
AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

Agent-Based Argumentative Negotiations with Case-Based Reasoning

Leen-Kiat Soh and Costas Tsatsoulis
Information and Telecommunication Technology Center (ITTC)

Department of Electrical Engineering and Computer Science
University of Kansas
2335 Irving Hill Road
Lawrence, KS 66045

{lksoh, tsatsoul}@ittc.ukans.edu

ABSTRACT
In domains of limited resources, problem solving and execution of
solutions may require the satisfaction of resource use constraints
among a group of collaborating agents. One way for the agents to
agree to the distribution of limited resources is through
negotiation. In this paper we present how an agent that decides it
must negotiate for the use of resources that it needs to reason or
execute a task can use case-based reasoning (CBR) and utility to
learn, select, and apply negotiation strategies. The negotiation
process is situated in the current world description, self state, and
also dynamically changing evaluation criteria and constraints.
Consequently, the negotiation strategies that an agent uses vary
greatly. To determine the negotiation strategy an agent uses CBR
to compare the new situation to old cases (from its situated case
base) and learns from its previous experiences how it should
negotiate. This unique synergy allows us to address real-time
resource allocation and efficient knowledge management: (1) the
use of negotiation reduces communication traffic since knowledge
updates and exchanges are performed only when necessary, and
(2) the use of CBR and utility streamlines the decision process so
that an agent can obtain a “good-enough, soon-enough”
negotiation strategy effectively.

1. INTRODUCTION
We have developed a multiagent system that uses
negotiation between agents to reason in a domain of limited
resources. In our work we use case-based reasoning (CBR)
to select, apply, and learn the negotiation strategies that the
agents use. The agents control sensors in an environment
with multiple targets, and the goal of the agents is to
coordinate their activities and collaborate to achieve
errorless tracking of as many targets as possible. Since
there are more targets than sensors, and since a sensor
cannot track a target through the whole physical space, the
agents need to request use of the sensing resources (such as
battery power, sensor mode, length of sensing, type of
sensing beam, etc.) of other agents. At the same time, the
target tracking needs to be performed in real time, and
agents must negotiate for the use of system resources of the
physical computing platform on which they are situated.
We are assuming agents that are collaborative, but also
require that their own tasks be completed if they are—in the
agent’s opinion—of higher-priority. The agents negotiate
to convince other agents to assist in target tracking or to
surrender resources. Given the task description and the

current status of the world and the agent itself, how an
agent goes about its negotiation may differ. A negotiation
process involves knowledge dissemination and transfer
towards conflict resolution. To improve its efficiency, an
agent has to be aware of the information it passes to its
counterpart, including the information’s volume and
relevance. Moreover, an agent has to know when to abort a
negotiation, when to accept a task, and most importantly,
how to behave during a negotiation. Our approach is to use
case-based reasoning to learn agent negotiation strategies.
A case is a semantically rich representation of a negotiation
previously experienced. It contains an agent’s view of the
world, its negotiation partner(s), and itself. Based on this
knowledge, an agent derives a set of negotiation parameters
that determine the negotiation behavior. Finally, a case
contains the outcome of the negotiation, including various
aspects of the negotiation such as the elapsed time and the
number of interactions. The lesson learned from each
negotiation is thus encoded in each case.

Approaching our task and resource allocation problem
with negotiation has several advantages. We do away with a
centralized knowledge (or information) facility that requires
constant updates and polling from agents. Instead, each
agent maintains its own situated knowledge of the world,
increasing its autonomy. Since knowledge is shared when
necessary, there is less communication traffic. In addition,
knowledge inconsistencies are resolved in a task-driven
manner, making the knowledge management easier.
Similarly, the use of CBR benefits our design. It allows an
agent to learn a set of “good-enough, soon-enough”
negotiation strategies by referring to old, similar cases.
CBR also greatly limits the time needed to decide on a
negotiation strategy, which is necessary in our real-time
domain. Thus, it is essential for the negotiator to be able to
constantly maintain a usable strategy while refining it with
case adaptation.

In this paper, we first discuss some related work in
agent-based negotiations. Then we describe our agent
architecture and behavior. In the fourth section, we present
our case-based reasoning system for learning, selecting, and
applying agent negotiation strategies. In Section 5, we
show some results of our design. Finally, we conclude the
paper.

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

2. BACKGROUND
Negotiation can be used by agents to perform problem
solving and to achieve coherent behavior in a multiagent
system. An agent can negotiate in a non-cooperative
environment to compete with each other for rewards [5, 7].
Agents can also negotiate in fully prescribed manner where
the negotiating parties know exactly what each other’s cost
and utility functions are, or when such knowledge is learned
during the first step of interaction in a negotiation [4, 8].
There are agents that negotiate using the unified negotiation
protocol (UNP) in worth-, state-, and task-driven domains
where agents look for mutually beneficial deals to perform
task distribution [13, 15, 16]. There are agents that
negotiate via a blackboard architecture in which agents post
their demands and service on a common site. Depending on
the responses an agent receives, agents can relax their
demands or enhance their services to attract a partner in
cooperative distributed problem solving [2, 10]. There are
agents that conduct argumentation-based negotiation in
which an agent sends over its inference rules to its neighbor
to demonstrate the soundness of its arguments [3, 11]. A
closely related work uses negotiation among agents for
case-based retrieval [12] in which agents exchange
constraints to help retrieve a partial case that satisfies the
requirements of different agents; the partial case is then
used to solve diagnostic problems, for example. Finally,
there are agents that incorporate AI techniques [1, 9, 14]
and logical models [6] into negotiation.

Our negotiation model is argumentative. The initiating
agent sends over evidential support to the responding agent
when they argue. The responding agent computes (when it
performs conflict resolution between its own perception and
that of its counterpart) the utility and certainty of the
information against a task- and situation-specific
acceptance level. The responding agent may ask for further
information from the initiating agent. This iterative
negotiation process continues until (1) the time frame for
the negotiation runs out, (2) a failure occurs (when the
responding agent has exhausted all its counter-requests and
the initiating agent still does not fulfil the requirement), (3)
one of the agents aborts the negotiation (due to resource
scarcity since our agents are multi-tasked), or (4) a deal
occurs (when the responding agent accepts the evidential
support).

3. Agent Architecture and Behavior
In our design, each agent has 2+N threads that can process
tasks concurrently. Each agent has three basic processing
threads: (1) a core thread that carries out functions of the
agent such as housekeeping, managing tasks, reasoning, (2)
a communication thread that checks the mail box for
incoming messages and sends out messages to other agents,
and (3) an execution thread that interacts with radar (either
the actual physical hardware or the software simulation) to
perform target tracking, sensor calibration, and target

searching. Each agent has N additional negotiation threads.
Each of these negotiation threads can initiate or respond to
negotiation requests. The negotiation threads are spawned
during agent initialization and remain inactive if there are
no negotiation tasks. Figure 1 shows the basic thread
architecture of our agent design.

Each agent has a set of managers:
(1) The Profile Manager keeps track of the current status

of the agent, its neighbors and the target that the agent
is tracking.

(2) The Communication Manager handles the
communication channel for send and receive messages
and maintains a local message mailbox (or queue).

(3) The Task Manager monitors the tasks that the agent is
currently performing (such as negotiations, target
tracking, etc.).

(4) The Reasoner performs feasibility studies and
evaluates potential negotiation partners for dynamic
coalition formation.

(5) The Negotiation Manager handles the activation of
negotiation threads and monitors the status of the
negotiations.

(6) The Execution Manager handles the job queue and
monitors the execution of radar-related tasks.

(7) The Real-Time Manager interfaces with a kernel-based
Real-Time Scheduling Service (RTSS) to perform
timer announcement, CPU allocation, and other real-
time activities with the operating system.

(8) The CBR Manager performs case-based reasoning to
retrieve most similar cases for negotiation strategies
and maintains the case bases.

(9) The Radar Manager models the environment of sensors
and interacts with the sensor hardware and
communication links (RF-links).

Figure 1 The basic thread architecture of our agent design

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

When an agent is idle, its core thread performs radar
calibration and also a search-and-detect procedure. If a
target is detected, the agent has to carry out a series of
actions. First, it creates a tracking task and adds it to the
Task Manager. Second, it asks the Radar Manager to
measure the target to obtain its location and velocity.
Third, based on the location and velocity, it obtains a
sensor-sector list from the Radar Manager1. This list
specifies all sensor-sector pairs whose sensing areas are
covering the target or will be covering the target. Fourth,
the agent then determines the sampling size of the sensor
via the Reasoner. Now, if the sensor-sector list is not
empty, then, the Reasoner also analyzes the potential
partners (or neighbors) that it wants to negotiate with (to
ask them to turn on their sensors to help track the target).
After that, it sorts the list based on the utility of the partners
and approaches them orderly.

The partner analysis is based on the past relationship
between the current agent and each of its neighbors. The
utility of each neighbor’s helpfulness is high when the
current agent has had a high number of successful
negotiations with it. Also, based on the trajectory of a
target, the sensor-sector list may contain entries for a same
sensor but with different sectors. This partner analysis also
computes which sector of a sensor is more important to
have turned on. This is based on the times that the target
will be hitting the sectors—sectors with earlier arrival times
have higher utilities.

When initiating negotiations, the agent first retrieves
the best case from its case base through the CBR Manager.
This best case gives the agent a set of negotiation strategies.
Then the agent checks to see whether there is at least one
idle negotiation thread. If there is, it creates a negotiation
task. Then it is ready to activate a negotiation thread via
the Negotiation Manager. It subsequently uploads the agent
data collected from the Profile Manager (so the negotiation
thread waking up can download the current status of the
profile), and then signals the negotiation thread. If the
activation is successful, the agent adds the negotiation task
to the Task Manager. Currently, the agent will activate as
many negotiation threads as possible for each target
detected—if the sensor-sector list has more than one entry,
the agent will try to contact all distinct sensors on that list
as long as there are idle negotiation threads.

Our agents are cooperative and share a common global
goal, i.e., to track as many targets as possible and as
accurately as possible. However, each agent also attempts
to conserve its power usage and its resources. Hence, if an
agent A asks an agent B to perform a certain task, A must
convince B to do so.

1 Each agent controls a sensor that has three sensing sectors that can be

activated separately.

4. CBR and Negotiation
A negotiation process is situated: for the same task, because
of the differences in the world scenarios, constraints,
evaluation criteria, information certainty and completeness,
and agent status, an agent may adopt different negotiation
strategies. A strategy established the types of information
transmitted (i.e., argued about), the number of
communication acts, the computing resources expended,
and so on. To represent each situation, we use cases. Each
agent maintains its own case base and learns from its own
experiences.

Theoretically, CBR offers a set of possible negotiation
strategies, all of them valid in the current context, but only
one of them adequate to produce a "good enough, soon
enough" solution. The negotiation environment defines the
evaluation metrics and the real-time constraints.
Multivalued utility theory relates satisfaction and
preference criteria to the possible negotiation strategies and
selects the one that optimizes these criteria while
minimizing risky behavior by the autonomous negotiating
agent. The result is a qualitative evaluation of all known,
valid negotiation strategies so that the system can select the
best one. After each negotiation transaction the agent
reviews the results of the transaction and continues with the
original negotiation plan or replans a new strategy,
depending on whether the outcomes matched its
predictions, and based on new information about the world
that resolves previously uncertain or unknown information.
The result is that known negotiation strategies are evaluated
using the current criteria and constraints, and the agent
effectively adapts its overall reasoning to the current
situation.

4.1 Case Description
In our work a case contains the following information: (1) a
description of the part of the world relevant to the case, (2)
the current agent profile, and (3) the neighbor profiles,
where a neighbor is defined as an agent with which one
chooses to negotiate. The world description includes the
target and sensor information such as orientation, speed,
quality of recognition, and list of actions that an agent can
perform to improve recognition (e.g. the data collection
mode of the sensor, the duration of the collection, the
number of measurements, and the quality of calibration).
The agent profile keeps track of the current power of the
sensor, the sensing sector that is active, the data collection
mode, the data quality, the status of the receiver and the
transmitter, the communication channels, the list of current
tasks that the agent is handling, and the knowledge of other
agents. The neighbor profile contains the viewpoint by the
agent of its neighbors, including the neighbors’ attributes
such as capability, location, and responsibility, and
perceived attributes such as friendliness, helpfulness,
efficiency, etc. Finally, a case records the outcome of a

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

negotiation; if the negotiation failed, a case contains a
coded reason.

4.2 Determining Negotiation Strategies
When an agent decides that it needs help to complete a task,
it locates another agent and negotiates with that neighbor to
use some of its resources. Before a negotiation can take
place, an agent has to define its negotiation strategy, which
it derives from the retrieved, most similar old case.

4.2.1 Description and Strategies of Initiating and
Responding Cases
Each agent maintains two case bases—one for the cases
when the agent was the initiator of a negotiation, and one
when the agent was the responder to a negotiation. In
general, an initiator is more conceding and agreeable and a
responder is more demanding and unyielding.

In an initiator case, the case descriptors are the list of
current tasks, what the potential negotiation partners are,
the task description, and the target speed and location. The
negotiation parameters are the classes and descriptions of
the information to transfer, the time constraints, the number
of negotiation steps planned, the CPU resource usage, the
number of steps possible, the CPU resources needed, and
the number of agents that can be contacted.

In a responder case, the relevant attribute set consists
of the list of current tasks, the ID of the initiating agent, the
task description, the power and data quality of its sensor, its
CPU resources available, and the status of its sensing
sector. The negotiation parameters to be determined are the
time allocated, the number of negotiation steps planned, the
CPU usage, the power usage, a persuasion threshold for
turning a sensing sector on (performing frequency or
amplitude measurements), giving up CPU resources, or
sharing communication channels.

4.2.2 Arguments and Persuasion Threshold
The agents use an argumentative negotiation process,
where the initiating agent provides its negotiation partner
with arguments that are supposed to convince it to give up
use of some of its resources. Depending on the situation,
each resource has a persuasion threshold associated with it.
The negotiating agent must provide enough arguments to
convince its negotiation partner beyond its persuasion
threshold for a specific resource.

To illustrate, suppose a responding agent is trying to
determine its persuasion threshold for turning a sensing
sector on—i.e., the strength of the arguments provided by
the initiating agent must be higher than this threshold
before the responding agent agrees to oblige to the request.
Thus, if the agent is currently engaged in many tasks or
some top-priority tasks, then the agent sets a high threshold,
and vice versa. If, after a review of the task description
provided by the initiating agent, the agent finds that the task
negotiated for is of low importance, then the agent sets a

high threshold, and vice versa. For example, if the battery
power of the sensor controlled by the agent is low, then the
agent may set a high threshold, and demand to be
convinced very strongly to use this limited, consumable
resource to satisfy some other agent’s needs. If, on the
other hand, the agent currently has an active sensing sector
covering the zone of the new task, then the agent sets a low
persuasion threshold.

In another example, suppose an initiating agent is
trying to determine its negotiation strategy. In general, if
the agent is currently managing many tasks, then it favors a
short time period for the negotiation, and a small number of
interaction steps. If the target’s speed is high, the agent
also favors short and less cumbersome negotiations. If the
task is complicated, the agent prefers a neighbor that has a
lot of available CPU resources.

The negotiation strategies are implicitly embedded in
the cases and adapted to the current situation in real-time so
that agents can argue effectively in a negotiation.

4.2.3 Discrete and Continuous Requests
We deal with two types of requests in our negotiations:
discrete and continuous.

Discrete requests are such as turning on a sector,
performing amplitude or frequency measurements, and
giving up communication channels. The responding agent
either agrees to the request to perform such a task or simply
rejects.

Continuous requests are such as giving up CPU
resources. The responding agent has the flexibility of
counter-offering the initiating agent how much CPU
resource that it is willing to give up. To do so, the
responding agent first computes the maximum CPU
resource that it is willing to give up via the Reasoner.
Then, from the best case, it obtains the following: (1) linear
or exponential persuasion function, (2) beta – a conceding
factor for giving up CPU resource, affecting the persuasion
function, and (3) kappa – a willingness factor for giving up
CPU resource, affecting the persuasion function. The y-
axis of the persuasion function is the amount of CPU
resource and the x-axis is the evidence support (which will
be discussed in Section 4.2.4). If the responding agent is
busy, it prefers an exponential to a linear persuasion
function since it can expect a short negotiation with the
former. If the responding agent is operating close to its
allocated CPU resource, then it prefers a linear function to
not upset its CPU usage in the short term. The willingness
factor determines the y-axis crossing point of the persuasion
function—specifying how much CPU resource that the
agent is readily willing to give up. The conceding factor,
on the other hand, determines the slope of the persuasion
function. The larger the slope, the less resolution the
counter-offers are that the responding agent plans to make.
At each negotiation step, the responding agent refers to the
evidence support that the initiating agent has provided, and

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

uses the persuasion function to make a counter-offer. If, for
example, the initiating agent already obtains a large portion
of the CPU it needs from another agent, then it may want to
accept the counter-offer and complete the negotiation. If
the initiating agent realizes that it is running out of time and
is in need of CPU immediately, then it may want to accept
the counter-offer and move on. Otherwise, the initiating
agent continues to argue to convince the responding agent
to give up more.

4.2.4 Ranking of Information Classes and Evidence
Support
During a negotiation, the initiating agent sends over
information pieces to the responding agent. The
responding agent computes the evidence support of the
information pieces. If the support is greater than the
persuasion threshold (derived from the best case), then the
responding agent agrees to perform the requested task. If,
however, the initiating agent has exhausted all its
information pieces and still fails to garner enough evidence
support to convince the responding agent, then the
responding agent either rejects the requested task (as in a
discrete-resource case) or makes a final counter-offer (as in
a continuous-resource case).

During a negotiation, each agent attempts to minimize
the number of messages sent and the length of the messages
sent. With fewer messages sent, the agents can avoid
message loss due to communication failures, and reduce
traffic among the agents. The agents want to send short
messages as well since the transfer is faster and the
bandwidth is constrained. Thus, it is important for an
initiating agent to decide which information pieces are more
important to send to the responding agent.

In our current design, there are three pieces of
information: (1) self – the current status of the agent and its
sensor, (2) target – the current status of the target, and (3)
world – the current status of the world and the view of the
neighbors. The ranking of these pieces of information is
derived from the best case, retrieved from the case base. In
general, if the target has a high speed, the target
information is given more priority. If the initiating agent is
busy (performing many tasks), then the self information is
ranked higher. If the initiating agent has only one neighbor
to negotiate with (thus making the negotiation more
critical), then the world information is more important.
After case adaptation, the initiating agent has the ranking of
the information pieces. Subsequently, at each negotiation
step, the initiating agent sends the information pieces over
orderly to the responding agent until a deal is met or there
is not any more information left.

On the other hand, the responding agent uses a relaxed
constraint-satisfaction approach to compute the evidence
support of the initiating agent’s arguments (or information
pieces). The constraints are (1) bilateral beliefs that need to
be reconciled, (2) uni-lateral beliefs that are single-value or

multi-valued with conjunctive or disjunctive relations. The
satisfaction is relaxed such that partial satisfaction is
allowed and the support is a continuous value. For
example, if the initiating agent informs the responding
agent that it has been helpful in the past to the responding
agent’s requests and the responding agent checks its record
and finds out it is true, then the responding agent is more
ready to agree to the negotiation.

We are also looking into an evidential reasoning
approach in which the responding agent is able to pinpoint
the exact pieces of information that it needs from the
initiating agent. Each piece of information is also scored
with the points that it would add to the evidence support.
Then, the responding agent can inform the initiating agent
to supply which pieces of information first. This way, the
initiating and the responding agents can cooperate closely
towards achieving a deal more efficiently and effectively.

4.3 Case Selection and Retrieval
The CBR Manager evaluates cases using weighted
matching and different matching functions for different
attributes. After evaluation, the most similar cases will be
selected. However, if there are more than one case with the
same similarity score, the CBR Manager then compares the
outcome of the negotiations and selects the case with the
best outcome. We are currently working on using a utility-
based evaluation, where (1) the elapsed time of the
negotiation, including the number of steps and the volume
of messages communicated, (2) the quality of the
negotiation, and (3) the number of strategy changes during
the negotiation are also used

4.4 Case Adaptation
Given the set of negotiation strategies from the best case,
the CBR Manager adapts the parameters based on the
difference between the new case and the best case, and also
on the outcome of the best case. Since each case is
situated, the set of negotiation parameters learned from the
best case might no be applicable in the current case.
Hence, the CBR Manager modifies the parameters based on
the differences. For example, if the current target has a
higher speed than the old target of the best case, then we
allocate less time to conduct the negotiation. If the agent is
performing more tasks currently than it was when the best
case happened, then we want to use less CPU resources.
Furthermore, the CBR Manager modifies the parameters
based on the outcome of the best case. If the negotiation of
the best case failed and it was because of the negotiation
running out of the allocated time, then we plan for more
time. If the negotiation failed due to lack of CPU resource,
then we ask for more CPU. In this manner, we are able to
learn from our previous experiences a “good-enough, soon-
enough” set of negotiation strategies and how to avoid
repeating past failures.

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

4.5 Case Storage and Learning
After a negotiation is completed (successfully or
otherwise), the agent delegates the case to the CBR
Manager for storage and learning. In our case storage
design, we perform two types of learning: incremental and
refinement, as shown in Figure 2.

Figure 2 Case-based learning in our agents. First we compute

the difference between the new case and the existing casebase. If
the minimum difference between the new case and any case in the
casebase is greater than a pre-determined threshold, then we store

the case. Otherwise, if the size of the casebase is greater than
another pre-determined threshold, then we replace the least

different case already in the casebase with the new case.

First, we perform incremental learning. We match the
new case to all cases in the case base and if it is
significantly different from all other existing cases in the
case base, then we store the case in the case base. When we
compute the difference between a pair of cases, we
emphasize more on the case description than the
negotiation parameters since our objective here is to learn a
wide coverage of the problem domain. This will improve
our case retrieval and case adaptation. So, we learn good,
unique cases incrementally.

Second, since we want to keep the size of the case base
under control, especially for speed in retrieval and
maintenance (since our problem domain deals with real-
time target tracking), we also perform refinement learning.
If the new case is found to be very similar to one of the
existing cases, then we compute (1) the sum of differences
between that old case and the entire case base (minus the
old case) and (2) the sum of differences between the new
case and the entire case base (minus the old case). If the
second sum is greater than the first sum, then we replace the
old case with the new case. In this manner, we are able to
increase the diversity of the case base while keeping the
size of the case base under control. As a result, we
gradually refine the cases in the case base.

5. RESULTS
We have built a fully-integrated multiagent system with
agents performing end-to-end behavior. In our simulation,
we have four autonomous agents and a Tracker module.
The Tracker module is tasked to accept target
measurements from the agents and predict the location of
the target. The agents track targets, and negotiate with each
other. We have tested our agents in a simulated
environment and also with actual hardware package of 4
sensors and 1 target. For the following experiments, there
was only one target moving about 50 feet between two
points.

5.1 Different Negotiation Behaviors
One of the experiments that we conducted was on the
effects of different agent behaviors on negotiations: (1)
Behavior I – agents only track but do not negotiate, (2)
Behavior II – agents negotiate using a reduced set of cases,
and (3) Behavior III – agents negotiate using all cases.
 Figure 3 graphs the number of messages sent per agent
cycle for each type of agent behavior. Behavior I did not
have any sendMessage events since agents could not
negotiate. And as a result, it actually had more target
measurements as it had the highest number of sendTracker
(sending a target measurement to the Tracker module).
Agents using the reduced case bases negotiated a bit more
than those using the full case bases. This is probably
because the negotiation strategies derived from the reduced
case bases were less efficient than those derived from the
full case base, since the latter covered a wider domain
space. Incidentally, as a result of more efficient
negotiations, the agents performing behavior III were able
to conduct more target measurements than those performing
behavior II. Thus, this indirectly shows that agents are able
to utilize the case-based reasoning to learn negotiation
strategies to negotiate more efficiently, and to track a target
more frequently.

Figure 3 Number of messages sent per agent cycle vs. types of
agent behavior

Messages sent vs. types of agent behavior

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

#sendMessage #sendTracker total#

Agent behavior types

N
um

be
r o

f o
cc

ur
re

nc
es

no negotiations
reduced set
full set

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

 Figures 4 and 5 illustrate that the agents are able to
learn negotiation strategy using case-based reasoning to
negotiate more successfully and to track targets more
accurately. Figure 4 shows the percentage of successful
negotiations vs. different types of case bases. The ‘to’
column denotes the success rate of an initiating agent; the
‘from’ column denotes that of a responding agent. As we
can see from the graph, since the negotiation strategies
derived from the full set of case bases are more efficient,
the agents were able to conduct more successful
negotiations. Figure 5 shows the tracking accuracy of the
different agent behaviors. The ‘DX’ column denotes the
errors in foot along the x-axis; the ‘DY’ column denotes
those along the y-axis. As we can see from the graph,
without negotiations, the tracking accuracy was the worst.
Agents negotiating using the full set of case bases gave the
best tracking accuracy.

Figure 4 Percentage of successful negotiations vs. types of case
bases

Figure 5 Tracking accuracy vs. different agent behaviors

Figure 6 shows the dynamic relationships among our agents. For
example, agent 1 negotiated with agent2 about 17% of the time,
with agent about 3 52%, and with agent4 about 31%.

Figure 6 Percentage of total negotiations among agents

5.2 Negotiation Outcomes
Table 1 shows the relationships between outcome types and
the average number of iterations, the average message
volume processed, and the message length. This allows us
to analyze how a negotiation succeeded or failed. Some
interesting observations are:
(a) When an agent outright agrees to perform a requested

task, or rejects to do so, or suffer a channel jammed or
an out-of-time failure, the number of iterations is 1 or
2. This follows directly from the way our agents
negotiate.

(b) When a rejection occurs (initiatingReject and
respondingReject), the average number of iterations is
very high (6 or 7.76, respectively). This is because
before a responding agent rejects a request, it has to go
through argumentative-negotiation with the initiating
agent. The corresponding average message volume
sent is also very high (850.8 or 1041.4, respectively).

(c) A channel jam occurs usually after 3.79 iterations for
the initiating agent and after 4.41 iterations for the
responding agent. This indicates that maybe we may
want to complete our negotiations before 4 iterations.
A channel jam could be due to message loss, channel
jammed, or busy agent not responding.

(d) An out-of-time failure occurs usually after 3.17
iterations for the initiating agent and after 4.52
iterations for the responding agent. These two
numbers are similar to those regarding channel jam
failures.

(e) When a negotiation is successful, the average message
volume is 553.7 for initiating and 577.9 for
responding. So, in general, it is about 560 characters
per successful negotiation. If it is an outright
agreement, then it is around 250 characters. When a
negotiation fails because of channel jam or out-of-time,
the average message volume is between 454 and 629
characters. When a negotiation fails because of the
initiating agent’s failure to convince the responding
agent, the average message is about 850 or 1041, for
initiating and responding agents, respectively.

P e r c e n ta g e o f s u c c e s s fu l n e g o tia tio n s v s . ty p e s o f c a s e s

0

1 0

2 0

3 0

4 0

5 0

6 0

to fro m to ta l

ty p e s o f n e g o t ia tio n s

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

r e d u c e d s e t
fu l l s e t

Percentage of Total Negotiations Involving Each Agent

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A1 A2 A3 A4

A4
A3
A2
A1

Tracking Accuracy: Target Position vs. Types of Agent Behavior

0

2

4

6

8

10

12

DX DY Distance

Positions

A
ve

ra
ge

 E
rr

or
 in

 F
ee

t

no negotiations
reduced set
full set

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

 count ave. iter. ave. msg. volume ave. msg. length
Total 543 3.99 550.8 180.0
OutrightAgree 54 2 248.9 124.4
OutrightReject 41 2 217.7 108.9
OutrightJammed 60 1 117.7 117.7
OutrightOutOfTime 12 1 111.0 111.0
initiatingSuccess 33 3.73 553.7 148.4
initiatingReject 74 6 850.8 141.8
initiatingJammed 68 3.79 566.1 149.4
initiatingOutOfTime 35 3.17 454.6 143.4
respondingSuccess 34 4.09 577.9 141.3
respondingReject 74 7.76 1041.4 134.2
respondingJammed 37 4.41 619.9 140.6
respondingOutOfTime 21 4.52 629.0 139.2

Table 1 Outcomes and messages. outrightAgree means the
responding agent agreed without negotiation; initiatingSuccess

means the initiating agent came to an agreement with the
responding agent after negotiation; and so on.

From the above experiment, we also conclude the

following:
(a) A rejection after negotiation was expensive: it took an

average number of iterations of about 6 and 7.76, for
initiating and responding agents, correspondingly. It
also took an average message volume of about 850 and
1040, for initiating and responding agents,
respectively. The significance here is that we had
many such occurrences—rejection after full
negotiations.

(b) Overall, the reasons of failure were: rejected after
negotiations (39.3%), out of time (18.4%), and channel
jammed (42.3%) for responding agents; and rejected
after negotiations (49.6%), out of time (11.0%), and
channel jammed (38.8%) for initiating agents. This
calls for a better design of the communication
infrastructure and we are currently looking into
building a socket-based communication object that
better speed and latency.

(c) Successful negotiations were mostly achieved via
outright agreement (65.06%).

(d) The percentage of success decreased as more
arguments were sent. For example, when no
information was sent, the success rate was 54/116 =
46.6%; when one piece of argument was sent, the rate
was 19/67 = 28.4%; when there are two pieces, the rate
was 4/30 = 13.3%; when there are three pieces, the rate
was 6/109 = 5.5%. This means that the first argument
carries the most weight in our domain problem where
communication channel jam is common.

(e) As discussed in Section 4.2.4, arguments are divided
into the current status of the world, the current status of
the agent, and the current status of the target. In this
experiment, we also measured the distribution of rules

used in computing the evidence support for a
responding agent. World-related heuristic rules were
used most (90.5%), self-related heuristics came in
second (77.7%), and target related heuristics came in
last (54.0%). This information allows us to better
design our heuristics to improve the negotiations.

6. FUTURE WORK
There are other CBR and negotiations issues that we plan to
investigate. Of immediate concerns to us are the following.
(1) We plan to study the learned cases and the overall

‘health’ of the case bases. We plan to measure the
diversity growth of each case base (initiating and
responding) for each agent. We also plan to examine
the relationships between an agent’s behavior (such as
number of tracking tasks, the number of negotiation
tasks, the CPU resources allocated, etc.) with the
agent’s learning rate. For example, if an agent is
always busy, does it learn more or learn less, or learn
faster or more slowly? We also want to investigate
when agents stop learning where no new cases are
stored and the learned case bases of the agents are
similar.

(2) Since we also negotiate for CPU resources, we plan to
investigate whether dynamic resource scheduling (at
the operating system level) as a result of multiagent
negotiations leads to convergence or oscillations in
CPU allocations among the agents sharing the same
operating platform.

(3) We plan to expand our real-time profiling during
negotiation. We want to reflect more changes in an
agent at each negotiation step. One critical issue here
is whether we describe each case with its real-time
adjustments so that these adjustments can be applied to
the current negotiation, or we build simple cases that
the negotiation thread can retrieve to help deal with
real-time situational changes. Tradeoffs are the
complexity of the cases and speed in case-based
reasoning. In general, we would like to have learning
capabilities of real-time agent negotiation strategies.

(4) We plan to investigate the benefits of the ‘good-
enough, soon-enough’ solutions, as opposed to a
baseline multiagent approach in which all negotiation
strategies are derived from scratch based on the
information collected from the different managers of
the agent. Then, we plan to evaluate the results (in
tracking accuracy, in speed, in the number of messages
exchanged, etc.) of the baseline approach against the
CBR approach. The key question is, within how many
microseconds, for example, can the CBR approach
produce a set of usable negotiation strategies in time-
critical situations as opposed to the baseline approach?

7. CONCLUSIONS
We have proposed a multiagent approach to distributed
resource allocation and task allocation problems,

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

particularly to multi-sensor tracking of targets in a real-time
environment. The approach integrates case-based
reasoning to derive and learn negotiation strategies that are
applicable to situated, real-time problems. Our negotiation
protocol is argumentation-based in which the initiating
agent attempts to persuade the responding agent to perform
a task or give up a resource by iteratively supplying useful
arguments.

We have described our agent architecture and behavior
briefly and our CBR approach thoroughly. Our approach
allows the agents to learn agent negotiation strategies based
on previous experiences, adapt to the current situations, and
avoid repeating past failures. Our CBR can also learn new
cases to improve the diversity while maintaining the size of
the case bases. More importantly, we have shown that CBR
with good cases helped our agents to negotiate more
efficiently and more successfully, and that indirectly helped
our agents track their targets more frequently and more
accurately. The CBR and negotiation synergy allows us to
address real-time resource allocation and efficient
knowledge management as we aim at (1) reducing
communication traffic so that knowledge updates and
exchanges are performed only when necessary and (2)
improving the response time to time-critical events using
“good-enough, soon-enough” negotiation strategies. We
have also presented comprehensive analyses on the
negotiation outcomes and the arguments used based on our
experimental results.

8. ACKNOWLEDGMENTS
The authors would like to thank Kelly Corn, Will Dinkel,
Jim Emery, Arun Gautam, Douglas Niehaus, Pete Prasad,
and Huseyin Sevay for their work on the ANTS Project at
the University of Kansas. The work described in this paper
is sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement number
F30602-99-2-0502. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research
Laboratory, or the U.S. Government.

9. REFERENCES
[1] Chavez, A., and Maes, P. Kasbah: An agent

marketplace for buying and selling goods, in Proc. of
1st Int. Conf. on Practical Application of Intelligent
Agents & Multi-Agent Technology (1996), 75-90.

[2] Durfee, E. H., and Lesser, V. R. Partial global
planning: A coordination framework for distributed

hypothesis formation, IEEE Trans. on Systems, Man,
and Cybernetics 21, 5 (1991), 1167-1183.

[3] Jennings, N. R., Parsons, S., Noriega, P., and Sierra, C.
On argumentation-based negotiation, in Proc. of Int.
Workshop on Multi-Agent Systems (Boston, MA,
1998).

[4] Kraus, S. Beliefs, time, and incomplete information in
multiple encounter negotiations among autonomous
agents, Annals of Mathematics and Artificial
Intelligence 20, 1-4 (1997), 111-159.

[5] Kraus, S., Ephrati, E., and Lehmann, D. Negotiation in
a non-cooperative environment, J. of Experimental and
Theoretical AI 3, 4 (1991), 255-282.

[6] Kraus, S., Sycara, K., and Evenchik, A. Reaching
agreements through argumentation: a logical model
and implementation, AI 104, 1-2 (1998), 1-69.

[7] Kraus, S., and Wilkenfeld, J. A strategic negotiations
model with applications to an international crisis, IEEE
Trans. on Systems, Man, and Cybernetics 23, 1 (1993),
313-323.

[8] Kraus, S., Wilkenfeld, J., and Zlotkin, G. Multiagent
negotiation under time constraints, AI 75 (1995), 297-
345.

[9] Laasri, B., Laasri, H., Lander, S., and Lesser, V. A
generic model for intelligent negotiating agents, Int. J.
of Intelligent & Cooperative Information Systems 1
(1992), 291-317.

[10] Lander, S. E., and Lesser, V. R. Customizing
distributed search among agents with heterogeneous
knowledge, in Proc. of the 1st Int. Conf. on Information
and Knowledge Management (Baltimore, MD, 1992),
335-344.

[11] Parsons, S., Sierra, C., and Jennings, N. R. Agents that
reason and negotiate by arguing, J. of Logic and
Computation 8, 3 (1998), 261-291.

[12] Prasad, M. V. N., Lesser, V. R., and Lander, S. E.
Retrieval and reasoning in distributed case bases, J. of
Visual Communication and Image Representation,
Special Issue on Digital Libraries 7, 1 (1996), 74-87.

[13] Rosenschein, J. S., and Zlotkin, G. Designing
conventions for automated negotiation, AI Magazine
15, 3 (1994), 29-46.

[14] Zeng, D., and Sycara, K. Bayesian learning in
negotiation, International Journal of Human-Computer
Studies 48 (1998), 125-141.

[15] Zlotkin, G., and Rosenschein, J. S. Compromise in
negotiation: exploiting worth functions over states, AI
84, 1-2 (1996), 151-176.

[16] Zlotkin, G., and Rosenschein, J. S. Mechanism design
for automated negotiation, and its application to task
oriented domains, AI 86, 2 (1996), 195-244.

AAAI Fall Symposium on Negotiation Methods for Autonomous Cooperative Systems, 2001

	INTRODUCTION
	BACKGROUND
	Agent Architecture and Behavior
	CBR and Negotiation
	Case Description
	Determining Negotiation Strategies
	Description and Strategies of Initiating and Responding Cases
	Arguments and Persuasion Threshold
	Discrete and Continuous Requests
	Ranking of Information Classes and Evidence Support

	Case Selection and Retrieval
	Case Adaptation
	Case Storage and Learning

	RESULTS
	FUTURE WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

