Adaptive Multiresolution Quantization for Contextual Information Gain in SAR Sea Ice Images
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Abstract — In this paper we describe an adaptive
multiresolution technique that quantizes SAR sea ice images
to improve contextual information such as the spatial,
relational make up of ice types in a region. First, we use
dynamic local thresholding to extract regional intensity
threshold values from which a histogram is constructed.
Next, we blur the threshold histogram with varying window
sizes to build a multiresolution contour map. We identify
peaks based on a cumulative distribution function and track
each peak on the contour map to assess its significance.
Then, for each significant peak identified, we cluster the
threshold values extracted during dynamic local thresholding
using nearest-neighbors to establish sets of threshold values.
Finally, we assign a pixel its quantization value by comparing
its original intensity to the set that it belongs to. The
technique handles noise and preserves contexts, ensuring a
consistent and smooth quantization of the image. We have
applied the technique to a large number of ERS-1, ERS-2,
and RADARSAT images to obtain quantized representation
of the images for contextual information gain. We have also
embedded the technique in an unsupervised sea ice
segmentation tool that has been installed at the National Ice
Center and the Canadian Ice Service.

INTRODUCTION

SAR sea ice images contain noise that might hinder
computer-based image understanding and pixel values that
can be omitted without loss of useful intrinsic information
and with gain of desired contextual information. Hence, our
adaptive multiresolution quantization technique has been
designed to re-represent images to highlight their contexts
and suppress their non-essential details. The technique
increases the visual interpretability of the image and allows
image compression for more efficient storage.

Briefly, we employ dynamic local thresholding [1] to
extract regional intensity threshold values from which a
histogram is constructed. Then, we blur the histogram
several times with varying window sizes (scales) to obtain a
multiresolution contour map. We track peaks on this map to
measure each peak’s significance.  Given the set of
significant peaks, we cluster around each significant peak a
set of non-significant peaks. Next, we perform adaptive
quantization using these clusters for regional and pixelwise
interpolations.

Our technique can be used as either an assistant to human
operators or a standalone module for a certain stage of the

operations. As part of our sea ice segmentation tool [2], the
technique reduces the computational burden on subsequent
modules and enhances the results as well.

In the following, we first describe the methodology of our
technique. Second, we discuss the multiresolution peak
detection algorithm in greater detail. Third, we demonstrate
through an example how the technique performs. Finally we
conclude the paper.

Note that we see contexts as regional compositions of ice
types. Different contexts are found as different ice types co-
exist in different situations due to different geographical
locations and seasonal temperatures. Compared to surface
textures, these contexts are more reliable properties for image
manipulation since they are of a second-order perception
level of sea ice features and thus more resistant to noise-
corruption.

METHODOLOGY

Our design is based on dynamic local thresholding, data
reduction [3], and multiresolution processing [4]. Dynamic
local thresholding allows us to handle local contexts within
the image’s global constraints, while enabling information to
be preserved across local regions adaptively. Dynamic local
thresholding has been used in SAR sea ice segmentation [S].
Image analysis at a fine resolution yields noise and
unnecessary details and at a coarse level distorts local
deviations. Thus, multiresolution processing is used to fuse
information at various scales of resolution [4].

Dynamic Local Thresholding

First, to extract data points to build a histogram that holds
contextual information, we divide the image into smaller,
overlapping regions. For each bimodal region, we derive an
adaptive threshold via maximum likelihood. These threshold
values hold the bisector value of each region, encrypting
certain local contextual information of the image. We collect
the thresholds and build a histogram, from which signiticant
peaks will be extracted using multiresolution processing.
Readers are referred to [5] for a detailed discussion of this
algorithm.

Multiresolution Processing

Next, we blur the histogram of threshold values with
varying window sizes to construct a contour map, identify
peaks based on a cumulative distribution function, and track
each peak through the scale space to assess each peak’s
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significance. For each significant peak identified, we then
cluster non-significant thresholds using nearest-neighbors to
create a set. When traversing the map, we evaluate the
significance of each peak based on several observations: (1)
low-resolution peaks are more significant, (2) high-resolution
peaks are more accurate, (3) neighboring peaks suggest a
significant peak, and (4) the significance of a peak is
proportional to its height. The underlying single-resolution
peak detection design is based on the data reduction
technique detailed in [3].

Adaptive Quantization

Each regional threshold falls within a set. For N peaks, we
have N sets. For each set, we perform a regional
interpolation to assign to each region without a derived
threshold value an interpolated threshold value. Next, we
perform a pixelwise interpolation to assign each pixel of each
region a threshold value.  Thus, after performing the
interpolations for N sets, each pixel will have N thresholds.
We assign a pixel, p, a new value of c(p)=/-256/Q,

1, S8(p)<t, .1, where Q is the number of quantization

levels, g(p) is the original gray level of p, and 7,; is the

ith-threshold value of the pixel. Note that our quantization
scheme does not necessarily assign same-intensity pixels to
the same quantization level or class. The decision depends
on the local context that surrounds the pixel, thus taking into
account possible intensity range and contrast inconsistencies
in the image.

MULTIRESOLUTION PEAK DETECTION

Histogram-based peak detection techniques inherently do
not handle noise well. Our multiresolution peak detection
addresses the problem by blurring the histogram at various
window sizes and then collecting significant peaks by
traversing the contour map. Our peak detection design is
based on using the cumulative distribution function (CDF) of
the histogram [3]. First, we generate a peak detection signal
from the histogram. Then, we locate the histogram peaks
using the zero-crossings of the peak detection signal and the
local extrema between the zero-crossings. To obtain the peak
detection signal, we convolve the histogram’s CDF with a
kernel of size Q. Different sizes of Q result in different
degrees of blurring.

Given the image histogram, H, for each Q, we compute

— 1+(Q-1)/2 ,
cdf r () = [2i=t—(9—1)/2CdfT (i )j/Q and the peak

detection signal as ng(t):cdfT(t)—ET,Q(t). Given the
signal, we proceed to find the peaks, represented by a triplet
<a)f,a)[",a)f > , for the starting point, maximum point, and the

ending point of a peak, respectively. We also register each
peak in the set . The local weight of a peak is:
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where M is the highest bin frequency, and N,

scale
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is the

number of resolution levels. The first term in the above
equation measures the dominance of the peak—the
magnitude of the positive cross over. The second term
measures the significance of the peak—the frequency of the
bin in the original threshold histogram.

To track peaks, we analyze the contour map. For a peak
situated at ¢ in the set of peaks, F,, we modify its weight:
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The two summation terms collect the neighboring peaks as
evidence for r as a peak, weighted by the distance of those
peaks from t. The single term Fo(f) serves as a self-
assurance weight. Next we sum the weights together across
all resolution levels. When consecutive peaks are found, we
merge the peaks and create a new peak at the heaviest
location in the continuum. Finally, we select peaks with a
weight greater than 0.5 N, as quantization peaks, requiring
an isolated peak to survive at least half the number of
blurring levels.

AN EXAMPLE

Here we show an example of the application of our
adaptive multiresolution quantization technique on SAR sea
ice images. Fig. 1 shows an original ERS-1 image.

Fig. 1 An ERS-1 image (Mar 26, 1992, 72.80N, 143.84N).
Copyright ESA.
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Fig. 2 shows the multiresolution map of the thresholds.
Numbers before the parentheses indicate the bin or threshold
values detected as peaks at each scale. Numbers in
parentheses denote the accumulated weights for the
corresponding peaks. For example, for the peak value at 32,
its weight gradually improved from 1.09 to 6.43.

Q=13: 32(1.09) 39(1.08) 47(1.29) 52(1.32) 83(1.47) 89(1.44)

Q=11: 32(2.17) 39(2.37) 44(1.62) 47(2.91) 52(2.64) 83(2.77)
89(2.72)

Q=9: 32(3.26) 39(3.70) 42(1.92) 44(3.54) 47(4.36) 52(3.77)
69(1.19) 83(4.08) 89(3.99)

Q=7: 32(4.35) 39(5.54) 41(2.92) 42(4.75) 44(5.71) 47(5.78)
52(4.90) 57(1.90) 61(1.14) 69(2.38) 83(5.38) 89(5.49) 91(1.83)

Q=5: 32(5.43) 39(7.04) 41(5.42) 42(7.25) 44(7.21) 47(6.90)
52(6.03) 57(2.21) 61(2.28) 65(1.14) 69(3.56) 79(1.21) 83(6.68)
86(1.77) 88(2.71) 89(7.99) 91(3.66) 94(1.28) 99(1.21) 108(1.12)

Q=3: 32(6.43) 39(8.04) 41(7.42) 42(9.25) 44(8.21) 46(2.09)
47(8.90) 52(7.15) 55(1.09) 57(3.33) 61(3.43) 65(2.29) 69(4.73)
74(1.21) 78(2.24) 79(3.21) 83(7.98) 86(3.04) 88(4.71) 89(10.25)

91(4.98) 94(2.56) 97(1.23) 99(2.42) 108(2.23)

Fig. 2 The multiresolution map of the thresholds. At the highest
resolution level (£2=3), all threshold values with a weight higher
than 3 (half of the number of resolution scales) were selected as
significant peaks. Peaks at 41 and 42 were merged, so were peaks at
88 and 89.

After peak merging and filtering, 14 significant thresholds
and thus 15 quantization levels were found. Fig. 3 shows the
result of our adaptive multiresolution quantization technique.
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.3 The quantized image of Fig. 1. There are only 1
quantization levels and the contextual information of the image has
been improved visually.

As observed, the contexts of the image are more clearly
defined, compared to the original image. The multiyear class
which dominates most of the image is now identified as a
single intensity class, eliminating the need to process various
pixel values and noise effects computationally and enhancing
visual inspection. Moreover, the original image in GIF
requires 935460 bytes to store, while the quantized image in
GIF requires only 160116 bytes to store—an improvement of
82.88% in memory storage space.

CONCLUSIONS

We have applied our quantization technique to more than
300 ERS-1, ERS-2, and RADARSAT images and have found
it to be effective in improving the contextual information
while reducing the computational burden (time and speed) for
later stages of image processing. We have embedded the
technique in our sea ice segmentation tool called ASIS
(Automated Sea Ice Segmentation) [2]. The technique acts as
a pre-processing module before ASIS performs computation-
intensive tasks on clustering the image pixels into
segmentation classes.

In conclusion, we have described a technique that
combines dynamic local thresholding, data reduction, and
multiresolution processing-—a synergism that allows our
algorihtm to consider local details and disregard noise effects.
It is adaptive because the pixels are allocated to quantization
bins based not only on their intrinsic gray levels, but also
their surrounding regions and pixels. This allows the
selection of thresholds to follow the activities of the image
across local regions, thus achieving contextual information
gain for better visual interpretability and more efficient
computer analysis.
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