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Abstract 

In this paper, we describe our research in unsupervised im-
age segmentation using machine learning techniques.  First, 
we apply image processing techniques to extract from an 
image a set of training cases, which are histogram peaks de-
scribed by their intensity ranges, and to compute spatial and 
textural attributes as visual cues.  Second, we use learning 
by discovery methodologies to cluster these cases: COB-
WEB/3, SNOB, AutoClass, and APE.  COBWEB/3 is 
based on incremental concept formation; AutoClass on 
Bayesian probabilities; and SNOB on minimum message 
length.  APE is based on a new strategy called Aggregated 
Population Equalization that attempts to maintain similar 
strengths for all populations in its environment.  Third, we 
obtain from the clustering results of the methodologies the 
number of visually significant classes in the image (and 
what these classes are) and finally segment the image.  We 
conduct visual evaluation of the results to determine the 
best learning methodology and the set of discriminating 
visual cues for our remote sensing applications.   Based on 
the findings, we have built an unsupervised image segmen-
tation software tool called ASIS and have applied it to a 
range of remotely sensed images. 

Introduction 
Remotely sensed images of natural scenes are inherently 
noisy, have a highly dynamic makeup, and lack homoge-
neous structures.  In addition, remotely sensed data is typi-
cally voluminous.  Hence, computer-aided analyses such as 
unsupervised segmentation are very important in improv-
ing the efficiency and consistency in image understanding 
in this domain.  Image segmentation is a process of pixel 
classification where the image is segmented into regions by 
assigning individual pixels into classes.  An unsupervised 
technique implies automated operation independent of hu-
man intervention during the execution of the algorithm. 

Our approach is to first identify training cases in the im-
age.  These cases are significant peaks extracted from an 
image histogram of regional bisectors.  Then, we describe 
each training case with a set of visual cues that consists of 
an intensity range, a set of spatial attributes, and a set of 
textural attributes.  Third, we feed the training cases, to-

gether with the visual cues, into a learning by discovery 
module.  The output of the learning process is a clustering 
that groups the cases into separate clusters.  The clustering 
gives us two important pieces of information on how to 
segment the image: (1) the number of classes, and (2) what 
the classes are.  Finally, equipped with the information, we 
label all pixels in the image.  Our methodology is thus able 
to segment an image automatically by first learning the 
significant clusters in the image and then applying the 
learned clustering strategy to all pixels in the image. 

In our analysis, we experimented with four learning 
methodologies: COBWEB/3 (Gennari et al. 1990, Thomp-
son and McKusick 1993), AutoClass (Cheeseman et al. 
1990), SNOB (Wallace and Dowe 1994), and the Aggre-
gated Population Equalization (APE) strategy (Soh 1998).  
COBWEB/3 is based on conceptual clustering and incre-
mental learning; AutoClass is based on Bayesian probabili-
ties; SNOB is based on minimum message length; and 
APE is based on population strengths.  We also considered 
different sets of visual cues: intensity, spatial, and textural. 
The domain and application of our analysis are segmenta-
tion of remotely sensed images, particularly Synthetic Ap-
erture Radar (SAR) sea ice images.  We have found out 
that the APE strategy is the most suitable for our SAR sea 
ice application and the intensity and spatial attributes are 
the sufficient visual cues and have built a software tool 
called ASIS based on those findings. 

Background 
In general, the analysis of remotely sensed images of natu-
ral scenes differs from that of urban, commercial or agri-
cultural areas, and from medical and industrial imagery 
taken in controlled environments.  Natural scenes (forests, 
mountains, the seas, clouds, etc.) are not structured and 
cannot be represented easily by regular rules or grammars.  
Objects in these images also do not have textures that are 
observably distinctive.  In addition, the appearance of natu-
ral objects can vary greatly based on the geographic area, 
the season, and the past and current weather conditions.  
These factors complicate the unsupervised image segmen-
tation task in remote sensing. 

There have been several discovery learning approaches 
applied to image segmentation.  For example, ISODATA 



 

 

(Holt et al. 1989) and K-means (Huntsberger et al. 1985, 
Bezdek and Trivedi 1986) are based on numerical taxon-
omy; histogram smoothing (Smith 1996) is based on 
speckle noise model of remotely-sensed imagery; non-
linear regression (Acton 1996) is based on the regulariza-
tion theory; and multi-thresholding (O’Gorman 1994) is 
based on peaks in the imagery.  Most of these techniques 
use a similar approach that allows for their automation. 
The algorithm first uses an initial number of classes to find 
clusters of data, then evaluates the clustering based on an 
optimization metric, and repeats with another number of 
classes.  Finally, the algorithm selects the number of 
classes with the best score.  Since some of these techniques 
are computationally expensive, several authors have intro-
duced assumptions, reductions, and local optimizations.   

Methodology 
The overall methodology of our approach is depicted in 
Figure 1.  First, we extract a histogram from the original 
image.  The histogram is based on regional bisectors of the 
image.  Second, using a multiresolution approach, we ob-
tain from the histogram a set of significant peaks, which 
become the basis of our training cases.  We then describe 
these cases with visual cues such as spatial and textural 
attributes.  Fourth, we feed the cases into a learning by 
discovery module.  Given the clustering result, we perform 
post-processing to resolve conflicts and refine clusters.  
The final clustering tells us  what the number of classes are 
and what the classes are in the image.  We use that learned 

knowledge to finally label all pixels in the image. 
 

Figure 1. The block diagram of our unsupervised segmentation 
via learning by discovery. 

Histogram Extraction 
The objective of the histogram extraction phase is to trans-
form the image data into a form from which training cases 

can be more accurately and easily derived.  We use dy-
namic local thresholding to achieve this objective.  Briefly, 
the input image is divided into smaller, overlapping re-
gions for each a regional histogram is computed.  For each 
region that has a high variance, a bimodal Gaussian curve 
approximation is performed to curve-fit the region’s histo-
gram.  From the parameters of the curve, the valley-to-
peak ratio can be computed.  For each region that has a 
high ratio, a maximum likelihood method is used to com-
pute the optimal bisector.  The collection of all bisectors 
becomes the histogram from which peaks will be extracted 
later.  We use dynamic local thresholding to combat inher-
ent speckle noise in satellite images and to reduce range 
effects caused by angles of the radar at the near-end and 
the far-end of the image. Soh (1998) gives a detailed 
treatment of our implementation of dynamic local thresh-
olding. 

Extraction of Training Cases 
After obtaining the histogram, we use a multiresolution 
peak detection technique to extract significant peaks as the 
basis of training cases.  First, we create a map of a number 
of cumulative distribution functions (cdf) (at different reso-
lutions) of the histogram.  At each resolution, we use the 
zero-crossings and local extrema to locate peaks—i.e., 
jumps in the cdf curve.  At the end of the localization proc-
ess, we have a multiresolution contour of the peaks, which 
we evaluate through a contour tracking process.  The crite-
ria we use are: (1) peaks found at a low-level resolution are 
more significant than the peaks found at a high-level reso-
lution, (2) peaks found in high-level resolution are more 
accurate in terms of localization than the peaks found in 
low-level resolution, (3) a peak that is surrounded by 
neighboring peaks is a dominant peak, and (4) the signifi-
cance of a peak is proportional to its height.  After track-
ing, we identify peaks that have scores above a threshold 
as the significant peaks of the image.  

Next we derive training cases from the peaks.  Each 
training case is the intensity range between a pair of suc-
cessive peaks.  For example, suppose the system extracts 
four significant peaks: 35, 47, 55, and 60.  Thus, we have 
the following five training cases: TC1, TC2, …, TC5, 
where TC1’s intensity range is (0,35), TC2’s intensity 
range is (35,47), TC3’s is (47,55), TC4’s is (55,60), and 
TC5’s is (60,255), and 0 is the minimum intensity and 255 
is the maximum intensity of an 8-bit image. 

The cdf-based peak detection has been used to perform 
image segmentation (Sezan 1990).  By combining it with 
the multiresolution approach, we make the system noise-
resistant and facilitate its automation.  A detailed treatment 
of our multiresolution approach can be found in Soh and 
Tsatsoulis (1999b).   

Visual Cues of Training Cases 
After extraction, each training case is known only by its 
range along the intensity axis.  We need to further describe 



 

 

the cases such that the discovery mechanism can learn 
from the training cases and their associated visual cues (or 
attributes) to form clusters.  We use two sets of visual cues: 
spatial and textural. 
Spatial Attributes.  We use a spatial matrix to document 
the spatial relationships a training case has with all other 
training cases.  To compute the matrix, we use a running 
3x3 window on the image.  The pixels in the window are 
tagged respectively to the range or training case along the 
intensity axis that they belong to.  Then, we compute the 
number of times a pixel in the range of TC1 has another 
TC1-tagged pixel as a spatial neighbor, TC2 as a spatial 
neighbor, and so on. As a result, given N training cases, we 
build an NxN matrix in which each entry is the frequency 
of a case being a spatial neighbor to another case, includ-
ing itself, as shown in Table 1.  By observing this matrix, 
one can visualize how the training cases behave in the im-
age.  A very compact training case will have a high fre-
quency of having itself as a spatial neighbor (e.g., TCN).  
A parasitic training case will have a high frequency of 
neighboring another training case while having a weak 
core itself (e.g., TC2).  
 

 TC1 TC2 TC3 … TCN 
TC1 0.8617 0.1035 0.0044 … 0.0000 
TC2 0.7924 0.1199 0.0343 … 0.0000 
TC3 0.5871 0.3319 0.0550 … 0.0001 
… … … … … … 
TCN 0.0000 0.0002 0.0002 … 0.9035 

 
Table 1.  A spatial matrix in which TC1 neighbors with itself 

86.17% of the time, with TC2 10.35%, and so on. 
 

Texture Attributes.  Textures have often been used to 
represent and analyze regions in remotely sensed images.  
In our research, we use the gray-level co-occurrence matri-
ces (Haralick et al. 1973) to define textures such as energy, 
contrast, correlation, homogeneity, entropy, autocorrela-
tion, dissimilarity, and maximum probability.  Since tex-
tures can only be measured meaningfully over a sizeable 
region (e.g, 32 x 32), we use the overlapping regions out-
lined during the histogram extraction phase.  First, we per-
form a bilinear interpolation to propagate regional bisec-
tors to all regions.  Second, we tag each region to a training 
case if its bisector falls into the intensity range of that 
training case. Third, we compute the aforementioned tex-
tural attributes for each region, and collect the measure-
ments for each training case.  Finally, we average each 
measurement for every training case to arrive at an N x 8 
textural matrix, as shown in Table 2. 

Learning by Discovery 
At the end of the description process, each training case is 
complete with an intensity range, a set of N spatial attrib-
utes, and a set of eight textural attributes.  Now, we are 
ready to discover clusters from the set of training cases.  

To learn by discovery, we have adapted four different ap-
proaches: COBWEB/3, AutoClass, SNOB, and APE.  
 

 energy contrast corr. … max. pro. 
LE1 0.023 412.058 -1.609 … 0.067 
LE2 0.028 327.036 -2.186 … 0.081 
LE3 0.033 349.111 -2.548 … 0.096 
… … … … … … 
LEN 0.139 211.771 -10.022 … 0.327 

 
Table 2.  A textural matrix. 

 

COBWEB/3.  COBWEB/3 examines its cases sequentially 
and learns the concepts incrementally.  Thus, the order of 
the training cases plays a role in the final structure of the 
concept hierarchy—it is order-dependent.  Though COB-
WEB/3 uses merging and splitting operations to re-
partition hierarchy upon receiving new cases, it is not able 
to fully eliminate the effects of early commitment of a case 
to a cluster, especially when the set of training cases is 
small.  Our adaptation is to arrange the set of training cases 
in two exactly opposite orders, execute COBWEB/3 twice 
for each image, and resolve conflicts in the hierarchies 
later. 

To increase the role of a case’s intensity range, we have 
imposed a constraint on two operations in COBWEB/3: the 
placement of a case into an existing cluster and the merg-
ing procedure.  A placement is considered detrimental to 
the concept hierarchy if the intensity range of a case does 
not fit in a sequence among the cases already accepted into 
the cluster.  Likewise, a merging of two existing clusters 
with non-successive intensity ranges weakens the concept 
hierarchy.  As a result, the biased learning technique puts a 
higher weight on grouping cases with similar intensity 
ranges together than those with similar spatial or textural 
makeup. 

AutoClass.  AutoClass suffers from initialization-
dependency.  The initial guess on the number of classes 
greatly influences the outcome of the discovery process.  
That is, given exactly the same set of data, in the same 
order, AutoClass discovers different clusters when its is 
run at different times.  Hence, we run AutoClass N times 
and pick the best result.  AutoClass does not suffer from 
order-dependency.   

SNOB.  Similarly, we also run SNOB N times and pick the 
best result since the design is initialization-dependent.  
SNOB does not suffer from order-dependency. 

APE.  The basic methodology of APE is straightforward. 
Populations that are not strong form alliances and unite to 
become a stronger aggregated population.  On the other 
hand, a population can be subjected to population disinte-
gration into smaller populations if its is overly diverse.  
The Aggregated Population Equalization (APE) is the 
process of obtaining an equilibrium of strong and weak 
populations such that every aggregated population is simi-
larly strong.   These aggregated populations are the clus-



 

 

ters.  As a result, APE learns the number of clusters and 
what the clusters are through this form of discovery.  See 
(Soh and Tsatsoulis 1999b) for a detailed treatment of the 
APE strategy. 

When adapting APE to our application, each training 
case is a population.  We want to merge the weak cases to 
achieve a clustering in which each cluster of training cases 
is more or less equally strong.  We also only allow training 
cases (or populations) with neighboring intensity ranges to 
aggregate.  In addition, we use only the spatial attributes as 
the measure of population strength.  Note that since we 
implement the methodology in a sequential fashion, to 
avoid order-dependency, we examine the training cases in 
two exactly opposite orders by running our implementation 
of APE twice. 

Post-Learning Processing 
After the learning by discovery phase, we perform post-
processing to resolve conflicts and to refine clusters.  Note 
that the post-learning processing on clusters generated by 
either SNOB or AutoClass is visual selection of the best 
clustering.  

COBWEB/3.  After further experiments and evaluations, 
we have decided to exclude the textural attributes from the 
learning phase since it causes COBWEB/3 to over-react to 
the fine details among training cases and eventually to fail 
to form meaningful clusters.  COBWEB/3 is often not able 
to establish multi-instance clusters when textural attributes 
are involved—hinting that textural attributes might be too 
discriminative in the clustering process.   

To resolve conflicts in the two resultant concept hierar-
chies, we flatten them, and then resolve any discrepancies 
between the two flattened hierarchies.  For example, if 
hierarchy1 is TC1-TC2 and TC3-TC4-TC5, and hierar-
chy2 is TC1-TC2-TC3 and TC4-TC5, then an inter-cluster 
difference based on the textural attributes is computed for 
each pair of clusters of each hierarchy.  The pair of clusters 
with the larger difference wins and retains its status.   

APE.  Similarly, after running APE twice, we obtain two 
clusterings and we have to score each clustering to select 
the better one.  Given a clustering, we take the difference 
in strength between each aggregated population and the 
strongest aggregated population.  We then sum the differ-
ences, and select the clustering with the smaller sum as the 
better clustering.  After the selection, we perform several 
refinement steps to move a training case from one popula-
tion to a neighboring one and to split an overly-diverse 
population.  The diversity measure is similar to the spatial 
attribute: the probability of an aggregated population, i, 
having j as a spatial neighbor k times in a 3x3 window. An 
aggregated population is diverse if it has high probabilities 
of frequent contacts (high k values) with other populations.  

Image Segmentation 
After the post-learning processing stage, we have a consis-
tent clustering.  Suppose that, after histogram extraction, 

we obtain a set of seven peaks = {25, 28, 33, 37, 45, 58, 
67}.  As a result, we have eight training cases, TC1 to 
TC8, with TC1’s intensity range = (0-25), TC2’s = (25-
28), …, and TC8’s = (67-255). Then we compute for each 
training case its spatial and textural attributes.  Suppose 
that, after the learning and refinement phases, we obtain 
the following clustering: TC1-TC2, TC3-TC4-TC5, and 
TC6-TC7.  Hence, the number of clusters is three.  Our 
system then uses this acquired knowledge to label all im-
age pixels, generalizing the knowledge from the histogram 
level to the pixel level.  First, the system identifies a set of 
key thresholds.  By combining the intensity ranges 
(according to the clusters), we have (0-28), (33-45), and 
(58-255).  A key threshold is simply the upperbound of an 
intensity range: 28, 45, and 255.  Since there are no pixels 
with a value greater than 255, we are left with two key 
thresholds: 28 and 45.  Then the system labels the image 
pixels accordingly: pixels with intensity values less than or 
equal to 28 are labeled class1, those with values greater 
than 28 but less than or equal to 45 are labeled class2, and 
those with values greater than 45 are labeled class3.  

Discussion of Results 
The domain and application of our studies are Synthetic 
Aperture Radar (SAR) sea ice image segmentation.  The 
images were obtained from satellites ERS-1, ERS-2, and 
RADARSAT and each consists of water and different ice 
types.  The evaluation was performed on nine images with 
distinctive characteristics.  Table 3 shows the results of the 
experiments using APE and COBWEB/3, the two fully 
automated designs.  We observe the following: 
` The intensity and spatial attributes are sufficient for 

identifying different segmentation classes in SAR sea ice 
imagery.   

` The APE-based discovery generates more coherent and 
meaningful sea ice classes, corresponding to human vis-
ual inspection.  The COBWEB/3-based discovery, on the 
other hand, generates classes at a higher granularity. 
The table shows that COBWEB/3-based approach in 

general produces a higher number of classes than the APE-
based approach.  It also yields a significantly lower aver-
age score of visual evaluation.  The clustering method of 
COBWEB/3 identifies conceptually different groups of 
training cases incrementally.  It attempts to trade-off be-
tween generality and specificity for classification and pre-
diction purposes.  On the other hand, our implementation 
of the APE concept is an aggressive, spatially-based dis-
covery technique.  The decision to merge classes or split a 
class is not based on achieving balanced generality and 
specificity within the populations; instead, it is based on 
achieving a set of aggregated populations with similar 
strengths.  
 

Image COBWEB/3 APE 
12146 14/6/3.0 14/4/5.0 
14439 11/3/3.0 11/4/4.0 



 

 

23816 8/2/4.0 8/3/4.5 
25028 8/3/2.5 8/3/4.5 
32007 19/7/2.0 19/5/4.0 
60093 13/5/2.5 13/4/4.5 
83282 18/8/2.0 18/6/3.5 
85696 12/5/3.0 12/5/4.0 
96895 9/3/4.0 9/4/4.0 

Average 12.44/5.44/2.89 12.44/4.44/4.22 
 

Table 3. Discovery Results: X/Y/Z means the initial number of 
training cases/the final number of classes/and the visual evalua-

tion score (0-5.0) 
 
 The visual evaluation is based on subjective inspection 
of the segmented images from the viewpoint of sea ice 
image analysis.  Images with classes corresponding to sea 
ice types and regions are scored higher than those without.  
Over-segmented images are also scored higher than under-
segmented images since over-segmented images can al-
ways be further refined while merged classes can no longer 
be split without substantial effort. 

We also experimented with AutoClass and SNOB and 
observed the following: 
` The AutoClass-based discovery is less sporadic than 

COWBEB/3.  It is able to cluster training cases without 
requiring additional emphasis on the intensity value.   

` The AutoClass-based discovery is more aggressive than 
APE in merging.  The average number of classes discov-
ered by AutoClass was only 2.56, compared to 4.22 by 
APE.  This is not good for our sea ice applications. 

` The textural attributes are more influential in AutoClass 
than in APE, COBWEB/3 or SNOB, hinting that Auto-
Class might be more efficient in dealing with higher-
resolution attributes. 

` The SNOB-based discovery is less sporadic than COB-
WEB/3 but more sporadic than AutoClass. 

` The SNOB-based discovery is also more aggressive than 
APE in merging.  The average number of classes discov-
ered by SNOB was only 2.31.   
In addition, the AutoClass-based approach is highly sta-

ble, as it is able to cluster cases with neighboring intensity 
ranges together without additional constraints.  Without the 
intensity emphasis, COBWEB/3 is the most sporadic learn-
ing mechanism.  The COBWEB/3-based discovery also 
differentiates classes at a higher granularity, as it is the 
least aggressive among the four discovery techniques.  
Both the AutoClass- and SNOB-based techniques suffer 
from initialization-dependency and thus are not suitable for 
unsupervised image segmentation unless we can find a way 
of evaluating and selecting the best clustering.  Both the 
COBWEB/3- and APE-based designs suffer from order 
dependency and thus require post-learning processing to 
resolve conflicts and refine clusters.  In conclusion, the 
APE-based approach is the most suitable learning mecha-

nism as it is able to generate visually good segmentation 
for SAR sea ice applications.  Also, the intensity and spa-
tial attributes are sufficient visual cues.  The textural at-
tributes, however, are highly discriminating visual cues. 

ASIS 
We have built a fully automated image segmentation soft-
ware tool called ASIS that implements the APE concept.  
The objective of this tool is to provide automated segmen-
tation for SAR images for either image pre-processing or 
classification.  ASIS has been tested on ERS and RA-
DARSAT sea ice images, ERS-1 SAR images of moun-
tains, NOAA AVHRR vegetation index images, and SAR 
images for roll vortices detection.  Note that ASIS utilizes 
only the intensity and the spatial attributes. 

Here we show an example of ASIS applied to a SAR sea 
ice image.  Figure 2 shows an original SAR sea ice image 
that consists of packed ice (brightest regions) with very 
dark, cutting linear structures (ice leads) and grayish re-
gions (new ice or open water).  In addition, there are 
brighter, silky structures (possibly deformed first year ice) 
straining within the grayish regions.  So there are essen-
tially four classes in the image.  ASIS extracted a set of 14 
peaks = {32, 39, 42, 44, 47, 52, 57, 61, 69, 79, 83, 86, 89, 
91}.  Then, ASIS identified three key thresholds as 44, 61, 
and 89 and segmented the image into four correct classes, 
as shown in Figure 3. 

Conclusions 
We have described an unsupervised image segmentation 
approach based on machine learning by discovery and an 
analysis of that approach using different learning method-
ologies and discriminating visual cues.  The approach uses 
image processing techniques to extract and describe a set 
of training cases with visual cues, applies discovery 
mechanisms to group the cases into clusters, and ultimately 
segments the image based on the clustering.  The utiliza-
tion of learning by discovery techniques allows the ap-
proach to determine the number of classes and what the 
classes are in the image without any human intervention, 
which is important in dealing with highly dynamic images.  
We have also defined the intensity range, and the spatial 
and textural attributes for our training cases.  From our 
analysis, we concluded that the textural attributes are more 
influential and discriminative visual cues than the spatial 
ones, while the spatial ones tend to help in better cluster 
formation, and, without intensity values, most of the learn-
ing mechanisms (COBWEB/3, APE, and SNOB) failed to 
yield coherent clusters.  We also concluded that APE is the 
most suitable learning methodology, and have built a soft-
ware tool called ASIS for remote sensing applications, 
particularly in SAR sea ice imagery. 



 

 

 
Figure 2.  Original ERS-1 SAR sea ice image (portion) (March 

27, 1992, 73.46N, 156.19E).  © ESA 
 

 
Figure 3.  The final segmented image with four discovered 

classes: black, dark, gray, and white. 
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