
Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001

Combining Genetic Algorithms and Case-Based Reasoning for Genetic
Learning of a Casebase: A Conceptual Framework

Leen-Kiat Soh
Information and Telecomm.

Technology Center
University of Kansas
2335 Irving Hill Road
Lawrence, KS 66045
lksoh@ittc.ukans.edu

Costas Tsatsoulis
Department of Electrical Engr. and

Computer Science
University of Kansas
2335 Irving Hill Road
Lawrence, KS 66045

tsatsoul@ittc.ukans.edu

Abstract

In this paper, we present a conceptual frame-
work that combines genetic algorithms and
case-based reasoning (CBR) to first learn a
genetic hierarchy of cases and then maintain
and refine the casebase as the system runs.
We propose to use genetic algorithms to gen-
erate useful cases since there is not any actual
cases to bootstrap our CBR module. We use
these evolved cases to develop and test the
various stages of the CBR module such as
evaluation and retrieval, adaptation, and learn-
ing for refining the module. We propose a fit-
ness measure of a case that is based on not
only the combination of its attribute values,
but also on it being a member of the casebase,
which involves its utility in the CBR module.
To promote the synergy between CBR and ge-
netic algorithms for genetic learning, we pro-
pose and describe several concepts such as
meta-genetic code, evolutionary adjustment,
refinement, incompatibility, and breakthrough,
population migration, granularization, and in-
jection, and deterministic mating.

1 INTRODUCTION
One important research issue in building a case-based
reasoning system is the collection of cases for the case-
base. As pointed out in (Kolodner, 1993, pp. 547-555),
there are three general approaches to collecting cases:
(1) adaptation from existing databases, (2) outcome of
an automated or interactive problem-solving system,
and (3) knowledge acquisition from domain human
experts. These approaches are not practical for our
problem domain. Our problem domain is distributed
resource allocation and constraint satisfaction. Particu-
larly, the application goal is multiagent target tracking
in a real-time and dynamic environment. An agent

negotiates with its neighboring agents for resource
sharing and task collaboration. The actual database of
an event (a target being spotted and tracked) is highly
complicated and involved, with layers of command
decisions and actions-reactions from various view-
points. In addition, these events were not recorded in a
way that resembles a multi-agent, negotiation-based
environment. Thus, the adaptation would require much
research effort. To date, there is not yet a system that is
able to solve the target tracking in a bottom-up, multi-
agent architecture, and we may not rely on an existing
system for cases. Finally, knowledge acquisition has
always been a bottleneck in knowledge engineering
(Nwana et al., 1991, Boose, 1993) and even more so in
our domain since it is difficult for military commanders
(in charge of multisensor target tracking) to articulate
traditionally centralized decision making process in
terms of distributed decision making, and, as a result
domain human experts are not readily available. There-
fore, we are not able to collect cases via traditional
mechanisms.
We turn to genetic algorithms (e.g., Goldberg, 1989) for
generating good cases for our casebase. Genetic algo-
rithms do not require as much domain knowledge in
order to operate, compared to CBR that work directly
with the system. We will be able to generate different
cases based on a set of primitive case descriptors. Ge-
netic algorithms are also dynamic such that we can
modify, maintain, and generate new generations of
cases without having to discard existing cases as our
system progresses to handle more complicated scenar-
ios.
The goal is to use genetic algorithms to generate a hier-
archy of cases first and use CBR to maintain the case-
base, which in turn refine the hierarchy. At the
boostrap stage, fit-enough cases are sent to the CBR
module for a promotion, and high-utility cases are
eventually stored in the casebase. Then, as the system
runs, new cases are encountered and added to the case-
base. The activity triggers different evolutionary opera-
tions and population movements both in the casebase
and ultimately in the genetic hierarchy. In this manner,

mailto:lksoh@ittc.ukans.edu

Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001

the hierarchy is refined: new cases are evolved and
promoted, and old cases are forgotten. In a way, the
genetic hierarchy is the nursery for offspring; the case-
base becomes the work environment where offspring
are tested for their usefulness. In addition, the CBR is
able to encounter new cases itself and inject those into
the nursery. This synergy of CBR and genetic algo-
rithms involves several new genetic learning concepts:
meta-genetic code, fitness reduction and evolutionary
incompatibility, population migration and evolutionary
adjustment, population granularization and evolutionary
refinement, and population injection and evolutionary
breakthrough.
In this paper, we first describe our problem domain
furher. Then we discuss some related work on genetic
algorithms in case-based reasoning. Then, in the fourth
section, we present our concepts for genetic learnig
nand case generation. We address a variety of issues
from phenotype-genotype mapping to fitness measure.
Then we discuss some issues stemming from the
conceptual framework. Finally we conclude.

2 PROBLEM DOMAIN
Our problem domain is real-time resource allocation
and constraint satisfaction. In the environment, there
are sensors and targets. The objective is to track as
many targets accurately as possible. However, re-
sources are limited; the communication channels, the
computing power, the CPU allocation, and other facili-
ties are limited and have to be shared. In addition,
sensors are constrained in coverage. They have to
cooperate in a time-critical fashion in order to measure
the target from different locations to obtain accurate
triangulation readings for the target’s position and ve-
locity. The domain also calls for a strict bottom-up,
distributed decision making hierarchy for robustness
and reactiveness. That is, there is not any master agents
that schedule tasks and manage resources for subordi-
nate agents. Each agent has to negotiate with its
neighbors to convince them to give up CPU resource,
share communication bandwidth, turn on their sensing
sectors, and other tasks. Each agent is intelligent, situa-
tion aware, autonomous and reflective. Each is capable
of non-trivial deliberation and is also able to react
quickly to unexpected events such as an incoming tar-
get, or a CPU allocation shortage. One requirement is
that due to the time-criticality, negotiations have to be
performed quickly and efficiently.
In our approach, we use an argumentative negotiation
model in which the initiating agent tries to convince the
responding agent to perform a requested task by supply-
ing arguments during negotiation. In this model, each
agent is motivated to optimize its local resource but to
also maximize the global goal of target tracking.
Hence, a negotiating agent needs to know when to abort
and give up on a negotiation, when to agree to a re-
quest, what (and in what order) arguments to send over,
how much CPU resources to use, etc. The negotiating

agent encapsulates these decision points in a negotia-
tion strategy. Instead of deriving the negotiation strat-
egy from scratch for each negotiation, we use CBR.
The CBR module collects the current status data from
the monitoring modules of its agent, retrieves the most
similar case from the casebase, adapts the solution (i.e.,
the negotiation strategy) to the current situation, and
conducts the subsequent negotiation accordingly.

3 BACKGROUND
Most literature in case-based reasoning puts more em-
phasis on case evaluation, retrieval, adaptation and
storage as opposed to case collection or the building of
the casebase (Aha, 1991, Kolodner, 1993, Aamodt and
Plaza, 1994, Watson and Marir, 1994, Lopez de Manta-
ras and Plaza, 1997). In research works where case
collection were discussed, the emphasis was on case
representation and indexing, with a raw form of each
case available via adaptation from a database, from a
working system, or from human expert knowledge.
Our domain, therefore, offers a unique challenge to our
case-based design, in that cases have to be generated,
automatically.
One related work in automated case generation is that
of (Flinter and Keane, 1995). The authors proposed a
system called TAL that employed case-based reasoning
techniques for chess playing. They concentrated on the
automatic generation of suitable case knowledge using
a chunking technique on a corpus of grandmaster
games. However, in the work, the authors had a collec-
tion of game situations from which cases were gener-
ated. In our domain, such game situations are not fea-
sible.
Maher and her group (Maher and Gomez de Silva
Garza, 1996) have, on the other hand, pioneered the
work in using genetic algorithms for case adaptation in
the domain of structural design of tall buildings. The
driving issue was that in order to adapt past experiences
to new situations, case-based reasoning algorithms
generally rely on domain knowledge and heuristics.
The reliance required all adaptation scenarios be fore-
seen and recognized, which was infeasible due to its
size and incompleteness. Therefore, they have explored
the use of a knowledge-lean method based on genetic
algorithms for the subtask of case adaptation and have
applied their systems successfully. Maher’s work dem-
onstrates the viability of genetic algorithms in enhanc-
ing case-based reasoning.
In another related work, Purvis and Athalye (1997) also
used genetic algorithms to improve case adaptation.

4 GENETIC LEARNING AND CASE
GENERATION

In general, a case constists of three sections: the
situation or problem space, the solution space, and the
outcome. In what follows, we describe these sections

Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001

for our particular multiagent case-based negotiation
application.
The situation space includes the profile and status of the
current situation that an agent experiences. It includes
the profile of the agent such as the number of tasks
currently being managed by the agent, the number of
currently active negotiation threads, whether the
communciation channel is busy, the current usage of
ocmputer resource, etc. It also includes the profile of
the sensor that the agent manages such as the
specifications (range, gain, sampling size, orientation,
and position), the active sensing sector, the battery
power, etc. It also includes the velocity and position of
the target. It also describes the negotiation neighbor
such as the past history of the negotiations between the
two agents, the helpfulness of the neighbor, the
usefulness of the neighbor, etc. Finally, it may also
include the status of the environment such as high alert
situation, battlefield situation, etc.
The solution space defines the negotiation strategy. A
negotiation strategy determines the number of
interaction steps, the time allocated, and the CPU
allocated. For an initiating case, the solution space also
includes a ranking of information pieces to be used as
arguments by the initiating agent, dictacting how the
arguments are to be sent. For a responding case, the
solution space instead includes a persuasion function
and its associated parameters and a persuasion
threshold used by the agent to judge the evidence
support of the received arguments.
The outcome section documents the outcome of the
negotiation. If the outcome was a failure, then the
reason for the failure is also recorded. It may also
include the number of actual interactive steps, the
actual elapsed time, the amount of information passed,
the utility of the negotiation (the difference between the
initial offer/response and the final agreement, or the
difference between the initial offer/response and the last
offer/response before termination), etc.
Before moving further, we briefly describe three
features of our case-based negotiation model here:
First, each agent has two sub-casebases in its
casebase—one for initiating a negotiation and one for
responding to a negotiation.
Second, our proposed case evaluation and the best case
selection algorithm is multi-tiered. First, we compare
the new case with the old along situation space. Then
we select N most similar cases that pass a similarity
threshold. For these N cases, we evaluate the outcome
space. The selector favors negotiations that are short,
with minimal information passing, minimal number of
steps, minimal number of changes in the negotiation
behavior, and maximal utility. After this selection, if
there is only one best case, then the selection and re-
trieval is complete. Otherwise, we compare the cases
along the outcome of the negotiation. We favor a suc-

cess over a failure, and a failure with almost-there final
negotiation status over a failure without fixable repairs.
Third, in traditional genetic algorithms, the search
space is explored to find a fit solution to a problem, but,
in our domain, we desire to obtain many different cases
to build our case base. Our approach also considers the
post-creation maintenance and refinement of the case-
base. After the development and testing period, the
genetic learning is temporarily halted, as we will by
then have obtained enough cases to cover adequately
some real situations encountered by the system as it
becomes operational. However, the hierarchy is still
kept and will help in updating case fitness, forgetting
some cases, re-populating along some evolution lines,
etc. So the genetic learning is always present, active
during the creation of the casebase and dormant as the
system stabilizes.

4.1 PHENOTYPE-GENOTYPE MAPPING
In our problem domain, the phenotype is the taxonomy
of a case, profiles, status, negotiation parameters, and
the negotiation outcome. To perform machine evolu-
tion efficiently, we re-represent the phenotype with the
genotype, which is usually a string of 0s and 1s, encod-
ing the information that produces the phenotype.
In our case, binary attributes can be directly translated
into 0s and 1s.
For multi-valued attributes, we perform feature exten-
sion. For example, a sensor has three sectors, and only
one can be active. The feature active_sector has four
possible values: 0 (no sector is active), 1, 2, or 3. To
code this information in binary, we extend the feature
active_sector to active_sector0, active_sector1, ac-
tive_sector2, and active_sector3, where active_sector0
indicates whether there is an active sector. So, if a
sensor’s second sector is active, then the following
string completely encodes the activity: 1010.
For variable-length attributes, we perform feature pad-
ding. For example, the outcome of a negotiation can be
a success or a failure. If the outcome is a success, the
case does not have any more related information to add.
But if the outcome is a failure, then the case needs to
document whether the negotiation failed because (1) the
time allocated for the negotiation ran out, (2) irrecon-
cilable differences between the two negotiating parties,
(3) the initiator decides to abort the negotiation due to
some event, (4) the responder decides to abort the nego-
tiation due to some event, (5) a communication channel
failure, (6) one of the sensors became malfunction, (7)
no response from the negotiating partner. We perform
feature extension to convert the failure-related reason
to binary reason_n fields. For a case that has a success-
ful negotiation, we also have such fields, which will
remain always as a string of 0s. Note that during the
evolution, these strings will not change their values.
This limitation on reproduction, mutation, and cross-

Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001

over during genetic learning can be ensured by always
checking the success value beforehand.

4.2 SURVIVAL VS. ARCHIVAL
At each generation, we perform a fitness measure of
each case. Only cases that are fit survive and can be
used for the creation of the next generation. Among
those cases that survive, we also perform an archival
measurement to see whether a case should be promoted
to the case library.
To do so, we evaluate the new recruit against the cases
that are currently in the case library, following the
comparison weights and features used in our case
evaluation and the best case selection methods. If the
new recruit is deemed unique, then it is promoted.
After a case has been promoted, its fitness in the evolu-
tion is decreased. The decrement is based on the
uniqueness of the case, previously calculated when we
evaluate the new recruit. The more unique a case is in
the casebase, the more the fitness of the case is reduced.
This is to ensure that unique cases can remain unique
and representative, thus increasing their utility in the
case-based reasoning process.
As will be discussed in subsections 4.6, 4.7, and 4.8, the
fitness of a case can be strengthened based on the usage
statistics of the case. For example, if a case A is found
to have been retrieved as the best case at a high fre-
quency and the average similarity between the new case
and the case A is relatively low, that means the case A is
being stretched out to cover other not-so-similar cases.
The fitness of this case is then increased, increasing its
chance of reproduction in the genetic evolution.

4.3 INCOMPLETE CASES
To deal with cases with incomplete information, we
introduce the meta-genetic code. Each case thus has
two codes, the meta-genetic and the original genetic
code. The meta-genetic code specifies which attribute
value is missing, 0 for absent, and 1 for present. Each
code undergoes its own reproduction, mutation, and
crossover. Note that the main evolution hierarchy is
still based on the original genetic code. The meta-
genetic code is generated for a new case by combining
the new case’s parents’ meta-genetic codes. Hence, the
meta-genetic code does not affect the growth directly.
However, the meta-genetic code does influence the
uniqueness of a case in a case library, which eventually
affects the fitness of the case in the evolution hierarchy.
The use of meta-genetic coding allows the population to
evolve along with the casebase. It enhances the practi-
cality of the cases generated (since information incom-
pleteness is present in our domain) and indirectly ties
the fitness of a case based on partially its incomplete-
ness.
As the casebase becomes more complete as the system
becomes operational in the future, cases with more

complete information will replace cases with incom-
plete information. If a case is replaced in the casebase
in this manner, then, in the genetic hierarchy, its fitness
stays the same but its meta-genetic code is replaced.

4.4 UNCERTAIN CASES
Similarly, in our domain, we have to deal with uncer-
tain information. Sensors attach uncertainty in what
they detect. Thus, in addition to the absolute meta-
genetic code, we also explore the possibility of a string
of uncertain meta-genetic code. Each feature or de-
scriptor value will be modified by a binary code
CERTAINTY with low (0) and high (1) as the values.
The usage of this uncertain meta-genetic code will be
similar to that for incomplete information.

4.5 NOISY CASES
To prevent staleness in the casebase, we may want to
inject noise into evolution hierarchy and to the casebase
to increase its robustness and coverage. To do so, we
may randomly toggle q bits of a genetic code of a case,
after it has been promoted to the casebase. The noise
injection will only be carried out periodically during the
lifecycle of the casebase. Note that we do not corrupt
the evolution directly since, in a way, the evolution is
noisy in its own right. We do corrupt the casebase,
which indirectly affects the evaluation of the unique-
ness of a new recruit for the next generation.

4.6 FORGETTING CASES AND
EVOLUTIONARY INCOMPATIBILITY

As the casebase becomes more complete and the system
stabilizes, we will be able to compute the usage statis-
tics of the cases in the casebase. Cases that are used
often will have high utility; cases that are used in high-
priority, high-impact tasks will have high utility.
If a case has a very low (close to zero) utility, then it
will be discarded from the casebase and be forgotten.
Correspondingly, the case’s fitness measure will be
lowered, with a degree associated to how much its
utility measure is below par.
We call such a fitness reduction a situation of evolu-
tionary incompatibility. A genetic code becomes less
fit due to its incompatibility to its environment.
This fitness reduction concept has another implication.
We believe that as the system stabilizes, the genetic
evolution will learn to specialize itself such that the
fitter portion of the population in the hierarchy of gen-
erations consists of members with high utility in the
casebase. In this way, we can build different hierar-
chies for different tasks and applications of the same
domain.
In addition, case forgetting in this framework is less
risky. When a case is forgotten, it is removed from the
case base but still remains in the genetic hierarchy with
a low fitness measure. It may still be of use as new

Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001

cases are introduced and it may evolve and mate to
adapt to the new environment and its offspring may
then be promoted to the casebase. This allows the CBR
module to manage dynamically its casebase according
to the environment the system observes efficiently and
without losing the knowledge that it has once learned
and may become useful again in the future.

4.7 CASE DISTRIBUTION
To obtain representative cases to (1) reduce storage
space, (2) avoid degradation in case evaluation and
retrieval (e.g., the speed deteriorates as the number of
cases in the casebase increases), and (3) conduct accu-
rate strategy adaptations, we must pay attention to the
case distribution. If a case has been retrieved very
frequently and non-trivial and arduous adaptation has
been performed for each retrieval, then that means,
either (1) the case in the casebase has to be revised if
the matched cases have concentrated more or less at a
single focus, or (2) the coverage of the case is being
strained and we need more similar yet different cases to
support the coverage. If the former occurs, we call the
situation a case shifting or a population migration due
to evolutionary adjustment. If the latter occurs, we call
the situation a population granularization due to evolu-
tionary refinement.

4.7.1 Population Migration and Evolutionary
Adjustment

A population migration occurs when some of its fea-
tures need to be modified (or a case needs to be shifted
along some dimensions). When such modification is
necessary, we will have by then a group of closely
similar case examples. We first compute the represen-
tative, imaginary core case of the group. We then re-
place the case in question with this core case.
Now, to perform the evolutionary adjustment, we first
attempt to match the core case to a case in the hierar-
chy. If such a matching is present, we upgrade the
fitness of the found case in the hierarchy, and the ad-
justment is complete. However, if such a matching
cannot be identified, then we search for a pair of suit-
able genetic codes to perform a deterministic mating.
The pair of codes must be able to combine to arrive at
the exactly code string of the core case. If found, we
add the core case to the hierarchy and give it a high
fitness measure. If this dual-parent search fails, we
find the nearest case in the hierarchy tree and mutate it
towards the core case, and perform a uni-parent search,
and repeat the mutation and search until success.
This evolutionary adjustment is a very useful concept in
narrowing the search in the overall genetic learning
phase. It is as if we have observed the offspring of a
mating or a mutation that happened some generations
ago, and that offspring has proven to be very useful in
our domain, and thus we are trying to perform archae-
ology to locate the missing links between last known,

closest genetic code and the current ones. This enriches
the evolution hierarchy.

4.7.2 Population Granularization and Evolution-
ary Refinement

A population granularization occurs when it has be-
come costly in adapting cases from a retrieved case A
when the retrieved case A is frequently retrieved. Note
that before a population granularization is decided, one
must weigh the additional cost of evaluating and re-
trieving more cases as a result of the granularization
and the saved cost of constantly adapting cases from the
case in question. If the latter outweighs the former,
then one can proceed with the granularization. Usually,
when this is observed, that means the case A is being
stretched out to cover too much space in the casebase.
We perform granularization conservatively. Out of a
group of new cases (that surround the original case), we
pick the farthest new case from the original case as the
case to add to the case library. We reflect that addition
in the genetic hierarchy via evolutionary refinement.
The evolutionary refinement attempts to refine the
resolution of a lineage by adding a new branch. First,
we increase the fitness of the original case, based on the
number of members in the group of new cases that
surround it. This gives it a stronger chance in its de-
scendants being fit and getting promoted to the case-
base. Second, we perform a similar parent search and
deterministic mating for the farthest new case. The
only difference is that we narrow the search to the de-
scendants and permutations of the original case, since
we are trying to refine that particular section of the
hierarchy.

4.8 POPULATION INJECTION AND
EVOLUTIONARY BREAKTHROUGH

In our approach to genetic learning, no cases may be-
come extinct. They may, however, become unfit and
stop taking part in the evolution temporarily until a new
case or new blood is injected into the hierarchy.
A population injection occurs when a new case, which
has a very low similarity to other existing cases in the
casebase, is encountered and has a high utility. Such a
new case is added to the casebase, and will be intro-
duced into the genetic hierarchy according to what we
term as an evolutionary breakthrough.
This new case is thus added to the hierarchy and subse-
quent reproduction, mutation, and crossover immedi-
ately follow. The special characteristic of the break-
through is that this case will mate with as many final
descendant of every branch of the hierarchy as possible,
making its presence felt. All children will then be
evaluated and those deemed fit will be recruited to the
casebase. Since we see this new case as new blood to
the population, we do not attempt to perform dual-
parent or uni-parent searches to find its ancestors in the
existing hierarchy.

Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001

This evolutionary breakthrough is an aggressive search
since it sees this new blood as a refreshing addition to
the hierarchy and attempts to populate its branch explo-
sively to bring it up to par with other established
branches. This breakthrough may contaminate the
population and, hence, the injection should not be done
too often.

4.9 FITNESS PROPAGATION
After the fitness of a case is modified, the effect must
be propagated down to its descendants. Here, we do
not propagate the change up to its ancestors.
If the fitness of a case has been reduced, then that
means the case has become less fit in the current envi-
ronment. Since all generated descendants cannot be de-
generated, we simply propagate the effect down to
reduce the fitness of each descendant. If a descendant
has previously been promoted to the casebase, we dou-
ble-check the case to see whether it is still worthy to
remain in the casebase. If the case has a very low util-
ity value, then we demote the case. If the case has a
very high utility value, then the case remains and we
stop the propagation along that branch at that point.
If the fitness of a case has been increased, then that
means the case has become fitter in the current envi-
ronment. Two lines of actions follow. First, we update
the change down to all its descendants. For all descen-
dants that have consequently become fit, we send them
for a possible promotion to the casebase. Second, de-
pending on the increase, we also perform a certain
amount of evolving at each affected node to compen-
sate the missed opportunities when the branch was
dominated by other fitter cases.

4.10 FITNESS MEASURE
As we have mentioned in previous subsections, every
new child (or case) is evaluated to obtain a measure of
fitness. We then perform further generation on fit-
enough children and also send fit-enough children to
the casebase for possible promotion. A promotion is
based on the uniqueness of a case in the casebase. A
demotion is based on the utility or the usage statistics of
a case in the casebase. Then, the fitness of a case in the
hierarchy can change due to evolutionary incompatibili-
ties, adjustments, refinements, and breakthroughs.
There are two types of fitness measurements: (1) intrin-
sic fitness—measuring the case by itself, and (2) envi-
ronmental fitness—measuring the case by its member-
ship in the casebase. This enables a very useful syn-
ergy between our genetic learning mechanism and our
CBR module.

4.10.1 Intrinsic Fitness
The proposed intrinsic fitness is computed for each
newly generated child in the genetic evolution phase. It
includes the following:

First, the fitness of the parents or parent is reflected in
the child’s fitness measure.
Second, our agent is based on a case-based reflective
negotiation model. To be reflective, an agent should
know about itself, i.e., the profile of itself and the sen-
sor under its control, the resources that it has, the
neighbors, and the world. The information translates
into arguments that an initiating agent uses to convince
its counterpart, and into persuasion values that a re-
sponding agent uses to evaluate its counterpart’s argu-
ments. How good the arguments are and how coopera-
tive the persuasion values are depends on the specific
combinations of status and profiles that he agent has of
itself, its neighbors, and the world. Thus, the fitness of
a case is also measured by the status and profiles of the
agent in terms of the strength of the arguments that they
produce and the cooperativeness of the persuasion
values that they produce. In addition, we also infuse
local and global goals in the mix. Cases that optimize
local resources are favored. Cases that drive towards
the global objective of target tracking are favored. For
example, a case where the initiating agent is extremely
busy and the responding agent is relatively idle is fit
because it would make the arguments from the initiator
side strong and the persuasion threshold on the re-
sponder side relaxed. A case that has three potential
partners for an initiating agent to look for help is fa-
vored because that means it is more likely to have a
three-sensor triangulation if the negotiation is success-
ful. These fitness evaluation steps are encoded in do-
main-specific and common sense heuristics and are the
cornerstone of the intrinsic fitness measure.
Third, as discussed earlier in Section 4, an agent favors
negotiations that are short, with minimal information
passing, minimal number of steps, minimal number of
changes in the negotiation behavior, and maximal util-
ity. Thus, a case is more useful it has some of the
above characteristics.
Fourth, a case is more useful if it results in a success
instead of a failure. A case is also useful, in a failure, if
there is a good explanation for its failure.
Hence, the intrinsic measure of fitness of a child (or a
case) is a weighted combination of (1) parental fitness,
(2) status and profile of self, neighborhood, and world,
(3) quality of the negotiation outcome, and (4) outcome
of the negotiation. The vector of weights allows us to
examine the health of the population and the casebase
from different angles.
There is an important implication here. When we gen-
erate cases, how can we say whether the negotiation is a
success or a failure since there is not any negotiations
taking place? Remember that our genetic approach is a
learning approach. It updates the genetic hierarchy
based on the field observations when the agents start to
operate and negotiate with each other. The casebase
will undergo refinement and modification, which will
affect the genetic hierarchy. An initial genetic case will
eventually be either replaced (due to evolutionary in-

Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001

compatibility), or migrated (due to evolutionary ad-
justment), or supported with additional, more accurate
cases (due to evolutionary refinement).

4.10.2 Environmental Fitness
In addition to the fitness of a case by itself, we also
measure the environmental fitness of a case—that is the
fitness of a case being a member in the casebase. Only
intrinsically fit cases are considered for a promotion to
the casebase. To be promoted, a case has to be unique,
and uniqueness is part of the environmental fitness of
the case. Similarly, a resident case in the casebase
faces a possible demotion if its environmental fitness
such as utility value falters. Changes in the environ-
mental fitness affect the intrinsic fitness in the hierar-
chy. For example, a highly environmentally fit case
will have a low intrinsic fitness, to protect the case’s
uniqueness in the casebase.
Our proposed fitness measure for a case being a mem-
ber of a casebase includes the following:
First, a case is more fit in a casebase if it is more
unique. The uniqueness can be measured by the multi-
variate distance of the case from its closest neighboring
case. The further away a case is from its neighbors, the
more unique it is. This also means that the case is rep-
resentative of the domain it covers.
Second, a case is more fit in a casebase if it has been
retrieved more frequently. If a case is frequently re-
trieved, then that means the case is very useful. Thus,
the case’s intrinsic fitness should be reduced in the
genetic hierarchy to prevent further growth and to en-
hance the dominance of the case in the casebase. We
propose a simple cycle-based frequency calculator.
Every time the CBR module retrieves a case, it stamps
the case with the current agent cycle index. Next time
around, if the same is retrieved again, then the CBR
module can use the interval between the old and new
cycle stamps to compute the frequency; and then move
the window for the next retrieval by replacing the old
stamp with the new. This also implies that we favor
recency in our fitness measure.
Third, we measure the proximity of a best case to the
new case at every retrieval. Suppose we retrieve the
best case B for a new case A. After adaptation, the new
case A is used in a subsequent negotiation. Finally, the
new case is completed with the negotiation outcome.
Now, we review the fitness of the best case B. We
compute the proximity of the new case with all existing
cases in the casebase. If it is found that the new case is
closer to another case (other than B), then we lower the
fitness of B. If B is found to be the closest neighbor to
A, then we increase the fitness of B.
Further, we collect the average proximity of new cases
stemmed from each best case. If the average is large,
then that means the best case is over-strained and is
used to cover too large of a domain. If the best case
remains as the centroid of the new cases, then popula-

tion granularization and evolutionary refinement is
needed. If the best case and the new cases form two
poles (with only the best case in one pole), then popula-
tion migration and evolutionary adjustment is per-
formed. When one of the modifications occur, we
lower the fitness of the best case and promote the fit-
ness of the newly adjusted or newly evolved case.
Fifth, to keep the number of cases in the casebase small
and asymptotic, we also incur a cost on promoting a
new case to the casebase. The motivation for this is to
make sure that the casebase is small such that the simi-
larity evaluation during the retrieval and selection proc-
ess and the diversity measurement during the storage
and learning process can be conducted quickly. Sup-
pose that we set the maximum size of the casebase to K
and adding the new case to the casebase would exceed
K. When this occurs, we locate the most similar case
(situation, solution, and outcome spaces included) in
the existing casebase for the new case. Then, we com-
pute the diversity of the casebase as it is, and then we
compute the diversity of the casebase with the most
similar case replaced with the new case. If the latter
yields a higher diversity, which is the average of the
Euclidean distance measure between each pair of cases,
then we eliminate the old case from the casebase and
introduce the new case. Thus, the fitness of the old
case is reduced since it is no longer in the casebase.
The new case will inherit part of the environmental
fitness from the old casebase that it replaces based on
the similarity of the two.
Sixth, one may assign domain-specific utility to the
impact that leads from each case on the environment.
For example, suppose the case ultimately leads to a
successful tracking of a target with the accuracy of
95%. This may be factored into the environmental
fitness measure of the case. Note that between a suc-
cessful negotiation and a successful tracking, there are
many steps that must be right—timing, sensing accu-
racy, communication speed, noise, and others and there-
fore this sixth factor should only contribute minimally
to the fitness measure.
Note that the environmental fitness strategically col-
laborates with the intrinsic fitness used in the genetic
hierarchy to allow the various population maneuvers
discussed in previous sections. It also allows us to
modularize our domain modeling into two different
stages.

5 DISCUSSIONS
We employ the genetic learning approach not only to
create the initial casebase but also to help maintain it. It
is an integral part of the whole system. It is also a nice
tool for monitoring the growth of the casebase and the
genetic hierarchy.
During the creation of the casebase, the genetic hierar-
chy serves as a bootstrapping basis. It is bound to pro-
vide some seemingly fit cases to the casebase, and some

Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001

cases are bound to be accepted into the casebase, albeit
with highly unlikely genetic coding. For example, two
highly unyielding agents should not come to an agree-
ment very quickly. However, in our initial generation,
we do not impose a rule to prevent such an offspring.
However, if the offspring ever makes it to the casebase,
it will eventually be discarded since its utility will be
extremely low and the original offspring will suffer a
fitness reduction.
One critical issue is when to perform genetic learning.
Since our application requires real-time response and
reasoning, when a new case presents itself, we may not
have the luxury to perform the aforementioned steps to
adopt the case into the genetic hierarchy since the com-
putation is non-trivial. Thus, one may wish to look into
separating the genetic learning from the case-based
reasoning. First, all new cases will be added to the
casebase. After a period of operating without referring
to the genetic hierarchy, a housekeeping module is
invoked to perform the genetic update. Or, whenever
the agent is idle and the casebase has seen significant
changes, housekeeping is invoked. The housekeeping
module will then inspect the casebase and time-
sequentially update each case to the hierarchy.
Another issue is that, in our multi-agent environment,
each agent maintains its own casebase and genetic
hierarchy. In the beginning, each agent will be given
the exactly same hierarchy. But as the system operates,
each agent evolves and specializes. Therefore, one may
expect to see interesting differences among the hierar-
chies at the end of the lifecycle of the agents.

6 CONCLUSIONS
We have proposed and described a conceptual frame-
work for a genetic learning approach to create and
maintain a casebase for a multi-agent, real-time, dy-
namic resource allocation domain in which agents ne-
gotiate to share resources and cooperate to perform
tasks. This approach combines genetic algorithms and
CBR to first build a genetic hierarchy and then a case-
base to create and maintain useful cases. In the begin-
ning, the genetic hierarchy will supply the main popula-
tion of the casebase since there is a lack of cases. This
initial casebase will help us develop and test the case
evaluation, retrieval, adaptation, and storage processes
of our design. As the system becomes operational, the
simulated scenarios or actual events encountered will in
turn become the main force behind the evolution. It
will provide opportunities for re-organization and re-
evaluation of the genetic hierarchy, thereby creating
new possibilities that will re-stock the casebase. We
have identified several new genetic learning concepts
such as meta-genetic code, fitness reduction, evolution-
ary adjustment, refinement, incompatibility, and break-
through population migration, injection, and granulari-
zation, and deterministic mating. We have also pro-
posed two different types of fitness measure, intrinsic
and environmental.

Acknowledgments
The work described in this paper is sponsored by the
Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement
number F30602-99-2-0502. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency
(DARPA), the Air Force Research Laboratory, or the
U.S. Government.

References
A. Aamodt, and E. Plaza (1994). Case-based
reasoning: foundational issues, methodological
variations and system approaches. AI Communications
7(1):39-59.
D. W., Aha (1991). Case-based learning algorithms.
Proceedings of the 1991 DARPA Case-Based
Reasoning Workshop, 147-158.
J. H. Boose (1993). A survey of knowledge acquisition
techniques and tools. In B. G. Buchanan and D. C.
Wilkins (eds.), Readings in Knowledge Acquisition and
Learning, 39-56. San Mateo, CA: Morgan Kaufmann.
S. Flinter and M. T. Keane (1995). On the automatic
generation of case libraries by chunking chess games.
Proceedings of the 1st Int. Conf. on Case-Based
Reasoning, Sesimbra, Portugal, Oct 23-26, 421-430.
D. E. Goldberg (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley.
J. Kolodner (1993). Case-Based Reasoning. San
Mateo, CA: Morgan Kaufmann.
R. Lopez de Mantaras and E. Plaza (1997). Case-based
reasoning: an overview. AI Communications 10:21-29.
M. L. Maher and A. Gomez de Silva Garza (1996)
Design case adaptation using genetic algorithms. In
J.Vanegas (ed.). Computing in Civil Engineering,
ASCE.
H. S. Nwana, R. C. Paton, T. J. M. Bench-Capon, and
M. J. R. Shave (1991). Facilitating the development of
knowledge-based systems: a critical review of
acquisition tools and techniques. AI Communications
4(2/3):60-73.
L. Purvis and S. Athalye (1997). Towards improving
case adaptability with a genetic algorithm. Proceedings
of the 2nd Int. Conf. on Case-Based Reasoning
(ICCBR’97).
I. Watson and F. Marir (1994). Case-based reasoning; a
review. Knowledge Engineering Review 9(4):327-354.

	INTRODUCTION
	PROBLEM DOMAIN
	BACKGROUND
	GENETIC LEARNING AND CASE GENERATION
	PHENOTYPE-GENOTYPE MAPPING
	SURVIVAL VS. ARCHIVAL
	INCOMPLETE CASES
	UNCERTAIN CASES
	NOISY CASES
	FORGETTING CASES AND EVOLUTIONARY INCOMPATIBILITY
	CASE DISTRIBUTION
	Population Migration and Evolutionary Adjustment
	Population Granularization and Evolutionary Refinement

	POPULATION INJECTION AND EVOLUTIONARY BREAKTHROUGH
	FITNESS PROPAGATION
	FITNESS MEASURE
	Intrinsic Fitness
	Environmental Fitness

	DISCUSSIONS
	CONCLUSIONS
	
	Acknowledgments
	References

