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Abstract 

In this paper, we describe our research in com-
puter-aided image analysis.  We have incorpo-
rated machine learning methodologies with tradi-
tional image processing to perform unsupervised 
image segmentation.  First, we apply image 
processing techniques to extract from an image a 
set of training cases, which are histogram peaks 
described by their intensity ranges and spatial 
and textural attributes.  Second, we use learning 
by discovery methodologies to cluster these 
cases.  The first methodology we use is based on 
COBWEB/3, a conceptual clustering approach 
whose objective is to cluster the cases incremen-
tally as the concept hierarchy is refined.  The 
second methodology is based on an Aggregated 
Population Equalization (APE) strategy.  This 
approach attempts to maintain similar strengths 
for all populations in its environment.  The clus-
tering result of either approach tells us the num-
ber of visually significant classes in the image 
(and what these classes are) and thus enables us 
to perform unsupervised segmentation, i.e., the 
labeling of all image pixels.  Based on the results 
of the visual evaluation of the segmented images, 
we have built an unsupervised segmentation 
software tool called ASIS and have applied it to 
a range of remotely sensed images such as sea 
ice and vegetation index.  In this paper, we pre-
sent our machine learning approach to unsuper-
vised image segmentation and discuss our ex-
periments and their results.  

1 INTRODUCTION 

Image segmentation is a process of pixel classification 
where the image is segmented into subsets by assigning 
individual pixels into classes (Rosenfeld and Kak, 1982).  

An unsupervised technique implies automated operation 
independent of human intervention during the execution 
of the algorithm.  

Remotely sensed images of natural scenes are inherently 
noisy, have a highly dynamic makeup, and lack homoge-
neous structures.  In addition, remotely sensed data is 
typically voluminous.  Hence, computer-aided analyses 
such as unsupervised segmentation are very important in 
improving the efficiency and consistency in image under-
standing.    

We have designed an image segmentation methodology 
that automatically segments remotely sensed images into 
significant classes—determining the number of classes 
and describing what the classes are.  One of the most im-
portant factors in unsupervised segmentation is the deter-
mination of the number of classes.  Hence, we have 
turned to learning by discovery to achieve that objective.  
During the development phase, we have used two discov-
ery learning methodologies: COBWEB/3 (Gennari et al., 
1990) and the Aggregated Population Equalization (APE) 
strategy (Soh, 1998).  The former is an incremental con-
ceptual clustering learning algorithm while the latter is a 
self-organization approach.  Each of the above method-
ologies can determine the number of classes in the data 
and then cluster the data into the classes without human 
intervention. 

Our approach is to first extract training cases from an 
image.  The training cases are derived from a set of histo-
gram peaks of the image.  Each case consists of an inten-
sity range, a set of spatial attributes, and a set of textural 
attributes.  Note that these training cases are designed to 
capture the visual cues that human photo-interpreters use 
when they manually inspect and analyze images.  Then, 
we feed these cases into a discovery mechanism (either 
COBWEB/3 or APE).  The output of the mechanism is a 
clustering that groups the training cases into separate clus-
ters.  The clustering provides us with two important 
pieces of information on how to segment the image:  (1) 
the number of classes, and (2) what the classes are.  Fi-
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nally, equipped with the information, we label all pixels 
in the image.  Our approach therefore is able to learn how 
to segment an image by analyzing a set of derived training 
cases and by applying the learned clustering strategy to all 
pixels in the image. 

We have built an unsupervised segmentation software 
tool called ASIS after the approach described above, and 
have applied it to a variety of remotely sensed images, 
particularly Synthetic Aperture Radar (SAR) sea ice im-
ages.   

In the following, we first present some related work in 
unsupervised segmentation.  In the third section, we de-
scribe our methodology, from the image processing tech-
niques that extract and describe the training cases to the 
use of the learning-by-discovery techniques.  In the fourth 
section, we discuss our experiments and results.  In Sec-
tion 5, we touch upon our ASIS system and show an ex-
ample.  Finally, we conclude the paper. 

2 BACKGROUND 
In general, the analysis of remotely sensed images of 
natural scenes differs from that of urban, commercial or 
agricultural areas, and from medical and industrial im-
agery taken in controlled environments.  Natural scenes 
(forests, mountains, the seas, clouds, etc.) are not struc-
tured and cannot be represented easily by regular rules or 
grammars.  In addition, the appearance of natural objects 
can vary greatly based on the geographic area, the season, 
and the past and current weather conditions.  These fac-
tors complicate the unsupervised image segmentation task 
in remote sensing. 

Several unsupervised image segmentation techniques 
have been proposed, such as iterative dominance cluster-
ing (Goldberg and Shlien, 1978), random field models 
(Panjwami and Healey, 1995), fuzzy clustering (Nguyen 
and Cohen, 1993), local Bayesian (Peng and Pieczynski, 
1995), and maximum likelihood (Cohen and Fan, 1992).  
However, these techniques deal with either less complex 
scenes or highly textured regions.  Hence, they are not 
readily extensible to our domain that works with highly 
complex, poorly structured, and poorly textured remote 
sensing imagery such as SAR sea ice images.  

There are several noted discovery learning approaches 
applied to image segmentation.  For example, ISODATA 
(Holt et al., 1989) and (fuzzy) K-means (Huntsberger et 
al.,1985, Bezdek and Trivedi, 1986) are based on numeri-
cal taxonomy; histogram smoothing (Smith, 1996) is 
based on speckle noise model of remotely-sensed im-
agery; AutoClass (Cheeseman et al., 1990) is based on 
Bayesian probabilities; COBWEB/3 is based on concep-
tual clustering and incremental learning; non-linear re-
gression (Acton, 1996) is based on the regularization the-
ory; multi-thresholding (O’Gorman, 1994) is based on 
peaks in the imagery; SNOB (Wallace and Dowe, 1994) 
is based on minimum message length; and some are based 
on the self-organizing behavior of neural networks (Ko-
honen, 1989).  Most of these techniques use a similar ap-

proach that allows for their automation. The algorithm 
first uses an initial number of classes to find clusters of 
data, then evaluates the clustering based on an optimiza-
tion metric, and repeats with another number of classes.  
Finally, the algorithm selects the number of classes with 
the best score.  Since some of these techniques are com-
putationally expensive, several authors have introduced 
assumptions, reductions, and local optimizations.  In our 
research, we use COBWEB/3 because it is fast (due to its 
incremental data learning), it does not determine an initial 
number of clusters, and it represents explicitly a concept 
hierarchy for data learning and understanding.  We also 
developed our own clustering methodology called APE, 
which we compare to COBWEB/3 in this paper. 

3 METHODOLOGY 
The overall methodology of our approach is depicted in 
Figure 1.  First, we extract a histogram from the original 
image.  The histogram is based on regional bisectors of 
the image.  Second, using a multiresolution approach, we 
obtain from the histogram a set of significant peaks, 
which become the basis of our training cases.  We then 
describe these cases with spatial and textural attributes.  
Fourth, we feed the cases into the discovery mechanism.  
After obtaining the clustering result, we perform post-
processing to resolve conflicts and refine clusters.  The 
final clustering tells us of what the number of classes are 
and what the classes are in the image. That discovered 
knowledge enables us to finally label all pixels in the im-
age. 
 

 
Figure 1. The block diagram of our unsupervised segmen-

tation via learning by discovery 
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3.1 HISTOGRAM EXTRACTION 

The objective of the histogram extraction phase is to 
transform the image data into a form from which training 
cases can be more accurately and easily derived.  We use 
dynamic local thresholding (Haverkamp et al. 1995) to 
achieve this objective.  Briefly, the input image is divided 
into smaller, overlapping regions for each a regional his-
togram is computed.  For each region that has a high vari-
ance, a bimodal Gaussian curve approximation is per-
formed to curve-fit the region’s histogram.  From the pa-
rameters of the curve, the valley-to-peak ratio can be 
computed.  For each region that has a high ratio, a maxi-
mum likelihood method is used to compute the optimal 
bisector.  The collection of all bisectors becomes the his-
togram from which peaks will be extracted later.  We use 
dynamic local thresholding to combat inherent speckle 
noise in satellite images and to reduce range effects 
caused by angles of the radar at the near-end and the far-
end of the image.  A detailed treatment of our adaptation 
of dynamic local thresholding can be found in (Soh, 
1998).  

3.2 EXTRACTION OF TRAINING CASES 

After obtaining the histogram, we use a multiresolution 
peak detection technique to extract significant peaks as 
the basis of training cases.  First, we create a map of a 
number of cumulative distribution functions (cdf) (at dif-
ferent resolutions) of the histogram.  At each resolution, 
we use the zero-crossings and local extrema to locate 
peaks—i.e., jumps in the cdf curve.  At the end of the 
localization process, we have a multiresolution contour of 
the peaks, which we evaluate through a contour tracking 
process.  The criteria we use are: (1) peaks found at a 
low-level resolution are more significant than the peaks 
found at a high-level resolution, (2) peaks found in high-
level resolution are more accurate in terms of localization 
than the peaks found in low-level resolution, (3) a peak 
that is surrounded by neighboring peaks is a dominant 
peak, and (4) the significance of a peak is proportional to 
its height.  After tracking, we identify peaks that have 
scores above a threshold as the significant peaks of the 
image.  

Next we derive training cases from the peaks.  Each train-
ing case is the intensity range between a pair of succes-
sive peaks.  For example, suppose the system extracts 
four significant peaks: 35, 47, 55, and 60.  Thus, we have 
the following five training cases: TC1, TC2, …, TC5, 
where TC1’s intensity range is (0,35), TC2’s intensity 
range is (35,47), TC3’s is (47,55), TC4’s is (55,60), and 
TC5’s is (60,255), and 0 is the minimum intensity and 
255 is the maximum intensity of an 8-bit image. 

The cdf-based peak detection has been used to perform 
image segmentation (Sezan, 1990).  By combining it with 
the multiresolution approach, we make the system noise-
resistant and facilitate its automation. A detailed treatment 
of our multiresolution approach can be found in (Soh and 
Tsatsoulis, 1999b).   

3.3  DESCRIPTION OF TRAINING CASES 

After extraction, each training case is known only by its 
range along the intensity axis.  We need to further de-
scribe the cases such that the discovery mechanism can 
learn from the training cases and their associated attrib-
utes to form clusters.   We use two sets of attributes: spa-
tial and textural.  

3.2.1 Spatial Attributes 

We use a spatial matrix to document the spatial relation-
ships a training case has with all other training cases.  To 
compute the matrix, we use a running 3x3 window on the 
image.  The pixels in the window are tagged respectively 
to the range or training case along the intensity axis that 
they belong to.  Then, we compute the number of times a 
pixel in the range of TC1 has another TC1-tagged pixel as 
a spatial neighbor, TC2 as a spatial neighbor, and so on. 
As a result, given N training cases, we build an NxN ma-
trix in which each entry is the frequency of a case being a 
spatial neighbor to another case, including itself, as shwon 
in Table 1.  By observing this matrix, one can visualize 
how the training cases behave in the image.  A very com-
pact training case will have a high frequency of having 
itself as a spatial neighbor (e.g., TCN).  A parasitic train-
ing case will have a high frequency of neighboring an-
other training case while having a weak core itself (e.g., 
TC2).  

Table 1.  A Spatial Matrix.  TC1 neighbors with itself 
86.17% of the time, with TC2 10.35%, and so on 

 TC1 TC2 TC3 … TCN 
TC1 0.8617 0.1035 0.0044 … 0.0000 
TC2 0.7924 0.1199 0.0343 … 0.0000 
TC3 0.5871 0.3319 0.0550 … 0.0001 
… … … … … … 
TCN 0.0000 0.0002 0.0002 … 0.9035 

3.2.2 Textural Attributes 

Textures have often been used to represent and analyze 
regions in remotely sensed images (Holmes et al., 1984, 
Nystuen and Garcia, 1992, Chou et al., 1994).  In our 
research, we use the gray-level co-occurrence matrices 
(Haralick et al. 1973) to define textures such as energy, 
contrast, correlation, homogeneity, entropy, autocorrela-
tion, dissimilarity, and maximum probability.  Since tex-
tures can only be measured meaningfully over a sizeable 
region (e.g, 32x32), we use the overlapping regions out-
lined during the histogram extraction phase.  First, we 
perform a bilinear interpolation to propagate regional bi-
sectors to all regions.  Second, we tag each region to a 
training case if its bisector falls into the intensity range of 
that training case. Third, we compute the aforementioned 
textural attributes for each region, and collect the meas-
urements for each training case.  Finally, we average each 
measurement for every training case to arrive at an Nx8 
textural matrix, as shown in Table 2. 
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Table 2.  A Textural Matrix 

 energy contrast corr. … max. pro. 
LE1 0.023 412.058 -1.609 … 0.067 
LE2 0.028 327.036 -2.186 … 0.081 
LE3 0.033 349.111 -2.548 … 0.096 
… … … … … … 

LEN 0.139 211.771 -10.022 … 0.327 

3.3 LEARNING BY DISCOVERY 

At the end of the description process, each training case is 
complete with an intensity range, a set of N spatial attrib-
utes, and a set of eight textural attributes.  Now, we are 
ready to discover clusters from the set of training cases.  
To learn by discovery, we have experimented with two 
different approaches.  The first approach is based on the 
incremental, conceptual clustering of COBWEB/3, while 
the second on the self-organization of the Aggregated 
Population Equalization or APE concept (Soh 1998).   

3.3.1 Conceptual Clustering 

According to (Gennari et al., 1990), much of human 
learning can be viewed as a succession of events from 
which one induces a hierarchy of concepts that summarize 
and organize his or her experience.  In conceptual cluster-
ing, the label (or class) of each instance (or training case) 
is not known a priori to the program.  In order to cluster 
the cases into different groups or concepts, conceptual 
clustering observes their attributes and incrementally re-
fines its concept hierarchy.  In our research, we use 
COBWEB/3 (Thompson and McKusick, 1993) which 
deals with both nominal and normal features. 

COBWEB/3 examines its cases sequentially and learns 
the concepts incrementally.  Thus, the order of the train-
ing cases plays a role in the final structure of the concept 
hierarchy.  Though COBWEB/3 uses merging and split-
ting operations to re-partition hierarchy upon receiving 
new cases, it is not able to fully eliminate the effects of 
early commitment of a case to a cluster, especially when 
the set of training cases is small.  Our adaptation is to 
arrange the set of training cases in two exactly opposite 
orders, execute COBWEB/3 twice for each image, and 
perform conflict resolution during the post-learning proc-
essing. 

To increase the role of the intensity range of a training 
case, we have also imposed a constraint on two operations 
in COBWEB/3: the placement of a case into an existing 
cluster and the merging procedure.  A placement is con-
sidered detrimental to the concept hierarchy if the inten-
sity range of a case does not fit in a sequence among the 
cases already accepted into the cluster.  Likewise, a merg-
ing of two existing clusters with non-successive intensity 
ranges weakens the concept hierarchy.  As a result, 
COBWEB/3’s learning puts a higher weight on grouping 
cases with similar intensity ranges together than those 
with similar spatial or textural makeup.   

3.3.2 Self-Organization 

In our work, we also developed a clustering algorithm 
called the Aggregated Population Equalization (APE).  In 
a set of populations, each population is related to another  
(including itself) in K dimensions. The dimensions could 
be the average spatial distance, correlation, entropy, etc.  
Each dimension describes how a population behaves in 
the set.  In our imagery domain, we describe populations 
in terms of image pixels.  A centralized population has 
large communities of pixels concentrated at various 
places in the image.  A pixel at the core of this type of 
population is usually shielded and has no contact with 
pixels of other populations.  The pixels of a scattered 
population, on the other hand, reside in the image in 
small, yet noticeable, groups, and these groups are distant 
from each other.  If a population is interspersed, that 
means where the member of the population is present, 
there is usually another population in the mix, and thus it 
has a weak population core.  Finally, a parasitic popula-
tion does not scatter unrestrictedly; instead its pixels usu-
ally linger along the fringes of another population.  These 
pixels do not have a strong population core, and they ac-
tually have more contacts with pixels of other populations 
than with themselves.  The APE concept describes these 
different populations and decides which two populations 
to merge and which population to split. 

The basic methodology of APE is straightforward. Popu-
lations that are not strong form alliances and unite to be-
come a stronger aggregated population.  On the other 
hand, a population can be subjected to population disinte-
gration if its is overly dominant or diverse.  The result is a 
group of smaller populations.  The Aggregated Population 
Equalization (APE) is the process of obtaining an equilib-
rium of strong and weak populations such that every ag-
gregated population is similarly strong.  In this manner, 
the populations self-organize themselves into significant 
clusters.  As a result, APE learns the number of clusters 
and what the clusters are through this form of discovery. 

The APE algorithm has some analogues in the real world.  
For population aggregation, we see that business compa-
nies, striving to survive or eyeing a greater share of the 
market, collaborate through either joint ventures or merg-
ers.  Countries form economic unions and military alli-
ances.  Zebras and giraffes live together to form better 
defenses against predators.  Insects, such as bees and ants, 
work in groups to build their colonies.  Piranhas hunt to-
gether so that they can attack preys with size much larger 
than an individual piranha.  On the other hand, we also 
notice that at times a human group becomes too dominant 
and diverse in its operations, opinions, or ideologies that a 
division, or a population disintegration, results.  

When incorporating APE into our application, a training 
case is a population.  We want to merge the weak cases to 
contend with the strong cases to achieve a clustering in 
which each cluster of training cases is more or less 
equally strong.  We also impose a constraint, similar to 
that for COBWEB/3, on the process: only training cases 
(or populations) with neighboring intensity ranges are 
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allowed to aggregate.  In addition, we use only K = 1 di-
mension, using only the spatial attributes.  The strength of 
each training case is thus the spatial relationship between 
the case and itself.  Note also that we implement the 
methodology in a sequential fashion.  Therefore, to avoid 
order-dependent aggregation, we examine the training 
cases in two exactly opposite orders by running our im-
plementation of APE twice.  

3.4 POST-LEARNING PROCESSING 

After the learning by discovery phase, we perform post-
processing to resolve conflicts and to refine clusters.  

3.4.1 Conceptual Clustering 

After further experiments and evaluations, we have de-
cided to exclude the textural attributes from the learning 
phase since it causes COBWEB/3 to over-react to the fine 
details among training cases and eventually to fail to form 
meaningful clusters.  COBWEB/3 is often not able to 
establish multi-instance clusters when textural attributes 
are involved—hinting that textural attributes might be too 
discriminative in the clustering process.   

COBWEB/3 does not produce the same concept hierarchy 
given the same set but differently ordered training cases.  
Thus, we need to perform a conflict resolution.  We first 
flatten the two resultant concept hierarchies generated by 
running COBWEB/3 twice.  Then we locate and resolve 
any discrepancies between the two flattened hierarchies 
using the textural attributes.  For example, if hierarchy1 is 
TC1-TC2 and TC3-TC4-TC5, and hierarchy2 is TC1-
TC2-TC3 and TC4-TC5, then an inter-cluster difference 
based on the textural attributes is computed for each pair 
of clusters of each hierarchy.  The pair of clusters with the 
larger difference wins and retains its status.   

3.4.2 APE 

Similarly, after running APE twice, we obtain two cluster-
ings and we have to score each clustering to select the 
better one.  Given a clustering, we take the difference in 
strength between each aggregated population and the 
strongest aggregated population.  We then sum the differ-
ences, and select the clustering with the smaller sum as 
the better clustering.  After the selection, we perform 
three refinement steps: population migration, population 
solidification, and population disintegration.   

Population migration is used to move a training case from 
one aggregated population to another.  A case can only 
move to another population when it is a neighbor to that 
population along the intensity axis, and only if the migra-
tion improves the overall equilibrium of the population 
set. 

Population solidification is used to group a strong yet 
under-represented (in terms of the number of pixels in the 
image) aggregated population with its neighboring popu-
lation.   

Population disintegration is used to split an aggregated 
population into two if the diversity of the aggregated 
population is high.  The diversity measure is similar to the 
spatial attribute: the probability of an aggregated popula-
tion, i, having j as a spatial neighbor k times in a 3x3 win-
dow. An aggregated population is diverse if it has high 
probabilities of frequent contacts (high k values) with 
other populations.  

3.5 IMAGE SEGMENTATION 

After the post-learning processing stage, we have a con-
sistent clustering.  Suppose that, after histogram extrac-
tion, we obtain a set of 7 peaks = {25, 28, 33, 37, 45, 58, 
67}.  As a result, we have 8 training cases, TC1 to TC8, 
with TC1’s intensity range = (0-25), TC2’s = (25-28), …, 
and TC8’s = (67-255). Then we compute for each training 
case its spatial and textural attributes.  Suppose that, after 
the learning and refinement phases, we obtain the follow-
ing clustering: TC1-TC2, TC3-TC4-TC5, and TC6-TC7.  
Hence, the number of clusters is 3.  Our system then uses 
this acquired knowledge to label all image pixels, general-
izing the knowledge from the histogram level to the pixel 
level.  First, the system identifies a set of key thresholds.  
By combining the intensity ranges (according to the clus-
ters), we have (0-28), (33-45), and (58-255).  A key 
threshold is simply the upperbound of an intensity range: 
28, 45, and 255.  Since there are no pixels with a value 
greater than 255, we are left with 2 key thresholds: 28 and 
45.  Then the system labels the image pixels accordingly: 
pixels with intensity values less than or equal to 28 are 
labeled class1, those with values greater than 28 but less 
than or equal to 45 are labeled class2, and those with val-
ues greater than 45 are labeled class3.  

Note that without the discovery mechanism, we would 
have identified 7 thresholds and subsequently 8 segmenta-
tion classes.  By including the discovery approaches, 
however, the system learns how to cluster peaks based on 
their intensity ranges and spatial and textural attributes.  
As a result, we are able to segment the image into contex-
tually meaningful classes.   

4 DISCUSSION OF RESULTS 
The domain and application of our studies are Synthetic 
Aperture Radar (SAR) sea ice image segmentation.  The 
images were obtained from satellites ERS-1, ERS-2, and 
RADARSAT and each consists of water and different ice 
types.  The evaluation was performed on nine images with 
distinctive characteristics.  Table 3 shows the results of 
the experiments.  We observe the following: 

● The intensity and spatial attributes are sufficient for 
identifying different segmentation classes in SAR sea ice 
imagery.   

● The APE-based discovery generates more coherent and 
meaningful sea ice classes, corresponding to human visual 
inspection.  The COBWEB/3-based discovery, however, 
generates classes at a higher granularity. 
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Table 3. Discovery Results: X/Y/Z means the initial num-
ber of training cases/the final number of classes/and the 

visual evaluation score (0-5.0) 

Image COBWEB/3 APE 
12146 14/6/3.0 14/4/5.0 
14439 11/3/3.0 11/4/4.0 
23816 8/2/4.0 8/3/4.5 
25028 8/3/2.5 8/3/4.5 
32007 19/7/2.0 19/5/4.0 
60093 13/5/2.5 13/4/4.5 
83282 18/8/2.0 18/6/3.5 
85696 12/5/3.0 12/5/4.0 
96895 9/3/4.0 9/4/4.0 

Average 12.44/5.44/2.89 12.44/4.44/4.22 
 

The table shows that COBWEB/3-based approach in gen-
eral produces a higher number of classes than the APE-
based approach.  It also yields a significantly lower aver-
age score of visual evaluation.  The clustering method of 
COBWEB/3 identifies conceptually different groups of 
training cases incrementally.  It attempts to trade-off be-
tween generality and specificity for classification and 
prediction purposes.  On the other hand, our implementa-
tion of the APE concept is an aggressive, spatially-based 
discovery technique.  The decision to merge classes or 
split a class is not based on achieving balanced generality 
and specificity within the populations; instead, it is based 
on achieving a set of aggregated populations with similar 
strengths.  The nature of this aggregation allows the 
classes to merge more freely, and thus form fewer clusters 
of training cases.   

The visual evaluation is based on subjective inspection of 
the segmented images from the viewpoint of sea ice im-
age analysis.  Images with classes corresponding to sea 
ice types and regions are scored higher than those with-
out.  Over-segmented images are also scored higher than 
under-segmented images since over-segmented images 
can always be further refined while merged classes can no 
longer be split without substantial effort. 

In addition to the above experiments, we have also incor-
porated AutoClass (Cheeseman et al., 1990) and SNOB 
(Wallace and Dowe, 1994) as two alternative learning-by-
discovery methodologies into the image segmentation 
system.  We observed the following: 

● The AutoClass-based discovery is less sporadic than 
COWBEB/3.  It is able to cluster training cases without 
requiring additional emphasis on the intensity value.   

● The AutoClass-based discovery is more aggressive than 
APE in merging.  The average number of classes discov-
ered by AutoClass was only 2.56, compared to 4.22 by 
APE.  This is not good for our sea ice applications. 

● The textural attributes are more influential in AutoClass 
than in APE, COBWEB/3 or SNOB, hinting that Auto-
Class might be more efficient in dealing with higher-
resolution attributes. 

● The SNOB-based discovery is less sporadic than 
COBWEB/3 but more sporadic than AutoClass. 

● The SNOB-based discovery is also more aggressive 
than APE in merging.  The average number of classes 
discovered by SNOB was only 2.31.  This is not good for 
our sea ice applications. 

From our experiments, we observe that the COBWEB/3-
based discovery yields more sporadic clusters than the 
AutoClass-based and SNOB-based approaches.  The 
COBWEB/3-based discovery also differentiates classes at 
a higher granularity, as it is the least aggressive among 
the four discovery techniques.  Both the AutoClass-based 
and SNOB-based techniques suffer from initialization-
dependency: the initial guess on the number of classes 
greatly influences the outcome of the discovery process.  
That is, given exactly the same set of data, in the same 
order, AutoClass discovers different clusters when it is 
run at different times; so does SNOB.   

5 ASIS 
We have built a fully automated image segmentation 
software tool called ASIS that implements the APE con-
cept.  The objective of this tool is to provide automated 
segmentation for SAR images for either image pre-
processing or classification. ASIS has been tested on ERS 
and RADARSAT sea ice images, ERS-1 SAR images of 
mountains, Landsat TM images of urban and rural areas, 
NOAA AVHRR vegetation index images, and SAR im-
ages for roll vortices detection.  Note that ASIS utilizes 
only the intensity and the spatial attributes. 

Here we show an example of ASIS applied to a SAR sea 
ice image.  Figure 2 shows an original SAR sea ice image 
that consists of packed ice (brightest regions) with very 
dark, cutting linear structures (ice leads) and grayish re-
gions (new ice or open water).  In addition, there are 
brighter, silky structures (possibly deformed first year ice) 
straining within the grayish regions.  So there are essen-
tially four classes in the image.  ASIS first extracted a set 
of 14 peaks = {32, 39, 42, 44, 47, 52, 57, 61, 69, 79, 83, 
86, 89, 91}.  Figure 3 shows what the segmented image 
would be if the system were to use the 14 thresholds to 
obtain 15 segmentation classes, without clustering. 

We first identify the 15 training cases, with TC1’s inten-
sity range as (0-32), that of TC2 as (32-39), and so on.  
Second, we describe the cases with their spatial attributes, 
as shown in Figure 4.  Then, the APE module analyzed 
the training cases and discovered 4 clusters: TC1-TC2-
TC3-TC4 (0-44), TC5-TC6-TC7-TC8 (47-61), TC9-
TC10-TC11-TC12-TC13-TC14 (69-89), and TC15 (91-
255).  The key thresholds were 44, 61, and 89.  ASIS then 
used these thresholds to segment the image into four 
classes, as shown in Figure 5.  Pixels with intensity values 
lower than 44 are grouped into class1 (black), those be-
tween 44 and 61 are grouped into class2 (dark), those 
between 61 and 89 are grouped into class3 (gray), and the 
rest are grouped into class4 (white). 



The Seventeenth Int. Conf. On Machine Learning (ICML-2000), Palo Alto, CA., 2000 

Figure 2.  Original ERS-1 SAR sea ice image (portion) 
(March 27, 1992, 73.46N, 156.19E).  © ESA 

Figure 3.  The image segmented with 14 thresholds, 
without going through learning by discovery. 

 
TC1 = ((0,32) 0.45 0.13 0.06 0.04 0.04 … … 0.03) 
TC2 = ((32,39) 0.19 0.13 0.10 0.08 0.08 … … 0.06) 

… 
TC14 = ((89,91) … … 0.09 0.08 0.07 0.05 0.14 0.48) 

TC15 = ((91,255) … … 0.01 0.01 0.01 0.01 0.03 0.93) 
 

Figure 4.  The 15 training cases. Each training case has an 
intensity range and 15 spatial attributes. 

6 CONCLUSIONS 

We have outlined an unsupervised image segmentation 
approach based on machine learning by discovery.  The 
approach uses image processing techniques to extract and 
describe a set of training cases, and then applies discovery 

mechanisms to group the cases into clusters.  Based on 
the clusters, the approach finally labels all image pixels 
into meaningful segmentation classes.  The emphasis in 
discovery allows the system to determine the number of 
classes and what the classes are in the image without any 
human intervention, which is important in dealing with 
highly dynamic images.  We have described the important 
modules of our approach: histogram extraction, extraction 
and description of training cases, learning by discovery, 
post-learning processing, and image segmentation.  We 
have defined the intensity range, and the spatial and tex-
tural attributes for our training cases.  We have conducted 
analyses and comparison studies on two different discov-
ery methodologies: COBWEB/3 and APE.  We have ob-
served that the textural attributes are discriminative while 
the spatial ones tend to help in better cluster formation.   

Figure 5.  The final segmented image with four discov-
ered classes: black, dark, gray, and white 

We have adapted COBWEB/3 and APE for our remote 
sensing image segmentation.  We impose a constraint 
where the intensity range is given a higher weight in the 
discovery process than the other attributes.  Thus, in a 
way, the learning by discovery in our research can be 
viewed as guided by our knowledge of the imagery do-
main and application.  In addition, to lessen order-
dependency, we feed the training cases to the discovery 
mechanism twice, in exactly opposite orders.  Then, the 
system resolves the discrepancies between the two clus-
tering results and refines the final clustering. 

We have also experimented with SNOB and AutoClass.  
Both discovery techniques are aggressive in merging 
training cases, rendering the segmentation useless in our 
application.  Moreover, both techniques suffer from ini-
tialization-dependency that would have to be addressed if 
we incorporated them into our system.   

Finally, we have built a software tool called ASIS based 
on the APE discovery concept and applied it to various 
remotely sensed images, especially SAR sea ice images.     
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