
Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle, WA, 2001

Reflective Negotiating Agents for Real-Time Multisensor Target Tracking

Leen-Kiat Soh and Costas Tsatsoulis
Information and Telecommunication Technology Center (ITTC)

Department of Electrical Engineering and Computer Science
The University of Kansas

2335 Irving Hill Road, Lawrence, KS 66045 USA
{lksoh, tsatsoul}@ittc.ukans.edu

Abstract
In this paper we describe a multiagent system in which
agents negotiate to allocate resources and satisfy con-
straints in a real-time environment of multisensor target
tracking. The agents attempt to optimize the use of their
own consumable resources while adhering to the global
goal, i.e., accurate and effective multisensor target
tracking. Agents negotiate based on different strategies
which are selected and instantiated using case-based
reasoning (CBR). Agents are also fully reflective in
that they are aware of all their resources including sys-
tem-level ones such as CPU allocation, and this allows
them to achieve real-time behavior. We focus our dis-
cussion on multisensor target racking, case-based nego-
tiation, and real-time behavior, and present experimen-
tal results comparing our methodology to ones using ei-
ther no negotiation or using a static negotiation proto-
col.

1 Introduction
We describe a negotiating agent approach to multisensor
target tracking and distributed resource allocation in a real-
time environment. Each agent controls a set of resources,
and is motivated to use these resources to track targets ap-
pearing in its coverage area, and also to make the resources
available to other agents in an effort to satisfy the global
tracking goals. The act of balancing the local use of track-
ing resources and the global goal satisfaction increases the
complexity of the problem. The agents have to incorporate
real-time issues into their decision making process since
global tasks and resources are bounded by time. Each agent
in the system is autonomous, monitors its environment
through a sensor, reacts to changes that it observes, and
maintains its own knowledge bases. There is no hierarchi-
cal organization among the agents allowing the system as a
whole to react to world events more quickly. Since there is
also no centralized information shared by the agents, infor-
mation can only be exchanged directly during negotiation

sessions and only what is considered relevant and useful
information is communicated. This increases the autonomy
of each agent and consequently strengthens the system’s
robustness. Since there is no top-down coordination, our
agents dynamically form temporary coalitions to perform a
task, with each agent in the coalition using and also making
available its resources.

The driving application for our system is multisensor tar-
get tracking, a distributed resource allocation and constraint
satisfaction problem. The objective is to track as many tar-
gets as possible and as accurately as possible using a net-
work of sensors. Each sensor has a set of consumable re-
sources, such as beam-seconds (the amount of time a sensor
is active), battery power, and communication channels, that
each sensor desires to utilize efficiently. Each sensor is at a
fixed physical location and, as a target passes through its
coverage area, it has to collaborate with neighboring sensors
to triangulate their measurements to obtain an accurate es-
timate of the position and velocity of the target. As more
targets appear in the environment, the sensors need to de-
cide which ones to track, when to track them, and when not
to track them, always being aware of the status and usage of
sensor resources.

The problem is further complicated by the real-time con-
straints of the environment and the fact that agents have to
share physical resources such as communication channels
and disk storage. For example, for a target moving at one
foot per second, accurate tracking requires one measurement
each from at least three different sensors within a time in-
terval of less than 2 seconds. The real-time constraints force
our agents to deal with issues such as CPU allocation (since
speed of execution depends on it), disk space allocation,
communication latency, and processing times. Finally, the
environment is noisy and subject to uncertainty and error:
messages may be lost, a sensor may fail to operate, or a
communication channel could be jammed. Thus, in addition
to improving autonomy, one is required to promote noise-
resistance in agent reasoning, sensor control, and communi-
cations.

Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle, WA, 2001
The sensors are 9.35 GHz Doppler MTI radars that com-

municate using a 900 MHz wireless, radio-frequency (RF)
transmitter with a total of eight available channels. Each
sensor can at any time scan one of three sectors, each cover-
ing a 120-degree swath. Sensors are connected to a network
of CPU platforms on which the agents controlling each sen-
sor reside. The agents (and sensors) must communicate
over the eight-channel RF link, leading to potential channel
jamming and lost messages. Finally, there is software (the
“tracker”) that, given a set of radar measurements, produces
a possible location and velocity for a target; the accuracy of
the location and velocity estimates depend on the quality
and frequency of the radar measurements: as we mentioned,
the target must be sensed by at least three radars within a
two second interval for accurate tracking.
Our solution to the problem is to use reflective, case-based,
negotiating agents. The agents are reflective since they are
aware of their resources (including computational ones) and
of how their actions and commitments affect these re-
sources. They also integrate case-based reasoning (CBR)
and negotiation to dynamically form target-tracking coali-
tions and to determine how resources should be shared and
used. CBR allows the negotiation to adapt to the dynami-
cally changing environment. Negotiation allows a bottom-
up generation of an any-time solution. All agents are peers,
each responsible for initiating and responding to negotia-
tions. When an agent senses an event that it cannot solve on
its own, it dynamically forms a coalition from a subset of its
known neighbors. It then initiates negotiation requests to
the members of the coalition and conducts 1-to-1 negotia-
tions. This way, the common goal of target tracking is di-
vided into subgoals by the initiating agent.

The integration of real-time, CBR, and negotiation is a
unique and innovative approach to the solution of a general
class of dynamic, distributed, time-bound, over-constrained
resource allocation problems represented by our domain of
real-time multisensor target tracking.

2 Agent Negotiation
In our system negotiation is used to allocate sensor and
computational resources and to allow the agents to reach an
agreement on tracking a target. An agent is connected to and
controls a sensor, and is aware of its state and the status of
the resources it controls. Each agent operates in one of
three different modes: tracking, negotiating, or both.

In this paper we will not discuss in detail how an agent
tracks a target, since the topic is only tangentially related to
negotiating agents. In a few words, an agent polls its sensor
at predefined time intervals and if a radar return is consid-
ered “interesting,” it then follows the potential target for one
second sending all radar measurements to the tracker (the
software component that computes target location and ve-
locity given a set of radar measurements).

Since accurate target tracking requires triangulation, an
agent that finds a potential target must contact other sensor-

controlling agents to ask for their help. Illuminating a target
by a radar implies the use of consumable resources: first, the
radar will have to abandon its own target tracking (if any) to
accommodate the request; second, using the radar consumes
battery power; third, sending the measurements to the
tracker occupies one of the eight globally available commu-
nication channels; fourth, the simple act of communicating
between agents and handling the cognitive cost of this
communication requires CPU resources. Agents are coop-
erative and desire the completion of the high-level goal of
target tracking. At the same time, they are individualistic, in
that they want to preserve their resources for their own goal
satisfaction, and they are also reliable, in that they do not
easily break a resource commitment made to another agent.
Consequently, when an agent requests the use of the re-
sources of another agent, it needs to convince that agent that
it has priority in the use of these resources. To do so our
agents use negotiation.

Negotiation can be used by agents to perform problem
solving and to achieve coherent behavior in a multiagent
system. Agents can negotiate in a fully prescribed manner
where the negotiating parties know exactly what each
other’s cost and utility functions are, or when such knowl-
edge is learned during the first step of interaction in a nego-
tiation [Kraus, 1997; Kraus et al., 1995]. There are agents
that negotiate using the unified negotiation protocol in
worth-, state-, and task-driven domains where agents look
for mutually beneficial deals to perform task distribution
[Rosenschein and Zlotkin, 1994; Zlotkin and Rosenschein,
1996]. Agents can also conduct argumentation-based nego-
tiation in which an agent sends over its inference rules to its
neighbor to demonstrate the soundness of its arguments
[Jennings et al., 1998]. Finally, there are agents that incor-
porate AI techniques [Chavez and Maes, 1996; Laasri et al.,
1992; Zeng and Sycara, 1998] and logical models [Kraus et
al., 1998] into negotiation.

2.1. Negotiation Model
Our agents use a variation of the argumentative negotiation
model. Traditionally, in argumentative negotiation, an ar-
gument is a representation of a sequence of inferences lead-
ing to a conclusion [Jennings et al., 1998]. Since our agents
are assumed to share the same reasoning mechanism, it is
not necessary for them to exchange their inference model
with their negotiation partners. In addition, we assume that
an agent reasons rationally and in good faith and is coopera-
tive.

Before describing our negotiation model in detail we in-
troduce some terminology: an initiator or initiating agent is
the agent that requires a resource and contacts another agent
to start a negotiating session; a responder or responding
agent is the one that is contacted by the initiator; a persua-
sion threshold is a value associated with each resource or
percentage of a resource that indicates the degree to which
an agent needs to be convinced in order to free or share a
resource (alternatively, one can view the persuasion thresh-

Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle, WA, 2001
old as the degree to which an agent tries to hold on to a re-
source). Finally, a negotiation strategy dictates how an
agent should behave before the start of a negotiation proc-
ess; it spells out the time allowed for the agent to complete
the negotiation, what type of information to send over as
arguments, how agreeable the responding agent should be,
and so on.

After the initiator determines that it requires assistance in
tracking a target, it establishes a set of negotiation partners
(a coalition, discussed in the next section), and contacts
them to start negotiating. The initiator sends to the re-
sponders a message requesting a resource and a time inter-
val it needs this resource (the resource, for example, can be
turning on a radar beam at time T). The responder deter-
mines if it can satisfy the request immediately (for example,
if the radar beam is already on), if it cannot negotiate at all
(it is too busy, implying that it has no CPU resources avail-
able or no more threads), or if it can negotiate.

If both agents determine that negotiation is possible, they
establish a negotiation strategy (see section 2.3) and start
negotiating. Each agent has a local view of the world based
on its sensor information. The initiator attempts to convince
the responder by sharing parts of its local information. For
example, it may share with the responder the speed with
which the target is traveling or the other tasks it is currently
performing; the responder uses this data to “see through the
initiator’s eyes,” and determine if its needs are more press-
ing than its own. The responder uses a set of domain-
specific rules to establish whether the information provided
by the initiator pushes it above a resource’s persuasion
threshold, in which case it would free the resource. For
example, a target being tracked by an initiating agent that is
already busy tracking another target is a more convincing
argument than a target that is already being tracked by mul-
tiple sensors.

If the responder is not convinced by the evidential support
provided by the initiator, it requests more information from
the initiator. The initiator, guided by its negotiation strat-
egy, sends over what it views as its most useful arguments
first. The responder evaluates these new arguments and
updates the evidence support. This process iterates until
either the agents reach an agreement, in which case a re-
source or a percentage of a resource is freed, or the negotia-
tion fails.

2.2. Coalition Formation
In order to negotiate, an initiating agent must identify a
group of other agents that it can talk to. This group is a ne-
gotiating coalition and is established dynamically by the
initiator. To become a member of a coalition an agent must,
first, be known to the initiator, and, second, have the poten-
tial to provide useful resources.

An agent knows a subset of the agents in the multiagent
system. Usually it knows the agents in its physical
neighborhood, since they all control radars that cover a cer-

tain area. Since, as mentioned, the radars are sessile, an
agent only needs to be told once who its physical neighbors
are. To establish who can provide useful resources, the ini-
tiator calculates the velocity of the target it is tracking and
establishes a potential future path that the target will follow.
Next, the initiator finds the radar coverage areas that the
path crosses and identifies areas where at least three radars
can track the target (remember that tracking requires almost
simultaneous measurement from at least three sensors). The
agents controlling these radars become members of the ne-
gotiating coalition.

Since computational resources are limited, and negotiat-
ing consumes CPU and bandwidth, the initiator does not
start negotiation with all members of the coalition, but first
ranks them and then initiates negotiation with the highest-
ranked ones. Ranking of the coalition members is done us-
ing a multi-criterion utility-theoretic evaluation technique.
The evaluation criteria are:
1. the target’s projected time of arrival at the coverage area

of a sensor: there has to be a balance between too short ar-
rival times which do not allow enough time to negotiate
and too long arrival times which do not allow adequate
tracking;

2. the target’s projected time of departure from the coverage
area of a sensor: the target needs to be in the coverage
area long enough to be illuminated by the radar;

3. the number of overlapping radar sectors: the more sectors
that overlap the higher the chance that three agents will
agree on measurements, thus achieving target triangula-
tion;

4. whether the initiator’s coverage overlaps the coverage
area of the coalition agent: in this case the initiator needs
to convince only two agents to measure (since it is the
third one), which may be easier than convincing three;

5. the success rate in previous negotiations between the ini-
tiator and the agent in the coalition: previous successes
are an indicator that an agent is more willing to be per-
suaded to free resources (since all agents are collaborative
this is an indirect indication that an agent is mostly idle or
has more resources than it needs).
At the end of the evaluation all coalition members are

ranked and the initiator activates negotiations with as many
high-ranked agents as possible (there have to be at least two
and the maximum is established by the negotiation threads
available to the initiator at the time, since it may be respond-
ing to negotiation requests even as it is initiating other nego-
tiations).

2.3. Case-Based Negotiation Strategy
As negotiation strategy we define the set of guidelines (or
protocol) that govern the behavior of an agent during a par-
ticular negotiation. In contrast to other work in negotiation
where the negotiating parties followed a predefined, static
protocol, our agents dynamically establish a new strategy
depending on their current state and the state of the world.

Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle, WA, 2001
The goal is to situate a negotiation and to improve the
chances of its success by taking into account the dynami-
cally changing world state. This is accomplished by using
CBR to select, adapt, and eventually learn negotiation
strategies.

Since initiating a negotiation and responding to one are
fundamentally different tasks, although still governed by the
same methodology, each agent has two different case bases:
one with strategies for initiating negotiations and one with
strategies for responding to negotiation requests. Cases of
both initiating and responding negotiation strategies have
the same description, but different strategies. In the follow-
ing we discuss the joint situation description of the two case
types and then discuss the two types of strategies separately.

A case contains a description of a situation that allows an
agent, using simple weighted matching, to establish similar-
ity between the current situation and the cases in the case
base. The situation describes the state of the agent (tasks it
is performing, state of the radar, its battery, etc.), the state of
the target (current location and speed, projected path, type,
etc.), and the model of the potential coalition members (how
many, the number that actually were used in negotiation,
their capabilities, etc.) Since an agent is always aware of
this information, it can match the current situation with the
description of the cases in the case base, find the best match,
and apply (after adaptation) the negotiation strategy in the
case to the current negotiation task.

Each case also contains the negotiation strategy that was
used in the past together with the outcome of the negotia-
tion, such as: “offer accepted,” “offer rejected,” “ran out of
time,” or “ran out of resources.” The strategy tells the agent
how to conduct the negotiation. For the initiator the nego-
tiation strategy consists of the following:
1. a ranking of the classes of information it should use as

arguments: during a negotiation each agent attempts to
minimize the number and length of messages sent, since
with fewer messages the agents can avoid message loss
due to communication failures, and reduce traffic among
the agents. The agents want to send short messages as
well since the transfer is faster and the bandwidth is con-
strained. Thus, it is important for an initiating agent to
decide which information pieces are more important to
send to the responding agent;

2. the time constraint: how long (in real time) the agent
should be negotiating, since the target may leave the area;

3. the number of negotiation steps: a “step” is a complete
negotiation communication act where the initiator sends
arguments and the responder makes a counter-offer or re-
quests more convincing arguments. Clearly the more
steps that are allowed the higher the chance of reaching an
agreement, but also the more time and resources are
spent;

4. the CPU usage: more CPU resources for a negotiation
mean faster negotiation, but also less CPU available for
other tasks.

The responder has a slightly different negotiation strategy.
It shares some elements of the initiator’s protocol, specifi-
cally the time constraint, the number of negotiation steps,
and the maximum CPU usage, but it also introduces two
more parameters:
1. the power usage: this defines how much power the re-

sponder is willing to use to turn on its radar;
2. persuasion thresholds for resources: as already mentioned,

each resource has a persuasion threshold associated with
it which determines how difficult it will be to convince
the responder to free the resource. The resources are ra-
dar sectors for performing frequency or amplitude meas-
urements to track a target, CPU allocation, and usage of
the RF communication channels. Discrete resources like
turning on a radar, have a single valued persuasion
threshold. Continuous resources like CPU, where a re-
sponder may agree to free a percentage of it, have a linear
or an exponential function of evidence support, as persua-
sion thresholds (so, if an initiator convinces a responder
by degree X, then the responder is willing to free N% of
its CPU allocation; if it is convinced by degree (X+Y) it
will be willing to free (N+M)% of its CPU, where N =
f(X), M = f(X+Y) – f(X), and f is either a linear or an ex-
ponential function depending on the actual situation). We
have chosen these two functions since they are easy to
compute and represent two different conceding behav-
iors—the linear function has a uniform conceding rate
whereas the exponential function models agents willing to
concede quickly.
After a case has been selected and an old negotiation

strategy has been retrieved, the agent adapts the strategy to
best fit the current situation. Our adaptation technique uses
two sets of rules: one that maps the differences between the
case description and the current world state into strategy
fixes, and a second one that uses the outcomes of the old
negotiation strategy to guide its adaptation into a more po-
tentially successful one. For example, if the current target is
faster than the target in the case, then the agent reduces the
negotiation time in its strategy. Or, if the old negotiation
failed because the agents could not reach an agreement, then
the agent may want to use fewer CPU resources and plan to
spend less time on the negotiation, since it may fail again.
Currently, we have 17 difference-driven and seven out-
come-driven domain-specific adaptation rules. On average,
each rule has two conditions to facilitate fast token matching
and has about three conclusions such as “increase the num-
ber of negotiation steps by X,” “decrease the time by Y,”
and so on.

Finally, when a negotiation strategy has been created, the
agents engage in negotiation, as discussed in section 2.1.
After the negotiation is concluded, the agents involved in it
decide whether it is worthwhile to learn the strategy they
used, and to add it to their respective case base. An agent
matches the new case to all cases in the case base and if it is
significantly different from all of them it learns the new
strategy by storing the case in the case base. By learning

Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle, WA, 2001
cases whose description differs sufficiently from the ones in
the case base the agents attempt to improve their negotiation
strategies by covering a larger part of the problem domain.
If, though, the new case is not sufficiently different from the
ones in the case base, the agent determines which one to
keep: the new one or the old case which best matches the
new one? To do so the agent attempts to increase the diver-
sity of the case base by computing the sum of differences
between that old case and the entire case base (minus the
best matching old case) and the sum of differences between
the new case and the entire case base (minus the best match-
ing old case). If the second sum is greater than the first
sum, then it replaces the old case with the new case. The
heuristics we use to evaluate whether a new case should be
learned or not are similar to the similarity evaluation per-
formed during retrieval, with the additional evaluation of the
solution parameters. Since learning is performed by the
agent on-line, we have designed it to be of only linearly
related to the number of cases in the case base. Conse-
quently, the diversity measurement is between the new case
and every case in the case base instead of between all case
pairs. This allows us to improve the speed of the learning
step when a new case comes in and to reduce the computa-
tional requirements.

There has been work in off-line learning of negotiation
strategies using genetic algorithms [Matos et al., 1998], but
in our work learning is continuous and on-line.

3 Real-Time Reflective Agents
A fundamental concern in multisensor target tracking is the
timeliness of the measurements: a radar must be active and
illuminating an area when a target is passing through it and
when other radars are measuring, too. This introduces real-
time constraints to the sensor management by the agents:
negotiations must be concluded within sufficient time to
allow execution of sensing commands, or must be aborted to
allow negotiation with other members of the coalition. To
achieve real-time behavior the agents must be fully aware of
the status of system-level resources and of the passage of
time. This awareness defines a real-time reflective agent.

Our agents use the Real-Time Scheduling Services
(RTSS) that reside on top of the KU Real-Time system
(KURT) [Srinivasan et al., 1998] that adds real-time func-
tionality to Linux. First, the RTSS provides an interface
between the agents and the system timers, allowing agents
to: (1) query the OS about the current time; (2) ask the
RTSS to notify them after the passage of certain length of
time; and (3) ask the RTSS to ping them at fixed time inter-
vals. This allows agents to know when to, for example,
conclude a negotiation process or turn on a radar sector.
Second, the agents may ask the RTSS to notify them when
certain system-level events occur, such as process threads
being activated, or communication messages going out or
coming into the system. Third, the agents can ask the RTSS
to allocate them a percentage of the CPU for each one of

their threads (such as the ones controlling the radar and
tracking or the ones used in negotiations) and to schedule
this allocation within an interval of time. This way agents
residing on the same computational platform can establish
execution priorities and can control how fast an operation
can be performed (clearly, more CPU scheduled in consecu-
tive time intervals implies faster execution for a thread,
leading to faster reasoning and negotiation).

The RTSS may be unable to perform such a CPU alloca-
tion and scheduling, if, for example, all available CPU re-
sources are already occupied. Then, the requesting agent is
notified and is also informed of which agents are using the
CPU resources. This allows the agent to initiate a negotia-
tion for CPU with the other agents. This is when the fourth
function of the RTSS comes into play: an agent needs to
know what percentage of its allocated CPU it is using, to be
able to determine whether it is willing to give up part of its
CPU allocation to a requesting agent. After agents have ne-
gotiated a new sharing of CPU resources they request a re-
scheduling of the allocations, and the RTSS dynamically
performs it.

The RTSS allows agents to be full masters of all their re-
sources, including system-level ones. Agents can negotiate
about CPU and can simply cede part of their allocation to
other agents. Knowledge of the passage of real time, of the
occurrence of system-level events, and of CPU usage and
load make our agents reflective and allow them to function
effectively in a real-time domain.

Previous work in real-time AI fell under two general
categories: (1) anytime algorithms [Dean and Boddy, 1988]
where a solution to a problem can be incrementally refined
and can be applied at anytime during the refinement proc-
ess, and (2) multiple methods or approximate processing
[Lesser et al., 1988] where different approaches to a solu-
tion are available and can be combined.

4 Experimental Results
The reflective, real-time, case-based negotiating agents de-
scribed in the previous sections have been implemented and
tested using real sensors and targets moving in a physical
environment. The agents exhibit all of the behavior de-
scribed: they use CBR to select and adapt a negotiation
strategy, use the RTSS to request CPU resources and to
have time and system awareness, negotiate for radar use,
and learn the new negotiation strategies they have devel-
oped. Most importantly, the agents achieve the high-level
goal of the system: they track targets traversing an area cov-
ered by many radars.

Our experiments concentrated on evaluating whether ne-
gotiating agents can track targets better, and whether CBR
results in better negotiation strategies. Our hypotheses
were, first, that negotiating agents can track targets better
since they can coordinate radar measurements and achieve
better triangulation, and, second, that negotiation using CBR
will result in better tracking than using a static negotiation

Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle, WA, 2001
protocol, since CBR will allow adaptation of the strategy to
the current situation. Our experiments support these hy-
potheses. In addition to the accuracy of tracking, we used
communication as a measure of quality (length of messages,
frequency of messages and message cost, i.e. length times
frequency), since communication is an important bottleneck
of scale up.

First we compared our system to a multiagent, sensor-
controlling network where there is no communication be-
tween the agents, and where when a target appears in the
coverage area of a sensor it is tracked. Next, we compared
our case-based negotiating agents to a system where nego-
tiation uses a predefined, static strategy. We selected the
static strategy carefully to make sure it should be adequate
for most cases.

In general, the results, summarized in figures 1-4, were
very encouraging. The agents which used no negotiation
sent almost 20% more messages but had almost 27% worse
tracking accuracy than negotiating agents. The non-
negotiating agents exchanged no messages, and only sent
their radar measurements to the tracking software. Since
there was no coordination of the measurements, there were
too many messages sent to the tracker. On the other hand,
we also found that such messages are short compared to
arguments exchanged between agents during negotiation,
resulting in lower message costs—the product of the aver-
age length and the total number of messages sent per sec-
ond. Since there was no cooperation to triangulate meas-
urements, the resulting accuracy was poor.

Figure 1: Tracking accuracy vs. agent behavior

The agents that used a static negotiation strategy fared

worse than the ones that used a case-based, adaptive strat-
egy. Specifically, the agents using a static protocol sent
approximately 10% fewer messages (though with a slightly
higher message cost) and had almost 18% worse accuracy
than the case-based negotiating agents. The message cost is
due to the fact that the case-based agents change the ranking
of the arguments they communicate based on the situation;
this leads to overall more effective communication acts.
The accuracy is due to the fact that case-based agents adapt
their negotiation to the current situation and have a higher
chance of achieving agreement for resource allocation; on

the other hand the static strategy agents failed to agree more
often and this led to failure to perform the multiple, simulta-
neous radar measurements that are required for accurate
tracking.

Figure 2: Number of messages to agents and to tracking software
vs. agent behavior.

Figure 3: Message statistics vs. agent behavior. Message cost is
the product of the average length and the total number of messages

sent per second.

Figure 4: Percentage of successful negotiations vs. negotiation
strategy type. A successful negotiation is one that completes with

a deal between the two negotiating agents.

5 Conclusions
We have described a multiagent approach to distributed
resource allocation problems, particularly to multisensor

0

2

4

6

8

1 0

1 2

D X D Y D is ta n ce

A
ve

ra
ge

 E
rr

or
 in

 F
ee

t

n o n e g o tia tio n s
s ta tic n e g o tia tio n s tra te g y
c a s e -b a s e d s tra te g y

0

1 0

2 0

3 0

4 0

5 0

6 0

re s p o n d e r in i t ia to r to ta l
t y p e s o f n e g o t ia t i o n s

pe
rc

en
ta

ge
 o

f s
uc

ce
ss

s ta t ic n e g o t ia t io n
s tr a te g y
c a s e - b a s e d s t r a te g y

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

to o th e r a g e n ts to tra c k e r to ta l

N
um

be
r o

f m
es

sa
ge

s
pe

r a
ge

nt
 c

yc
le

n o n e g o t ia tio n s

s ta tic n e g o tia tio n
s tra te g y
c a s e -b a s e d s tra te g y

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

a ve ra g e le ng th m e s s a g e c o s t

n o n e g o t ia t io n s
s ta t ic n e g o t ia t io n s t ra te g y
c a s e-b a s ed s t ra te g y

Int. J. Conf. On Artificial Intelligence (IJCAI-01), Seattle, WA, 2001
tracking of targets in a real-time environment. Our ap-
proach uses negotiations among agents to exchange infor-
mation based on strategies retrieved using a case-based rea-
soning system. This allows the agents to learn negotiation
strategies based on previous experiences, adapt to the cur-
rent situations, and avoid repeating past failures. We have
shown experimentally that CBR-based negotiations helped
agents to negotiate more efficiently and more successfully,
indirectly helping the agents track their targets more accu-
rately. The agents in our system use real-time scheduling
services to become reflective of the system-level resources
they use and to be time-aware; this allows the agents to
work in an environment of real-time constraints. Finally,
we showed experimentally that reflective negotiating agents
can track targets much better than agents that simply react to
the presence of targets in their environment. The reflective
nature of the agents allows them to schedule the precise
time of measurement and also exchange computational re-
sources, leading to faster and more efficient processing.

Acknowledgments
The authors would like to thank Kelly Corn, Will Dinkel,
Jim Emery, Arun Gautam, Douglas Niehaus, Pete Prasad,
and Huseyin Sevay for their work on the ANTS Project at
the University of Kansas. The work described in this paper
is sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory,
Air Force Materiel Command, USAF, under agreement
number F30602-99-2-0502. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Re-
search Projects Agency (DARPA), the Air Force Research
Laboratory, or the U.S. Government.

References
[Chavez and Maes, 1996] Chavez, A., and Maes, P. Kas-

bah: An agent marketplace for buying and selling goods.
In Proceedings of 1st Int. Conf. on Practical Application
of Intelligent Agents & Multi-Agent Technology, 75-90.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An
analysis of time-dependent planning. In Proc. of the Sev-
enth National Conf. on Artificial Intelligence (St. Paul,
MN), August, 49-54,

[Jennings et al., 1998] Jennings, N. R., Parsons, S., Noriega,
P., and Sierra, C. On argumentation-based negotiation. In
Proc. of Int. Workshop on Multi-Agent Systems (Boston,
MA).

[Kraus, 1997] Kraus, S. Beliefs, time, and incomplete in-
formation in multiple encounter negotiations among
autonomous agents, Annals of Mathematics and Artificial
Intelligence 20, 1-4, 111-159.

[Kraus et al., 1998] Kraus, S., Sycara, K., and Evenchik, A.
Reaching agreements through argumentation: a logical
model and implementation, AI Journal 104, 1-2, 1-69.

[Kraus et al., 1995] Kraus, S., Wilkenfeld, J., and Zlotkin,
G. Multiagent negotiation under time constraints. Artifi-
cial Intelligence 75, 297-345.

[Laasri et al., 1992] Laasri, B., Laasri, H., Lander, S., and
Lesser, V. A generic model for intelligent negotiating
agents. Int. J. of Intelligent & Cooperative Information
Systems 1, 291-317.

[Lesser et al., 1988] Lesser, V. R., Pavlin, J., and Durfee, E.
Approximate processing in real-time problem solving. AI
Magazine 9, 1, 49-61.

[Matos et al., 1998] Matos, N., Sierra, C., and Jennings, N.
R. Negotiation strategies: an evolutionary approach. In
Proc. of Int. Conf. on Multiagent Systems (ICMAS’98)
(Paris, France), July 4-7, 182-189.

[Rosenschein and Zlotkin, 1994] Rosenschein, J. S., and
Zlotkin, G. Designing conventions for automated nego-
tiation, AI Magazine 15, 3, 29-46.

[Srinivasan et al., 1998] Srinivasan, B., Pather, S., Hill, R.,
Ansari, F., and Niehaus, D. A firm real-time system im-
plementation using commercial off-the shelf hardware
and free software. In Proc. of the Real-Time Technology
and Applications Symposium, (Denver, CO).

[Zeng and Sycara, 1998] Zeng, D., and Sycara, K. Bayesian
learning in negotiation, Int. J. of Human-Computer Stud-
ies 48, 125-141.

[Zlotkin and Rosenschein, 1996] Zlotkin, G., and Rosen-
schein, J. S. Mechanism design for automated negotia-
tion, and its application to task oriented domains, Artifi-
cial Intelligence 86, 2, 195-244.

	Leen-Kiat Soh and Costas Tsatsoulis
	Abstract
	Introduction
	Agent Negotiation
	2.3. Case-Based Negotiation Strategy
	Real-Time Reflective Agents
	Experimental Results
	Conclusions
	References

