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Abstract 
 
 
In this paper, we present a conceptual frame-
work that combines genetic algorithms and 
case-based reasoning (CBR) to first learn a 
genetic hierarchy of cases and then maintain 
and refine the casebase as the system runs.   
We propose to use genetic algorithms to gen-
erate useful cases since there is not any actual 
cases to bootstrap our CBR module.  We use 
these evolved cases to develop and test the 
various stages of the CBR module such as 
evaluation and retrieval, adaptation, and learn-
ing for refining the module.  We propose a fit-
ness measure of a case that is based on not 
only the combination of its attribute values, 
but also on it being a member of the casebase, 
which involves its utility in the CBR module.  
To promote the synergy between CBR and ge-
netic algorithms for genetic learning, we pro-
pose and describe several concepts such as 
meta-genetic code, evolutionary adjustment, 
refinement, incompatibility, and breakthrough, 
population migration, granularization, and in-
jection, and deterministic mating. 

1 INTRODUCTION 
One important research issue in building a case-based 
reasoning system is the collection of cases for the case-
base.  As pointed out in (Kolodner, 1993, pp. 547-555), 
there are three general approaches to collecting cases: 
(1) adaptation from existing databases, (2) outcome of 
an automated or interactive problem-solving system, 
and (3) knowledge acquisition from domain human 
experts.  These approaches are not practical for our 
problem domain.  Our problem domain is distributed 
resource allocation and constraint satisfaction.  Particu-
larly, the application goal is multiagent target tracking 
in a real-time and dynamic environment.   An agent 

negotiates with its neighboring agents for resource 
sharing and task collaboration.   The actual database of 
an event (a target being spotted and tracked) is highly 
complicated and involved, with layers of command 
decisions and actions-reactions from various view-
points.  In addition, these events were not recorded in a 
way that resembles a multi-agent, negotiation-based 
environment.  Thus, the adaptation would require much 
research effort.  To date, there is not yet a system that is 
able to solve the target tracking in a bottom-up, multi-
agent architecture, and we may not rely on an existing 
system for cases.  Finally, knowledge acquisition has 
always been a bottleneck in knowledge engineering 
(Nwana et al., 1991, Boose, 1993) and even more so in 
our domain since it is difficult for military commanders 
(in charge of multisensor target tracking) to articulate 
traditionally centralized decision making process in 
terms of distributed decision making, and, as a result 
domain human experts are not readily available.  There-
fore, we are not able to collect cases via traditional 
mechanisms. 
We turn to genetic algorithms (e.g., Goldberg, 1989) for 
generating good cases for our casebase.  Genetic algo-
rithms do not require as much domain knowledge in 
order to operate, compared to CBR that work directly 
with the system.  We will be able to generate different 
cases based on a set of primitive case descriptors.  Ge-
netic algorithms are also dynamic such that we can 
modify, maintain, and generate new generations of 
cases without having to discard existing cases as our 
system progresses to handle more complicated scenar-
ios.   
The goal is to use genetic algorithms to generate a hier-
archy of cases first and use CBR to maintain the case-
base, which in turn refine the hierarchy.  At the 
boostrap stage, fit-enough cases are sent to the CBR 
module for a promotion, and high-utility cases are 
eventually stored in the casebase.  Then, as the system 
runs, new cases are encountered and added to the case-
base.  The activity triggers different evolutionary opera-
tions and population movements both in the casebase 
and ultimately in the genetic hierarchy.  In this manner, 
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the hierarchy is refined: new cases are evolved and 
promoted, and old cases are forgotten.  In a way, the 
genetic hierarchy is the nursery for offspring; the case-
base becomes the work environment where offspring 
are tested for their usefulness.  In addition, the CBR is 
able to encounter new cases itself and inject those into 
the nursery.  This synergy of CBR and genetic algo-
rithms involves several new genetic learning concepts: 
meta-genetic code, fitness reduction and evolutionary 
incompatibility, population migration and evolutionary 
adjustment, population granularization and evolutionary 
refinement, and population injection and evolutionary 
breakthrough. 
In this paper, we first describe our problem domain 
furher.  Then we discuss some related work on genetic 
algorithms in case-based reasoning. Then, in the fourth 
section, we present our concepts for genetic learnig 
nand case generation.  We address a variety of issues 
from phenotype-genotype mapping to fitness measure.  
Then we discuss some issues stemming from the 
conceptual framework.  Finally we conclude.  

2 PROBLEM DOMAIN  
Our problem domain is real-time resource allocation 
and constraint satisfaction.  In the environment, there 
are sensors and targets.  The objective is to track as 
many targets accurately as possible.  However, re-
sources are limited; the communication channels, the 
computing power, the CPU allocation, and other facili-
ties are limited and have to be shared.  In addition, 
sensors are constrained in coverage.  They have to 
cooperate in a time-critical fashion in order to measure 
the target from different locations to obtain accurate 
triangulation readings for the target’s position and ve-
locity.  The domain also calls for a strict bottom-up, 
distributed decision making hierarchy for robustness 
and reactiveness.  That is, there is not any master agents 
that schedule tasks and manage resources for subordi-
nate agents.  Each agent has to negotiate with its 
neighbors to convince them to give up CPU resource, 
share communication bandwidth, turn on their sensing 
sectors, and other tasks.  Each agent is intelligent, situa-
tion aware, autonomous and reflective.  Each is capable 
of non-trivial deliberation and is also able to react 
quickly to unexpected events such as an incoming tar-
get, or a CPU allocation shortage.  One requirement is 
that due to the time-criticality, negotiations have to be 
performed quickly and efficiently. 
In our approach, we use an argumentative negotiation 
model in which the initiating agent tries to convince the 
responding agent to perform a requested task by supply-
ing arguments during negotiation.  In this model, each 
agent is motivated to optimize its local resource but to 
also maximize the global goal of target tracking.  
Hence, a negotiating agent needs to know when to abort 
and give up on a negotiation, when to agree to a re-
quest, what (and in what order) arguments to send over, 
how much CPU resources to use, etc.  The negotiating 

agent encapsulates these decision points in a negotia-
tion strategy.  Instead of deriving the negotiation strat-
egy from scratch for each negotiation, we use CBR.  
The CBR module collects the current status data from 
the monitoring modules of its agent, retrieves the most 
similar case from the casebase, adapts the solution (i.e., 
the negotiation strategy) to the current situation, and 
conducts the subsequent negotiation accordingly.   

3 BACKGROUND  
Most literature in case-based reasoning puts more em-
phasis on case evaluation, retrieval, adaptation and 
storage as opposed to case collection or the building of 
the casebase (Aha, 1991, Kolodner, 1993, Aamodt and 
Plaza, 1994, Watson and Marir, 1994, Lopez de Manta-
ras and Plaza, 1997).  In research works where case 
collection were discussed, the emphasis was on case 
representation and indexing, with a raw form of each 
case available via adaptation from a database, from a 
working system, or from human expert knowledge.  
Our domain, therefore, offers a unique challenge to our 
case-based design, in that cases have to be generated, 
automatically. 
One related work in automated case generation is that 
of (Flinter and Keane, 1995).  The authors proposed a 
system called TAL that employed case-based reasoning 
techniques for chess playing.  They concentrated on the 
automatic generation of suitable case knowledge using 
a chunking technique on a corpus of grandmaster 
games.  However, in the work, the authors had a collec-
tion of game situations from which cases were gener-
ated.  In our domain, such game situations are not fea-
sible. 
Maher and her group (Maher and Gomez de Silva 
Garza, 1996) have, on the other hand, pioneered the 
work in using genetic algorithms for case adaptation in 
the domain of structural design of tall buildings.  The 
driving issue was that in order to adapt past experiences 
to new situations, case-based reasoning algorithms 
generally rely on domain knowledge and heuristics.  
The reliance required all adaptation scenarios be fore-
seen and recognized, which was infeasible due to its 
size and incompleteness.  Therefore, they have explored 
the use of a knowledge-lean method based on genetic 
algorithms for the subtask of case adaptation and have 
applied their systems successfully.  Maher’s work dem-
onstrates the viability of genetic algorithms in enhanc-
ing case-based reasoning. 
In another related work, Purvis and Athalye (1997) also 
used genetic algorithms to improve case adaptation.  

4 GENETIC LEARNING AND CASE 
GENERATION  

In general, a case constists of three sections: the 
situation or problem space, the solution space, and the 
outcome.  In what follows, we describe these sections 
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for our particular multiagent case-based negotiation 
application. 
The situation space includes the profile and status of the 
current situation that an agent experiences.  It includes 
the profile of the agent such as the number of tasks 
currently being managed by the agent, the number of 
currently active negotiation threads, whether the 
communciation channel is busy, the current usage of 
ocmputer resource, etc.  It also includes the profile of 
the sensor that the agent manages such as the 
specifications (range, gain, sampling size, orientation, 
and position), the active sensing sector, the battery 
power, etc.  It also includes the velocity and position of 
the target.  It also describes the negotiation neighbor 
such as the past history of the negotiations between the 
two agents, the helpfulness of the neighbor, the 
usefulness of the neighbor, etc.  Finally, it may also 
include the status of the environment such as high alert 
situation, battlefield situation, etc.   
The solution space defines the negotiation strategy.  A 
negotiation strategy determines the number of 
interaction steps, the time allocated, and the CPU 
allocated.  For an initiating case, the solution space also 
includes a ranking of information pieces to be used as 
arguments by the initiating agent, dictacting how the 
arguments are to be sent.  For a responding case, the 
solution space instead includes a persuasion function 
and its associated parameters and a persuasion 
threshold used by the agent to judge the evidence 
support of the received arguments. 
The outcome section documents the outcome of the 
negotiation.  If the outcome was a failure, then the 
reason for the failure is also recorded.  It may also 
include the number of actual interactive steps, the 
actual elapsed time, the amount of information passed, 
the utility of the negotiation (the difference between the 
initial offer/response and the final agreement, or the 
difference between the initial offer/response and the last 
offer/response before termination), etc. 
Before moving further, we briefly describe three 
features of our case-based negotiation model here: 
First, each agent has two sub-casebases in its 
casebase—one for initiating a negotiation and one for 
responding to a negotiation.  
Second, our proposed case evaluation and the best case 
selection algorithm is multi-tiered.  First, we compare 
the new case with the old along situation space.  Then 
we select N most similar cases that pass a similarity 
threshold.  For these N cases, we evaluate the outcome 
space.  The selector favors negotiations that are short, 
with minimal information passing, minimal number of 
steps, minimal number of changes in the negotiation 
behavior, and maximal utility.  After this selection, if 
there is only one best case, then the selection and re-
trieval is complete.  Otherwise, we compare the cases 
along the outcome of the negotiation.  We favor a suc-

cess over a failure, and a failure with almost-there final 
negotiation status over a failure without fixable repairs.   
Third,  in traditional genetic algorithms, the search 
space is explored to find a fit solution to a problem, but, 
in our domain, we desire to obtain many different cases 
to build our case base. Our approach also considers the 
post-creation maintenance and refinement of the case-
base.  After the development and testing period, the 
genetic learning is temporarily halted, as we will by 
then have obtained enough cases to cover adequately 
some real situations encountered by the system as it 
becomes operational.  However, the hierarchy is still 
kept and will help in updating case fitness, forgetting 
some cases, re-populating along some evolution lines, 
etc.  So the genetic learning is always present, active 
during the creation of the casebase and dormant as the 
system stabilizes.    

4.1 PHENOTYPE-GENOTYPE MAPPING 
In our problem domain,  the phenotype is the taxonomy 
of a case, profiles, status, negotiation parameters, and 
the negotiation outcome.  To perform machine evolu-
tion efficiently, we re-represent the phenotype with the 
genotype, which is usually a string of 0s and 1s, encod-
ing the information that produces the phenotype.   
In our case, binary attributes can be directly translated 
into 0s and 1s.   
For multi-valued attributes, we perform feature exten-
sion.  For example, a sensor has three sectors, and only 
one can be active.  The feature active_sector has four 
possible values: 0 (no sector is active), 1, 2, or 3.  To 
code this information in binary, we extend the feature 
active_sector to active_sector0, active_sector1, ac-
tive_sector2, and active_sector3, where active_sector0 
indicates whether there is an active sector.  So, if a 
sensor’s second sector is active, then the following 
string completely encodes the activity: 1010. 
For variable-length attributes, we perform feature pad-
ding.  For example, the outcome of a negotiation can be 
a success or a failure.  If the outcome is a success, the 
case does not have any more related information to add.  
But if the outcome is a failure, then the case needs to 
document whether the negotiation failed because (1) the 
time allocated for the negotiation ran out, (2) irrecon-
cilable differences between the two negotiating parties, 
(3) the initiator decides to abort the negotiation due to 
some event, (4) the responder decides to abort the nego-
tiation due to some event, (5) a communication channel 
failure, (6) one of the sensors became malfunction, (7) 
no response from the negotiating partner.  We perform 
feature extension to convert the failure-related reason 
to binary reason_n fields.  For a case that has a success-
ful negotiation, we also have such fields, which will 
remain always as a string of 0s.  Note that during the 
evolution, these strings will not change their values.  
This limitation on reproduction, mutation, and cross-
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over during genetic learning can be ensured by always 
checking the success value beforehand. 

4.2 SURVIVAL VS. ARCHIVAL 
At each generation, we perform a fitness measure of 
each case.  Only cases that are fit survive and can be 
used for the creation of the next generation.  Among 
those cases that survive, we also perform an archival 
measurement to see whether a case should be promoted 
to the case library.   
To do so, we evaluate the new recruit against the cases 
that are currently in the case library, following the 
comparison weights and features used in our case 
evaluation and the best case selection methods.  If the 
new recruit is deemed unique, then it is promoted.   
After a case has been promoted, its fitness in the evolu-
tion is decreased.  The decrement is based on the 
uniqueness of the case, previously calculated when we 
evaluate the new recruit.  The more unique a case is in 
the casebase, the more the fitness of the case is reduced.  
This is to ensure that unique cases can remain unique 
and representative, thus increasing their utility in the 
case-based reasoning process.  
As will be discussed in subsections 4.6, 4.7, and 4.8, the 
fitness of a case can be strengthened based on the usage 
statistics of the case.  For example, if a case A is found 
to have been retrieved as the best case at a high fre-
quency and the average similarity between the new case 
and the case A is relatively low, that means the case A is 
being stretched out to cover other not-so-similar cases.  
The fitness of this case is then increased, increasing its 
chance of reproduction in the genetic evolution. 

4.3 INCOMPLETE CASES 
To deal with cases with incomplete information, we 
introduce the meta-genetic code.  Each case thus has 
two codes, the meta-genetic and the original genetic 
code.  The meta-genetic code specifies which attribute 
value is missing, 0 for absent, and 1 for present.  Each 
code undergoes its own reproduction, mutation, and 
crossover.  Note that the main evolution hierarchy is 
still based on the original genetic code.  The meta-
genetic code is generated for a new case by combining 
the new case’s parents’ meta-genetic codes.  Hence, the 
meta-genetic code does not affect the growth directly.  
However, the meta-genetic code does influence the 
uniqueness of a case in a case library, which eventually 
affects the fitness of the case in the evolution hierarchy. 
The use of meta-genetic coding allows the population to 
evolve along with the casebase.  It enhances the practi-
cality of the cases generated (since information incom-
pleteness is present in our domain) and indirectly ties 
the fitness of a case based on partially its incomplete-
ness. 
As the casebase becomes more complete as the system 
becomes operational in the future, cases with more 

complete information will replace cases with incom-
plete information.  If a case is replaced in the casebase 
in this manner, then, in the genetic hierarchy, its fitness 
stays the same but its meta-genetic code is replaced. 

4.4 UNCERTAIN CASES 
Similarly, in our domain, we have to deal with uncer-
tain information.  Sensors attach uncertainty in what 
they detect.  Thus, in addition to the absolute meta-
genetic code, we also explore the possibility of a string 
of uncertain meta-genetic code.  Each feature or de-
scriptor value will be modified by a binary code 
CERTAINTY with low (0) and high (1) as the values.  
The usage of this uncertain meta-genetic code will be 
similar to that for incomplete information. 

4.5 NOISY CASES 
To prevent staleness in the casebase, we may want to 
inject noise into evolution hierarchy and to the casebase 
to increase its robustness and coverage.  To do so, we 
may randomly toggle q bits of a genetic code of a case, 
after it has been promoted to the casebase.  The noise 
injection will only be carried out periodically during the 
lifecycle of the casebase.  Note that we do not corrupt 
the evolution directly since, in a way, the evolution is 
noisy in its own right.  We do corrupt the casebase, 
which indirectly affects the evaluation of the unique-
ness of a new recruit for the next generation. 

4.6 FORGETTING CASES AND 
EVOLUTIONARY INCOMPATIBILITY 

As the casebase becomes more complete and the system 
stabilizes, we will be able to compute the usage statis-
tics of the cases in the casebase.  Cases that are used 
often will have high utility; cases that are used in high-
priority, high-impact tasks will have high utility. 
If a case has a very low (close to zero) utility, then it 
will be discarded from the casebase and be forgotten.  
Correspondingly, the case’s fitness measure will be 
lowered, with a degree associated to how much its 
utility measure is below par. 
We call such a fitness reduction a situation of evolu-
tionary incompatibility.  A genetic code becomes less 
fit due to its incompatibility to its environment. 
This fitness reduction concept has another implication.  
We believe that as the system stabilizes, the genetic 
evolution will learn to specialize itself such that the 
fitter portion of the population in the hierarchy of gen-
erations consists of members with high utility in the 
casebase.  In this way, we can build different hierar-
chies for different tasks and applications of the same 
domain. 
In addition, case forgetting in this framework is less 
risky.  When a case is forgotten, it is removed from the 
case base but still remains in the genetic hierarchy with 
a low fitness measure. It may still be of use as new 
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cases are introduced and it may evolve and mate to 
adapt to the new environment and its offspring may 
then be promoted to the casebase.  This allows the CBR 
module to manage dynamically its casebase according 
to the environment the system observes efficiently and 
without losing the knowledge that it has once learned 
and may become useful again in the future. 

4.7 CASE DISTRIBUTION 
To obtain representative cases to (1) reduce storage 
space, (2) avoid degradation in case evaluation and 
retrieval (e.g., the speed deteriorates as the number of 
cases in the casebase increases), and (3) conduct accu-
rate strategy adaptations, we must pay attention to the 
case distribution.  If a case has been retrieved very 
frequently and non-trivial and arduous adaptation has 
been performed for each retrieval, then that means, 
either (1) the case in the casebase has to be revised if 
the matched cases have concentrated more or less at a 
single focus, or (2) the coverage of the case is being 
strained and we need more similar yet different cases to 
support the coverage.  If the former occurs, we call the 
situation a case shifting or a population migration due 
to evolutionary adjustment.  If the latter occurs, we call 
the situation a population granularization due to evolu-
tionary refinement.  

4.7.1 Population Migration and Evolutionary 
Adjustment 

A population migration occurs when some of its fea-
tures need to be modified (or a case needs to be shifted 
along some dimensions).  When such modification is 
necessary, we will have by then a group of closely 
similar case examples.  We first compute the represen-
tative, imaginary core case of the group.  We then re-
place the case in question with this core case.  
Now, to perform the evolutionary adjustment, we first 
attempt to match the core case to a case in the hierar-
chy.  If such a matching is present, we upgrade the 
fitness of the found case in the hierarchy, and the ad-
justment is complete.  However, if such a matching 
cannot be identified, then we search for a pair of suit-
able genetic codes to perform a deterministic mating.  
The pair of codes must be able to combine to arrive at 
the exactly code string of the core case.  If found, we 
add the core case to the hierarchy and give it a high 
fitness measure.  If this dual-parent search fails, we 
find the nearest case in the hierarchy tree and mutate it 
towards the core case, and perform a uni-parent search, 
and repeat the mutation and search until success.   
This evolutionary adjustment is a very useful concept in 
narrowing the search in the overall genetic learning 
phase.  It is as if we have observed the offspring of a 
mating or a mutation that happened some generations 
ago, and that offspring has proven to be very useful in 
our domain, and thus we are trying to perform archae-
ology to locate the missing links between last known, 

closest genetic code and the current ones.  This enriches 
the evolution hierarchy.  

4.7.2 Population Granularization and Evolution-
ary Refinement 

A population granularization occurs when it has be-
come costly in adapting cases from a retrieved case A 
when the retrieved case A is frequently retrieved.  Note 
that before a population granularization is decided, one 
must weigh the additional cost of evaluating and re-
trieving more cases as a result of the granularization 
and the saved cost of constantly adapting cases from the 
case in question.  If the latter outweighs the former, 
then one can proceed with the granularization.  Usually, 
when this is observed, that means the case A is being 
stretched out to cover too much space in the casebase. 
We perform granularization conservatively.  Out of a 
group of new cases (that surround the original case), we 
pick the farthest new case from the original case as the 
case to add to the case library.  We reflect that addition 
in the genetic hierarchy via evolutionary refinement. 
The evolutionary refinement attempts to refine the 
resolution of a lineage by adding a new branch.  First, 
we increase the fitness of the original case, based on the 
number of members in the group of new cases that 
surround it.  This gives it a stronger chance in its de-
scendants being fit and getting promoted to the case-
base.  Second, we perform a similar parent search and 
deterministic mating for the farthest new case.  The 
only difference is that we narrow the search to the de-
scendants and permutations of the original case, since 
we are trying to refine that particular section of the 
hierarchy.  

4.8 POPULATION INJECTION AND 
EVOLUTIONARY BREAKTHROUGH 

In our approach to genetic learning, no cases may be-
come extinct.  They may, however, become unfit and 
stop taking part in the evolution temporarily until a new 
case or new blood is injected into the hierarchy. 
A population injection occurs when a new case, which 
has a very low similarity to other existing cases in the 
casebase, is encountered and has a high utility.  Such a 
new case is added to the casebase, and will be intro-
duced into the genetic hierarchy according to what we 
term as an evolutionary breakthrough. 
This new case is thus added to the hierarchy and subse-
quent reproduction, mutation, and crossover immedi-
ately follow.  The special characteristic of the break-
through is that this case will mate with as many final 
descendant of every branch of the hierarchy as possible, 
making its presence felt.  All children will then be 
evaluated and those deemed fit will be recruited to the 
casebase.  Since we see this new case as new blood to 
the population, we do not attempt to perform dual-
parent or uni-parent searches to find its ancestors in the 
existing hierarchy. 
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This evolutionary breakthrough is an aggressive search 
since it sees this new blood as a refreshing addition to 
the hierarchy and attempts to populate its branch explo-
sively to bring it up to par with other established 
branches.  This breakthrough may contaminate the 
population and, hence, the injection should not be done 
too often. 

4.9 FITNESS PROPAGATION 
After the fitness of a case is modified, the effect must 
be propagated down to its descendants.  Here, we do 
not propagate the change up to its ancestors. 
If the fitness of a case has been reduced, then that 
means the case has become less fit in the current envi-
ronment.  Since all generated descendants cannot be de-
generated, we simply propagate the effect down to 
reduce the fitness of each descendant.  If a descendant 
has previously been promoted to the casebase, we dou-
ble-check the case to see whether it is still worthy to 
remain in the casebase.  If the case has a very low util-
ity value, then we demote the case.  If the case has a 
very high utility value, then the case remains and we 
stop the propagation along that branch at that point.   
If the fitness of a case has been increased, then that 
means the case has become fitter in the current envi-
ronment.  Two lines of actions follow.  First, we update 
the change down to all its descendants.  For all descen-
dants that have consequently become fit, we send them 
for a possible promotion to the casebase.  Second, de-
pending on the increase, we also perform a certain 
amount of evolving at each affected node to compen-
sate the missed opportunities when the branch was 
dominated by other fitter cases. 

4.10 FITNESS MEASURE 
As we have mentioned in previous subsections, every 
new child (or case) is evaluated to obtain a measure of 
fitness.  We then perform further generation on fit-
enough children and also send fit-enough children to 
the casebase for possible promotion.  A promotion is 
based on the uniqueness of a case in the casebase.  A 
demotion is based on the utility or the usage statistics of 
a case in the casebase.  Then, the fitness of a case in the 
hierarchy can change due to evolutionary incompatibili-
ties, adjustments, refinements, and breakthroughs.  
There are two types of fitness measurements: (1) intrin-
sic fitness—measuring the case by itself, and (2) envi-
ronmental fitness—measuring the case by its member-
ship in the casebase.  This enables a very useful syn-
ergy between our genetic learning mechanism and our 
CBR module. 

4.10.1 Intrinsic Fitness 
The proposed intrinsic fitness is computed for each 
newly generated child in the genetic evolution phase.  It 
includes the following: 

First, the fitness of the parents or parent is reflected in 
the child’s fitness measure. 
Second, our agent is based on a case-based reflective 
negotiation model.  To be reflective, an agent should 
know about itself, i.e., the profile of itself and the sen-
sor under its control, the resources that it has, the 
neighbors, and the world.  The information translates 
into arguments that an initiating agent uses to convince 
its counterpart, and into persuasion values that a re-
sponding agent uses to evaluate its counterpart’s argu-
ments.  How good the arguments are and how coopera-
tive the persuasion values are depends on the specific 
combinations of status and profiles that he agent has of 
itself, its neighbors, and the world.  Thus, the fitness of 
a case is also measured by the status and profiles of the 
agent in terms of the strength of the arguments that they 
produce and the cooperativeness of the persuasion 
values that they produce.  In addition, we also infuse 
local and global goals in the mix.  Cases that optimize 
local resources are favored.  Cases that drive towards 
the global objective of target tracking are favored.  For 
example, a case where the initiating agent is extremely 
busy and the responding agent is relatively idle is fit 
because it would make the arguments from the initiator 
side strong and the persuasion threshold on the re-
sponder side relaxed.  A case that has three potential 
partners for an initiating agent to look for help is fa-
vored because that means it is more likely to have a 
three-sensor triangulation if the negotiation is success-
ful.  These fitness evaluation steps are encoded in do-
main-specific and common sense heuristics and are the 
cornerstone of the intrinsic fitness measure.   
Third, as discussed earlier in Section 4, an agent favors 
negotiations that are short, with minimal information 
passing, minimal number of steps, minimal number of 
changes in the negotiation behavior, and maximal util-
ity.  Thus, a case is more useful it has some of the 
above characteristics. 
Fourth, a case is more useful if it results in a success 
instead of a failure.  A case is also useful, in a failure, if 
there is a good explanation for its failure.   
Hence, the intrinsic measure of fitness of a child (or a 
case) is a weighted combination of (1) parental fitness, 
(2) status and profile of self, neighborhood, and world, 
(3) quality of the negotiation outcome, and (4) outcome 
of the negotiation.  The vector of weights allows us to 
examine the health of the population and the casebase 
from different angles. 
There is an important implication here.  When we gen-
erate cases, how can we say whether the negotiation is a 
success or a failure since there is not any negotiations 
taking place?  Remember that our genetic approach is a 
learning approach.  It updates the genetic hierarchy 
based on the field observations when the agents start to 
operate and negotiate with each other.  The casebase 
will undergo refinement and modification, which will 
affect the genetic hierarchy.  An initial genetic case will 
eventually be either replaced (due to evolutionary in-
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compatibility), or migrated (due to evolutionary ad-
justment), or supported with additional, more accurate 
cases (due to evolutionary refinement).  

4.10.2 Environmental Fitness 
In addition to the fitness of a case by itself, we also 
measure the environmental fitness of a case—that is the 
fitness of a case being a member in the casebase.  Only 
intrinsically fit cases are considered for a promotion to 
the casebase.  To be promoted, a case has to be unique, 
and uniqueness is part of the environmental fitness of 
the case.   Similarly, a resident case in the casebase 
faces a possible demotion if its environmental fitness 
such as utility value falters.  Changes in the environ-
mental fitness affect the intrinsic fitness in the hierar-
chy.  For example, a highly environmentally fit case 
will have a low intrinsic fitness, to protect the case’s 
uniqueness in the casebase.  
Our proposed fitness measure for a case being a mem-
ber of a casebase includes the following: 
First, a case is more fit in a casebase if it is more 
unique.  The uniqueness can be measured by the multi-
variate distance of the case from its closest neighboring 
case.  The further away a case is from its neighbors, the 
more unique it is.  This also means that the case is rep-
resentative of the domain it covers. 
Second, a case is more fit in a casebase if it has been 
retrieved more frequently.  If a case is frequently re-
trieved, then that means the case is very useful.  Thus, 
the case’s intrinsic fitness should be reduced in the 
genetic hierarchy to prevent further growth and to en-
hance the dominance of the case in the casebase.  We 
propose a simple cycle-based frequency calculator.  
Every time the CBR module retrieves a case, it stamps 
the case with the current agent cycle index.  Next time 
around, if the same is retrieved again, then the CBR 
module can use the interval between the old and new 
cycle stamps to compute the frequency; and then move 
the window for the next retrieval by replacing the old 
stamp with the new.  This also implies that we favor 
recency in our fitness measure.   
Third, we measure the proximity of a best case to the 
new case at every retrieval.  Suppose we retrieve the 
best case B for a new case A.  After adaptation, the new 
case A is used in a subsequent negotiation.  Finally, the 
new case is completed with the negotiation outcome.  
Now, we review the fitness of the best case B.  We 
compute the proximity of the new case with all existing 
cases in the casebase.  If it is found that the new case is 
closer to another case (other than B), then we lower the 
fitness of B.  If B is found to be the closest neighbor to 
A, then we increase the fitness of B.   
Further, we collect the average proximity of new cases 
stemmed from each best case.  If the average is large, 
then that means the best case is over-strained and is 
used to cover too large of a domain.  If the best case 
remains as the centroid of the new cases, then popula-

tion granularization and evolutionary refinement is 
needed.  If the best case and the new cases form two 
poles (with only the best case in one pole), then popula-
tion migration and evolutionary adjustment is per-
formed.  When one of the modifications occur, we 
lower the fitness of the best case and promote the fit-
ness of the newly adjusted or newly evolved case. 
Fifth, to keep the number of cases in the casebase small 
and asymptotic, we also incur a cost on promoting a 
new case to the casebase.  The motivation for this is to 
make sure that the casebase is small such that the simi-
larity evaluation during the retrieval and selection proc-
ess and the diversity measurement during the storage 
and learning process can be conducted quickly.  Sup-
pose that we set the maximum size of the casebase to K 
and adding the new case to the casebase would exceed 
K.  When this occurs, we locate the most similar case 
(situation, solution, and outcome spaces included) in 
the existing casebase for the new case.  Then, we com-
pute the diversity of the casebase as it is, and then we 
compute the diversity of the casebase with the most 
similar case replaced with the new case.  If the latter 
yields a higher diversity, which is the average of the 
Euclidean distance measure between each pair of cases, 
then we eliminate the old case from the casebase and 
introduce the new case.  Thus, the fitness of the old 
case is reduced since it is no longer in the casebase.  
The new case will inherit part of the environmental 
fitness from the old casebase that it replaces based on 
the similarity of the two. 
Sixth, one may assign domain-specific utility to the 
impact that leads from each case on the environment.  
For example, suppose the case ultimately leads to a 
successful tracking of a target with the accuracy of 
95%.  This may be factored into the environmental 
fitness measure of the case.  Note that between a suc-
cessful negotiation and a successful tracking, there are 
many steps that must be right—timing, sensing accu-
racy, communication speed, noise, and others and there-
fore this sixth factor should only contribute minimally 
to the fitness measure. 
Note that the environmental fitness strategically col-
laborates with the intrinsic fitness used in the genetic 
hierarchy to allow the various population maneuvers 
discussed in previous sections.  It also allows us to 
modularize our domain modeling into two different 
stages.  

5 DISCUSSIONS 
We employ the genetic learning approach not only to 
create the initial casebase but also to help maintain it.  It 
is an integral part of the whole system.  It is also a nice 
tool for monitoring the growth of the casebase and the 
genetic hierarchy. 
During the creation of the casebase, the genetic hierar-
chy serves as a bootstrapping basis.  It is bound to pro-
vide some seemingly fit cases to the casebase, and some 
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cases are bound to be accepted into the casebase, albeit 
with highly unlikely genetic coding.  For example, two 
highly unyielding agents should not come to an agree-
ment very quickly.  However, in our initial generation, 
we do not impose a rule to prevent such an offspring.  
However, if the offspring ever makes it to the casebase, 
it will eventually be discarded since its utility will be 
extremely low and the original offspring will suffer a 
fitness reduction. 
One critical issue is when to perform genetic learning.  
Since our application requires real-time response and 
reasoning, when a new case presents itself, we may not 
have the luxury to perform the aforementioned steps to 
adopt the case into the genetic hierarchy since the com-
putation is non-trivial.  Thus, one may wish to look into 
separating the genetic learning from the case-based 
reasoning.  First, all new cases will be added to the 
casebase.  After a period of operating without referring 
to the genetic hierarchy, a housekeeping module is 
invoked to perform the genetic update.  Or, whenever 
the agent is idle and the casebase has seen significant 
changes, housekeeping is invoked.  The housekeeping 
module will then inspect the casebase and time-
sequentially update each case to the hierarchy. 
Another issue is that, in our multi-agent environment, 
each agent maintains its own casebase and genetic 
hierarchy.  In the beginning, each agent will be given 
the exactly same hierarchy.  But as the system operates, 
each agent evolves and specializes.  Therefore, one may 
expect to see interesting differences among the hierar-
chies at the end of the lifecycle of the agents. 

6 CONCLUSIONS 
We have proposed and described a conceptual frame-
work for a genetic learning approach to create and 
maintain a casebase for a multi-agent, real-time, dy-
namic resource allocation domain in which agents ne-
gotiate to share resources and cooperate to perform 
tasks.  This approach combines genetic algorithms and 
CBR to first build a genetic hierarchy and then a case-
base to create and maintain useful cases.  In the begin-
ning, the genetic hierarchy will supply the main popula-
tion of the casebase since there is a lack of cases.  This 
initial casebase will help us develop and test the case 
evaluation, retrieval, adaptation, and storage processes 
of our design.  As the system becomes operational, the 
simulated scenarios or actual events encountered will in 
turn become the main force behind the evolution.  It 
will provide opportunities for re-organization and re-
evaluation of the genetic hierarchy, thereby creating 
new possibilities that will re-stock the casebase.  We 
have identified several new genetic learning concepts 
such as meta-genetic code, fitness reduction, evolution-
ary adjustment, refinement, incompatibility, and break-
through population migration, injection, and granulari-
zation, and deterministic mating.  We have also pro-
posed two different types of fitness measure, intrinsic 
and environmental. 
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