
Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002. 

Allocation Algorithms in  
Dynamic Negotiation-Based Coalition Formation  

 
Leen-Kiat Soh 

Computer Science and Engineering 
University of Nebraska 

115 Ferguson Hall 
Lincoln, NE  

(402) 472-6738 

lksoh@cse.unl.edu 

Costas Tsatsoulis 
Dept. of Electrical Engineering and Computer Science 
Information & Telecommunication Technology Center  

University of Kansas  
Lawrence, KS 66044 

(785) 864-7749 

tsatsoul@ittc.ukans.edu 
 
ABSTRACT 

  

  
In this paper, we present a set of allocation algorithms for a dy-
namic, negotiation-based coalition formation model.  The model 
is for a cooperative multiagent system in which each agent has 
incomplete information about its dynamic and uncertain world 
and must respond to sensed events within time constraints.  With 
incomplete information and uncertain world parameters while 
lacking time, an agent cannot afford organizing a rationally opti-
mal coalition formation.  Instead, our agents use a two-stage 
methodology.  When an agent detects an event in the world, it 
first compiles a list of coalition candidates that it thinks would be 
useful, and then negotiates with the candidates.  A negotiation is 
an exchange of information and knowledge for constraint satisfac-
tion until both parties agree on a deal or one opts out.  Each suc-
cessful negotiation adds a new member to the agent’s final coali-
tion.  The agent that initiates the coalition needs to determine the 
task distribution among the members of the coalition and designs 
its coalition strategy to increase the chance of successfully form-
ing a working coalition.  Since the environment is dynamic, noisy, 
and the agents are resource-constrained, agents must form the 
working coalition to react to events as soon as possible and with 
whatever partial information they currently hold.  Thus, the allo-
cation algorithms have to take these constraints into account. 

Keywords 
Allocation algorithms, dynamic coalition formation, negotiation, 
incomplete information 
1. INTRODUCTION 
In this paper we present a set of allocation algorithms for a dy-
namic, negotiation-based coalition formation model.  The goals 
for the design of our allocation algorithms include improving (1) 
the chance of a coalition formation on time, (2) the chance of a 
coalition formation with incomplete information, (3) the robust-
ness of a coalition formation, and (4) the flexibility of a coalition 
formation changing dynamically.  Our coalition formation model 
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deals with cooperative agents in a dynamic and uncertain world 
with incomplete information and time constraints.  A coalition is a 
group of agents that collaborate to perform a coordinated set of 
tasks that a single agent cannot accomplish by itself, and that may 
be a response to an event that has occurred in the environment.  A 
dynamic coalition is one that is formed as a response to an event 
and dissolved when the event no longer exists or when the re-
sponse is completed.  Ideally, an agent would prefer to form an 
optimal coalition to maximize the yield of the system as a whole.  
However, such optimal rationalization requires the agent to have 
complete information about its world and its neighboring agents, 
and also about the uncertainty associated with all factors related to 
the multiagent infrastructure.  When that information is not read-
ily available or the collection of that information is too costly, an 
agent cannot afford such optimality.  In the following, we elabo-
rate on some of the problem characteristics. 
Our model applies to an environment where each agent has in-
complete information about its world.  Incomplete information 
may be due to polling and updating costs, constrained resources, 
and decentralized information base. In a time-critical domain, 
agents may not afford to poll for information or update the 
changes in their perceived environments constantly.  As a result, 
when an agent needs to rationalize based on its profile of other 
agents, it can only do so based on partial or outdated information.  
That means the coalition-initiating agent may know which other 
agents can be useful but can only guess at their willingness to 
help.  Our goal is to provide a model and a set of allocation algo-
rithms that increase the chance of a successful coalition forma-
tion. 

An optimal rationalization for coalition formation may not be 
possible due to noise and uncertainty in the environment, or time 
constraints.  For example, the communication channels among the 
agents may be congested or faulty, messages may be noisy or lost, 
perceived events may be qualified inaccurately, and so on.  These 
uncertainties as a whole render rationally optimal planning less 
cost efficient compared to one that is more reactive, since the 
longer the initiating agent takes to respond to an event, the more 
likely it is that the environment has changed making the action 
moot. 

In our approach we assume all agents are peers—there is no hier-
archy among the agents.  Each agent is able to sense its environ-
ment, revise its own perceptions, and form its own coalitions.  
This allows the agents to be reactive to environmental changes, 
without having the directives passed from a higher-up agent while 
encouraging diversity in information stored at each agent.   



Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002. 

We propose using negotiations to refine a coalition.  The motiva-
tion of a negotiation is for the initiating agent to persuade a poten-
tial coalition partner to agree to help.  All the coalition-initiating 
agent can do is to prepare an initial coalition—based on whatever 
the information that it currently has—that it thinks has a high 
chance of success and proceed from there.  This negotiation al-
lows the initial coalition to be less than optimal and to be com-
puted hastily.   

Unlike traditional coalition formation techniques that assume that 
potential coalition members are readily willing to help, our model 
expects coalition members to refuse to join in a coalition, espe-
cially in a resource-constrained environment and also plans for 
failed communication due to congestion, noise, or message loss.  
Thus, the initial coalition may not survive after negotiations as the 
working coalition is finalized.  Our model is also designed to 
withstand noise and uncertainty by incorporating insurance poli-
cies and allocation algorithms that are greedy or worried. 

In the following, we first present briefly our dynamic, negotiation-
based coalition formation model.  Then we describe the allocation 
algorithms in Section 3.  Subsequently, we describe our current 
work using the model and the allocation algorithms in a multi-
agent sensor tracking problem domain and discuss some experi-
mental results.  Finally, we conclude. 

2. COALITION FORMATION MODEL 
Briefly, our coalition formation model works as follows.  In  a 
multiagent system, when one of the agents initiates the coalition 
formation process in hope of organizing a group of cooperative 
agents to perform tasks in response to some event, this initiating 
agent (also known as the “computing agent” [1]) shoulders the 
responsibility of designing the best coalition given the situated 
information to increase the chance of forming a working and use-
ful coalition at the end of the process. First, during the coalition 
initialization, the initiating agent creates a ranked list of useful 
agents.  Then, the initiating agent approaches the potential coali-
tion partners and requests for negotiations during a coalition final-
ization step.  Our negotiation is based on a case-based reflective 
argumentative model [2].  Finally, the agent re-designs its coali-
tion if it fails to satisfy its response to the triggering event and if 
time permits.  This three-step model allows an agent to form an 
initial coalition quickly to react to an event and to rationalize to 
arrive at a working final coalition as time progresses.   

2.1. Neighborhood 
Each agent, ia , has a neighborhood, η ai .  It knows some intrin-
sic information about all neighbors, η k, ai ∈ η ai , in this neighbor-
hood such as a neighbor’s physical location, its functional capa-
bilities, and so on.  The functional capabilities of an agent ia  are 
denoted as 

iaf .  An agent can belong to different neighborhoods 
concurrently; however, it does not necessary have knowledge 
about those neighborhoods except its own.  An agent can commu-
nicate directly with all its neighbors, and each neighbor can com-
municate with the agent directly as well.  However, those 
neighbors may not be able to communicate with each other di-
rectly because they are not necessarily neighbors of each other.  
Suppose we denote the ability to communicate directly by an 
agent, ia , with another, ja , as Comm ai , a j( ) .  Then in a 
neighborhood of ia , Comm ai , a j( )  and Comm a j , ai( )  are true for 
all 

iaja η∈ . 

2.2. Events  
When an agent senses an event, it measures and collects its prop-
erties to perceive it.  It is this perception that quantifies the event 
to facilitate the subsequent coalition design.  Suppose an event is 
denoted as ie .  It has a time stamp when it was detected, 

iedetectedt , , a time stamp when it is no longer valid, 
ieendt , , and a 

categorical type of the event, 
ietype .  The agent has knowledge 

about events of the type 
ietype , denoted as ( )τ=Κ

ietype .  It 

contains three basic items: τδexpected,  for the expected duration 

during which the event will be valid, τΘ  for the set of tasks de-

vised as the standard response to the event, and τΩ for the coali-
tion formation strategy.   

2.3. Coalition Initialization 
The first stage of the dynamic, negotiation-based coalition forma-
tion algorithm is the determination of the set of the initial coali-
tion candidates, denoted as ( )jiini ea ,Λ  for agent ia  and event 

je .  This notation allows an agent to have concurrent multiple 

coalitions, one for every event that it is currently handling.  We 
denote a candidate as kα .  In this section, we first discuss differ-
ent approaches to coalition initialization. Then, we discuss the 
ranking of coalition members, and even coalitions.  Subsequently, 
we present some task allocation algorithms.    

2.4. Evaluation of Coalitions and Coalition 
Members 
In our dynamic, negotiation-based coalition formation model, the 
initiating agent ia  first generates the initial coalition candidates, 

( )jiini ea ,Λ , to deal with an event je .  ( )jiini ea ,Λ  represents 

the neighbors that it thinks can be of help to respond to je .  To 

find out whether these candidates are willing to help, the initiating 
agent needs to negotiate.  Negotiation is a process of exchange of 
information on individual commitments, constraints, and percep-
tions and may be lengthy and time-consuming.  Hence, the initiat-
ing agent must think twice about whom to approach first.  This 
motivates the agent to evaluate its coalition members.  The objec-
tive is to rank the candidates on their potential utility values to the 
coalition so that the initiating agent can negotiate with the agents 
with the highest utility values first.   

For a candidate ( )jiinik ea ,Λ∈α , we base its potential utility, 

ik aPU ,α , on three sets of attributes: (1) the past relationship be-

tween the initiating agent and the candidate, ( )trel kapast i
,, α , 

where t is the point in time when the set of attribute-value pairs in 
the relationship is collected, (2) the current relationship between 
the initiating agent and the candidate, ( )trel kanow i

,, α , and (3) 

the ability of the candidate in handling the event, 
( )teability jkai

,,α .  All these sub-utility measures map into 

10: lℜ  and each is asymmetric such that 
( ) ( )tareltrel ipastkapast ki

,, ,, αα ≠ .   
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Now, we define the past relationship between an agent ia  and a 

candidate kα .  First, suppose that the number of negotiations 

initiated from an agent ia  to kα  is ( )kinegotiate a α→Σ , the 

number of successful negotiations initiated from an agent ia  to 

kα  is ( )∑ →success
negotiate kia α , the number of negotiation requests 

from kα  that ia  agrees to entertain is ( )∑ →entertain
negotiate ik aα , 

the total number of all negotiations initiated from ia  to all its 

neighbors is ( )
iainegotiate a η→Σ , and the total number of all 

successful negotiations initiated from ia  to all its neighbors is 

( )∑ →success
negotiate ai i

a η .  In our model, ( )trel kapast i
,, α  includes 

the following:   

(a) the helpfulness of kα  to ia : 
( )
( )kinegotiate

success
negotiate ki

a

a

α

α

→Σ

→∑
, 

(b) the importance of kα  to ia : 
( )
( )

iainegotiate

negotiate ki

a

a

η

α

→Σ

→∑
,  

(c) the reliance of ia  on kα : 
( )
( )∑

∑

→

→
success
negotiate ai

success
negotiate ki

i
a

a

η

α
,  

(d) the friendliness of ia  to kα : 
( )
( )∑

∑

→

→

negotiate ik

entertain
negotiate ik

a

a

α

α
, 

(e) the helpfulness of ia  to kα : 
( )
( )∑

∑

→

→
entertain
negotiate ik

success
negotiate ik

a

a

α

α
, and 

(f) the relative importance of ia  to kα :  

( )
( )∑

∑

→

→

negotiate ki

negotiate ik

a

a

α

α
. 

The higher the value of each of the above attributes, the higher the 
potential utility the agent ja  may contribute to the coalition; i.e., 

each is proportional to ( )trel kapast i
,, α .  The first three attributes 

tell the agent how helpful and important a particular neighbor has 
been.  The more helpful and important that neighbor is, then it is 
better to include it in the coalition.  On the other hand, the second 
last attributes tell the agent the chance of having a successful ne-
gotiation.  The agent expects the particular neighbor to be grateful 
and more willing to agree to a request based on the agent’s friend-
liness, helpfulness and relative importance to that neighbor.  Note 
that the above attributes are based on data readily collected when-
ever the agent ja  initiates a request to its neighbors or whenever 

it receives a request from one of its neighbors.  To further the 
granularity of the above attributes, one may measure them along 
different event types: for each event type, the initiating agent re-
cords the above six attributes.  This allows the agent to better 
analyze the utility of a neighbor based on what type of events that 

it is currently trying to form a coalition for.  In that case, an event 
type would qualify all the above attributes.  

Now, we define the current relationship between an agent ia  and 

its neighbor kα .  Suppose the number of concurrent negotiations 
that an agent can conduct is #negotiation_threads, and the number 
of tasks that the agent ia  is currently executing as requested by 

kα  is ( )( )∑ =execute ak i
taskinitiatortask ,: η .  Suppose 

( )∑ →success
negotiate kia α  is the number of ongoing negotiations 

initiated from ia  to kα .  In our model, ( )trel kanow i
,, α  in-

cludes the following: 

(a) negotiation strain between ia  and kα :   

( )
threadsnnegotiatio

aongoing
negotiate ki

_#
∑ →α

, 

(b) negotiation leverage between ia  and kα : 

  
( )

threadsnnegotiatio

aongoing
negotiate ik

_#
∑ →α

, and 

(c) degree of strain on ia  from kα :   

( )( )
( )( )∑

∑

∈

=

execute a

execute k

i
taskinitiatortask

taskinitiatortask

η

α

:

:
. 

The first attribute is inversely proportional to ( )trel kanow i
,, α  

and the other two are proportional to ( )trel kanow i
,, α .  The first 

attribute approximates how demanding the agent is of a particular 
neighbor.  The more negotiations an agent is initiating to a 
neighbor, the more demanding the agent is and this strains the 
relationship between the two and the negotiations suffer.  The last 
two attributes are used as a leverage that the agent can use against 
a neighbor that the agent is negotiating with, about a request initi-
ated by the neighbor.  

Now, we deal with the ability of the candidate to handle an event 
je , ( )teability jkai

,,α .  While ( )trel kapast i
,, α  and 

( )trel kanow i
,, α  are both domain-independent utilities, 

( )teability jkai
,,α  is domain-specific.  For example, in a data-

base system, if a coalition requires a reporting agent and kα  is a 
reporting agent, then it has a high ability measure.  In a computing 
system, if an agent kα  has a high CPU allocation and the coali-
tion formed is for CPU re-allocation to alleviate a computing 
crisis for agent ia , then ( )teability jkai

,,α  is high.  Note also 

that both ( )trel kapast i
,, α  and ( )trel kanow i

,, α  are time-

dependent because the measures change over time as the agent 
interacts with its neighbors and world.  ( )teability jkai

,,α  is 

also time-dependent though not as obvious.  An event is dynamic 
and thus may require different responses depending on its charac-
teristics even if it is of the same type.  ( )teability jkai

,,α  is 
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further influenced by the current status of the agent ia .  Depend-
ing on the ability of the agent itself to handle an event due to its 
current schedule of tasks and computing resources, a candidate 

kα  that can perform approximately what ia  wants may be better 

than another candidate that can perform exactly what ia  wants 
but for a shorter duration.  For example, suppose an event requires 

{ }321 ,, fffF =τ  and ia  knows how to perform all three func-

tions, candidate kα  knows how to perform 2f , and candidate 

lα  knows how to perform 3f .  Suppose that ia  is currently 

performing 2f  and 3f  for another event, and thus it needs its 

neighbors to perform 2f  and 3f  for the current event while it 

shoulders the responsibility for 1f .  On the other hand, suppose 

that ia  has only one negotiation thread available, meaning that it 
can only negotiate with one coalition candidate.  Thus, it needs to 
decide between kα  and lα .  When ( )teability jlai

,,α  is fur-

ther analyzed, the agent realizes that it will soon finish its own 
execution of 3f , hence the adjusted ability of lα  decreases since 

the agent ia  can rely on itself to perform the function in a short 
time.  In addition, functions or tasks can be prioritized.  Here are 
some priority heuristics that add to the ability of a candidate: (a) if 
a candidate can provide a functional capability of high uniqueness 
to the coalition, (b) if a candidate can provide a functional capa-
bility of high importance (with inflexible constraints) to the coali-
tion, (c) if a candidate can provide a functional capability that is 
very time consuming, or (d) if a candidate can provide a func-
tional capability that is resource taxing.   

Finally, the potential utility, 
ik aPU ,α , of a candidate kα  is a 

weighted sum of ( )trel kapast i
,, α , ( )trel kanow i

,, α , and 

( )teability jkai
,,α 1: 

( )

( ) ( ) ( )[ ]teabilitytreltrel

WPU

jkakanowkapast

eaa

iii

jiiniik

,,,, ,,

,,

ααα

α •= Λ
 

where ( )
















=Λ

ji

ji

ji

jiini

eaability

eanow

eapast

ea

w
w
w

W

,,

,,

,,

,  and  

1,,,,,, =++
jijiji eaabilityeanoweapast www .  Note that ultimately 

these weights may be dynamically dependent on the current status 
of ia  and the event je .  A higher resolution of 

ik aPU ,α  is the 

following.  Suppose that the functions needed to be implemented 
as the response to the event type τ  are { }NfffF ,,, 21 m=τ .  

                                                 
1 Strictly, the notation for 

ik aPU ,α  should be 
jik eaPU ,,α .  But to 

simplify our discussions here, we use 
ik aPU ,α  since we deal with only 

one event at a time.  When we talk about multiple coalitions, we will use 

jik eaPU ,,α . 

The ability, ( )teability jkai
,,α , as viewed by the initiating 

agent ia , of a candidate kα  includes a matrix of scores when 

kα  is multi-functional such that  

( )
( ) ( )[ ]tfyabilittfyabilit

teability

Nkaka

jka

ii

i

,,,,

,,

1 αα
α

′′

=

m

. 

As a result, 
ik aPU ,α  can be further specified as 

{ }
iNkikikik afafafa PUPUPUPU ,,,,,,, ,,,

21 αααα �= .  In a ho-

mogeneous system, all such sub-utility values will be non-zero.  
But in a heterogeneous system where an agent may not have all 
the functions needed in { }NfffF ,,, 21 m=τ , some of the sub-
utility values will be zero.  This resolution allows the initiating 
agent to perform task-based selection and assignment. 

In a scenario where there are multiple coalitions, the agent needs 
to rank them before negotiations.  The potential utility of a coali-
tion is the total sum of all its candidates’ potential utilities. The 
details of handling multiple coalitions are in [4].  

Note that since our coalition finalization is negotiation-based, that 
means the initial coalition is biased towards increasing the chance 
of having successful negotiations among the initiating agent and 
its candidates.  This is evidenced in our use of heuristics to com-
pute the potential utility of the candidates.  Note also that the 
above evaluation approach is a form of reinforcement learning, in 
which the initiating agent learns to rank neighbors that have been 
helpful higher in its coalition initialization stage [3]. 

3. ALLOCATION ALGORITHMS  
In this section, we propose and examine several allocation algo-
rithms: priority-based, flexibility-bounded, greedy, and worried.  
The goals for the design of our allocation algorithms include im-
proving the chance of a coalition formation on time, the chance of 
a coalition formation with incomplete information, the robustness 
of a coalition formation, and the flexibility of a coalition forma-
tion changing dynamically.  

After ( )jiini ea ,Λ  is determined, the initiating agent needs to 

design a task allocation plan.  For a task-driven or function-driven 
approach, the plan is dictated by the knowledge stored for the type 
of the event, ( )τ=Κ

ietype .  Based on the potential utility 

ik aPU ,α  of a candidate kα , the initiating agent matches a par-

ticular task in the plan to a candidate.  If there is at most one task 
assigned to a candidate, we call the assignment 1-to-1; otherwise, 
many-to-1. 

3.1. Priority-Based 
First we address the trivial scenarios.  In a homogeneous, uni-
functional multiagent system for a task-based approach, every 
agent knows how to perform exactly the same function, f.  In this 
case, the initiating agent simply negotiates with each candidate to 
perform their respective tasks—i.e., executing f in the contexts 
that each individual agent knows.  In a heterogeneous, uni-
functional multiagent system for a function-based approach, every 
agent, kα , knows how to perform only one unique function 

k
fα . 

The initiating agent here simply assigns the task to the candidate 
that can perform it.   
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In a multi-functional system, however, the initiating agent has 
more flexibility in its task allocation and assignment.  First, if the 
agents are functionally homogeneous and if the task allocation is 
1-to-1, then the initiating agent computes the 

ik aPU ,α  value for 

each candidate kα , including the individual 
ink afPU ,,α  values 

for Nn h1= .  In reality, it is likely to have at least one agent 
that scores the highest abilities for more than one task.  In this 
scenario, if the task allocation is 1-to-1, then we adopt the follow-
ing algorithm: 

Algorithm Priority-Based 1-To-1: (1) rank all prioritized 
sub-utility 

ink afPU ,,α  values by their scores, (2) select the 

top score 
ink afPU ,,α , assign nf  to the candidate kα , and 

remove all kα -related scores from the candidate pool, and 

(3) go back to step 2 until all tasks in { }NfffF ,,, 21 �=τ  
have been assigned to a unique candidate.   

On the other hand, if the task allocation is many-to-1, meaning 
that the initiating agent can assign more than one task to a single 
candidate as long as the tasks do not conflict each other in re-
source usage, time constraints, and goals, then we adopt the fol-
lowing algorithm: 

Algorithm Priority-Based Many-To-1: Initialize n = 1. (1) 
rank all prioritized sub-utility 

ink afPU ,,α  values by their 

scores, (2) assign the task nf  to the candidate with the top 

ink afPU ,,α , and (3) increment n and go back to step (2) until 

n = N.  

Second, if the agents are functionally heterogeneous, then the task 
allocation and assignment algorithm follows that for the case in 
which the agents are functionally homogeneous in both the 1-to-1 
and many-to-1 scenarios.  Note that the candidates with unique 
functional capabilities will have high 

ink afPU ,,α  values, allow-

ing those tasks to be assigned first.  

At the end of task allocation and assignment, the initiating agent 
has a list of task-candidate pairs or the assignment.  We denote 
this assignment as ( ) { }Pja teassign

i
ρρρ ,,,, 21 h=  

where P is the total number of assignments, and 

ρραρ f,=  states the candidate with its assigned task.  This 

list is also sorted, with the top-prioritized assignments first. 

3.2. Flexibility-Bounded 
The number of coalition members that an initiating agent can 
approach is bounded by its available resources.  For example, 
suppose an agent has a set of negotiation threads, 

{ }Rγγγγ ,,, 21 �= .  Each rγ  is spawned at the startup of an 
agent and is capable of conducting a negotiation with some nego-
tiation thread of another agent.  Then, the number of coalition 
members to be approached is determined by the number of nego-
tiation threads that are currently available, and the availability of 
computational resource that the agent currently has to support the 
eventual negotiations.  As a result, together the two factors deter-

mine a hard constraint, ( ) jiapproached ea ,Λ , that specifies the 

number of coalition members to be approached. 

If ( ) jiapproached eaF ,Λ≤τ , then the initiating agent simply 

uses the above task allocation and assignment algorithms. 

In a 1-to-1 task allocation case, if ( ) jiapproached eaF ,Λ>τ , 

then the coalition cannot be successfully formed.  The initiating 
agent may quit and ignore the event, or continue doing whatever it 

can: approaching the top- ( ) jiapproached ea ,Λ  candidates on its 

list with requests to perform the top-prioritized tasks.  The modi-
fied algorithm thus becomes: 

Algorithm Priority-Based 1-To-1 Bounded: (1) rank all 
prioritized sub-utility 

ink afPU ,,α  values by their scores, (2) 

select the top score 
ink afPU ,,α , assign nf  to the candidate 

kα , and remove all kα -related scores from the candidate 
pool, and (3) go back to step (2) until (a) all tasks in 

{ }NfffF ,,, 21 �=τ  have been assigned to a unique can-
didate or (b) the number of candidates assigned so far is equal 

to ( ) jiapproached ea ,Λ . 

In a many-to-1 task allocation scenario, if 

( ) jiapproached eaF ,Λ>τ  and it is possible to assign non-

conflicting tasks to one candidate, then we have the following 
algorithm: 

Algorithm Priority-Based Many-To-1 Bounded: Initialize n 
= 1.  (1) rank all prioritized sub-utility 

ink afPU ,,α  values by 

their scores, (2) assign the task nf  to the candidate with the 

top 
ink afPU ,,α , (3) increment n and go back to step (2) until 

n = N, (4) if the number of candidates assigned is greater than 

( ) jiapproached ea ,Λ  then perform Algorithm Task Shuffle, 

with the assignment ( ) { }Pja teassign
i

ρρρ ,,,, 21 �=  as 

the argument, and (5) if the algorithm returns with a failure, 
then remove the last members of ( )teassign jai

,  until P = 

( ) jiapproached ea ,Λ . 

 
Algorithm Task Shuffle (Lazy):  Initialize i = 1.  (1) if i = P, 
then return with a failure, (2) absorb Pρ  into iρ  and re-

organize ( )teassign jai
, , (3) if the absorption fails, then in-

crement i by 1 and go back to step (1), (4) otherwise, if new P 

> ( ) jiapproached ea ,Λ , then go back to step (1), (5) other-

wise, return with a success and a new ( )teassign jai
, . 
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The function ( )ijabsorb ρρ ,  returns true if the agent is able to 

absorb the task-candidate pair jρ  into iρ , making 
iρα  per-

forming both 
i

f ρ  and 
j

f ρ .  When the assignment is re-

organized, the task-candidate pair that has been absorbed is re-
moved from the list, and the new task-candidate pair has become 

{ }
jii

ffi ρρραρ ,,= .  As a result, the total number of as-

signments decreases by 1, resulting in a new P.  Note that the 
function ( )ijabsorb ρρ ,  is domain-specific guided by domain-

independent rules.  Absorption is feasible only if the two tasks do 
not compete for the same resources and do not have conflicting 
goals.  In addition, the above task-shuffling algorithm is lazy as it 
tries to dump all the extra assignments into the first (and top-
prioritized) task-candidate pair.  This may be rational, as the first 
candidate associated with the top-prioritized task-candidate pair is 
more likely to become a useful coalition member.  Variants of the 
task-shuffling algorithm involve modifications to the fourth step.  
Instead of going to the same task-candidate pair, one may want to 
increment i by 1.   

3.3. Imperfect Coalition and Greedy Algo-
rithms 
As already mentioned, when an initiating agent has more negotia-
tions to perform than it has available resources to conduct 
negotiations with its coalition members, it either quits or 
continues with as many negotiations as possible to recruit as many 
coalition members as possible. This implies that if the initiating 
agent can get the message out, then hopefully the coalition 
members will pass the message along to their own coalition 
members.  So, an initiating agent does not necessarily have to plan 
for a perfect coalition solution for an event.  Moreover, it is 
unlikely to obtain a perfect coalition solution even with a perfect 
plan since the coalition formation process is subjected to dynamic 
changes in the environment, noise, message loss, refusals to 
negotiate, and failed negotiations.   

Here, we introduce a greedy algorithm for task allocation and 
assignment, for a multi-functional, heterogeneous multiagent 
system, in a 1-to-1 task allocation scenario.  First, we define a 
modified prioritized utility score called the focused utility.  We 
denote it as: 

( ) ( ) ( )
( ) ( )

]
2

,,,,

,,[ ,,,,,

tflabiteabil

treltrelWUP

nkajka

kanowkapasteaaf

ii

iijiiniink

αα

ααα

′+

•=′ Λ

. 

So the utility value has an emphasis in what particularly the can-
didate kα  knows how to do, from the point of view of the initiat-

ing agent ia , in an initial coalition of ( )jiini ea ,Λ .  If an agent 

has n functional capabilities that suit the tasks that the initiating 
agent wants done, then it has n such focused utility values.  Then 
we have the following algorithms: 

Algorithm Greedy Priority-Based 1-To-1 Bounded:  Ini-
tialize n = 1.  (1) rank all focused utility values, (2) assign the 
task nf  to the candidate with the top 

ink afUP ,,α′ , (3) re-

move all utility values of that candidate from the ranking, (4) 

increment n and go back to step (2) until n = 

( ) jiapproached ea ,Λ .   

Algorithm Greedy Priority-Based Many-To-1 Bounded:  
Initialize n = 1.  (1) rank all focused utility values, (2) assign 
the task nf  to the candidate with the top 

ink afUP ,,α′ , and 

(3) increment n and go back to step (2) until n = 

( ) jiapproached ea ,Λ . 

An initiating agent becomes greedy when practicing the above 
algorithms because (1) it tries to minimize its own rationalization 
and computing process, (2) it selects the candidate with the higher 
overall utility values to approach hoping for a successful negotia-
tion, (3) it cares mostly about high-priority tasks, (4) it tries to 
maximize its chance of getting a particular task done—by includ-
ing sub-utilities in the focused utility evaluation, and (5) it hopes 
to shift its responsibility (partially) to the candidates via success-
ful negotiations—expecting the candidates to spawn their own 
coalitions to help respond to the event. 

3.4. Insurance and Worried Algorithms 
Since negotiations cannot be guaranteed to be always successful, 
that means some initial candidates may be dropped from the final 
coalition.  This also implies that if an initiating agent over-relies 
on one particular candidate, then the initiating agent may lose a 
large portion of the coalition’s utility.  So, in the task allocation 
and assignment process, we can build in some insurance poli-
cies—some alternative plans—to at least absorb the impact of 
such disasters.  Of course, an initiating agent considers these plans 
only when it has enough computational resources to do so, i.e., 

( )  τFea jiapproached >Λ , .  As such, we have the following 

worried algorithms: 
 

Algorithm Worried Priority-Based 1-To-1 Bounded: (1) 
rank all prioritized sub-utility 

ink afPU ,,α  values by their 

scores, (2) select the top score 
ink afPU ,,α , assign nf  to the 

candidate kα , and remove all kα -related scores from the 
candidate pool, (3) go back to step (2) until all tasks in 

{ }NfffF ,,, 21 �=τ  have been assigned to a unique can-
didate, (4) repeat steps (2)-(3) until number of candidates as-

signed so far is equal to ( ) jiapproached ea ,Λ . 

 
 In a many-to-1 task allocation scenario, if 

( )  τFea jiapproached >Λ ,  and it is possible to assign non-

conflicting tasks to one candidate, then we have the following 
algorithm: 
 

 Algorithm Worried Priority-Based Many-To-1 Bounded: 
Initialize n = 1.  (1) rank all prioritized sub-utility 

ink afPU ,,α  

values by their scores, (2) assign the task nf  to the candidate 

with the top 
ink afPU ,,α , (3) increment n and go back to step 



Workshop on Teamwork and Coalition Formation (held during the 1st Int. Conf. On Autonomous Agents and Mul-
tiagent Systems, 2002. 

(2) until the number of  candidates assigned so far is equal to 

( ) jiapproached ea ,Λ  . 

 
Note that the insurance assignments as a result of the worried 
algorithms will be aborted once the initiating agent has achieved a 
satisfactory coalition (e.g., as different negotiations complete with 
successes).  

3.5. Over-Demanding and Caps 
Of course, the lazy and greedy algorithms may end up assigning 
all tasks to a single agent.  This becomes an over-demanding sce-
nario that complicates the negotiation, and, as a result, the coali-
tion may suffer.  Hence, the number of assignments for a candi-
date has to be bounded when the computational resource of the 
initiating agent can afford it.  The cap can be determined dynami-
cally.  For example, if the primary task that the initiating agent 
wants the candidate to perform is extremely important, or highly 
unique, then it is better for the initiating agent to not over-demand 
in its approach to the candidate.  On the other hand, if the candi-
date has been very helpful and friendly, then the initiating agent 
may be able to take advantage of that relationship by over-
demanding.  Suppose we denote the cap for an assignment ρ  for 

candidate kα  as  
k

f
αρ , then   ( )trelf kapast ik

,, α
αρ ∝ , 

  ( )trelf kanow ik
,, α

αρ ∝ , and 

  ( )teabilityf jkaik
,,1 α

αρ ∝ .  And these caps can be in-

serted into all the algorithms above to prevent too many assign-
ments to a single agent 

4. IMPLEMENTATION AND RESULTS 
The driving application for our system is multisensor target track-
ing, a distributed resource allocation and constraint satisfaction 
problem.  The objective is to track as many targets as possible and 
as accurately as possible using a network of sensors.  Each sensor, 
controlled by an agent, is at a fixed physical location and, as a 
target passes through its coverage area, it has to collaborate with 
neighboring sensors to triangulate their measurements to obtain an 
accurate estimate of the position and velocity of the target.  As 
more targets appear in the environment, the sensors need to decide 
which ones to track, when to track them, and when not to track 
them, always being aware of the status and usage of sensor re-
sources. 

The problem is further complicated by the real-time constraints of 
the environment and the fact that agents have to share physical 
resources such as communication channels and disk storage.  For 
example, for a target moving at 0.5 foot per second, accurate 
tracking requires one measurement each from at least three differ-
ent sensors within a time interval of less than 2 seconds.  The 
environment is noisy and subject to uncertainty and error: mes-
sages may be lost, a sensor may fail to operate, or a communica-
tion channel could be jammed.   

The sensors are 9.35 GHz Doppler MTI radars that communicate 
using a 900 MHz wireless, radio-frequency (RF) transmitter with 
a total of eight available channels.  Each sensor can at any time 
scan one of three sectors, each covering a 120-degree swath.  
Sensors are connected to a network of CPU platforms on which 

the agents controlling each sensor reside.  The agents (and sen-
sors) must communicate over the eight-channel RF link, leading 
to potential channel jamming and lost messages.  Finally, there is 
software (the “tracker”) that, given a set of radar measurements, 
produces a possible location and velocity for a target; the accu-
racy of the location and velocity estimates depend on the quality 
and frequency of the radar measurements: as we mentioned, the 
target must be sensed by at least three radars within a two second 
interval for accurate tracking. 

Our agent architecture is as follows.  Each agent has 3+B threads:  
(1) a core main thread that does the decision making, manages the 
tasks, performs coalition formation, and oversees the negotiations,  
(2) a communication thread that interacts with the message 
send/receive system of the radar (or the simulated software) to 
poll for incoming messages and to physically send out messages, 
(3) an execution thread that actuates the physical sensor: calibra-
tion, search-and-detect for a target, turn on/off a sensing sector, 
change the orientation of the sensor, and measure a target’s return 
signals, and (4)  B negotiation threads.  Each negotiation thread is 
dormant until activated.  When it is activated, it downloads perti-
nent information form the parent agent and proceeds with its ne-
gotiation. 

We have implemented part of our dynamic, negotiation-based 
coalition formation model in our multisensor target tracking sys-
tem and plan to implement the entire model as we include more 
complicated tasks and events into our system.  Currently, we have 
implemented two types of events: an incoming target and a CPU 
shortage crisis.   

4.1. Multisensor Target Tracking 
When an agent detects a target in its sensing sector, it first obtains 
its estimated velocity and position from a tracker software mod-
ule.  Equipped with these estimates, it is able to generate 

( )t
iaF ,τ

Ψ  based on a geometric model of the orientations of the 

neighbors’ sensors and their locations.  Given this list, the agent is 
able to obtain ( ) ( )

ii aaFjiini tea η
τ

∩Ψ=Λ ,, .  Subsequently, the 

agent ranks the candidates based on their potential utility follow-
ing evaluation scheme outlined in Section 3.  Since the standard 
response to target tracking is to turn on a specific sensing sector 
and measure, 1=τF .  So, we use the priority 1 and use the Al-
gorithm Priority-Based 1-To-1 Bounded to allocate the tasks and 
use the number of available negotiation threads as 

( )jiapproached ea ,Λ .  The initiating agent then activates its ne-

gotiation threads with the corresponding assignments.  The nego-
tiation threads conduct their negotiations.  Since we have only one 
target in the environment, the initiating agent does not have the 
opportunity to perform relaxation and termination.  As a result, 
each negotiation thread currently only monitors its own progress 
and if it is running out of time, it counter-offers to speed up the 
negotiation, and if it has run out of time, it aborts the negotiation 
and reports back to its parent agent.  The parent agent then 
downloads the information from the completed negotiation thread 
and carries out the deal reached—scheduling the deal in its job 
queue, allocating CPU resource in anticipation of the task, and 
performing the agreed task.  One of the domain-specific criteria 
used in determining ( )teability jkai

,,α  for the candidates is 

either the time of arrival of the target into the sensing sector of the 
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candidate or the time of departure of the target from the sensing 
sector of the candidate.  Candidates that have less time will have a 
higher ability as they need to be approached soon before the target 
leaves those sensing coverage areas. 

We have tested our multiagent system in a physical hardware 
setup and in a software simulation.  Here are some experimental 
setup parameters.  There are four agents.  Each agent controls a 
radar.  The radars are fixated at four corners of a 20x20 feet 
square.  A target moving at 0.5 ft/sec moves in a route (rectangu-
lar, diagonal, or circular).  Table 1 shows the best mean square 
error (MSE) in feet of our tracking in a noiseless environment. 

Error Dx (ft) Dy (ft) MSE (ft) 
Rectangular Route 1.76 0.80 2.00 
Diagonal Route 1.32 1.50 2.29 
Circular Route 1.22 1.51 2.22 

Table 1  The best tracking errors of the target in different routes. 

4.2. CPU Resource Allocation 
We have implemented a Real-Time Scheduling Service (RTSS) in 
‘C’, on top of the KU Real-Time system (KURT) [5] that adds 
real-time functionality to Linux.  First, the RTSS provides an 
interface between the agents and the system timers, allowing 
agents to: (1) query the operating system about the current time; 
(2) ask the RTSS to notify them after the passage of certain length 
of time; and (3) ask the RTSS to ping them at fixed time intervals.  
This allows agents to know when to, for example, conclude a 
negotiation process or turn on a radar sector.  Second, the agents 
may ask the RTSS to notify them when certain system-level 
events occur, such as process threads being activated, or commu-
nication messages going out or coming into the system.  Third, the 
agents can ask the RTSS to allocate them a percentage of the CPU 
for each one of their threads (such as the ones controlling the 
radar and tracking or the ones used in negotiations) and to sched-
ule this allocation within an interval of time.  This RTSS allows 
an agent to monitor the progress of its own negotiations and the 
usage status of its allocated CPU resource.   

Currently, a CPU shortage is detected whenever an agent is using 
90% of its allocated CPU.  When this happens, it first requests for 
more CPU allocation from the RTSS.  If the RTSS has the CPU 
available, it will grant it.  If the RTSS can only grant partially or 
grant none of the request, then the agent faces a crisis and declares 
a new CPU shortage event.  When this occurs, it retrieves 

( )t
iar ,τ

Ψ  from the RTSS, where r is CPU allocation, and τ  is 

CPU shortage.  This initiating agent then evaluates potential util-
ity, 

ik aPU ,α  of each candidate and then determines the amount 

of resource using  
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r is simply CPU allocation,   ij aer ,  is the additional CPU alloca-

tion that the agent wants, and the number 2 is the factor used as an 
insurance policy.  After the resource allocation and assignment, 
the initiating agent uses the greedy algorithm (Section 3.3) to 
determine ( )jiapproached ea ,Λ .  It then negotiates with the can-

didates in ( )jiapproached ea ,Λ  to form the final coalition  

5. CONCLUSIONS 

We have described a set of allocation algorithms for a coalition 
formation model that is dynamic and negotiation-based in a coop-
erative multiagent system.  Rational optimality in our problem 
domain is infeasible because the agents do not have complete 
information of other agents in the neighborhood, the environment 
is dynamic and events change, the environment is uncertain and 
noisy such that communication is not always perfect, agents do 
not have enough time to collect enough data to rationalize opti-
mally and finally agents have limited computational resources to 
support combinatorial computations.  Our model has two stages: 
coalition initialization and coalition finalization.  The goal of the 
initialization is to extract a set of coalition candidates from an 
agent’s neighborhood, as a response to a detected event.  These 
initial candidates are scored for their potential utilities and ranked.  
Then the initialization process allocates and assigns tasks or re-
sources to the candidates.  We have introduced prioritized, 
bounded, greedy and worried algorithms for 1-to-1 or many-to-1 
assignments.  We have implemented some of the algorithms and 
preliminary results are promising.  As our ongoing and future 
work, we plan to install all algorithms into our systems and study 
the agents’ behavior in different settings and measure their effi-
ciency and effectiveness in coalition formation. 
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