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ABSTRACT 
In domains of limited resources, problem solving and execution of 
solutions may require the satisfaction of resource use constraints 
among a group of collaborating agents.  One way for the agents to 
agree to the distribution of limited resources is through 
negotiation.  In this paper we present how an agent that decides it 
must negotiate for the use of resources that it needs to reason or 
execute a task can use case-based reasoning (CBR) and utility to 
learn, select, and apply negotiation strategies. The negotiation 
process is situated in the current world description, self state, and 
also dynamically changing evaluation criteria and constraints.  
Consequently, the negotiation strategies that an agent uses vary 
greatly.  To determine the negotiation strategy an agent uses CBR 
to compare the new situation to old cases (from its situated case 
base) and learns from its previous experiences how it should 
negotiate.  This unique synergy allows us to address real-time 
resource allocation and efficient knowledge management: (1) the 
use of negotiation reduces communication traffic since knowledge 
updates and exchanges are performed only when necessary, and 
(2) the use of CBR and utility streamlines the decision process so 
that an agent can obtain a “good-enough, soon-enough” 
negotiation strategy effectively. 
 
1. INTRODUCTION 
We have developed a multiagent system that uses 
negotiation between agents to reason in a domain of limited 
resources.  In our work we use case-based reasoning (CBR) 
to select, apply, and learn the negotiation strategies that the 
agents use.  The agents control sensors in an environment 
with multiple targets, and the goal of the agents is to 
coordinate their activities and collaborate to achieve 
errorless tracking of as many targets as possible.  Since 
there are more targets than sensors, and since a sensor 
cannot track a target through the whole physical space, the 
agents need to request use of the sensing resources (such as 
battery power, sensor mode, length of sensing, type of 
sensing beam, etc.) of other agents.  At the same time, the 
target tracking needs to be performed in real time, and 
agents must negotiate for the use of system resources of the 
physical computing platform on which they are situated.  
We are assuming agents that are collaborative, but also 
require that their own tasks be completed if they are—in the 
agent’s opinion—of higher-priority.  The agents negotiate 
to convince other agents to assist in target tracking or to 
surrender resources.  Given the task description and the 

current status of the world and the agent itself, how an 
agent goes about its negotiation may differ.  A negotiation 
process involves knowledge dissemination and transfer 
towards conflict resolution.  To improve its efficiency, an 
agent has to be aware of the information it passes to its 
counterpart, including the information’s volume and 
relevance.  Moreover, an agent has to know when to abort a 
negotiation, when to accept a task, and most importantly, 
how to behave during a negotiation.  Our approach is to use 
case-based reasoning to learn agent negotiation strategies.  
A case is a semantically rich representation of a negotiation 
previously experienced.  It contains an agent’s view of the 
world, its negotiation partner(s), and itself.  Based on this 
knowledge, an agent derives a set of negotiation parameters 
that determine the negotiation behavior.  Finally, a case 
contains the outcome of the negotiation, including various 
aspects of the negotiation such as the elapsed time and the 
number of interactions.  The lesson learned from each 
negotiation is thus encoded in each case. 

Approaching our task and resource allocation problem 
with negotiation has several advantages. We do away with a 
centralized knowledge (or information) facility that requires 
constant updates and polling from agents.  Instead, each 
agent maintains its own situated knowledge of the world, 
increasing its autonomy.  Since knowledge is shared when 
necessary, there is less communication traffic.  In addition, 
knowledge inconsistencies are resolved in a task-driven 
manner, making the knowledge management easier.  
Similarly, the use of CBR benefits our design.  It allows an 
agent to learn a set of “good-enough, soon-enough” 
negotiation strategies by referring to old, similar cases.  
CBR also greatly limits the time needed to decide on a 
negotiation strategy, which is necessary in our real-time 
domain.  Thus, it is essential for the negotiator to be able to 
constantly maintain a usable strategy while refining it with 
case adaptation.   

In this paper, we first discuss some related work in 
agent-based negotiations.  Then we describe our agent 
architecture and behavior.  In the fourth section, we present 
our case-based reasoning system for learning, selecting, and 
applying agent negotiation strategies.  In Section 5, we 
show some results of our design.  Finally, we conclude the 
paper. 
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2. BACKGROUND 
Negotiation can be used by agents to perform problem 
solving and to achieve coherent behavior in a multiagent 
system.  An agent can negotiate in a non-cooperative 
environment to compete with each other for rewards [5, 7].  
Agents can also negotiate in fully prescribed manner where 
the negotiating parties know exactly what each other’s cost 
and utility functions are, or when such knowledge is learned 
during the first step of interaction in a negotiation [4, 8].  
There are agents that negotiate using the unified negotiation 
protocol (UNP) in worth-, state-, and task-driven domains 
where agents look for mutually beneficial deals to perform 
task distribution [13, 15, 16]. There are agents that 
negotiate via a blackboard architecture in which agents post 
their demands and service on a common site. Depending on 
the responses an agent receives, agents can relax their 
demands or enhance their services to attract a partner in 
cooperative distributed problem solving [2, 10].  There are 
agents that conduct argumentation-based negotiation in 
which an agent sends over its inference rules to its neighbor 
to demonstrate the soundness of its arguments [3, 11].  A 
closely related work uses negotiation among agents for 
case-based retrieval [12] in which agents exchange 
constraints to help retrieve a partial case that satisfies the 
requirements of different agents; the partial case is then 
used to solve diagnostic problems, for example.  Finally, 
there are agents that incorporate AI techniques [1, 9, 14] 
and logical models [6] into negotiation. 

Our negotiation model is argumentative. The initiating 
agent sends over evidential support to the responding agent 
when they argue.  The responding agent computes (when it 
performs conflict resolution between its own perception and 
that of its counterpart) the utility and certainty of the 
information against a task- and situation-specific 
acceptance level.  The responding agent may ask for further 
information from the initiating agent.  This iterative 
negotiation process continues until (1) the time frame for 
the negotiation runs out, (2) a failure occurs (when the 
responding agent has exhausted all its counter-requests and 
the initiating agent still does not fulfil the requirement), (3) 
one of the agents aborts the negotiation (due to resource 
scarcity since our agents are multi-tasked), or (4) a deal 
occurs (when the responding agent accepts the evidential 
support).  
 
3. Agent Architecture and Behavior 
In our design, each agent has 2+N threads that can process 
tasks concurrently.  Each agent has three basic processing 
threads: (1) a core thread that carries out functions of the 
agent such as housekeeping, managing tasks, reasoning, (2) 
a communication thread that checks the mail box for 
incoming messages and sends out messages to other agents, 
and (3) an execution thread that interacts with radar (either 
the actual physical hardware or the software simulation) to 
perform target tracking, sensor calibration, and target 

searching.  Each agent has N additional negotiation threads.  
Each of these negotiation threads can initiate or respond to 
negotiation requests.  The negotiation threads are spawned 
during agent initialization and remain inactive if there are 
no negotiation tasks.  Figure 1 shows the basic thread 
architecture of our agent design.  

Each agent has a set of managers:  
(1) The Profile Manager keeps track of the current status 

of the agent, its neighbors and the target that the agent 
is tracking. 

(2) The Communication Manager handles the 
communication channel for send and receive messages 
and maintains a local message mailbox (or queue). 

(3) The Task Manager monitors the tasks that the agent is 
currently performing (such as negotiations, target 
tracking, etc.). 

(4) The Reasoner performs feasibility studies and 
evaluates potential negotiation partners for dynamic 
coalition formation. 

(5) The Negotiation Manager handles the activation of 
negotiation threads and monitors the status of the 
negotiations. 

(6) The Execution Manager handles the job queue and 
monitors the execution of radar-related tasks. 

(7) The Real-Time Manager interfaces with a kernel-based 
Real-Time Scheduling Service (RTSS) to perform 
timer announcement, CPU allocation, and other real-
time activities with the operating system. 

(8) The CBR Manager performs case-based reasoning to 
retrieve most similar cases for negotiation strategies 
and maintains the case bases. 

(9) The Radar Manager models the environment of sensors 
and interacts with the sensor hardware and 
communication links (RF-links). 

 

 
Figure 1  The basic thread architecture of our agent design 
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When an agent is idle, its core thread performs radar 
calibration and also a search-and-detect procedure. If a 
target is detected, the agent has to carry out a series of 
actions.  First, it creates a tracking task and adds it to the 
Task Manager.  Second, it asks the Radar Manager to 
measure the target to obtain its location and velocity.  
Third, based on the location and velocity, it obtains a 
sensor-sector list from the Radar Manager1.  This list 
specifies all sensor-sector pairs whose sensing areas are 
covering the target or will be covering the target.  Fourth, 
the agent then determines the sampling size of the sensor 
via the Reasoner.  Now, if the sensor-sector list is not 
empty, then, the Reasoner also analyzes the potential 
partners (or neighbors) that it wants to negotiate with (to 
ask them to turn on their sensors to help track the target).  
After that, it sorts the list based on the utility of the partners 
and approaches them orderly.   

The partner analysis is based on the past relationship 
between the current agent and each of its neighbors.  The 
utility of each neighbor’s helpfulness is high when the 
current agent has had a high number of successful 
negotiations with it.  Also, based on the trajectory of a 
target, the sensor-sector list may contain entries for a same 
sensor but with different sectors.  This partner analysis also 
computes which sector of a sensor is more important to 
have turned on.  This is based on the times that the target 
will be hitting the sectors—sectors with earlier arrival times 
have higher utilities. 

When initiating negotiations, the agent first retrieves 
the best case from its case base through the CBR Manager.  
This best case gives the agent a set of negotiation strategies.  
Then the agent checks to see whether there is at least one 
idle negotiation thread.  If there is, it creates a negotiation 
task.  Then it is ready to activate a negotiation thread via 
the Negotiation Manager.  It subsequently uploads the agent 
data collected from the Profile Manager (so the negotiation 
thread waking up can download the current status of the 
profile), and then signals the negotiation thread.  If the 
activation is successful, the agent adds the negotiation task 
to the Task Manager.  Currently, the agent will activate as 
many negotiation threads as possible for each target 
detected—if the sensor-sector list has more than one entry, 
the agent will try to contact all distinct sensors on that list 
as long as there are idle negotiation threads.  

Our agents are cooperative and share a common global 
goal, i.e., to track as many targets as possible and as 
accurately as possible.  However, each agent also attempts 
to conserve its power usage and its resources.  Hence, if an 
agent A asks an agent B to perform a certain task, A must 
convince B to do so. 

 

                                                                 
1 Each agent controls a sensor that has three sensing sectors that can be 

activated separately. 

4. CBR and Negotiation 
A negotiation process is situated: for the same task, because 
of the differences in the world scenarios, constraints, 
evaluation criteria, information certainty and completeness, 
and agent status, an agent may adopt different negotiation 
strategies.  A strategy established the types of information 
transmitted (i.e., argued about), the number of 
communication acts, the computing resources expended, 
and so on.  To represent each situation, we use cases.  Each 
agent maintains its own case base and learns from its own 
experiences. 

Theoretically, CBR offers a set of possible negotiation 
strategies, all of them valid in the current context, but only 
one of them adequate to produce a "good enough, soon 
enough" solution. The negotiation environment defines the 
evaluation metrics and the real-time constraints. 
Multivalued utility theory relates satisfaction and 
preference criteria to the possible negotiation strategies and 
selects the one that optimizes these criteria while 
minimizing risky behavior by the autonomous negotiating 
agent.  The result is a qualitative evaluation of all known, 
valid negotiation strategies so that the system can select the 
best one.  After each negotiation transaction the agent 
reviews the results of the transaction and continues with the 
original negotiation plan or replans a new strategy, 
depending on whether the outcomes matched its 
predictions, and based on new information about the world 
that resolves previously uncertain or unknown information.  
The result is that known negotiation strategies are evaluated 
using the current criteria and constraints, and the agent 
effectively adapts its overall reasoning to the current 
situation. 
 
4.1 Case Description 
In our work a case contains the following information: (1) a 
description of the part of the world relevant to the case, (2) 
the current agent profile, and (3) the neighbor profiles, 
where a neighbor is defined as an agent with which one 
chooses to negotiate.  The world description includes the 
target and sensor information such as orientation, speed, 
quality of recognition, and list of actions that an agent can 
perform to improve recognition (e.g. the data collection 
mode of the sensor, the duration of the collection, the 
number of measurements, and the quality of calibration).  
The agent profile keeps track of the current power of the 
sensor, the sensing sector that is active, the data collection 
mode, the data quality, the status of the receiver and the 
transmitter, the communication channels, the list of current 
tasks that the agent is handling, and the knowledge of other 
agents.  The neighbor profile contains the viewpoint by the 
agent of its neighbors, including the neighbors’ attributes 
such as capability, location, and responsibility, and 
perceived attributes such as friendliness, helpfulness, 
efficiency, etc. Finally, a case records the outcome of a 
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negotiation; if the negotiation failed, a case contains a 
coded reason. 
 
4.2 Determining Negotiation Strategies 
When an agent decides that it needs help to complete a task, 
it locates another agent and negotiates with that neighbor to 
use some of its resources.  Before a negotiation can take 
place, an agent has to define its negotiation strategy, which 
it derives from the retrieved, most similar old case. 
 
4.2.1 Description and Strategies of Initiating and 
Responding Cases 
Each agent maintains two case bases—one for the cases 
when the agent was the initiator of a negotiation, and one 
when the agent was the responder to a negotiation.  In 
general, an initiator is more conceding and agreeable and a 
responder is more demanding and unyielding.  

In an initiator case, the case descriptors are the list of 
current tasks, what the potential negotiation partners are, 
the task description, and the target speed and location.  The 
negotiation parameters are the classes and descriptions of 
the information to transfer, the time constraints, the number 
of negotiation steps planned, the CPU resource usage, the 
number of steps possible, the CPU resources needed, and 
the number of agents that can be contacted. 

In a responder case, the relevant attribute set consists 
of the list of current tasks, the ID of the initiating agent, the 
task description, the power and data quality of its sensor, its 
CPU resources available, and the status of its sensing 
sector.  The negotiation parameters to be determined are the 
time allocated, the number of negotiation steps planned, the 
CPU usage, the power usage, a persuasion threshold for 
turning a sensing sector on (performing frequency or 
amplitude measurements), giving up CPU resources, or 
sharing communication channels. 

 
4.2.2 Arguments and Persuasion Threshold 
The agents use an argumentative negotiation process, 
where the initiating agent provides its negotiation partner 
with arguments that are supposed to convince it to give up 
use of some of its resources.  Depending on the situation, 
each resource has a persuasion threshold associated with it.  
The negotiating agent must provide enough arguments to 
convince its negotiation partner beyond its persuasion 
threshold for a specific resource. 

To illustrate, suppose a responding agent is trying to 
determine its persuasion threshold for turning a sensing 
sector on—i.e., the strength of the arguments provided by 
the initiating agent must be higher than this threshold 
before the responding agent agrees to oblige to the request.  
Thus, if the agent is currently engaged in many tasks or 
some top-priority tasks, then the agent sets a high threshold, 
and vice versa.  If, after a review of the task description 
provided by the initiating agent, the agent finds that the task 
negotiated for is of low importance, then the agent sets a 

high threshold, and vice versa.  For example, if the battery 
power of the sensor controlled by the agent is low, then the 
agent may set a high threshold, and demand to be 
convinced very strongly to use this limited, consumable 
resource to satisfy some other agent’s needs.  If, on the 
other hand, the agent currently has an active sensing sector 
covering the zone of the new task, then the agent sets a low 
persuasion threshold. 

In another example, suppose an initiating agent is 
trying to determine its negotiation strategy.  In general, if 
the agent is currently managing many tasks, then it favors a 
short time period for the negotiation, and a small number of 
interaction steps.  If the target’s speed is high, the agent 
also favors short and less cumbersome negotiations.  If the 
task is complicated, the agent prefers a neighbor that has a 
lot of available CPU resources.   

The negotiation strategies are implicitly embedded in 
the cases and adapted to the current situation in real-time so 
that agents can argue effectively in a negotiation. 

 
4.2.3 Discrete and Continuous Requests 
We deal with two types of requests in our negotiations: 
discrete and continuous.   

Discrete requests are such as turning on a sector, 
performing amplitude or frequency measurements, and 
giving up communication channels.  The responding agent 
either agrees to the request to perform such a task or simply 
rejects.   

Continuous requests are such as giving up CPU 
resources.  The responding agent has the flexibility of 
counter-offering the initiating agent how much CPU 
resource that it is willing to give up.  To do so, the 
responding agent first computes the maximum CPU 
resource that it is willing to give up via the Reasoner.  
Then, from the best case, it obtains the following: (1) linear 
or exponential persuasion function, (2) beta – a conceding 
factor for giving up CPU resource, affecting the persuasion 
function, and (3) kappa – a willingness factor for giving up 
CPU resource, affecting the persuasion function.  The y-
axis of the persuasion function is the amount of CPU 
resource and the x-axis is the evidence support (which will 
be discussed in Section 4.2.4).  If the responding agent is 
busy, it prefers an exponential to a linear persuasion 
function since it can expect a short negotiation with the 
former.  If the responding agent is operating close to its 
allocated CPU resource, then it prefers a linear function to 
not upset its CPU usage in the short term.  The willingness 
factor determines the y-axis crossing point of the persuasion 
function—specifying how much CPU resource that the 
agent is readily willing to give up.  The conceding factor, 
on the other hand, determines the slope of the persuasion 
function.  The larger the slope, the less resolution the 
counter-offers are that the responding agent plans to make.  
At each negotiation step, the responding agent refers to the 
evidence support that the initiating agent has provided, and 
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uses the persuasion function to make a counter-offer.  If, for 
example, the initiating agent already obtains a large portion 
of the CPU it needs from another agent, then it may want to 
accept the counter-offer and complete the negotiation.  If 
the initiating agent realizes that it is running out of time and 
is in need of CPU immediately, then it may want to accept 
the counter-offer and move on.  Otherwise, the initiating 
agent continues to argue to convince the responding agent 
to give up more.   

 
4.2.4 Ranking of Information Classes and Evidence 
Support 
During a negotiation, the initiating agent sends over 
information pieces to the responding agent.  The 
responding agent computes the evidence support of the 
information pieces.  If the support is greater than the 
persuasion threshold (derived from the best case), then the 
responding agent agrees to perform the requested task.  If, 
however, the initiating agent has exhausted all its 
information pieces and still fails to garner enough evidence 
support to convince the responding agent, then the 
responding agent either rejects the requested task (as in a 
discrete-resource case) or makes a final counter-offer (as in 
a continuous-resource case).   

During a negotiation, each agent attempts to minimize 
the number of messages sent and the length of the messages 
sent.  With fewer messages sent, the agents can avoid 
message loss due to communication failures, and reduce 
traffic among the agents.  The agents want to send short 
messages as well since the transfer is faster and the 
bandwidth is constrained.  Thus, it is important for an 
initiating agent to decide which information pieces are more 
important to send to the responding agent. 

In our current design, there are three pieces of 
information: (1) self – the current status of the agent and its 
sensor, (2) target – the current status of the target, and (3) 
world – the current status of the world and the view of the 
neighbors.  The ranking of these pieces of information is 
derived from the best case, retrieved from the case base.  In 
general, if the target has a high speed, the target 
information is given more priority.  If the initiating agent is 
busy (performing many tasks), then the self information is 
ranked higher.  If the initiating agent has only one neighbor 
to negotiate with (thus making the negotiation more 
critical), then the world information is more important.  
After case adaptation, the initiating agent has the ranking of 
the information pieces.  Subsequently, at each negotiation 
step, the initiating agent sends the information pieces over 
orderly to the responding agent until a deal is met or there 
is not any more information left. 

On the other hand, the responding agent uses a relaxed 
constraint-satisfaction approach to compute the evidence 
support of the initiating agent’s arguments (or information 
pieces).  The constraints are (1) bilateral beliefs that need to 
be reconciled, (2) uni-lateral beliefs that are single-value or 

multi-valued with conjunctive or disjunctive relations.  The 
satisfaction is relaxed such that partial satisfaction is 
allowed and the support is a continuous value.  For 
example, if the initiating agent informs the responding 
agent that it has been helpful in the past to the responding 
agent’s requests and the responding agent checks its record 
and finds out it is true, then the responding agent is more 
ready to agree to the negotiation.   

We are also looking into an evidential reasoning 
approach in which the responding agent is able to pinpoint 
the exact pieces of information that it needs from the 
initiating agent.  Each piece of information is also scored 
with the points that it would add to the evidence support.  
Then, the responding agent can inform the initiating agent 
to supply which pieces of information first.  This way, the 
initiating and the responding agents can cooperate closely 
towards achieving a deal more efficiently and effectively. 

 
4.3 Case Selection and Retrieval 
The CBR Manager evaluates cases using weighted 
matching and different matching functions for different 
attributes.  After evaluation, the most similar cases will be 
selected.  However, if there are more than one case with the 
same similarity score, the CBR Manager then compares the 
outcome of the negotiations and selects the case with the 
best outcome.  We are currently working on using a utility-
based evaluation, where (1) the elapsed time of the 
negotiation, including the number of steps and the volume 
of messages communicated, (2) the quality of the 
negotiation, and (3) the number of strategy changes during 
the negotiation are also used  
 
4.4 Case Adaptation 
Given the set of negotiation strategies from the best case, 
the CBR Manager adapts the parameters based on the 
difference between the new case and the best case, and also 
on the outcome of the best case.  Since each case is 
situated, the set of negotiation parameters learned from the 
best case might no be applicable in the current case.  
Hence, the CBR Manager modifies the parameters based on 
the differences.  For example, if the current target has a 
higher speed than the old target of the best case, then we 
allocate less time to conduct the negotiation.  If the agent is 
performing more tasks currently than it was when the best 
case happened, then we want to use less CPU resources.  
Furthermore, the CBR Manager modifies the parameters 
based on the outcome of the best case.  If the negotiation of 
the best case failed and it was because of the negotiation 
running out of the allocated time, then we plan for more 
time.  If the negotiation failed due to lack of CPU resource, 
then we ask for more CPU.  In this manner, we are able to 
learn from our previous experiences a “good-enough, soon-
enough” set of negotiation strategies and how to avoid 
repeating past failures.   
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4.5 Case Storage and Learning 
After a negotiation is completed (successfully or 
otherwise), the agent delegates the case to the CBR 
Manager for storage and learning.  In our case storage 
design, we perform two types of learning: incremental and 
refinement, as shown in Figure 2. 
 

 
Figure 2  Case-based learning in our agents.  First we compute 

the difference between the new case and the existing casebase.  If 
the minimum difference between the new case and any case in the 
casebase is greater than a pre-determined threshold, then we store 

the case.  Otherwise, if the size of the casebase is greater than 
another pre-determined threshold, then we replace the least 

different case already in the casebase with the new case. 
 

First, we perform incremental learning.  We match the 
new case to all cases in the case base and if it is 
significantly different from all other existing cases in the 
case base, then we store the case in the case base.  When we 
compute the difference between a pair of cases, we 
emphasize more on the case description than the 
negotiation parameters since our objective here is to learn a 
wide coverage of the problem domain.  This will improve 
our case retrieval and case adaptation.  So, we learn good, 
unique cases incrementally. 

Second, since we want to keep the size of the case base 
under control, especially for speed in retrieval and 
maintenance (since our problem domain deals with real-
time target tracking), we also perform refinement learning.  
If the new case is found to be very similar to one of the 
existing cases, then we compute (1) the sum of differences 
between that old case and the entire case base (minus the 
old case) and (2) the sum of differences between the new 
case and the entire case base (minus the old case).  If the 
second sum is greater than the first sum, then we replace the 
old case with the new case.  In this manner, we are able to 
increase the diversity of the case base while keeping the 
size of the case base under control.  As a result, we 
gradually refine the cases in the case base. 

 

5. RESULTS 
We have built a fully-integrated multiagent system with 
agents performing end-to-end behavior.  In our simulation, 
we have four autonomous agents and a Tracker module.  
The Tracker module is tasked to accept target 
measurements from the agents and predict the location of 
the target.  The agents track targets, and negotiate with each 
other.  We have tested our agents in a simulated 
environment and also with actual hardware package of 4 
sensors and 1 target.  For the following experiments, there 
was only one target moving about 50 feet between two 
points. 
 
5.1 Different Negotiation Behaviors  
One of the experiments that we conducted was on the 
effects of different agent behaviors on negotiations: (1) 
Behavior I – agents only track but do not negotiate, (2) 
Behavior II – agents negotiate using a reduced set of cases, 
and (3) Behavior III – agents negotiate using all cases.   
 Figure 3 graphs the number of messages sent per agent 
cycle for each type of agent behavior.  Behavior I did not 
have any sendMessage events since agents could not 
negotiate.  And as a result, it actually had more target 
measurements as it had the highest number of sendTracker 
(sending a target measurement to the Tracker module).  
Agents using the reduced case bases negotiated a bit more 
than those using the full case bases.  This is probably 
because the negotiation strategies derived from the reduced 
case bases were less efficient than those derived from the 
full case base, since the latter covered a wider domain 
space.  Incidentally, as a result of more efficient 
negotiations, the agents performing behavior III were able 
to conduct more target measurements than those performing 
behavior II.  Thus, this indirectly shows that agents are able 
to utilize the case-based reasoning to learn negotiation 
strategies to negotiate more efficiently, and to track a target 
more frequently. 

Figure 3  Number of messages sent per agent cycle vs. types of 
agent behavior 
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 Figures 4 and 5 illustrate that the agents are able to 
learn negotiation strategy using case-based reasoning to 
negotiate more successfully and to track targets more 
accurately.  Figure 4 shows the percentage of successful 
negotiations vs. different types of case bases.   The ‘to’ 
column denotes the success rate of an initiating agent; the 
‘from’ column denotes that of a responding agent.  As we 
can see from the graph, since the negotiation strategies 
derived from the full set of case bases are more efficient, 
the agents were able to conduct more successful 
negotiations.  Figure 5 shows the tracking accuracy of the 
different agent behaviors.  The ‘DX’ column denotes the 
errors in foot along the x-axis; the ‘DY’ column denotes 
those along the y-axis.  As we can see from the graph, 
without negotiations, the tracking accuracy was the worst.  
Agents negotiating using the full set of case bases gave the 
best tracking accuracy.   

Figure 4  Percentage of successful negotiations vs. types of case 
bases 

Figure 5  Tracking accuracy vs. different agent behaviors 
 
Figure 6 shows the dynamic relationships among our agents.  For 
example, agent 1 negotiated with agent2 about 17% of the time, 
with agent about 3 52%, and with agent4 about 31%.   
 
 
 
 
 

Figure 6  Percentage of total negotiations among agents 
 

5.2 Negotiation Outcomes  
Table 1 shows the relationships between outcome types and 
the average number of iterations, the average message 
volume processed, and the message length.  This allows us 
to analyze how a negotiation succeeded or failed.  Some 
interesting observations are: 
(a) When an agent outright agrees to perform a requested 

task, or rejects to do so, or suffer a channel jammed or 
an out-of-time failure, the number of iterations is 1 or 
2.  This follows directly from the way our agents 
negotiate. 

(b) When a rejection occurs (initiatingReject and 
respondingReject), the average number of iterations is 
very high (6 or 7.76, respectively).  This is because 
before a responding agent rejects a request, it has to go 
through argumentative-negotiation with the initiating 
agent.   The corresponding average message volume 
sent is also very high (850.8 or 1041.4, respectively).   

(c) A channel jam occurs usually after 3.79 iterations for 
the initiating agent and after 4.41 iterations for the 
responding agent.  This indicates that maybe we may 
want to complete our negotiations before 4 iterations.   
A channel jam could be due to message loss, channel 
jammed, or busy agent not responding. 

(d) An out-of-time failure occurs usually after 3.17 
iterations for the initiating agent and after 4.52 
iterations for the responding agent.  These two 
numbers are similar to those regarding channel jam 
failures.   

(e) When a negotiation is successful, the average message 
volume is 553.7 for initiating and 577.9 for 
responding.  So, in general, it is about 560 characters 
per successful negotiation.  If it is an outright 
agreement, then it is around 250 characters.  When a 
negotiation fails because of channel jam or out-of-time, 
the average message volume is between 454 and 629 
characters.  When a negotiation fails because of the 
initiating agent’s failure to convince the responding 
agent, the average message is about 850 or 1041, for 
initiating and responding agents, respectively.   
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 count ave. iter. ave. msg. volume ave. msg. length 
Total 543 3.99 550.8 180.0
OutrightAgree 54 2 248.9 124.4
OutrightReject 41 2 217.7 108.9
OutrightJammed 60 1 117.7 117.7
OutrightOutOfTime 12 1 111.0 111.0
initiatingSuccess 33 3.73 553.7 148.4
initiatingReject 74 6 850.8 141.8
initiatingJammed 68 3.79 566.1 149.4
initiatingOutOfTime 35 3.17 454.6 143.4
respondingSuccess 34 4.09 577.9 141.3
respondingReject 74 7.76 1041.4 134.2
respondingJammed 37 4.41 619.9 140.6
respondingOutOfTime 21 4.52 629.0 139.2

Table 1  Outcomes and messages. outrightAgree means the 
responding agent agreed without negotiation; initiatingSuccess 

means the initiating agent came to an agreement with the 
responding agent after negotiation; and so on. 

 
From the above experiment, we also conclude the 

following: 
(a) A rejection after negotiation was expensive: it took an 

average number of iterations of about 6 and 7.76, for 
initiating and responding agents, correspondingly.  It 
also took an average message volume of about 850 and 
1040, for initiating and responding agents, 
respectively.  The significance here is that we had 
many such occurrences—rejection after full 
negotiations.  

(b) Overall, the reasons of failure were: rejected after 
negotiations (39.3%), out of time (18.4%), and channel 
jammed (42.3%) for responding agents; and rejected 
after negotiations (49.6%), out of time (11.0%), and 
channel jammed (38.8%) for initiating agents.  This 
calls for a better design of the communication 
infrastructure and we are currently looking into 
building a socket-based communication object that 
better speed and latency. 

(c) Successful negotiations were mostly achieved via 
outright agreement (65.06%). 

(d) The percentage of success decreased as more 
arguments were sent.  For example, when no 
information was sent, the success rate was 54/116 = 
46.6%; when one piece of argument was sent, the rate 
was 19/67 = 28.4%; when there are two pieces, the rate 
was 4/30 = 13.3%; when there are three pieces, the rate 
was 6/109 = 5.5%.  This means that the first argument 
carries the most weight in our domain problem where 
communication channel jam is common.   

(e) As discussed in Section 4.2.4, arguments are divided 
into the current status of the world, the current status of 
the agent, and the current status of the target.  In this 
experiment, we also measured the distribution of rules 

used in computing the evidence support for a 
responding agent.  World-related heuristic rules were 
used most (90.5%), self-related heuristics came in 
second (77.7%), and target related heuristics came in 
last (54.0%).  This information allows us to better 
design our heuristics to improve the negotiations. 

 
6. FUTURE WORK 
There are other CBR and negotiations issues that we plan to 
investigate.  Of immediate concerns to us are the following.   
(1) We plan to study the learned cases and the overall 

‘health’ of the case bases.  We plan to measure the 
diversity growth of each case base (initiating and 
responding) for each agent.  We also plan to examine 
the relationships between an agent’s behavior (such as 
number of tracking tasks, the number of negotiation 
tasks, the CPU resources allocated, etc.) with the 
agent’s learning rate.  For example, if an agent is 
always busy, does it learn more or learn less, or learn 
faster or more slowly?  We also want to investigate 
when agents stop learning where no new cases are 
stored and the learned case bases of the agents are 
similar. 

(2) Since we also negotiate for CPU resources, we plan to 
investigate whether dynamic resource scheduling (at 
the operating system level) as a result of multiagent 
negotiations leads to convergence or oscillations in 
CPU allocations among the agents sharing the same 
operating platform.   

(3) We plan to expand our real-time profiling during 
negotiation.  We want to reflect more changes in an 
agent at each negotiation step.  One critical issue here 
is whether we describe each case with its real-time 
adjustments so that these adjustments can be applied to 
the current negotiation, or we build simple cases that 
the negotiation thread can retrieve to help deal with 
real-time situational changes.  Tradeoffs are the 
complexity of the cases and speed in case-based 
reasoning.  In general, we would like to have learning 
capabilities of real-time agent negotiation strategies. 

(4) We plan to investigate the benefits of the ‘good-
enough, soon-enough’ solutions, as opposed to a 
baseline multiagent approach in which all negotiation 
strategies are derived from scratch based on the 
information collected from the different managers of 
the agent.  Then, we plan to evaluate the results (in 
tracking accuracy, in speed, in the number of messages 
exchanged, etc.) of the baseline approach against the 
CBR approach.  The key question is, within how many 
microseconds, for example, can the CBR approach 
produce a set of usable negotiation strategies in time-
critical situations as opposed to the baseline approach?   

7. CONCLUSIONS 
We have proposed a multiagent approach to distributed 
resource allocation and task allocation problems, 
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particularly to multi-sensor tracking of targets in a real-time 
environment.  The approach integrates case-based 
reasoning to derive and learn negotiation strategies that are 
applicable to situated, real-time problems.  Our negotiation 
protocol is argumentation-based in which the initiating 
agent attempts to persuade the responding agent to perform 
a task or give up a resource by iteratively supplying useful 
arguments.   

We have described our agent architecture and behavior 
briefly and our CBR approach thoroughly.  Our approach 
allows the agents to learn agent negotiation strategies based 
on previous experiences, adapt to the current situations, and 
avoid repeating past failures.  Our CBR can also learn new 
cases to improve the diversity while maintaining the size of 
the case bases.  More importantly, we have shown that CBR 
with good cases helped our agents to negotiate more 
efficiently and more successfully, and that indirectly helped 
our agents track their targets more frequently and more 
accurately.  The CBR and negotiation synergy allows us to 
address real-time resource allocation and efficient 
knowledge management as we aim at  (1) reducing 
communication traffic so that knowledge updates and 
exchanges are performed only when necessary and (2) 
improving the response time to time-critical events using 
“good-enough, soon-enough” negotiation strategies.  We 
have also presented comprehensive analyses on the 
negotiation outcomes and the arguments used based on our 
experimental results. 
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