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Experiments and Algorithmic Analysis of the Restricted Growing Concept

Leen-Kiat Soh and Costas Tsatsoulis

Abstract

This report defines a new concept called the Restricted Growing Concept (RGC) for object
separation and provides an algorithmic analysis of its implementations. Our concept decomposes
the problem of object separation into two stages. First, we achieve separation by shrinking the
objects to their cores while keeping track of their originals as masks. Then we grow the core
within the masks obeying the guidelines of a restricted growing algorithm. Hence, we achieve
both goals better than conventional object separation techniques. In this report, we investigate
various issues via different implementations of core and mask images. We compare
morphological operators to probabilistic labeling—a technique we establish to obtain cores and
masks based on neighborhood confidence—in the remote sensing domain, particularly for
Synthetic Aperture Radar (SAR) sea ice imagery. We review a skeletonization algorithm and
demonstrate how it can be converted to grow objects instead of thinning them. Further, we
describe a dozen sequential algorithms differing in scanning order and pixel selection, even
employing distance transform, blob coloring, and jumps. We evaluate the algorithms in visual
judgment of the results and computational speeds. In conclusion, we present general

observations and offer design recommendations for the concept.




1 Introduction
When two gray level objects touch with shared boundaries, it makes shape analysis and
recognition difficult. For example, in industrial vision applications [8], touching objects hinder
the recognition of the object’s shape and complicate the task of defect inspection. In aerial image
and terrain analysis, where the objective is to identify items such as airplanes on an airfield [21],
failure to obtain isolated objects creates misunderstanding in the resulting image context. In
shape analysis where geometric descriptors are computed for each object, treating a
conglomerate of touching objects as one object leads to incorrect measurements [11]. Hence,
separating objects is important in object-based image analysis.

In object separation, our objectives are (1) to achieve object separation, and (2) to preserve
(or approximate as closely as possible) the object’s original shape and size. The fact that the two
goals cannot be optimized simultaneously further adds to the complexity of this task. This

dilemma is illustrated in Fig. 1.

Fig. 1 The conflict between separation and preservation in object separation. The raw image consists of
three circles. The image in the middle shows the segmentation result of using a low threshold value. The
right image shows the segmentation result of using a high threshold value.

The figure shows an image with three touching objects, all having pixels with lower intensity
values towards the boundary. One simple way of obtaining the objects would be thresholding.
Using a low threshold, we would be able to extract the objects with complete shape and size
preservation; however, the objects might, as a result, be connected. Using a high threshold, on
the other hand, we would be able to separate the objects, but would lose the boundary and some
layers of interior object pixels. This tradeoff between separation and preservation of size and
shape is inherent in all object separation algorithms. To address this problem, we have designed
an object separation technique based on a concept called the Restricted Growing Concept (RGC).
This concept divides the task and the accomplishments of the two objectives into two tiers. First,

it achieves the separation. Second, it re-establishes the sizes and shapes of the objects lost or



distorted during the separation process by performing restricted growing. In our research, we use
reversed skeletonization to grow objects. In mathematical morphology [27][28], skeletonization
(or thinning) is used to obtain the skeleton of a region while preserving its connectivity. We
reverse that process: instead of deleting pixels from the region, we add pixels to the region, and
instead of preserving connectivity, we preserve separation. This novel use of skeletonization is
the key to achieve separation and size and shape preservation sequentially in the framework of
RGC.

In this report, we present the restricted growing concept and discuss various issues involved
in achieving the objectives of object separation. We probe into the alternatives in obtaining cores
and masks of the growing process. We address the issues of preserving details through different
designs of masks. We investigate the use of morphological reconstruction and h-domes in
extracting cores, and compare the differences between the performance of the morphological
operators in synthetic and remotely sensed images. After obtaining the appropriate designs for
obtaining cores and masks for our Synthetic Aperture Radar (SAR) sea ice domain, we adapt a
skeletonization algorithm to guide the growth of object pixels in the image. Given the algorithm,
we further present twelve different designs and examine their weaknesses and advantages when
applied to remotely sensed imagery.

Object extraction is important in SAR sea ice image analysis, in which individual ice floe
identification and their outlines are important for examining both large- and small-scale
processes in sea ice such as classification [11] and floe size measurements [9][16]{26], and
feature analysis [7]. We have applied our algorithm to SAR sea ice analysis for segmentation

and floe size distribution [29][31][33].

2 Background
In morphology [27](28], opening usually eliminates thin protrusions and breaks narrow bridges
between objects. On the other hand, closing usually fills small holes, strengthens linear
structures, and eliminates gaps in the contour of an object. However, once an object has been
closed or opened, further applications of closing or opening using the same structuring element
will not modify the object—connections between objects that were not broken will not be broken
at a later iteration. Usually, iterative erosion alone is used to achieve object separation.

[2] used a method called erosion-propagation (EP) algorithm coupled with clustering about

principal curves [10] to identify objects in satellite images. The EP algorithm morphologically



erodes a pixel from object to non-object if any of its 8-neighboring pixels is non-object. As the
edge of an object is gradually eroded during the iterative process, the locations of the edge pixels
are propagated toward the interior of the object. This information is later used in the clustering
about principal curves to determine whether merging of objects is necessary to remedy the
effects of excessive erosion. This object separation technique suffers from several
disadvantages: (1) the number of iterations required to achieve separation has to be determined
manually for each image, (2) objects smaller than (2/ + 1) X (2i + 1) pixels, where i is the number
of iterations, will be eliminated, and (3) objects do not preserve their original size.

In another approach [5], a tagging algorithm was used to separate objects with weak
connections. At each growing iteration, every object pixel that is untagged and an 8-neighbor to
the existing grown object pixels is a candidate. A candidate is then tagged as belonging to a
feature if (1) it has at least two 8-neighbor pixels that are either the candidates of previous
iteration or pixels of the feature, and (2) the two pixels must be 4-neighbors to each other. The
process grows each object individually; unlike the EP algorithm that applies the same number of
iterations to all objects non-discriminatingly, this tagging algorithm is thus able to retain small
objects. However, the authors’ implementation separated only regions connected by corners or
by one-pixel bridges, rendering it incapable of achieving separation when stronger connections
occur.

[30] proposed an interesting approach to separate objects. With the assumption that touching
objects create sharp turns or corners in the boundaries where the objects meet, the authors
designed a set of constraints to decide whether two corners should be connected. The technique
first locates a chain of corners on the boundary and then applies the constraints (which were
based on geometric heuristics and semantic properties of the boundaries), and separation among
objects is finally created by linking corners of different boundaries. This approach is able to
achieve good separation and complete preservation. However, since it relies on the definition of
a corner, it is noise-sensitive and limited to domains in which the aforementioned assumption
holds.

In this report, we present a technique that is robust in identifying individual objects in
remotely sensed images where speckle noise effects are not negligible. Our technique (1) does
not require user interactions once the initial object-background segmentation is obtained, (2)

preserves the original sizes and shapes of the features in the image, and (3) eliminates small



objects only minimally (as a result of morphological cleaning to remove noise effects), and thus

addresses the weaknesses associated with other object separation techniques.

3 The Restricted Growing Concept

To achieve separation and preservation, we design a concept called the Restricted Growing
Concept (RGC). The main idea of this concept is to decompose the object separation problem
into two modules, each dedicated to achieve one of the objectives as outlined in the sections
above. The first objective is separation. This is accomplished by shrinking objects such that
each object is separated from its touching neighbors. The second objective is preservation of size
and shape. This is accomplished by growing the shrunk objects to restore the size and shape.
However, the two objectives are contradictory, as illustrated in Fig. 1. To ensure that the
separation that has been established (after the first stage) is not disturbed, our growing process is
restricted. This gives rise to our RGC.

Now we define the components of RGC. A core object is a version of the original object
such that its linkages to neighboring objects are disconnected, satisfying our first objective of
object separation. Such an object is reduced in size, but it usually captures the general shape of
its original version. An image with core objects is thus a core image. A mask object is a version
of the original object such that the original size of the object is preserved. Mask objects are
usually interconnected and could encompass one or more core objects. An image with mask
objects, which will serve as constraints on the growing of their enclosed core objects, is a mask
image. Note that a less constrained version of the definition is to allow the mask object to be a
close approximation of the original object. Finally, a restricted growing algorithm grows from a
core object within the boundary of its corresponding mask object while preserving the object’s
separation from its neighbors. This definition implies that the growing process stops either when
the boundary of the object has been reached or when further growing will damage the object’s
separation from its neighbors. Thus, conventional region growing [37] or morphological dilation
schemes are not restricted growing algorithms.

Fig. 2 demonstrates an execution of RGC. The original image in this example consists of
touching sea ice floes (objects) observed in satellite imagery of the Arctic. Our task is to identify
each individual object. First, we generate the mask image, which is a binary segmentation of the

original image that identifies the object and background pixels.



Fig. 2 An execution of RGC: The upper left image shows an aircraft STAR-2 SAR sea ice imagery
(obtained from Dr. J. Comiso of NASA Goddard SFC). The upper right image is the mask image. The
lower left image is the core image. The lower right image is the restricted growing result.

As noted from Fig. 2, objects are now observed as a network of interconnected entities, making
individual object analysis impossible. Second, we generate the core image. Similar to the mask
image, the core image is a binary version of the original image. However, the objects are now
separated from their touching neighbors, isolated through a shrinking process. Comparing the
mask and core images, one observes that mask objects always enclose one of more core objects
in corresponding areas. During the restricted growing process, a core object will not be grown
outside of the enclosure. In addition, a pixel will not be grown from non-object to object class

when such growth will destroy the existing separation status of the area.

4 Generating Mask Image

The objective of having a mask object is to contain the growth of the core objects that it encloses.
A mask object should retain its original shape and size. In practice, a mask image is binary, with
its pixels divided into object and background pixels. Our implementation basis for the mask
image is gray level thresholding, which is a general segmentation approach in image processing.
In the examples and illustrations of this report, all mask images have been obtained using global
thresholding. However, in actual SAR sea ice applications, we have employed dynamic local

thresholding object separation [33].



4.1 Probabilistic Labeling

We use probabilistic labeling to analyze the neighborhood of a pixel to decide whether the pixel
is an object pixel in the mask image. The concept of our probabilistic labeling is similar to that
of relaxation [24] which is based on incremental improvement of the confidence of a pixel being
an object (or a non-object) pixel. Conventionally, a relaxation technique first assigns to each
pixel an initial classification or labeling, then computes the confidence of each pixel with its
label, relaxes the current classification either stochastically or deterministically, and iterates until
all pixels converge to a stable labeling state. Our design of probabilistic labeling uses threshold
slices as the changing environment on which the assessment of the confidence of a pixel’s being

an object is based. A threshold slice, S,, is obtained by thresholding the image at intensity 7.

The higher the intensity, the stricter the environment that its threshold slice imposes on a pixel’s
neighborhood, effectively lowering the probability of a pixel surviving as an object pixel as its
neighbors are eroded gradually. By observing the neighborhood of a pixel in various

environments, we determine whether it deserves to be labeled as an object pixel.
The set of environments or threshold slices, Q(T,I ,N ), is a three-tuple, where T is the

starting threshold, [ is the interval between successive threshold slices, and N is the number of

threshold slices. In our implementation:
Qe = (l J)v23 {S )5 u/)+2’ 1 j}+4} 1)
where t(i, j) is the threshold computed at pixel (i, j) during the segmentation process (either

global thresholding or dynamic local thresholding), ., =2, and N, , =3. To obtain the

mask mask

accumulated confidence of a pixel at (i , j) being an object pixel, we first compute the confidence
of the pixel being an object at threshold slice S, as the ratio of the neighbors in the pixel’s 3x3

neighborhood that have survived the slicing of §,. This confidence we denote as

cs, [(z , j) = object]. Next, we sum all confidence values for each pixel as follows.

Cmmk(z j ch [(z ]) —ob]ect] @)

$,€Q, 0
Finally, to label each pixel in the mask image, we compare Cmmk(i,j) to a pre-specified

. if theC, (i,j) of a pixel at (i,j) is greater than or equal to T, then that

mask *

threshold, T

mask *

pixel is an object pixel in the mask image. 7, , has been experimentally determined and set as

mask



0.75 for Synthetic Aperture Radar (SAR) sea ice images, and it has been used as a constant in all
examples presented in this report. Note that the above algorithm has three important parameters,

te., T 1 and N

mask

that system designers can adjust to accommodate their specific

mask ° mask
needs and domains of applications during the development phase of their object separation
software. Once the parameters are determined, the technique runs without human interaction or

supervision.

4.2 Morphological Cleaning

Since remotely sensed images are usually corrupted with speckle noise, we apply morphological
cleaning to eliminate the noise effects. This cleaning operation comprises a sequential execution
of closing and opening. Note that closing is a combination of first erosion and then dilation on
an image while opening is first dilation and then erosion. = Opening generally trims off
peninsulas, break bridges, and solidifies channels. Closing generally closes inlets, absorbs
islands, and fills lakes. As a result, visually, the features after morphological cleaning are better

in shape and content definition, providing more definitive boundary.

4.3 Different Mask Images

The definition of Eq. (2) destroys a tiny, unrecoverable portion of the original size and shape
because pixels at a region’s boundary may be lost due to lack of confidence. Thus, we devised
two alternative implementations: (1) one using the cleaned, directly thresholded result, and (2)
one using the uncleaned, directly thresholded result. Fig. 3 shows the results of using different
mask 1mages for our restricted growing algorithm. The original image in Fig. 3 is a STAR-2
aircraft-SAR sea ice image. The upper-right corner shows the result of using the originally
defined mask image. Details were lost, and the floes were slightly shrunk. The lower-left corner
shows the result of using the cleaned, directly thresholded result as the mask image; the lower-
right corresponds to that of uncleaned, directly thresholded result as the mask image. Comparing
the results visually, the last option yielded the most accurate result as small details and
wiggliness of the boundaries have been completely preserved. However, since it uses the
directly thresholded result as the mask image, it suffers from noise effects, as evident in the
interior of the large ice floe. All three segmentation methods are: if the image is very noisy, we

recommend the mask image as computed in Eq. (2); if the details of the boundaries are



important, we recommend the directly thresholded result as the mask image; if the image is noisy

and details are important, we recommend the cleaned thresholded result as the mask image.

S Generating Core Image

To generate core objects, we have investigated several techniques. Of particular interest is one
that utilized morphological reconstruction [35] because of its similarity to the underlying idea of
RGC. In [35], the author extracted as core objects h-domes of regions in an image through
reconstruction. The process is as follows. First, subtract the original image by 4 for all pixels to
obtain the minus-k image (where all negative values are equated to zeros). Second, reconstruct
the features in the minus-4 image to obtain regional maximum—structures analogous to highland
plateaus. Third, subtract the original image by the reconstructed minus-4 image; the leftover
features are domes. The reconstruction process is similar to RGC but it does not address the
separation issue. In both cases, the reconstruction of the core image is restricted by the mask
image. However, separated core objects that are connected in the mask image will become
connected since the reconstruction process does not have a provision to recognize and preserve

the separation. RGC, on the other hand, is able to recognize such separation and preserve it.

5.1 Extracting h-Domes As Cores

Moreover, [35] proposed a sequential reconstruction algorithm for either grayscale or binary
images, which we have implemented to analyze SAR sea ice images for core. The algorithm is
as follows. First, obtain the mask image, M . Second, obtain the core (or marker [35]) image,
C. Third, repeat until the core image converges the following sequential operations: (1) Scan

the core image rasterly and, for each nonzero pixel, p, in C, assign to it the value of

max{C(q),qug(p)u{p}}/\M(p), where Ng(p) is the collection of pixels in the 8-
neighhorhood of p already visited (rasterly) before arriving at p. (2) Scan the core image anti-
rasterly and, for each nonzero pixel, p, in C, assign to it the value of
max{C(q),qeNg(p)u{p}}/\M(p), where Ng(p) is the collection of pixels in the 8-
neighhorhood of p already visited (anti-rasterly) before arriving at p. For binary images, the

operator A is logical AND; for grayscale images, it is the minimum operator. Fig. 4 shows an

original image and two binary 4-domes images; Fig. 5 shows the examples of a cross section of



the minus-A images and h-domes images. As can be observed from both figures, the choice of
effects the results greatly. If 4 is too small, then the algorithm produces overly reduced cores
which might not be representative of their original sizes and shapes, as shown in Fig. 4(b). If i is
too large, the reconstructed plateau might be too low, and all regions would be flooded and be

considered as a single region, as shown in Fig. 4(c).

Fig. 3 Experiments on different mask image designs. The raw image shows a STAR-2 aircraft SAR sea
ice image (obtained from Dr. J. Comiso). The upper-right corner shows the result of using our object
separation technique with the mask image as defined in Eq. (2); the lower-left corner shows the result

with the morphologically cleaned, direct thresholded result of the original image; the lower-right corner

shows the result with the uncleaned, directly thresholded result of the original image.
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Fig. 4 From left to right: (a) Original image of three touching circles. (b) Binary A-domes image of the
original image where 4 = 20. (c) Binary A-domes image of the original image where A = 60.

Reconstruction and h-domes can be applied to well-behaved or synthetic images to extract
cores. However, for remotely-sensed imagery such as SAR sea ice images, due to inherent
speckle noise, such application is not desirable. Referring to Fig. 6, one see that the noise
effects and intrinsic heterogeneity within each region have forbidden the reconstruction to flood
and form good quality plateaus. This results in many isolated, trivial cores. Fig. 7 shows a cross
section taken from the image. The first graph reflects the original image; the second the
reconstructed minus-2 image with flooded plateaus; the third the A-domes. As observed, the

application resulted in many individual domes and thus many cores.

/\/\/\/\

AN

Fig. 5 Column (1) Top to bottom: Cross sections of (a) the original image of Fig. 4: two cones. (b) the
reconstructed minus-4 image (4 = 20) of the original image. (c) the A-domes image. Column (2) Top to
bottom: Cross sections of the (a) Same as (1)(a). (b) the reconstructed minus-h image (h = 60) of the
original image. (c) the h-domes image.
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5.2 Extracting Cores Using Probabilistic Labeling

Even though reconstruction and h-domes are useful morphological methodologies, they do not
readily apply to remotely-sensed images because of speckle noise and heterogeneity within
features such as those found in SAR sea ice images. Thus, we have again turned to the

probabilistic labeling technique discussed above. To obtain core object pixels, we use:

Qcore = ‘Q(l(i’ j),Z,S) = {St(i,j) ’St(i,j)+2 ’St(i,j)+4 ’St(i,j)+6 ’St(i,j)+8} (3)

and [ =2,and N =15. The sum of confidence is

mask

wre(z ]) ch [(z ]) object] @

mask

Similar to the treatment of the pixels in the mask image, if the Ccm( ) of a pixel at (i, j) is

then that pixel is an object pixel in the core image. 7, has been

core

greater than or equal to T,

experimentally determined to be 0.50 for SAR sea ice images.

In [32], we evaluated probabilistic labeling-based core extraction on various synthetic images
to measure its ability to (1) separate touching objects with N number of shared boundary pixels,
and (2) preserve sizes and shapes under various percentages of added noise. We also evaluated
cores generated by morphological erosion and found that the technique described in this
subsection to be superior. Due to the complexity of those experiments, we do not discuss them
here. Briefly, the current implementation of core extraction was found to be able to separate
touching objects with up to 25 shared boundary pixels and obtain primary cores in 10%-15%

noise-corrupted images.

12



Fig. 6 Applying morphological reconstruction and #-domes directly to satellite sea ice image. (a)
Original image is a STAR-2 aircraft SAR sea ice image (obtained from Dr. J. Comiso) (b) Reconstructed
minus-4 image (h = 40) (¢) Binary h-domes.
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Fig. 7 Cross sections of (a) the original image. (b) the reconstructed minus-4 image (4 = 40) of the
original image. (c) the A-domes image.

6 The Restricted Growing Algorithm Using Reversed Skeletonization

Our restricted growing algorithm earns its novelty with its use of skeletonization in a reversed
manner. Note that the objective of the restricted growing algorithm is to grow core objects
within the boundary of their corresponding mask objects while preserving existing separation
among the core objects. In our definition, a growing algorithm (1) expands the core object to its
original shape and size, and (2) introduces no additional connectivity to its neighbors.
Skeletonization, in contrast, is a process that (1) reduces an object to its skeleton, and (2) ensures
connectivity of skeletal branches within the object. That these two processes are closely related
prompted us to design the restricted growing algorithm by modifying a skeletonization
algorithm. Formally, a skeletonization algorithm reduces a binary object into a one-pixel thick

skeleton, which should (1) preserve the object’s topology, (2) be central to the object, or (3)

14



enable the original object to be recoverable from the skeleton [19]. The definition of a skeleton
was first introduced in [4] as the medial axis, obtained by setting up grassfires simultaneously at
all fronts. Numerous designs of thinning algorithms have since appeared in literature [14][15],
aimed at improving the rate of convergence, accuracy, and connectivity [23] and preservation of

skeletal legs [12].

6.1. A Skeletonization Algorithm

Here we describe a skeletonization algorithm proposed by [36]. The object pixels are assigned 1
and non-object pixels 0, and a boundary pixel is a pixel of an object that has at least one non-
object 8-neighbor. This algorithm consists of iterations of two basic steps applied to object

pixels. Fig. 8 shows the §-neighborhood numbering.

Py | Py [ P

Fig. 8 The numbering sequence of the 8-neighborhood of p, .

During the first step, a boundary pixel p, is flagged if the following conditions are satisfied:

D2=N(p)=6,2)S(p)=1.3) p, P P =0,a0d @) p, - ps-ps =0,
where N(p,) is the number of nonzero neighbors of the boundary pixel p,, and S(p,) is the
number of 0-1 transitions in the ordered sequence of the neighbors of p,. During the second
step, a boundary pixel p, is flagged if

M2=N(P)<6,)5(p)=1.03) p, P, ps=0,a0d4) p,* pe-p; =0.

One iteration of the algorithm includes applying the first step to flag boundary pixels for
deletion, deleting the flagged pixels, applying the second step to flag remaining boundary pixels
for deletion, and deleting the flagged pixels; and it iterates until no further pixels are deleted.

The first condition is violated when p, has only one or seven 8-neighbors valued as object
pixels. A boundary pixel having only one such neighbor implies that it is situated at the end of a
skeletal leg, and therefore should not be deleted. On the other hand, if it has seven such
neighbors, the deletion of the pixel would penetrate into the object and thus is not allowed. The

second condition is violated when the neighborhood contains a one-pixel thick line (S(p,)> 1).

15



A deletion of such a pixel is forbidden since it would introduce a break to the connectivity of the
object. To satisfy the last two conditions of the first step, a pixel must be an east or south
boundary pixel or a northwest corner pixel in the boundary. Correspondingly, during the second
step, a pixel must be a north or west boundary pixel or a southeast corner pixel in the boundary.

Any point matching any of these four patterns should be removed.

5.2. The Restricted Growing Algorithm

Our design of the restricted growing algorithm was based closely on the thinning algorithm
described above. Note that a pixel is deleted if it satisfies all conditions mentioned in the above
subsection during the thinning process. In restricted growing, a pixel is grown or rejected based

on the following sequential tests.

Test 1: Potential Growing Condition

If a pixel in the core image is a non-object pixel and its corresponding pixel in the

mask image is an object pixel, then the pixel is qualified for further test.

This test selects only non-object core pixels for potential growth. This is how we guarantee that
we only grow core objects within the boundary of mask objects. In addition, pixels that are non-
object in both core and mask images are deemed as true non-object and are rejected from

growing.

Test 2: Isolation Condition
If the pixel in the core image does not have an object pixel in its core image as an 8-

neighbor, then the pixel is disqualified.

This condition avoids erroneous separation within an object. For example, small dark specks in
an object would be eroded to non-object pixels during the generation of the core image. If
allowed to grow, these non-object holes could become individual object regions within the object
that encloses them. With this test, a small hole within an object will instead be consumed by the

encroaching object during the growing process.

16



Test 3: Connectivity Condition 1

If the pixel in the core image has seven or eight object pixels in its core image 8-

neighborhood, then the pixel is grown.

If the 8-neighborhood of a pixel has seven or more object pixels, that means all object pixels in
that neighborhood are connected. Hence, the growth of the pixel from non-object to object does
not damage the existing (or non-existing) separation. Note that Tests 2 and 3 correspond

collectively to the first condition of the skeletonization algorithm.

Test 4: Connectivity Condition 2
If the pixel in the core image has no or one 1-0 transition in its core image 8-

neighborhood, then the pixel is grown.

If no or one 1-0 transition (S’(P)<1) is found, that means all object pixels in the area are

connected and further growth does not alter the separation. This condition is analogous to the

second condition of the skeletonization algorithm.

Test 5: Connectivity Condition 3
If the 8 neighborhood of the pixel in the core image matches one of the four corner

patterns, then the pixel is grown.

The corner patterns are shown in Fig. 9. Any of these patterns could have two or more 1-0
transitions yet have all its object pixels connected. Thus, a pixel growth will not alter the
separation. This test is a combination of the last two conditions of both steps of the thinning

algorithm.

Fig. 9 Four patterns examined in Test 5 of the restricted growing algorithm. Dark pixels denote object
pixels; unshaded pixels denote "don’t care” pixels.

17



7 Analysis of Different Algorithms of RGC

So far, we have discussed RGC and addressed various issues regarding its three main
components. We have also investigated the use of reconstruction and h-domes for core
extraction, and subsequently determined the probabilistic labeling approach to core and mask
extraction suitable for our domain, i.e., remotely sensed imagery. Also, we have reviewed a
thinning algorithm and converted it to a restricted growing algorithm. Now, we arrive at the

stage of joining all these three components together.

7.1 Algorithms

The algorithm of the basic RGC can be expressed in the following pseudocode:

algorithm RGC

(1) Generate the mask image.

(2) Generate the core image.

(3) Scan the core image in some manner, and for each pixel encountered:
(a) Apply the tests (as described in Section 6).
(b) If the pixel passes the tests, Then convert it to an object pixel.
(c) If no change, Then move on to the next pixel.

(4) Repeat step (3) Until the core image converges.

The two keys to the design of the above algorithm are (1) how one scans the image and (2) how
one selects the next pixel for processing. The scanning order influences the final processing
outcome since the algorithm is implemented sequentially. In addition, the selection of the next
pixel hinges upon whether one desires the growth of the current pixel to immediately affect the
qualification of the next pixel since the growth is constantly updated to the core image where

pixels are examined. Here below we present twelve different algorithms.

algorithm RGC_BASIC
(1) Generate the mask image.
(2) Generate the core image.
(3) Scan the core image from top to bottom, left to right, and for each pixel encountered:
(a) Apply the tests (as described in Section 6)
(b) If the pixel passes the tests, Then convert it to an object pixel, and
move to the next row and column of the current pixel location.
(c) If no change, Then move on to the next pixel in the raster scan.
(4) Repeat step (3) Until the core image converges.

18



The above algorithm uses the basic raster scanning. After each growth, the raster simply moves

to the next column and row to reduce horizontal (or vertical) growth tendency in the image.

algorithm RGC_JUMP
(1) Generate the mask image.
(2) Generate the core image.
(3) Compute the JUMP_STEP as 10% of the minimum dimension of the image.
(4) Scan the core image from top to bottom, left to right, and for each pixel encountered:
(a) Apply the tests (as described in Section 6).
(b) If the pixel passes the tests, Then convert it to an object pixel, and
jump JUMP_STEP rows and columns ahead to get the next pixel.
(c) If no change, Then move on to the next pixel in the raster scan.
(5) Repeat step (4) Until the core image converges.

The above algorithm jumps to a distant pixel for continued processing; thus the growth of the
current pixel does not immediately affect the qualification of the next pixel. Also, a region will
not be grown continuously to a point where it dominates its neighboring regions by absorbing

their pixels. The resulting growth pattern will be more balanced.

algorithm RGC_BLOB_COLORING
(1) Generate the mask image.
(2) Generate the core image.
(3) Blob color the core objects: each core object is tagged with a unique ID.
(4) Scan the core image from top to bottom, left to right, and for each pixel encountered:
(a) Apply the tests (as described in Section 6).
(b) If the pixel passes the tests, Then convert it to an object pixel, and
move on to the next column and next row.
(c) If the pixel fails the tests, Then check all its object neighbors;
(c.1) If they all share the same ID, Then convert the pixel to an object pixel;
and label the new object pixel with the same ID,
and move on to the next column and next row.
(d) If no change, Then move on to the next pixel in the raster scan.
(5) Repeat step (4) Until the core image converges.

In RGC_BASIC and RGC_JUMP, a pixel is always prevented from becoming an object pixel
when it is between, for example, two separated object neighbors since a growth would connect
the two neighbors, destroying the separation. However, there are scenarios where a region might
have an internal linear break. If the break is significant in size, the algorithm treats it as a
genuine feature and it remains in the final result. If the break is negligible, we want the

algorithm to absorb it into the region. The inclusion of the blob-coloring filter offers that
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absorption. If all tests fail to grow the pixel, we look at the neighbors of the pixels; if they are
labeled with the same ID, then there is no harm in growing the pixel and connecting the two parts
of the same region. This was the motivation behind the above design. Blob coloring is an image
processing technique used to identify contiguous object pixels as regions and label them each

with a unique ID. The pseudocode for an 8-neighbor blob coloring is as follows:

algorithm BLOB_COLORING
(1) Scan the image from top to bottom, left to right, and for each object pixel encountered:

(a) If none of the N ( p) of the pixel is an object pixel, Then
assign a new ID to the pixel.

(b) If only one neighbor in the N ( p) of the pixel is an object pixel, Then
assign the ID of that neighbor to the current pixel.

(c) If there are more than one object neighbors in the N ( p) of the pixel, And
each has the same ID, Then assign the ID to the current pixel.
(d) If there are more than one object neighbors in the N (p) of the pixel, And

as a whole have more than one IDs, Then

(d.1) assign one of the IDs, A, the current pixel.

(d.2) list all other IDs of the neighbors.

(d.3) convert all (so-far-labeled) pixels with IDs on the list to A.

Remember, from Section 5.1, that N g( p) is the collection of pixels in the 8-neighhorhood of p
already visited (rasterly) before arriving at p. We also assign to the newly grown pixel the ID of

its neighbors so the blob grows consistently.

algorithm RGC_BLOB_COLORING_JUMP
(1) Generate the mask image.
(2) Generate the core image.
(3) Compute the JUMP_STEP as 10% of the minimum dimension of the image.
(4) Blob color the core objects: each core object is tagged with a unique ID.
(5) Scan the core image from top to bottom, left to right, and for each pixel encountered:
(a) Apply the tests (as described in Section 0).
(b) If the pixel passes the tests, Then convert it to an object pixel, and
move on to the next column and next row.
(c) If the pixel fails the tests, Then check all its object neighbors;
(c.1) If they all share the same ID, Then convert the pixel to an object pixel;
and label the object pixel with the same ID,
and move on to the next column and next row.
(d) If no change, Then move on to the next pixel in the raster scan.
(6) Repeat step (5) Until the core image converges.
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Similar to RGC_JUMP, the above implementation is a combination of using jump steps and blob

coloring for selecting the next pixel for inspection.

algorithm RGC_DISTANCE
(1) Generate the mask image.
(2) Generate the core image.
(3) Generate the 8-distance transform of the mask image.
(a) Obtain the maximum distance value, D,,, .
(4) Repeatfromd= D_ tod=1:
(a) Scan the core image from top to bottom, left to right, And
for each pixel whose 8-distance transform value equal to d:
(a) Apply the tests (as described in Section 6)
(b) If the pixel passes the tests, Then convert it to an object pixel, and
move to the next row and column of the current pixel location
(c) If no change, Then move on to the next pixel in the raster scan

The above implementation utilizes 8-distance transform, a representation that delineates the
shortest distance of an object pixel from a non-object pixel [26]. The objective of this distance-
based design is to grow each ring of a region at a time for all regions equally from the innermost
pixels outward to discourage overgrowth or undergrowth. The following pseudocode facilitates

the 8-distance transform:

algorithm §_DISTANCE_TRANSFORM
(1) Scan the image from top to bottom, left to right, and for each pixel encountered:

(a) assign to the pixel directly the value of min{M (q),q EN (‘;( p) U { p}} .
(2) Scan the image from bottom to top, right to left, and for each pixel encountered:
(a) assign to the pixel directly the value of rnin{M (q),q eN 5( p)} .

Remember that N g( p) is the collection of pixels in the §-neighhorhood of p already visited

(anti-rasterly) before arriving at p, and that M is the mask image.

algorithm RGC_DISTANCE_BLOB_COLORING
(1) Generate the mask image.
(2) Generate the core image.
(3) Blob color the core objects: each core object is tagged with a unique ID.
(4) Generate the 8-distance transform of the mask image.
(a) Obtain the maximum distance value, D, .

(5) Repeatfromd= D _, tod=1:
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(a) Scan the core image from top to bottom, left to right, And
for each pixel whose 8-distance transform value equal to d:
(a.1) Apply the tests (as described in Section 6).
(a.2) If the pixel passes the tests, Then convert it to an object pixel, and
move on to the next column and next row.
(a.3) If the pixel fails the tests, Then check all its object neighbors;
(a.3.1) If they all share the same ID, Then
(a.3.1.1) convert the pixel to an object pixel.
(a.3.1.2) label the object pixel with the same ID.
(a.3.1.3) move on to the next column and next row.
(a.4) If no change, Then move on to the next pixel in the raster scan.

The above implementation combines the 8-distance transform and blob coloring in growing
object pixels. So far, we have described six different implementations of our RGC concept with
one raster scan per iteration. In morphology, a two-scan iteration is often used to obtain balanced

consideration for all pixels in the image in both directions (such as that mentioned in Section
5.1). By always looking at previously visited 8-neighborhoods (N ( p) and N 5( p)), we avoid

including not-yet-processed neighbors when examining the current pixel; and by scanning from
two directions sequentially in one iteration, we reduce directional biases that might occur
otherwise. The following is the pseudocode of the algorithm RGC_BASIC using a two-scan

1teration:

algorithm RGC_BASIC2
(1) Generate the mask image.
(2) Generate the core image.
(3) Repeat the following Until the core image converges:
(a) Scan the core image from top to bottom, left to right, and for each pixel encountered:

(a.1) If the N;( p) of the current pixel has at least one object pixel, Then

(a.1.1) Apply the tests (as described in Section 6)
(a.1.2) If the pixel passes the tests, Then convert it to an object pixel, and
move to the +1 row and +1 column of the current pixel location.
(a.1.3) If no change, Then move on to the next pixel in the scan.
(b) Scan the core image bottom to top, right to left, and for each pixel encountered:

(b.1) If the N 5( p) of the current pixel has at least one object pixel, Then

(b.1.1) Apply the tests (as described in Section 6)

(b.1.2) If the pixel passes the tests, Then convert it to an object pixel, and
move to the -1 row and -1 column of the current pixel location.

(b.1.3) If no change, Then move on to the next pixel in the scan.
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Note that (a.1) and (b.1) are similar to the maximum operators in the reconstruction algorithm
discussed in Section 5.1 when the image is binary. In the same manner, we have also designed
RGC_JUMP2, RGC_BLOB_COLORING2, RGC_BLOB_COLORING_JUMP2,
RGC_DISTANCE?2, and RGC_DISTANCE_BLOB_COLORING2. In all, we designed and

implemented twelve different RGC algorithms for our experiments.

7.2 Results

Fig. 10 shows an example of the original images that we have used to test the different
implementations discussed above. It is a portion of a Synthetic Aperture Radar (SAR) sea ice
image taken by the first Earth Resource Satellite (ERS-1). Dark regions are ice floes; bright are
water. The task was to separate the large piece of ice floe from its neighbors. Figs. 11-13 show

the object separation results of the twelve algorithms.

Fig. 10 A portion of an ERS-1 SAR sea ice image taken on Aug 24 at Beaufort Sea (Copyright ESA).

After applying the implementations to numerous SAR sea ice images, we observe the following:
e Compared to the one-scan iteration design, the two-scan iteration installation offers better
balance in regional growth. The regions are less complicated and they expand more fully
towards the masks. However, the two-scan iteration designs are generally slower than the one-
scan iteration designs.

e Implementations that include jumps to avoid immediate growth effects fair better in terms of

shape definition. However, jumps also introduce breaks into the regions. On the other hand,
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those without jumps are able to establish fuller regions by absorbing more pixels from

neighboring regions.

Fig. 11 RGC results of Fig. 10. Top left: Result of RGC_BASIC. Top right: Result of RGC_JUMP.
Bottom left: Result of RGC_BLOB_COLORING. Bottom right: Result of
RGC_BLOB_COLORING_JUMP.

e By utilizing blob coloring in the restricted growing algorithm, we obtain regions that close
better. ‘Hairline’ effects that are sometimes evident because of breaks within regions are
reduced. This results in more compact regions. However, with blob coloring, non-object pixels

are more sporadic and less connected. So, if one is interested in signifying the non-object breaks
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and background pixels, then an implementation without blob coloring should produce more

desirable results.
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Fig. 12 RGC results of Fig. 10. Top left: Result of RGC_DISTANCE. Top right: Result of
RGC_DISTANCE_BLOB_COLORING. Bottom left: Result of RGC_BASIC2. Bottom right: Resuit
of RGC_JUMP2.

e The implementations with distance transform do not perform as well as those without such

facility. There are two possible reasons. First, SAR sea ice images are noisy and results in holes
in a region. These holes could be seen as lakes and thus the topology of the region in terms of the

shortest distance to a non-object pixel is no longer in a uniform ring radiating outward from the
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center of the region. This retains noise effects. Second, the §-distance transform is not truly
representative of the actual physical distance between pixels. To illustrate, the 4- neighbors of a
pixel are each 1 unit away from the pixel; and the diagonal neighbors in an 8-neighborhood are
each /2 units away from the center pixel. In our implementation, we did not account for this

difference.
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Fig. 13 RGC results of Fig. 10. Top left: Result of RGC_BLOB_COLORING?2. Top right: Result of

RGC_BLOB_COLORING_JUMP2. Bottom left: Result of RGC_DISTANCE2. Bottom right: Result
of RGC_DISTANCE_BLOB_COLORING2.
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e For SAR sea ice images because of its inherent noise, we do not recommend using distance

transform alone, i.e., RGC_DIST, because the distance transform dominates the growth patterns
and retains noise effects. Collaborating the distance transform with blob coloring or two-scan
iteration improves the results. In addition, we do not recommend using two-scan iteration, blob
coloring, and jumps (i.e., RGC_BLOB_COLORING_JUMP2) together. This combination
extracts regions of blocky shapes as shown in Fig. 13. The two-scan iteration allows the tracking
of a pixel and, combined with jumps, creates blocks of regions, which are further enhanced by
the merging ability of the blob coloring.

e In general, most of the twelve algorithms yield good object separation results. They are able

to tolerate speckle noise in object separation and reduce noise effects in object definition. Our
evaluation of the results indicates that the algorithm RGC_BLOB_COLORING is the most
consistent. We attribute the performance to two reasons: (1) the uni-directional scan and
without jumps, and (2) the ability of the blob coloring-based approach to absorb negligible noise
effects.

In terms of computational speeds, Table 1 exemplifies the performances of the algorithms.
We have identified five speed groups: fast, moderately fast, average, slow, and very slow.
Members of each group require roughly the same amount of time to accomplish the object
separation task. In general, algorithms that implement blob coloring perform faster; those that
implement distance transform perform more slowly; and finally those that implement jumps
perform even more slowly. This is because of the skipping of pixels per iteration, due to either
distance transforms or jumps, and the consequent additional number of iterations needed to

converge the core image.

8 Discussions and Conclusions

The restricted growing concept consists of three main procedures: generating the mask objects,
obtaining the core objects, and restricted growing. All can be implemented differently from what
we have presented here. In addition to the three alternatives of generating the mask image that
we have provided, one can experiment with other types of segmentation process as long as it
yields objects with preserved shapes and sizes. Approaches, such as relaxation [6][13][24] and
multiple resolution [3][34], that are able to erode an object based on its boundary intensities and
neighborhood suitable. Spatial and textural statistics can also be used instead of probability of

intensities in the neighborhood for determining the status of each pixel as a core or mask pixel.
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Similarly, one can design a different restricted growing algorithm as long as it grows core objects
within the boundary of mask objects and does not destroy the existing separation during the
process. A host of thinning algorithms designed for different applications [17][18][19] or faster
computational speed [1][21][22] can be modified to improve the convergence rate of the growing
process. Because of the generality and modularity of the restricted growing concept, one can
design his or her own object separation algorithm to accommodate specific applications and

imagery requirements.

SPEED GROUPS ALGORITHMS AVERAGE (ON A
450x600 IMAGE)
Fast RGC_BASIC 9.05 sec

RGC_BLOB_COLORING
RGC_BLOB_COLORING_JUMP

RGC_BASIC2
RGC_BLOB_COLORING?2

Moderately Fast RGC_DISTANCE 22.18 sec
RGC_DISTANCE2

Average RGC_DISTANCE_BLOB_COLORING 52.00 sec

RGC_DISTANCE_BLOB_COLORING_JUMP
RGC_DISTANCE_BLOB_COLORING_JUMP2

Slow RGC_JUMP 148.57 sec

Very Slow RGC_JUMP2 343.90 sec

Table 1 Computational speeds of the implementations of RGC. The programs were executed on a SGI
Challenge L/6, 512 Mb RAM machine.

We have investigated the use of morphological reconstruction and A-domes in extracting
cores for object extraction in Synthetic Aperture Radar (SAR) images. We have realized that,
due to the inherent speckle noise, the two operators do not work well for our domain imagery.
This has compelled us to use probabilistic labeling to extract mask and core images for our
technique. This approach is more robust and noise-resistant. We have demonstrated in steps
how to convert a skeletonization algorithm to a restricted growing algorithm. This novel utility
of skeletonization algorithms allow system designers to design and implement RGC with readily
knowledge compiled over the past decades on issues regarding the mathematics and applications
of skeletonization or thinning. In addition, we have explored a variety of scanning orders and
features such as blob coloring and distance transform to enhance or improve the design of RGC.
We have concluded that most these implementations yield satisfactory results. We have further

identified the most consistent implementation (which combines one-scan iteration and blob
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coloring), and rejected two sub-par designs, in addition to pointing out weaknesses and
advantages of each design.

In conclusion, we have presented a concept that is able to achieve both object separation and
preservation of size and shape of objects. This concept is both intuitive and general. It helps
solve the problem of object separation by addressing its two most important issues: separation
among objects and preservation of objects. The restricted growing concept is a framework with
which scientists can design image processing techniques tailored to specific domains and
applications such as pattern recognition, feature extraction, object solidification, segmentation,
and other tasks. Our implementation is able to handle a variety of images of the same domain
(i.e., SAR sea ice) without any parameter adjustments after they have been determined. On the

other hand, the parametric design allows flexibility in adapting to other image domains.
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