database is its data instances.
One can compute, for example, the averages for all its attribute values and use them to describe
that database. The averages—the metadata—help us label each database and distinguish among
significant groups of databases. In another scenario, metadata can be extracted to describe
groups (identified through segmentation) within a single database to provide a finer resolution of
description. In short, metadata can be used to describe different databases within a repository or
different groups within a database. That segmentation extracts metadata indicates that it is an
important for building digital libraries.

4.3 Importance of Unsupervised Segmentation in KDD

So far, we have defined what segmentation is and why it is important in KDD. Here, we proceed
to discuss the motivations behind unsupervised segmentation. Unsupervised segmentation has
become increasingly important in today's world: data has been generated in remote sensing such
as satellite and aerial images, geophysical monitoring such as volcanic activities and
seismographic signals, commercial databases such as bank accounts and financial transactions,
telecommunications such as traffic behavior, documents such as pages on the World Wide Web
and internet and many other areas, ranging from imagery to numerical to symbolic formats in an
unprecedented amount and speed. To analyze, catalog, and access the data, fully or partially
automated analyses are of great necessity as either stand-alone programs or assistants to humans.
As knowledge engineering and data mining being popularly applied to discover knowledge from
large databases, to prevent human pre-judgment and biases from influencing the process,
unsupervised segmentation is called for. For example, in some business applications,
segmentation is used to divide the potential customer base into demographic groups. One of the
most common approaches is by the usage of census data: all addresses in a certain zip code area
whose head of the household has an average age between 20 and 35 and middle income might be
singled out to send camping and hiking advertisements and magazines. As a result, most
segmentation that is done is biased segmentation. In addition, the bias is a combination of the
data miner’s experience (which varies from person to person) and judgment (which may change
from month to month for the same person), and thus it is not always justifiable and consistent. In
this example, the data miner believes segmenting the database according to age, income, and zip
core is the correct approach to obtain meaningful groups which may not be true. On the contrary,
unsupervised segmentation is not faced with these problems. Its self-organizing capability is
able to keep human influence (especially those of the data domain) at a minimum while
partitioning the database into significant classes based on domain-neutral methodologies. In
addition, in cases where the classification of the database is not known a priori, to use supervised
segmentation such as induction, one is required to assign classes to the data. Not only can this
action introduce human bias into the process, but also may induce irrelevant information from

31

the data. Unsupervised segmentation can be utilized as a complementary tool to such process to
provide verification or even as an exploratory tool alone to discover natural classes without a
priori knowledge about the domain. Finally, in the advent of technological modernization,
computer-aided tools are needed to efficiently and effectively manage the data mining process.
Efficiency is necessary because of the resources invested in such research can be costly and
demanding. Effectiveness is required when the amount of data is vast. Unsupervised
segmentation can provide parts of the solution for speed, automation, and consistency. To
illustrate, when building a digital library, when the data streams in continuously such as video-
feed, audio-feed, or textual news, to avoid data congestion and delay in access, unsupervised
segmentation is important since it can be implemented as a tool or an agent to automatically
segment the data streams and correctly index them into proper storage space real-time.

One requirement of segmentation is the determination of the number of classes in the data.
Subsequently, segmentation is able to identify the composition of each of those classes. The
ability of determining the number of classes automatically is the key characteristic of
unsupervised segmentation. In our research, the meaning of unsupervised segmentation is two-
fold. If we treat the segmentation as a process that involves iterations of selection, decision
making, and feedbacks in order to obtain the desired or useful results from the database, the
unsupervised part refers to the classification or clustering module we use—the technique that
determines the number of classes. If that module does not require human intervention or pre-
determined number of classes, then it is unsupervised. The second viewpoint evolves around the
end-product of the design process. As mentioned above, our general model can be used to
prescribe the design of a segmentation technique. If this technique is fully automated, then it is
unsupervised, regardless of what the classification or clustering module is. For example, if we
pre-determine the number of classes into three and if the technique segments the database
accordingly without human intervention, then the technique is an unsupervised segmentation
technique. However, as we shall see later in Section II, we require that a technique be general
and applicable to a variety of scenarios within the same domain; this diminishes the practical
possibility of using pre-determined parameters regarding the number of classes in an
unsupervised setting. From the standpoint of the relationship between computer tools and
humans, the first viewpoint is the interaction between human expertise (which may not be
domain-biased) and various decision making stages of the process to extract information; the
second viewpoint of unsupervised segmentation is the process of automated extraction of
information that is subsequently reviewed by human experts.

5 Conclusion

Note that many nontrivial implementation details are not addressed. Most of these approaches
require applying the general model to a specific domain and application in order to derive the
correct content properties and determine the implementation parameters. The task of
unsupervised segmentation is of great concerns not only in image processing, but also in data
processing. For image processing, unsupervised segmentation is the basis towards automation of
image analysis since segmentation precedes many tasks such as classification, recognition,
understanding, and registration. Our Data Investigation Model for Unsupervised Segmentation
(DIMUS) has been conceived with the concept that it be general and applicable to different
implementation approaches, as we have illustrated in this paper.

Through a discussion based on the relationship between unsupervised segmentation and
KDD, we have also hinted that our model, DIMUS, can be applied to databases other than

32

images. Indeed, our model addresses issues well-known in the KDD community. We have also
argued for the importance of unsupervised segmentation in KDD which might involve digital
image library, or imagery repositories. For those cases, DIMUS can serve as a guideline to
develop an automated system or tool to aid humans in data management and analysis.

In summary, we have proposed a general model for unsupervised image segmentation which
determines the number of classes and identifies the composition of each of the classes
automatically. This model, called the Data Investigation Model for Unsupervised Segmentation
(DIMUS), consists of five modules: inspector, clues generator, determiner, justifier, and mapper.
We have discussed in details the functions of each module and possible solutions for its design.
In addition, we have applied the model to several image processing approaches such as
knowledge-based systems, neural networks, estimation via optimization, regularization theory,
mathematical morphology, relaxation, split and merge, multiresolution and pyramid, fuzzy sets,
region growing, edge detection, thresholding, and clustering. The discussion offers possible
solutions of the model in different requirements of implementation choices, showing the model’s
generality and flexibility.

6 References

Abutaleb, A. S. (1989). Automatic Thresholding of Gray-Level Pictures Using Two-Dimensional
Entropy, Computer Vision, Graphics, and Image Processing, 47(1), 22-32.

Acton, S. T. (1996). On Unsupervised Segmentation of Remotely Sensed Imagery Using
Nonlinear Regression, International Journal of Remote Sensing, 17(7), 1407-1415.

Ball, G. H. and D. J. Hall (1967). A Clustering Technique for Summarizing Multivariate Data,
Behavioral Science, 12, 153-155.

Ballard, D. H. (1981). Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern
Recognition, 13(2), 111-122.

Baraldi, A. and F. Parmiggiani (1996). Single Linkage Region Growing Algorithms Based on
the Vector Degree of Match, IEEE Transactions on Geoscience and Remote Sensing, 34(1),
137-148.

Beaulieu, J.-M. and M. Goldberg (1989). Hierarchy in Picture Segmentation: A Stepwise
Optimization Approach, IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(2), 150-163.

Bergholm, F. (1981). Edge Focusing, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9(6), 726-741.

Binford, T. O. (1982). Survey of Model-Based Images Analysis Systems, International Journal
of Robotics Research, 1(1), 18-64.

Bouman, C. and B. Liu (1991). Multiple Resolution Segmentation of Textured Images, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13, 99-113.

Brachman, R. J. (1985). I Lied about the Trees, Al Magazine, 6(3), 80-93.

Brice, C. R. and C. L. Fennema (1970). Scene Analysis Using Regions, Artificial Intelligence
Journal, 1(3), 205-226.

Caillol, H., A. Hillion, and W. Pieczynski (1993). Fuzzy Random Fields and Unsupervised
Image Segmentation, IEEE Transactions on Geoscience and Remote Sensing, 31(4), 801-
810.

Canny, J. F. (1986). A Computational Approach to Edge Detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6), 679—698.

33

Carbonell, J. (ed.) (1990). Machine Learning, Paradigms and Methods, Cambridge, MA:
MIT/Elsevier Press.

Carpenter, G. A. and S. A. Grossberg (1987). The ART of Adaptive Pattern Recognition by
Self-Organizing Neural Network, IEEE Computer, 21, 77-88.

Cheeseman, P., J. Kelly, M. Self, J. Stutz, W. Taylor, and D. Freeman (1990). AutoClass: A
Bayesian Classification System, in Readings in Machine Learning, J. W. Shavlik and T. G.
Dietterich (eds.), San Mateo, CA: Morgan Kaufmann, 296-306.

Chen, P. C. and T. Pavlidis (1979). Segmentation by Texture using a Co-occurrence Matrix and
a Split-and-Merge Algorithm, Computer Graphics and Image Processing, 10(2), 172-182.

Cohen, F. S. and Z. G. Fan (1992). Maximum Likelihood Unsupervised Textured Image
Segmentation, CVGIP: Graphical Models and Image Processing, 54(3), 239-251.

Cook, D. J. and L. B. Holder (1994). Substructure Discovery Using Minimum Description
Length and Background Knowledge, Journal of Artificial Intelligence Research, 1, 231—
255.

D'Astous, F. and M. E. Jernigan (1984). Texture Discrimination based on Detailed Measures of
the Power Spectrum, in Proceedings of 7th International Conference on Pattern
Recognition, Montreal, July 20-August 2, 83—86.

Derin, H. and W. S. Cole (1986). Segmentation of Textured Images Using Gibbs Random
Fields, Computer Vision, Graphics, and Image Processing, 35(1), 72-98.

Derin, H., H. Elliott, R. Cristi, and D. Geman (1984). Bayes Smoothing Algorithms for
Segmentation of Binary Images Modeled by Markov Random Fields, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 6, 697-720.

Durand, J. M., B. J. Gimonet, and J. R. Perbos (1987). SAR Data Filtering for Classification,
IEEE Transactions on Geoscience and Remote Sensing, 25(5), 629-637.

Fayyad, U. M., S. G. Djorgovski, and N. Weir (1996a). From Digitized Images to On-Line
Catalogs: Data Mining a Sky Survey, AI Magazine, 17(2), pp. 51-66.

Fayyad, U. M., G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (1996b). Advances in
Knowledge Discovery and Data Mining, Menlo park, CA: AAAI/MIT Press.

Feldman, J. A., and Y. Yakimovsky (1974). Decision Theory and Artificial Intelligence, I. A
Semantics Based Region Analyzer, Artificial Intelligence, §, 349-371.

Fisher, D. H. (1987). Knowledge Acquisition via Incremental Conceptual Clustering, Machine
Learning, 2, 139-172.

Freeman, H. (1974). Computer Processing of Line Drawing Images, Computer Surveys, 6(1),
57-98.

Fu, K. S. and J. K. Mui (1981). A Survey on Image Segmentation, Pattern Recognition, 13, 3—
16.

Gauch, J. M. (1992). Investigations of Image Contrast Space Defined by Variations on
Histogram Equalization, CVGIP: Graphical Models and Image Processing, 54(4), 269—
280.

Gauch, J. M. and S. M. Pizer (1993). The Intensity Axis Symmetry and Its Application to Image
Segmentation, /EEE Transactions on Pattern Analysis and Machine Intelligence, 15(8),

753-770.
Geman, S. and D. Geman (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence,

6(6), 721-741.

34

Gennari, J. H., P. Langley, and D. Fisher (1990). Models of Incremental Concept Formation, in
Machine Learning: Paradigms and Methods, J. Carbonell (ed.), 11-61, MIT Press/Elsevier.

Goldberg, M. and S. Shlien (1978). A Cluster Scheme for Multispectral Images, IEEE
Transactions on Systems, Man, and Cybernetics, 8, 86-92.

Hall, L. O., A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. Silbiger, and J. C. Bezdek (1992).
A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting
Magnetic Resonance Images of the Brain, IEEE Transactions on Neural Networks, 3(5),
672-681.

Haralick, R. M. and G. L. Kelly (1969). Pattern Recognition with Measurement Space and
Spatial Clustering for Multiple Image, Proceedings of IEEE, 57, 654-665.

Haralick, R. M., K. Shanmugan, and I. Dinstein (1973). Textural Features for Image
Classification, IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610-621.
Haralick, R. M. and L. G. Shapiro (1985). Survey—Image Segmentation Techniques, Computer

Vision, Graphics, and Image Processing, 29, 100-132.

Hartigan, J. A. (1975). Clustering Algorithms, New York: John Wiley & Sons.

Hartigan, J. A. and M. A. Wong (1979). A K-means Clustering Algorithm: Algorithm AS 136,
Applied Statistics, 28, 126-130.

Hassner, M. and J. Sklansky (1980). The Use of Markov Random Fields as Models of Texture,
Computer Graphics and Image Processing, 12(4), 357-370.

Haverkamp, D., C. Tsatsoulis, and S. Gogineni (1994). The Combination of Algorithmic and
Heuristics Methods for the Classification of Sea Ice Imagery, Remote Sensing Journal,
9(2), 135-159.

Haverkamp, D., L.-K. Soh, and C. Tsatsoulis (1995). A Comprehensive, Automated Approach
to Determining Sea Ice Thickness from SAR Data, IEEE Transactions on Geoscience and
Remote Sensing, 33(1), 46-57

Holt, B., R. Kwok, and E. Rignot (1989). Ice Classification Algorithm Development and
Verification for the Alaska SAR Facility Using Aircraft Imagery, International Geoscience
and Remote Sensing Symposium, 2, 7151-754.

Hong, T. H. and M. Shneier (1984). Extracting Compact Objects Using Linked Pyramids, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6(20), 229-236.

Horowitz, S. L. and T. Pavlidis (1976). Picture Segmentation by a Tree Traversal, Journal of the
Association for Computing Machinery, 23(2), 368-388.

Hough, P. V. C. (1962). Methods and Means for Recognizing Complex Patterns, U.S. Patent
3069654.

Hummel, R. (1977). Image Enhancement by Histogram Transformation, Computer Graphics
and Image Processing, 6, 184—-195.

Hummel, R. A. and S. W. Zucker (1983). On the Foundations of Relaxation Labeling Processes,
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 5(3), 267-287.

Jarvis, R. A. and E. A. Patrick (1973). Clustering Using a Similarity Measure Based on Shared
Near Neighbors, IEEE Transactions on Computers, 22, 1025-1034.

Jeong, H. and C. L. Kim (1992). Adaptive Determination of Filter Scales for Edge Detection,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(5), 579-585.

Kirpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi (1983). Optimization by Simulated Annealing,
Science, 220(4598), 671-680.

35

Kittler, J. and J. Illingworth (1985). Relaxation Labelling Algorithms — a Review, Image and
Vision Computing, 3(4), 206-216.

Kohonen, T. (1989). Self-Organization and Associative Memory, Berlin: Springer-Verlag.

Kolodner, J. L. (1983). Reconstructive Memory: A Computer Model, Cognitive Science, 7,
281-328.

Le Hegarat-Mascle, S., D. Vidal-Madjar, and P. Olivier (1996). Applications of Simulated
Annealing to SAR Image Clustering and Classification Problems, International Journal of
Remote Sensing, 17(9), 1761-1776.

Le Moigne, J. and J. C. Tilton (1995). Refining Image Segmentation by Integration of Edge and
Region Data, IEEE Transactions on Geoscience and Remote Sensing, 33(3), 605-615.

Lebowitz, M. (1987). Experiments with Incremental Concept Formation: UNIMEM, Machine
Learning, 2, 103-138.

Leclerc, Y. G. (1989). Constructing Simple Stable Descriptions for Image Partitioning,
International Journal of Computer Vision, 3(1), 73-102.

Lee, J.-S. (1983). Digital Image Smoothing and the Sigma Filter, Computer Vision, Graphics,
and Image Processing, 24(2), 255-269.

Lee, J.-S. and I. Jurkervich (1989). Segmentation of SAR Images, IEEE Transactions on
Geoscience and Remote Sensing, 27, 674—680.

Lim, Y. W. and S. U. Lee (1990). On the Color Image Segmentation Algorithm Based on the
Thresholding and the Fuzzy C-Means Techniques, Pattern Recognition, 23(9), 935-952.

Mahalanobis, P. C. (1936). On the Generalized Distance in Statistics, Proceedings of the
National Institute of Science of India, 2(49), 49-55.

Marroquin, J., S. Mitter, and T. Poggio (1987). Probabilistic Solution of Ill-Posed Problems in
Computational Vision, Journal of the American Statistical Association, 62(397), 76-89.

Mastin, G. A. (1985). Adaptive Filters for Digital Image Noise Smoothing: An Evaluation,
Computer Vision, Graphics, and Image Processing, 31(1), 103-121.

Matheron, G. (1975). Random Sets and Integral Geometry, New York: Wiley.

Matsuyama, T. and V. Hwang (1990). SIGMA, a Knowledge-Based Aerial Image
Understanding System, in Advances in Computer Vision and Machine Intelligence, New
York: Plenum.

McCarthy, J. and P. J. Hayes (1969). Some Philosophical Problems from the Standpoint of
Artificial Intelligence, in Machine Learning 4, B. Meltzer and D. Michie (eds.), Edinburgh:
Edinburgh University Press.

Meer, P. (1989). Stochastic Image Pyramids, Computer Vision, Graphics, and Image
Processing, 45, 269-294.

Murthy, C. A. and S. K. Pal (1990). Fuzzy Thresholding: Mathematical Framework, Bound
Functions and Weight Moving Average Technique, Pattern Recognition Letters, 11, 197-
206.

Muzzolini, R., Y.-H. Yang, and R. Pierson (1993). Multiresolution Texture Segmentation with
Application to Diagnostic Ultrasound Images, IEEE Transactions on Medical Imaging,
12(1), 108-123.

Nguyen, H. H. and P. Cohen (1993). Gibbs Random Fields, Fuzzy Clustering, and the
Unsupervised Segmentation of Textured Images, CVGIP: Graphical Models and Image
Processing, 55(1), 1-19.

36

O’Gorman, L. (1994). Binarization and Multithresholding of Document Images Using
Connectivity, CVGIP: Graphical Models and Image Processing, 56(6), 494-506.

Pal, N. R. and S. K. Pal (1993). A Review on Image Segmentation Techniques, Pattern
Recognition, 26(9), 1277-1294.

Pal, S. K., R. A. King, and A. A. Hashim (1983). Automatic Gray Level Thresholding Through
Index of Fuzziness and Entropy, Pattern Recognition Letters, 1, 141-146.

Panda, D. P. and A. Rosenfeld (1978). Image Segmentation by Pixel Classification in (Gray
Level, Edge Value) Space, IEEE Transactions on Computer, 27, 875-879.

Panjwami, D. K. and G. Healey (1995). Markov Random Field Models for Unsupervised
Segmentation of Textured Color Images, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(10), 939-954.

Paranjape, R. B., W. M. Morrow, and R. M. Rangayyan (1992). Adaptive-Neighborhood
Histogram Equalization for Image Enhancement, CVGIP: Graphical Models and Image
Processing, 54(3), 259-267.

Pavlidis, T. (1977). Structural Pattern Recognition, New York: Springer.

Pavlidis, T. and Y.-T. Liow (1990). Integrating Region Growing and Edge Detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(3), 225-233.

Pedrycz, W. (1990). Fuzzy Sets in Pattern Recognition: Methodology and Methods, Pattern
Recognition, 23, 121-146.

Peleg, S. and A. Rosenfeld (1978). Determining Compatibility Coefficients for Curve
Enhancement Relaxation Process, IEEE Transactions on Systems, Man, and Cybernetics,
8(7), 548-555.

Pelillo, M. and M. Refice (1994). Learning Compatibility Coefficients for Relaxation Labeling
Processes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9), 933-
945.

Peng, A. and W. Pieczynski (1995). Adaptive Mixture Estimation and Unsupervised local
Bayesian Image Segmentation, CVGIP: Graphical Models and Image Processing, 57(5),
389-399.

Poggio, T., V. Torre, and C. Koch (1985). Computational Vision and Regularization Theory,
Science, 317(6035), 314-319.

Postaire, J-G., R. D. Zhang, and C. Lecocq-Botte (1993). Cluster Analysis by Binary
Morphology, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(2),
170-180.

Raney, R. K. (1985). Theory and Measure of Certain Image Norms in SAR, IEEE Transactions
on Geoscience and Remote Sensing, 23(3), 343-348.

Rissanen, J. (1978). Modeling by Shortest Data Description, Automatica, 14, 465-471.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry, Singapore: World Scientific
Publishing Company.

Rosenfeld, A. (ed.) (1984). Multiresolution Image Processing and Analysis, Berlin: Springer-
Verlag.

Rosenfeld, A. and L. S. Davis (1979). Image Segmentation and Image Models, Proceedings of
IEEE, 67, 784-772.

Rosenfeld, A. and A. C. Kak (1982). Digital Image Processing, 2nd Ed., New York: Academic
Press.

Serra, J. (1982). Image Analysis and Mathematical Morphology, New York: Academic Press.

37

Serra, J. (1986). Introduction to Mathematical Morphology, Computer Vision, Graphics, and
Image Processing, 35, 283-305.

Shavlik, J. W. and T. G. Dietterich (eds.) (1990). Readings in Machine Learning, San Mateo,
CA: Morgan Kaufmann.

Sjoberg, F. and F. Bergholm (1988). Extraction of Diffuse Edge Focusing, Pattern Recognition
Letters, 7(3), 181-190.

Sklansky, J., R. L. Chazin, and B. J. Hansen (1972). Minimum-Perimeter Polygons of Digitized
Silhouettes, IEEE Transactions on Computers, 21(3), 260-268.

Smith, D. M. (1996). Speckle Reduction and Segmentation of Synthetic Aperture Radar Images,
International Journal of Remote Sensing, 17(11), 2043-2057.

Soh, L.-K. (1998). Unsupervised Image Segmentation: A Data Investigation Model and SAR
Sea Ice Applications, Ph.D. Dissertation, Department of Electrical Engineering and
Computer Science, University of Kansas, Lawrence, KS.

Soh, L.-K. and C. Tsatsoulis (to appear). Segmentation of Satellite Imagery of Natural Scenes
Using Data Mining, accepted for publication by IEEE Transactions on Geoscience and
Remote Sensing.

Tanimoto, S. and T. Pavlidis (1975). A Hierarchical Data Structure for Picture Processing,
Computer Graphics and Image Processing, 4(2), 104-119.

Thompson, K. and P. Langley (1991). Concept Formation in Structured Domains, in Concept
Formation: Knowledge and Experience in Unsupervised Learning, D. H. Fisher, M.
Pazzani, and P. Langley (eds.), San Mateo, CA: Morgan Kaufmann, 127-161.

Thompson, K. and K. McKusick (1993). COBWEB/3: A Portable Implementation, Technical
Report FIA-96-6-18-2, version 1.4, Ames Research Center.

Ton, J., J. Sticklen, and A. K. Jain (1991). Knowledge-Based Segmentation of Landsat Images,
IEEE Transactions on Geoscience and Remote Sensing, 29(2), 222-232.

Torre, V. and T. Poggio (1986). On Edge Detection, IEEE Transactions on Pattern Analysis and
Pattern Intelligence, 8, 147-163.

Trivedi, M. and J. C. Bezdek (1986). Low-Level Segmentation of Aerial Images with Fuzzy
Clustering, IEEE Transactions on Systems, Man, and Cybernetics, 16(4), 589-598.

Uchiyama, T. and M. A. Arbib (1994). Color Image Segmentation Using Competitive Learning,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(12), 1197-1206.

Wallace, C. S. and D. L. Dow (1994). Intrinsic Classification by MML—The Snob Program, in
Proceedings of the Seventh Australian Joint Conference on Artificial Intelligence,
Armidale, New South Wales, Australia, November 1994, 37-44.

Wang, F.-J. (1993). A Knowledge-Based Vision System for Detecting Land Changes at Urban
Fringes, IEEE Transactions on Geoscience and Remote Sensing, 31(1), 136-145.

Wilkinson, G. G. and J. Megier (1990). Evidential Reasoning in a Pixel Classification
Hierarchy—A Potential Method for Integrating Image Classifiers and Expert System Rules
Based on Geographic Context, International Journal of Remote Sensing, 11, 1963-1968.

Won, C. S. and H. Derin (1992). Unsupervised Segmentation of Noisy and Texture Using
Markov Random Fields, CVGIP: Graphical Models and Image Processing, 54(4), 308—
328.

Wong, Y.-F. and E. C. Posner (1993). A New Clustering Algorithm Applicable to Multispectral
and Polarimetric SAR Images, IEEE Transactions on Geoscience and Remote Sensing,
31(3), 634-644.

38

Woods, W. A. (1975). What’s in a Link: Foundations for Semantic Networks, in Representation
and Understanding, D. G. Bobrow and A. Collins (eds.), New York: Academic Press.

Wu, Z.-Y. and R. Leahy (1993). An Optimal Graph Theoretic Approach to Data Clustering:
Theory and Its Application to Image Segmentation, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(11), 1101-1113.

Yu, S. and M. Berthod (1995). A Game Strategy Approach for Image Labeling, CVGIP: Image
Understanding, 61(1), 32-37.

Zadeh, L. A. (1965). Fuzzy Sets, Information and Control, 8, 338-353.

Zucker, S. W. (1976). Region Growing: Childhood and Adolescence, Computer Graphics and
Image Processing, §, 382-399.

39

