
Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002.

Allocation Algorithms in
Dynamic Negotiation-Based Coalition Formation

Leen-Kiat Soh

Computer Science and Engineering
University of Nebraska

115 Ferguson Hall
Lincoln, NE

(402) 472-6738

lksoh@cse.unl.edu

Costas Tsatsoulis
Dept. of Electrical Engineering and Computer Science
Information & Telecommunication Technology Center

University of Kansas
Lawrence, KS 66044

(785) 864-7749

tsatsoul@ittc.ukans.edu

ABSTRACT

In this paper, we present a set of allocation algorithms for a dy-
namic, negotiation-based coalition formation model. The model
is for a cooperative multiagent system in which each agent has
incomplete information about its dynamic and uncertain world
and must respond to sensed events within time constraints. With
incomplete information and uncertain world parameters while
lacking time, an agent cannot afford organizing a rationally opti-
mal coalition formation. Instead, our agents use a two-stage
methodology. When an agent detects an event in the world, it
first compiles a list of coalition candidates that it thinks would be
useful, and then negotiates with the candidates. A negotiation is
an exchange of information and knowledge for constraint satisfac-
tion until both parties agree on a deal or one opts out. Each suc-
cessful negotiation adds a new member to the agent’s final coali-
tion. The agent that initiates the coalition needs to determine the
task distribution among the members of the coalition and designs
its coalition strategy to increase the chance of successfully form-
ing a working coalition. Since the environment is dynamic, noisy,
and the agents are resource-constrained, agents must form the
working coalition to react to events as soon as possible and with
whatever partial information they currently hold. Thus, the allo-
cation algorithms have to take these constraints into account.

Keywords
Allocation algorithms, dynamic coalition formation, negotiation,
incomplete information
1. INTRODUCTION
In this paper we present a set of allocation algorithms for a dy-
namic, negotiation-based coalition formation model. The goals
for the design of our allocation algorithms include improving (1)
the chance of a coalition formation on time, (2) the chance of a
coalition formation with incomplete information, (3) the robust-
ness of a coalition formation, and (4) the flexibility of a coalition
formation changing dynamically. Our coalition formation model

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IJCAAMAS Workshop on Teamwork and Coalition Formation ’02, July
15-16, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

deals with cooperative agents in a dynamic and uncertain world
with incomplete information and time constraints. A coalition is a
group of agents that collaborate to perform a coordinated set of
tasks that a single agent cannot accomplish by itself, and that may
be a response to an event that has occurred in the environment. A
dynamic coalition is one that is formed as a response to an event
and dissolved when the event no longer exists or when the re-
sponse is completed. Ideally, an agent would prefer to form an
optimal coalition to maximize the yield of the system as a whole.
However, such optimal rationalization requires the agent to have
complete information about its world and its neighboring agents,
and also about the uncertainty associated with all factors related to
the multiagent infrastructure. When that information is not read-
ily available or the collection of that information is too costly, an
agent cannot afford such optimality. In the following, we elabo-
rate on some of the problem characteristics.
Our model applies to an environment where each agent has in-
complete information about its world. Incomplete information
may be due to polling and updating costs, constrained resources,
and decentralized information base. In a time-critical domain,
agents may not afford to poll for information or update the
changes in their perceived environments constantly. As a result,
when an agent needs to rationalize based on its profile of other
agents, it can only do so based on partial or outdated information.
That means the coalition-initiating agent may know which other
agents can be useful but can only guess at their willingness to
help. Our goal is to provide a model and a set of allocation algo-
rithms that increase the chance of a successful coalition forma-
tion.

An optimal rationalization for coalition formation may not be
possible due to noise and uncertainty in the environment, or time
constraints. For example, the communication channels among the
agents may be congested or faulty, messages may be noisy or lost,
perceived events may be qualified inaccurately, and so on. These
uncertainties as a whole render rationally optimal planning less
cost efficient compared to one that is more reactive, since the
longer the initiating agent takes to respond to an event, the more
likely it is that the environment has changed making the action
moot.

In our approach we assume all agents are peers—there is no hier-
archy among the agents. Each agent is able to sense its environ-
ment, revise its own perceptions, and form its own coalitions.
This allows the agents to be reactive to environmental changes,
without having the directives passed from a higher-up agent while
encouraging diversity in information stored at each agent.

Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002.

We propose using negotiations to refine a coalition. The motiva-
tion of a negotiation is for the initiating agent to persuade a poten-
tial coalition partner to agree to help. All the coalition-initiating
agent can do is to prepare an initial coalition—based on whatever
the information that it currently has—that it thinks has a high
chance of success and proceed from there. This negotiation al-
lows the initial coalition to be less than optimal and to be com-
puted hastily.

Unlike traditional coalition formation techniques that assume that
potential coalition members are readily willing to help, our model
expects coalition members to refuse to join in a coalition, espe-
cially in a resource-constrained environment and also plans for
failed communication due to congestion, noise, or message loss.
Thus, the initial coalition may not survive after negotiations as the
working coalition is finalized. Our model is also designed to
withstand noise and uncertainty by incorporating insurance poli-
cies and allocation algorithms that are greedy or worried.

In the following, we first present briefly our dynamic, negotiation-
based coalition formation model. Then we describe the allocation
algorithms in Section 3. Subsequently, we describe our current
work using the model and the allocation algorithms in a multi-
agent sensor tracking problem domain and discuss some experi-
mental results. Finally, we conclude.

2. COALITION FORMATION MODEL
Briefly, our coalition formation model works as follows. In a
multiagent system, when one of the agents initiates the coalition
formation process in hope of organizing a group of cooperative
agents to perform tasks in response to some event, this initiating
agent (also known as the “computing agent” [1]) shoulders the
responsibility of designing the best coalition given the situated
information to increase the chance of forming a working and use-
ful coalition at the end of the process. First, during the coalition
initialization, the initiating agent creates a ranked list of useful
agents. Then, the initiating agent approaches the potential coali-
tion partners and requests for negotiations during a coalition final-
ization step. Our negotiation is based on a case-based reflective
argumentative model [2]. Finally, the agent re-designs its coali-
tion if it fails to satisfy its response to the triggering event and if
time permits. This three-step model allows an agent to form an
initial coalition quickly to react to an event and to rationalize to
arrive at a working final coalition as time progresses.

2.1. Neighborhood
Each agent, ia , has a neighborhood, η ai . It knows some intrin-
sic information about all neighbors, η k, ai ∈ η ai , in this neighbor-
hood such as a neighbor’s physical location, its functional capa-
bilities, and so on. The functional capabilities of an agent ia are
denoted as

iaf . An agent can belong to different neighborhoods
concurrently; however, it does not necessary have knowledge
about those neighborhoods except its own. An agent can commu-
nicate directly with all its neighbors, and each neighbor can com-
municate with the agent directly as well. However, those
neighbors may not be able to communicate with each other di-
rectly because they are not necessarily neighbors of each other.
Suppose we denote the ability to communicate directly by an
agent, ia , with another, ja , as Comm ai , a j() . Then in a
neighborhood of ia , Comm ai , a j() and Comm a j , ai() are true for
all

iaja η∈ .

2.2. Events
When an agent senses an event, it measures and collects its prop-
erties to perceive it. It is this perception that quantifies the event
to facilitate the subsequent coalition design. Suppose an event is
denoted as ie . It has a time stamp when it was detected,

iedetectedt , , a time stamp when it is no longer valid,
ieendt , , and a

categorical type of the event,
ietype . The agent has knowledge

about events of the type
ietype , denoted as ()τ=Κ

ietype . It

contains three basic items: τδexpected, for the expected duration

during which the event will be valid, τΘ for the set of tasks de-

vised as the standard response to the event, and τΩ for the coali-
tion formation strategy.

2.3. Coalition Initialization
The first stage of the dynamic, negotiation-based coalition forma-
tion algorithm is the determination of the set of the initial coali-
tion candidates, denoted as ()jiini ea ,Λ for agent ia and event

je . This notation allows an agent to have concurrent multiple

coalitions, one for every event that it is currently handling. We
denote a candidate as kα . In this section, we first discuss differ-
ent approaches to coalition initialization. Then, we discuss the
ranking of coalition members, and even coalitions. Subsequently,
we present some task allocation algorithms.

2.4. Evaluation of Coalitions and Coalition
Members
In our dynamic, negotiation-based coalition formation model, the
initiating agent ia first generates the initial coalition candidates,

()jiini ea ,Λ , to deal with an event je . ()jiini ea ,Λ represents

the neighbors that it thinks can be of help to respond to je . To

find out whether these candidates are willing to help, the initiating
agent needs to negotiate. Negotiation is a process of exchange of
information on individual commitments, constraints, and percep-
tions and may be lengthy and time-consuming. Hence, the initiat-
ing agent must think twice about whom to approach first. This
motivates the agent to evaluate its coalition members. The objec-
tive is to rank the candidates on their potential utility values to the
coalition so that the initiating agent can negotiate with the agents
with the highest utility values first.

For a candidate ()jiinik ea ,Λ∈α , we base its potential utility,

ik aPU ,α , on three sets of attributes: (1) the past relationship be-

tween the initiating agent and the candidate, ()trel kapast i
,, α ,

where t is the point in time when the set of attribute-value pairs in
the relationship is collected, (2) the current relationship between
the initiating agent and the candidate, ()trel kanow i

,, α , and (3)

the ability of the candidate in handling the event,
()teability jkai

,,α . All these sub-utility measures map into

10: lℜ and each is asymmetric such that
() ()tareltrel ipastkapast ki

,, ,, αα ≠ .

Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002.

Now, we define the past relationship between an agent ia and a

candidate kα . First, suppose that the number of negotiations

initiated from an agent ia to kα is ()kinegotiate a α→Σ , the

number of successful negotiations initiated from an agent ia to

kα is ()∑ →success
negotiate kia α , the number of negotiation requests

from kα that ia agrees to entertain is ()∑ →entertain
negotiate ik aα ,

the total number of all negotiations initiated from ia to all its

neighbors is ()
iainegotiate a η→Σ , and the total number of all

successful negotiations initiated from ia to all its neighbors is

()∑ →success
negotiate ai i

a η . In our model, ()trel kapast i
,, α includes

the following:

(a) the helpfulness of kα to ia :
()
()kinegotiate

success
negotiate ki

a

a

α

α

→Σ

→∑
,

(b) the importance of kα to ia :
()
()

iainegotiate

negotiate ki

a

a

η

α

→Σ

→∑
,

(c) the reliance of ia on kα :
()
()∑

∑

→

→
success
negotiate ai

success
negotiate ki

i
a

a

η

α
,

(d) the friendliness of ia to kα :
()
()∑

∑

→

→

negotiate ik

entertain
negotiate ik

a

a

α

α
,

(e) the helpfulness of ia to kα :
()
()∑

∑

→

→
entertain
negotiate ik

success
negotiate ik

a

a

α

α
, and

(f) the relative importance of ia to kα :

()
()∑

∑

→

→

negotiate ki

negotiate ik

a

a

α

α
.

The higher the value of each of the above attributes, the higher the
potential utility the agent ja may contribute to the coalition; i.e.,

each is proportional to ()trel kapast i
,, α . The first three attributes

tell the agent how helpful and important a particular neighbor has
been. The more helpful and important that neighbor is, then it is
better to include it in the coalition. On the other hand, the second
last attributes tell the agent the chance of having a successful ne-
gotiation. The agent expects the particular neighbor to be grateful
and more willing to agree to a request based on the agent’s friend-
liness, helpfulness and relative importance to that neighbor. Note
that the above attributes are based on data readily collected when-
ever the agent ja initiates a request to its neighbors or whenever

it receives a request from one of its neighbors. To further the
granularity of the above attributes, one may measure them along
different event types: for each event type, the initiating agent re-
cords the above six attributes. This allows the agent to better
analyze the utility of a neighbor based on what type of events that

it is currently trying to form a coalition for. In that case, an event
type would qualify all the above attributes.

Now, we define the current relationship between an agent ia and

its neighbor kα . Suppose the number of concurrent negotiations
that an agent can conduct is #negotiation_threads, and the number
of tasks that the agent ia is currently executing as requested by

kα is ()()∑ =execute ak i
taskinitiatortask ,: η . Suppose

()∑ →success
negotiate kia α is the number of ongoing negotiations

initiated from ia to kα . In our model, ()trel kanow i
,, α in-

cludes the following:

(a) negotiation strain between ia and kα :

()
threadsnnegotiatio

aongoing
negotiate ki

_#
∑ →α

,

(b) negotiation leverage between ia and kα :

()

threadsnnegotiatio

aongoing
negotiate ik

_#
∑ →α

, and

(c) degree of strain on ia from kα :

()()
()()∑

∑

∈

=

execute a

execute k

i
taskinitiatortask

taskinitiatortask

η

α

:

:
.

The first attribute is inversely proportional to ()trel kanow i
,, α

and the other two are proportional to ()trel kanow i
,, α . The first

attribute approximates how demanding the agent is of a particular
neighbor. The more negotiations an agent is initiating to a
neighbor, the more demanding the agent is and this strains the
relationship between the two and the negotiations suffer. The last
two attributes are used as a leverage that the agent can use against
a neighbor that the agent is negotiating with, about a request initi-
ated by the neighbor.

Now, we deal with the ability of the candidate to handle an event
je , ()teability jkai

,,α . While ()trel kapast i
,, α and

()trel kanow i
,, α are both domain-independent utilities,

()teability jkai
,,α is domain-specific. For example, in a data-

base system, if a coalition requires a reporting agent and kα is a
reporting agent, then it has a high ability measure. In a computing
system, if an agent kα has a high CPU allocation and the coali-
tion formed is for CPU re-allocation to alleviate a computing
crisis for agent ia , then ()teability jkai

,,α is high. Note also

that both ()trel kapast i
,, α and ()trel kanow i

,, α are time-

dependent because the measures change over time as the agent
interacts with its neighbors and world. ()teability jkai

,,α is

also time-dependent though not as obvious. An event is dynamic
and thus may require different responses depending on its charac-
teristics even if it is of the same type. ()teability jkai

,,α is

Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002.

further influenced by the current status of the agent ia . Depend-
ing on the ability of the agent itself to handle an event due to its
current schedule of tasks and computing resources, a candidate

kα that can perform approximately what ia wants may be better

than another candidate that can perform exactly what ia wants
but for a shorter duration. For example, suppose an event requires

{ }321 ,, fffF =τ and ia knows how to perform all three func-

tions, candidate kα knows how to perform 2f , and candidate

lα knows how to perform 3f . Suppose that ia is currently

performing 2f and 3f for another event, and thus it needs its

neighbors to perform 2f and 3f for the current event while it

shoulders the responsibility for 1f . On the other hand, suppose

that ia has only one negotiation thread available, meaning that it
can only negotiate with one coalition candidate. Thus, it needs to
decide between kα and lα . When ()teability jlai

,,α is fur-

ther analyzed, the agent realizes that it will soon finish its own
execution of 3f , hence the adjusted ability of lα decreases since

the agent ia can rely on itself to perform the function in a short
time. In addition, functions or tasks can be prioritized. Here are
some priority heuristics that add to the ability of a candidate: (a) if
a candidate can provide a functional capability of high uniqueness
to the coalition, (b) if a candidate can provide a functional capa-
bility of high importance (with inflexible constraints) to the coali-
tion, (c) if a candidate can provide a functional capability that is
very time consuming, or (d) if a candidate can provide a func-
tional capability that is resource taxing.

Finally, the potential utility,
ik aPU ,α , of a candidate kα is a

weighted sum of ()trel kapast i
,, α , ()trel kanow i

,, α , and

()teability jkai
,,α 1:

()

() () ()[]teabilitytreltrel

WPU

jkakanowkapast

eaa

iii

jiiniik

,,,, ,,

,,

ααα

α •= Λ

where ()

=Λ

ji

ji

ji

jiini

eaability

eanow

eapast

ea

w
w
w

W

,,

,,

,,

, and

1,,,,,, =++
jijiji eaabilityeanoweapast www . Note that ultimately

these weights may be dynamically dependent on the current status
of ia and the event je . A higher resolution of

ik aPU ,α is the

following. Suppose that the functions needed to be implemented
as the response to the event type τ are { }NfffF ,,, 21 m=τ .

1 Strictly, the notation for

ik aPU ,α should be
jik eaPU ,,α . But to

simplify our discussions here, we use
ik aPU ,α since we deal with only

one event at a time. When we talk about multiple coalitions, we will use

jik eaPU ,,α .

The ability, ()teability jkai
,,α , as viewed by the initiating

agent ia , of a candidate kα includes a matrix of scores when

kα is multi-functional such that

()
() ()[]tfyabilittfyabilit

teability

Nkaka

jka

ii

i

,,,,

,,

1 αα
α

′′

=

m

.

As a result,
ik aPU ,α can be further specified as

{ }
iNkikikik afafafa PUPUPUPU ,,,,,,, ,,,

21 αααα �= . In a ho-

mogeneous system, all such sub-utility values will be non-zero.
But in a heterogeneous system where an agent may not have all
the functions needed in { }NfffF ,,, 21 m=τ , some of the sub-
utility values will be zero. This resolution allows the initiating
agent to perform task-based selection and assignment.

In a scenario where there are multiple coalitions, the agent needs
to rank them before negotiations. The potential utility of a coali-
tion is the total sum of all its candidates’ potential utilities. The
details of handling multiple coalitions are in [4].

Note that since our coalition finalization is negotiation-based, that
means the initial coalition is biased towards increasing the chance
of having successful negotiations among the initiating agent and
its candidates. This is evidenced in our use of heuristics to com-
pute the potential utility of the candidates. Note also that the
above evaluation approach is a form of reinforcement learning, in
which the initiating agent learns to rank neighbors that have been
helpful higher in its coalition initialization stage [3].

3. ALLOCATION ALGORITHMS
In this section, we propose and examine several allocation algo-
rithms: priority-based, flexibility-bounded, greedy, and worried.
The goals for the design of our allocation algorithms include im-
proving the chance of a coalition formation on time, the chance of
a coalition formation with incomplete information, the robustness
of a coalition formation, and the flexibility of a coalition forma-
tion changing dynamically.

After ()jiini ea ,Λ is determined, the initiating agent needs to

design a task allocation plan. For a task-driven or function-driven
approach, the plan is dictated by the knowledge stored for the type
of the event, ()τ=Κ

ietype . Based on the potential utility

ik aPU ,α of a candidate kα , the initiating agent matches a par-

ticular task in the plan to a candidate. If there is at most one task
assigned to a candidate, we call the assignment 1-to-1; otherwise,
many-to-1.

3.1. Priority-Based
First we address the trivial scenarios. In a homogeneous, uni-
functional multiagent system for a task-based approach, every
agent knows how to perform exactly the same function, f. In this
case, the initiating agent simply negotiates with each candidate to
perform their respective tasks—i.e., executing f in the contexts
that each individual agent knows. In a heterogeneous, uni-
functional multiagent system for a function-based approach, every
agent, kα , knows how to perform only one unique function

k
fα .

The initiating agent here simply assigns the task to the candidate
that can perform it.

Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002.

In a multi-functional system, however, the initiating agent has
more flexibility in its task allocation and assignment. First, if the
agents are functionally homogeneous and if the task allocation is
1-to-1, then the initiating agent computes the

ik aPU ,α value for

each candidate kα , including the individual
ink afPU ,,α values

for Nn h1= . In reality, it is likely to have at least one agent
that scores the highest abilities for more than one task. In this
scenario, if the task allocation is 1-to-1, then we adopt the follow-
ing algorithm:

Algorithm Priority-Based 1-To-1: (1) rank all prioritized
sub-utility

ink afPU ,,α values by their scores, (2) select the

top score
ink afPU ,,α , assign nf to the candidate kα , and

remove all kα -related scores from the candidate pool, and

(3) go back to step 2 until all tasks in { }NfffF ,,, 21 �=τ
have been assigned to a unique candidate.

On the other hand, if the task allocation is many-to-1, meaning
that the initiating agent can assign more than one task to a single
candidate as long as the tasks do not conflict each other in re-
source usage, time constraints, and goals, then we adopt the fol-
lowing algorithm:

Algorithm Priority-Based Many-To-1: Initialize n = 1. (1)
rank all prioritized sub-utility

ink afPU ,,α values by their

scores, (2) assign the task nf to the candidate with the top

ink afPU ,,α , and (3) increment n and go back to step (2) until

n = N.

Second, if the agents are functionally heterogeneous, then the task
allocation and assignment algorithm follows that for the case in
which the agents are functionally homogeneous in both the 1-to-1
and many-to-1 scenarios. Note that the candidates with unique
functional capabilities will have high

ink afPU ,,α values, allow-

ing those tasks to be assigned first.

At the end of task allocation and assignment, the initiating agent
has a list of task-candidate pairs or the assignment. We denote
this assignment as () { }Pja teassign

i
ρρρ ,,,, 21 h=

where P is the total number of assignments, and

ρραρ f,= states the candidate with its assigned task. This

list is also sorted, with the top-prioritized assignments first.

3.2. Flexibility-Bounded
The number of coalition members that an initiating agent can
approach is bounded by its available resources. For example,
suppose an agent has a set of negotiation threads,

{ }Rγγγγ ,,, 21 �= . Each rγ is spawned at the startup of an
agent and is capable of conducting a negotiation with some nego-
tiation thread of another agent. Then, the number of coalition
members to be approached is determined by the number of nego-
tiation threads that are currently available, and the availability of
computational resource that the agent currently has to support the
eventual negotiations. As a result, together the two factors deter-

mine a hard constraint, () jiapproached ea ,Λ , that specifies the

number of coalition members to be approached.

If () jiapproached eaF ,Λ≤τ , then the initiating agent simply

uses the above task allocation and assignment algorithms.

In a 1-to-1 task allocation case, if () jiapproached eaF ,Λ>τ ,

then the coalition cannot be successfully formed. The initiating
agent may quit and ignore the event, or continue doing whatever it

can: approaching the top- () jiapproached ea ,Λ candidates on its

list with requests to perform the top-prioritized tasks. The modi-
fied algorithm thus becomes:

Algorithm Priority-Based 1-To-1 Bounded: (1) rank all
prioritized sub-utility

ink afPU ,,α values by their scores, (2)

select the top score
ink afPU ,,α , assign nf to the candidate

kα , and remove all kα -related scores from the candidate
pool, and (3) go back to step (2) until (a) all tasks in

{ }NfffF ,,, 21 �=τ have been assigned to a unique can-
didate or (b) the number of candidates assigned so far is equal

to () jiapproached ea ,Λ .

In a many-to-1 task allocation scenario, if

() jiapproached eaF ,Λ>τ and it is possible to assign non-

conflicting tasks to one candidate, then we have the following
algorithm:

Algorithm Priority-Based Many-To-1 Bounded: Initialize n
= 1. (1) rank all prioritized sub-utility

ink afPU ,,α values by

their scores, (2) assign the task nf to the candidate with the

top
ink afPU ,,α , (3) increment n and go back to step (2) until

n = N, (4) if the number of candidates assigned is greater than

() jiapproached ea ,Λ then perform Algorithm Task Shuffle,

with the assignment () { }Pja teassign
i

ρρρ ,,,, 21 �= as

the argument, and (5) if the algorithm returns with a failure,
then remove the last members of ()teassign jai

, until P =

() jiapproached ea ,Λ .

Algorithm Task Shuffle (Lazy): Initialize i = 1. (1) if i = P,
then return with a failure, (2) absorb Pρ into iρ and re-

organize ()teassign jai
, , (3) if the absorption fails, then in-

crement i by 1 and go back to step (1), (4) otherwise, if new P

> () jiapproached ea ,Λ , then go back to step (1), (5) other-

wise, return with a success and a new ()teassign jai
, .

Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002.

The function ()ijabsorb ρρ , returns true if the agent is able to

absorb the task-candidate pair jρ into iρ , making
iρα per-

forming both
i

f ρ and
j

f ρ . When the assignment is re-

organized, the task-candidate pair that has been absorbed is re-
moved from the list, and the new task-candidate pair has become

{ }
jii

ffi ρρραρ ,,= . As a result, the total number of as-

signments decreases by 1, resulting in a new P. Note that the
function ()ijabsorb ρρ , is domain-specific guided by domain-

independent rules. Absorption is feasible only if the two tasks do
not compete for the same resources and do not have conflicting
goals. In addition, the above task-shuffling algorithm is lazy as it
tries to dump all the extra assignments into the first (and top-
prioritized) task-candidate pair. This may be rational, as the first
candidate associated with the top-prioritized task-candidate pair is
more likely to become a useful coalition member. Variants of the
task-shuffling algorithm involve modifications to the fourth step.
Instead of going to the same task-candidate pair, one may want to
increment i by 1.

3.3. Imperfect Coalition and Greedy Algo-
rithms
As already mentioned, when an initiating agent has more negotia-
tions to perform than it has available resources to conduct
negotiations with its coalition members, it either quits or
continues with as many negotiations as possible to recruit as many
coalition members as possible. This implies that if the initiating
agent can get the message out, then hopefully the coalition
members will pass the message along to their own coalition
members. So, an initiating agent does not necessarily have to plan
for a perfect coalition solution for an event. Moreover, it is
unlikely to obtain a perfect coalition solution even with a perfect
plan since the coalition formation process is subjected to dynamic
changes in the environment, noise, message loss, refusals to
negotiate, and failed negotiations.

Here, we introduce a greedy algorithm for task allocation and
assignment, for a multi-functional, heterogeneous multiagent
system, in a 1-to-1 task allocation scenario. First, we define a
modified prioritized utility score called the focused utility. We
denote it as:

() () ()
() ()

]
2

,,,,

,,[,,,,,

tflabiteabil

treltrelWUP

nkajka

kanowkapasteaaf

ii

iijiiniink

αα

ααα

′+

•=′ Λ

.

So the utility value has an emphasis in what particularly the can-
didate kα knows how to do, from the point of view of the initiat-

ing agent ia , in an initial coalition of ()jiini ea ,Λ . If an agent

has n functional capabilities that suit the tasks that the initiating
agent wants done, then it has n such focused utility values. Then
we have the following algorithms:

Algorithm Greedy Priority-Based 1-To-1 Bounded: Ini-
tialize n = 1. (1) rank all focused utility values, (2) assign the
task nf to the candidate with the top

ink afUP ,,α′ , (3) re-

move all utility values of that candidate from the ranking, (4)

increment n and go back to step (2) until n =

() jiapproached ea ,Λ .

Algorithm Greedy Priority-Based Many-To-1 Bounded:
Initialize n = 1. (1) rank all focused utility values, (2) assign
the task nf to the candidate with the top

ink afUP ,,α′ , and

(3) increment n and go back to step (2) until n =

() jiapproached ea ,Λ .

An initiating agent becomes greedy when practicing the above
algorithms because (1) it tries to minimize its own rationalization
and computing process, (2) it selects the candidate with the higher
overall utility values to approach hoping for a successful negotia-
tion, (3) it cares mostly about high-priority tasks, (4) it tries to
maximize its chance of getting a particular task done—by includ-
ing sub-utilities in the focused utility evaluation, and (5) it hopes
to shift its responsibility (partially) to the candidates via success-
ful negotiations—expecting the candidates to spawn their own
coalitions to help respond to the event.

3.4. Insurance and Worried Algorithms
Since negotiations cannot be guaranteed to be always successful,
that means some initial candidates may be dropped from the final
coalition. This also implies that if an initiating agent over-relies
on one particular candidate, then the initiating agent may lose a
large portion of the coalition’s utility. So, in the task allocation
and assignment process, we can build in some insurance poli-
cies—some alternative plans—to at least absorb the impact of
such disasters. Of course, an initiating agent considers these plans
only when it has enough computational resources to do so, i.e.,

() τFea jiapproached >Λ , . As such, we have the following

worried algorithms:

Algorithm Worried Priority-Based 1-To-1 Bounded: (1)
rank all prioritized sub-utility

ink afPU ,,α values by their

scores, (2) select the top score
ink afPU ,,α , assign nf to the

candidate kα , and remove all kα -related scores from the
candidate pool, (3) go back to step (2) until all tasks in

{ }NfffF ,,, 21 �=τ have been assigned to a unique can-
didate, (4) repeat steps (2)-(3) until number of candidates as-

signed so far is equal to () jiapproached ea ,Λ .

 In a many-to-1 task allocation scenario, if

() τFea jiapproached >Λ , and it is possible to assign non-

conflicting tasks to one candidate, then we have the following
algorithm:

 Algorithm Worried Priority-Based Many-To-1 Bounded:
Initialize n = 1. (1) rank all prioritized sub-utility

ink afPU ,,α

values by their scores, (2) assign the task nf to the candidate

with the top
ink afPU ,,α , (3) increment n and go back to step

Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002.

(2) until the number of candidates assigned so far is equal to

() jiapproached ea ,Λ .

Note that the insurance assignments as a result of the worried
algorithms will be aborted once the initiating agent has achieved a
satisfactory coalition (e.g., as different negotiations complete with
successes).

3.5. Over-Demanding and Caps
Of course, the lazy and greedy algorithms may end up assigning
all tasks to a single agent. This becomes an over-demanding sce-
nario that complicates the negotiation, and, as a result, the coali-
tion may suffer. Hence, the number of assignments for a candi-
date has to be bounded when the computational resource of the
initiating agent can afford it. The cap can be determined dynami-
cally. For example, if the primary task that the initiating agent
wants the candidate to perform is extremely important, or highly
unique, then it is better for the initiating agent to not over-demand
in its approach to the candidate. On the other hand, if the candi-
date has been very helpful and friendly, then the initiating agent
may be able to take advantage of that relationship by over-
demanding. Suppose we denote the cap for an assignment ρ for

candidate kα as
k

f
αρ , then ()trelf kapast ik

,, α
αρ ∝ ,

 ()trelf kanow ik
,, α

αρ ∝ , and

 ()teabilityf jkaik
,,1 α

αρ ∝ . And these caps can be in-

serted into all the algorithms above to prevent too many assign-
ments to a single agent

4. IMPLEMENTATION AND RESULTS
The driving application for our system is multisensor target track-
ing, a distributed resource allocation and constraint satisfaction
problem. The objective is to track as many targets as possible and
as accurately as possible using a network of sensors. Each sensor,
controlled by an agent, is at a fixed physical location and, as a
target passes through its coverage area, it has to collaborate with
neighboring sensors to triangulate their measurements to obtain an
accurate estimate of the position and velocity of the target. As
more targets appear in the environment, the sensors need to decide
which ones to track, when to track them, and when not to track
them, always being aware of the status and usage of sensor re-
sources.

The problem is further complicated by the real-time constraints of
the environment and the fact that agents have to share physical
resources such as communication channels and disk storage. For
example, for a target moving at 0.5 foot per second, accurate
tracking requires one measurement each from at least three differ-
ent sensors within a time interval of less than 2 seconds. The
environment is noisy and subject to uncertainty and error: mes-
sages may be lost, a sensor may fail to operate, or a communica-
tion channel could be jammed.

The sensors are 9.35 GHz Doppler MTI radars that communicate
using a 900 MHz wireless, radio-frequency (RF) transmitter with
a total of eight available channels. Each sensor can at any time
scan one of three sectors, each covering a 120-degree swath.
Sensors are connected to a network of CPU platforms on which

the agents controlling each sensor reside. The agents (and sen-
sors) must communicate over the eight-channel RF link, leading
to potential channel jamming and lost messages. Finally, there is
software (the “tracker”) that, given a set of radar measurements,
produces a possible location and velocity for a target; the accu-
racy of the location and velocity estimates depend on the quality
and frequency of the radar measurements: as we mentioned, the
target must be sensed by at least three radars within a two second
interval for accurate tracking.

Our agent architecture is as follows. Each agent has 3+B threads:
(1) a core main thread that does the decision making, manages the
tasks, performs coalition formation, and oversees the negotiations,
(2) a communication thread that interacts with the message
send/receive system of the radar (or the simulated software) to
poll for incoming messages and to physically send out messages,
(3) an execution thread that actuates the physical sensor: calibra-
tion, search-and-detect for a target, turn on/off a sensing sector,
change the orientation of the sensor, and measure a target’s return
signals, and (4) B negotiation threads. Each negotiation thread is
dormant until activated. When it is activated, it downloads perti-
nent information form the parent agent and proceeds with its ne-
gotiation.

We have implemented part of our dynamic, negotiation-based
coalition formation model in our multisensor target tracking sys-
tem and plan to implement the entire model as we include more
complicated tasks and events into our system. Currently, we have
implemented two types of events: an incoming target and a CPU
shortage crisis.

4.1. Multisensor Target Tracking
When an agent detects a target in its sensing sector, it first obtains
its estimated velocity and position from a tracker software mod-
ule. Equipped with these estimates, it is able to generate

()t
iaF ,τ

Ψ based on a geometric model of the orientations of the

neighbors’ sensors and their locations. Given this list, the agent is
able to obtain () ()

ii aaFjiini tea η
τ

∩Ψ=Λ ,, . Subsequently, the

agent ranks the candidates based on their potential utility follow-
ing evaluation scheme outlined in Section 3. Since the standard
response to target tracking is to turn on a specific sensing sector
and measure, 1=τF . So, we use the priority 1 and use the Al-
gorithm Priority-Based 1-To-1 Bounded to allocate the tasks and
use the number of available negotiation threads as

()jiapproached ea ,Λ . The initiating agent then activates its ne-

gotiation threads with the corresponding assignments. The nego-
tiation threads conduct their negotiations. Since we have only one
target in the environment, the initiating agent does not have the
opportunity to perform relaxation and termination. As a result,
each negotiation thread currently only monitors its own progress
and if it is running out of time, it counter-offers to speed up the
negotiation, and if it has run out of time, it aborts the negotiation
and reports back to its parent agent. The parent agent then
downloads the information from the completed negotiation thread
and carries out the deal reached—scheduling the deal in its job
queue, allocating CPU resource in anticipation of the task, and
performing the agreed task. One of the domain-specific criteria
used in determining ()teability jkai

,,α for the candidates is

either the time of arrival of the target into the sensing sector of the

Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002.

candidate or the time of departure of the target from the sensing
sector of the candidate. Candidates that have less time will have a
higher ability as they need to be approached soon before the target
leaves those sensing coverage areas.

We have tested our multiagent system in a physical hardware
setup and in a software simulation. Here are some experimental
setup parameters. There are four agents. Each agent controls a
radar. The radars are fixated at four corners of a 20x20 feet
square. A target moving at 0.5 ft/sec moves in a route (rectangu-
lar, diagonal, or circular). Table 1 shows the best mean square
error (MSE) in feet of our tracking in a noiseless environment.

Error Dx (ft) Dy (ft) MSE (ft)
Rectangular Route 1.76 0.80 2.00
Diagonal Route 1.32 1.50 2.29
Circular Route 1.22 1.51 2.22

Table 1 The best tracking errors of the target in different routes.

4.2. CPU Resource Allocation
We have implemented a Real-Time Scheduling Service (RTSS) in
‘C’, on top of the KU Real-Time system (KURT) [5] that adds
real-time functionality to Linux. First, the RTSS provides an
interface between the agents and the system timers, allowing
agents to: (1) query the operating system about the current time;
(2) ask the RTSS to notify them after the passage of certain length
of time; and (3) ask the RTSS to ping them at fixed time intervals.
This allows agents to know when to, for example, conclude a
negotiation process or turn on a radar sector. Second, the agents
may ask the RTSS to notify them when certain system-level
events occur, such as process threads being activated, or commu-
nication messages going out or coming into the system. Third, the
agents can ask the RTSS to allocate them a percentage of the CPU
for each one of their threads (such as the ones controlling the
radar and tracking or the ones used in negotiations) and to sched-
ule this allocation within an interval of time. This RTSS allows
an agent to monitor the progress of its own negotiations and the
usage status of its allocated CPU resource.

Currently, a CPU shortage is detected whenever an agent is using
90% of its allocated CPU. When this happens, it first requests for
more CPU allocation from the RTSS. If the RTSS has the CPU
available, it will grant it. If the RTSS can only grant partially or
grant none of the request, then the agent faces a crisis and declares
a new CPU shortage event. When this occurs, it retrieves

()t
iar ,τ

Ψ from the RTSS, where r is CPU allocation, and τ is

CPU shortage. This initiating agent then evaluates potential util-
ity,

ik aPU ,α of each candidate and then determines the amount

of resource using

()
∑

Λ∈

⋅⋅=

jiinim
im

ik

ijk

ea
ar

ar
ae PU

PU
rr

,
,,

,,
,2

α
α

α
α where

r is simply CPU allocation, ij aer , is the additional CPU alloca-

tion that the agent wants, and the number 2 is the factor used as an
insurance policy. After the resource allocation and assignment,
the initiating agent uses the greedy algorithm (Section 3.3) to
determine ()jiapproached ea ,Λ . It then negotiates with the can-

didates in ()jiapproached ea ,Λ to form the final coalition

5. CONCLUSIONS

We have described a set of allocation algorithms for a coalition
formation model that is dynamic and negotiation-based in a coop-
erative multiagent system. Rational optimality in our problem
domain is infeasible because the agents do not have complete
information of other agents in the neighborhood, the environment
is dynamic and events change, the environment is uncertain and
noisy such that communication is not always perfect, agents do
not have enough time to collect enough data to rationalize opti-
mally and finally agents have limited computational resources to
support combinatorial computations. Our model has two stages:
coalition initialization and coalition finalization. The goal of the
initialization is to extract a set of coalition candidates from an
agent’s neighborhood, as a response to a detected event. These
initial candidates are scored for their potential utilities and ranked.
Then the initialization process allocates and assigns tasks or re-
sources to the candidates. We have introduced prioritized,
bounded, greedy and worried algorithms for 1-to-1 or many-to-1
assignments. We have implemented some of the algorithms and
preliminary results are promising. As our ongoing and future
work, we plan to install all algorithms into our systems and study
the agents’ behavior in different settings and measure their effi-
ciency and effectiveness in coalition formation.

6. ACKNOWLEDGEMENTS
The work described in this paper is sponsored by the Defense
Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), Air Force Materiel Command,
USAF, under agreement number F30602-99-2-0502. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or im-
plied, of the DARPA, the AFRL, or the U.S. Government.

7. REFERENCES
[1] Sandholm, T. W. and Lesser, V. R. 1995. Coalition Forma-

tion Amongst Bounded Rational Agents, Proceedings of
IJCAI 1995, Montreal, Canada, 662-669.

[2] Soh, L.-K. and Tsatsoulis, C. 2001. Reflective Negotiating
Agents for Real-Time Multisensor Target Tracking, in Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI’01), August 4-10, Seattle, WA.

[3] Soh, L.-K. and Tsatsoulis, C. 2002. Learning to Form Nego-
tiation Coalitions in a Multiagent System, Working Notes of
AAAI Spring Symposium on Collaborative Learning Agents,
Stanford, CA, March 25-27, pp. 106-112.

[4] Soh, L.-K. and Tsatsoulis, C. 2002. Time-Bounded, Negoti-
ated Coalition Formation in Multiagent Systems, in prepara-
tion.

[5] Srinivasan, B., Pather, S., Hill, R., Ansari, F., and Niehaus,
D. 1998. A Firm Real-Time System Implementation Using
Commercial Off-The Shelf Hardware and Free Software, in:
Proceedings of RTAS-98, June, Denver, CO, 112-119.

	Allocation Algorithms in
	Dynamic Negotiation-Based Coalition Formation
	L
	tsatsoul@ittc.ukans.edu
	ABSTRACT(
	Allocation algorithms, dynamic coalition formation, negotiation, incomplete information
	INTRODUCTION
	2.	COALITION FORMATION MODEL
	2.1. Neighborhood
	2.2. Events
	2.3. Coalition Initialization

	The first stage of the dynamic, negotiation-based coalition formation algorithm is the determination of the set of the initial coalition candidates, denoted as � for agent � and event �. This notation allows an agent to have concurrent multiple coalitio
	2.4. Evaluation of Coalitions and Coalition Members

	3.	ALLOCATION ALGORITHMS
	3.1.	Priority-Based
	3.2.	Flexibility-Bounded
	3.3.	Imperfect Coalition and Greedy Algorithms
	3.4.	Insurance and Worried Algorithms
	3.5.	Over-Demanding and Caps
	4.1.	Multisensor Target Tracking
	4.2.	CPU Resource Allocation

	6.	ACKNOWLEDGEMENTS
	7.	REFERENCES

