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Abstract—A new phase-matching factor is derived for four-
wave mixing (FWM) that includes the effects of self-phase and
cross-phase modulation in optical fibers. Theoretical results pre-
dict that the wavelength of peak FWM efficiency shifts away
from the fiber zero-dispersion wavelength and indicate that the
conventional phase-matching factor may induce significant errors
in FWM calculations. Experiments are presented to verify the
new phase-matching factor and the related theoretical results.
The measured results agree well with those predicted by the new
phase-matching factor.

Index Terms—Four-wave mixing (FWM), optical communica-
tions, wavelength-division multiplexing (WDM), nonlinear effects.

I. INTRODUCTION

FOUR-WAVE mixing (FWM) is one of the major limiting
factors in wavelength division multiplexing (WDM) opti-

cal fiber communication systems that use low dispersion fiber
[1] or narrow channel spacing. As a result, estimating FWM
efficiency is becoming very important for both the design and
evaluation of dense wavelength division multiplexed (DWDM)
systems.

A well-known formula used for FWM estimation was
originally derived by Hillet al. [2] and was later reformulated
to include the phase-matching dependent efficiency by Shibata
et al. [3]. This formula, which has been widely used in recent
years to evaluate the FWM induced crosstalk in WDM systems
[4]–[7], can be written as

(1)

where are the input powers for the signals at
frequencies , respectively, is the fiber length, is
the fiber attenuation coefficient, and the degeneracy factor
equals to three or six for degenerate and nondegenerate FWM,
respectively. The nonlinear coefficientis given by [8]

(2)

Manuscript received November 23, 1998; revised June 29, 1999. This
work was supported by Sprint Corporation, NSF, and KTEC under Grant
EPSCoR/ECS 963-2617.

S. Song was with the Information and Telecommunications Technology
Laboratory (ITTC), University of Kansas, Lawrence, KS 66045 USA. He is
now with CIENA Corporation, Linthicum, MD 21090 USA.

C. T. Allen, K. R. Demarest, and R. Hui are with the Information and
Telecommunications Technology Laboratory (ITTC), University of Kansas,
Lawrence, KS 66045 USA.

Publisher Item Identifier S 0733-8724(99)08931-8.

where is the effective fiber core area, is the vacuum
wavelength, and is the fiber nonlinear refractive index,
which is related to the nonlinear susceptibility by [1]

(3)

where is the refractive index of the fiber core andis the
vacuum speed of light. Also, is the FWM efficiency, which
can be expressed as

(4)

In this expression, is the phase-matching factor, which
depends on the fiber dispersion and the channel spacing, and
can be expressed as

(5)

where is the channel
spacing (separation), is the fiber chromatic dispersion,

is the dispersion slope, and is the wavelength
corresponding to the wave at frequency. Since is not
a function of signal powers, we will henceforth call this the
linear phase-matching factor.

According to (4) and (5), the FWM efficiency depends
on the fiber dispersion, the channel separation, and the fiber
length, but not on the transmitted power. However, it is
well known that intensity-dependent phase matching plays an
important role when power levels are high. This can occur
in long-distance fiberoptic communication systems when the
inline amplifier spacings are large. Intensity-dependent phase-
matching for FWM has long been modeled in nonlinear
optics in the context of modulation instability and parametric
gain [9]–[16], and has used for designing nonlinear optical
components [17]–[18].

Even though the mechanism that causes modulation instabil-
ity and FWM is the same, intensity-dependent phase matching
factors derived for parametric gain cannot be applied to (1)
for FWM for the following reasons. First, no seed is needed
for producing the mixing product in (1), while a seed (usually
from noise) is necessary for modulation instability [8]. Second,
if there is no fiber loss, the FWM predicated by (1) increases
linearly with the fiber length, while in modulation instability,
the Stokes and anti-Stokes waves grow exponentially [8], [10].
Third, the wavelengths of the newly generated waves in (1) are
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determined by the pump wavelengths, while the frequencies
of Stokes and anti-Stokes waves in modulation instability are
determined mainly by the pump power [8]–[11].

The intensity-dependent phase-matching factor used for
calculating parametric gain [17], [18] did not include the phase
modulation caused by Stokes and anti-Stokes waves. A more
general phase-match factor was derived by including the phase
modulation contributions from all the waves [10]–[11], but
under the assumption of a lossless medium. This assumption
will not induce significant errors if the nonlinear medium
is a bulk nonlinear material or a very short optical fiber
(where the total medium loss or attenuation is small), but is
hardly acceptable in optical fiber communication networks,
where fiber lengths are hundreds or thousands of kilometers
and the fiber loss is a very critical parameter for evaluating
fiber nonlinearities. Though a numerical analysis of intensity-
dependent phase-matching [15] did include the effects of loss,
no explicit phase-matching factor was determined. In addition,
this study was directed primarily toward predicting modulation
instability and parametric gain, not FWM crosstalk using
formula (1).

In this paper, we derive a FWM intensity-dependent phase-
matching factor to be used in the formula (1) that includes
the effects of fiber loss. The differences between the FWM
efficiencies predicted by the linear phase-matching factor (5)
and the phase-matching factors derived for the special case
of modulation-instability gain are demonstrated and compared
with measured results.

II. DERIVATION OF THE INTENSITY-DEPENDENT

PHASE-MATCHING FACTOR

We assume that three pump waves at frequencies
and are mixed and generate a new weak wave at frequency

through the FWM process. By including the self-phase
modulation (SPM) and cross-phase modulation (XPM) of the
pump waves [8], [19], the coupled Schrödinger equations for
all four waves can be written as follows:

(6a)

(6b)

(6c)

(6d)

In these expressions, is the complex, electric-field
envelope of the wave at frequency , with propagation
number . Also, the phase-matching factor

is given by

(7)

which can also be expressed as (5). In writing (6), the FWM-
induced depletion of the pump waves has been neglected, since
the newly generated wave power is very weak compared with
the pump powers.

From (6b)–(6d), the solutions for the pump envelopes can
be obtained as follows:

(8)

Substituting these into (6a), we obtain

(9)

Using the transformation

(10)

we can write (9) as

(11)

Here, , where
are the initial phases for the three pump waves, respectively.
Also, are the input powers for
three pump waves, respectively.

To represent the fiber attenuation effect on the pump waves,
we use the following transformation:

(12)

where . Substituting (12) into (11), we
obtain the following equation for :

(13)

where

(14)

Integrating (13) over the fiber length, we obtain

(15)

where is given by

(16)
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An exact evaluation of (16) requires numerical integration.
This is because of the presence of the nonlinear, intensity-
dependent phase term , which decays exponen-
tially along the fiber. An excellent approximation of can
be obtained by recognizing that this nonlinear phase term has
its greatest affect for small values of, since the amplitude of
the integrand decreases exponentially with increasing values
of . In the range , the nonlinear phase term is
well approximated by the linear expression

(17)

where the fiber effective length is defined by

(18)

Errors in (17) for will have a negligible effect on
, since the integrand is small in this range. Using (17) to

evaluate (16) results in a closed form expression. Substituting
this expression into (15) yields

(19)

where is the new, intensity-dependent phase-matching
factor, given by

(20)

where is the linear phase-matching factor given in (5).
Substituting (19) into (12) and then substituting the resulting

expressions into (10), we finally obtain the generated FWM
power

(21)

In this expression, is the new FWM efficiency, given by

(22)

where the new phase-matching factor is given in (20). As
can be seen (21) is identical to (1), except that phase matching
term used in the FWM efficiency term is now , rather
than . Also, and become identical when the pump
powers are small.

A special case of (20) is the equal transmitted power case,
where , and is the channel power. In
this case, the phase-matching factor becomes

(23)

This is valid for both degenerate FWM and
nondegenerate FWM . We also note that the phase-
matching factor changes as the wave propagates along the fiber

due to the fiber loss. However, for long fibers , we
can approximate the effective fiber length by

(24)

Then, the phase-matching factor is simplified as

(25)

Formulas (20) and (25) can be considered as general forms
of the intensity-dependent phase-matching factors discussed
earlier in this paper. To enable a direct comparison with the
earlier formulations, we now replacein (25) with , where

is an integer. Then, we can classify (25) into several cases.

1) One pump , with or without a weak probe, on a
lossless fiber. Here, the probe- and Stokes-wave induced
phase modulation and are negligible

(26)

which corresponds to the factor used in [17], [18].
2) Two pumps , neglecting Stokes wave

induced phase modulation and fiber loss:

Degenerate FWM

Nondegenerate FWM
(27)

which corresponds to the factors used in [10], [11].
3) Three pumps , nondegenerate

FWM, neglecting Stokes-wave induced phase modula-
tion and fiber loss:

(28)

which corresponds to the factor in [10].
4) Two or three pumps, degenerate or nondegenerate FWM,

neglecting all the nonlinear phase modulation contribu-
tions:

(29)

which is simply the linear phase factor (5) as used in
[4]–[7].

5) Two or three pumps , degenerate
or nondegenerate FWM, including fiber loss and all
pump-induced phase modulation contributions:

(30)

which is new factor derived in this paper, (20). Note that
this phase-matching factor accounts for the continuous
change of intensity-induced phase-matching contribu-
tions along the fiber length, where the localized values of

evolve from 1 at the fiber input to 0 when .
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Fig. 1. FWM power as a function of the channel power. Fiber length:
17.5 km, loss: 0.25 dB/km, dispersion: 0.5 ps/km-nm, dispersion slope: 0.08
ps/km-nm, fiber effective core area: 50�m2, nonlinear refractive index: 2.68
� 10�20 m2/W, channel spacing: 0.8 nm.

Clearly, different values correspond to different circum-
stances and approximations. In the next two sections, we
compare the FWM powers predicted using these factors, along
with “exact” calculations and measured results.

III. COMPARISON OFANALYTICAL FORMULAS

First, consider the FWM power generated at the end of
17.5 km of dispersion-shifted fiber when two pump frequen-
cies are present (i.e., the degenerate case), each with channel
power . Fig. 1 shows the calculated FWM powers vs.

using four formulas. The solid curve is obtained using
numerical integration of (16). We will consider this to be
the “exact” result. Other curves correspond to phase-matching
factors with different values, including the new phase-
matching factor (20) (i.e., ). For these calculations,
the fiber loss is 0.25 dB/km, the fiber effective core area is 50

m , the fiber nonlinear refractive index is
m /W, the fiber dispersion is 0.5 ps/km-nm at 1558 nm, and the
dispersion-slope is 0.08 ps/km-nm. The pump wavelengths
are 1558 nm and 1558.8 nm, resulting in a channel spacing of
0.8 nm. As can be seen, all four formulas agree well for chan-
nel powers below 5 mW (7 dBm), where the effects of SPM
and XPM on the FWM power are negligible. However, as the
channel power is increased, these effects become significant.
At a channel power of 40 mW (16 dBm), use of the linear
phase-matching factor yields roughly a 4 dB error in
the FWM power, whereas neglecting the fiber loss
results an error of 1.6 dB. This is in contract to calculations
obtained using the new FWM phase matching factor

, which results in an error of only about 0.5 dB.
Next, we consider the FWM power generated when the

pump powers are fixed at 40 mW (16 dBm) each and the
channel spacing is varied. Fig. 2 shows the FMW powers
predicted by the same three analytic formulas used above for
the case where the fiber has length 20 km, the dispersion is
0.4 ps/km-nm at 1556 nm, the dispersion slope is 0.08 ps/km-
nm , and the fiber nonlinear refractive index and effective
area are the same as in the previous example. One channel
is located at 1556 nm and the other channel’s wavelength is

Fig. 2. FWM power as a function of the channel spacing. Fiber length:
20 km, loss: 0.25 dB/km, dispersion: 0.4 ps/km-nm, dispersion slope: 0.08
ps/km-nm, fiber effective core area: 50�m2, nonlinear refractive index: 2.68
� 10�20 m2/W, channel spacing: 0.8 nm, channel power: 40 mW (16 dBm).

varied. As can be seen from the solid (“exact”) curve, SPM
and XPM shift the maximum FWM point away from the zero
channel-spacing point. The amount of shift depends on the
channel power. In this case, it is about 0.5 nm. The new phase-
matching factor provides excellent agreement with
the exact result. The linear phase-matching factor
suffers from significant errors (up to 5 dB) and does not predict
correct wavelength separation for maximum FWM production.
Although neglecting fiber loss caused about 2.2 dB
error, which is significanly better than either totally neglecting
intensity-induced phase-modulation or the case of
parametric gain , it was still more than 1 dB worse
than the new formula derived here.

IV. EXPERIMENTAL VERIFICATION

Experiments were conducted to measure the FWM effi-
ciency in a 17.5-km section of dispersion-shifted fiber. The
FWM power was measured while the pump wavelengths
were varied in unison. In this way, the wavelength spacing
was fixed, but the fiber dispersion was different for each
measurement. Two CW tunable lasers were used, each with
a polarization controller to align the polarization states. The
open circles in Fig. 3(a) are the measured FWM efficiency
as a function of the lowest pump wavelength, where the
FWM efficiency is defined as the FWM power, normalized
to its maximum. The pump powers for this case were each
8 mW (9 dBm) and the channel spacing was 1 nm. The
fiber had an attenuation of 0.5 dB/km, an effective core of
50 m , a zero dispersion wavelength of 1551 nm, and a
dispersion slope of 0.075 ps/km-nm. Also shown in this figure
are the calculated FWM efficiencies using the new FWM
phase-matching formula and the old FWM phase-
matching formulas ( , and ). As
can be seen, all four formulas agree well with the measured
results. This should be expected, since the pump powers were
low enough so that the effects of SPM and XPM could be
neglected. For this case, the peak of the FWM efficiency
is close to the zero dispersion wavelength (1551 nm), and
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(a)

(b)

Fig. 3. FWM efficiency at different wavelengths (different fiber dispersion).
Fiber length: 17.5 km, loss: 0.25 dB/km, average zero-dispersion wavelength:
1551 nm, dispersion slope: 0.075 ps/km-nm, fiber effective core area: 50
�m2, dispersion slope: 0.075 ps/km-nm. (a) 8 mW channel power and 1.0 nm
channel spacing. (b) 40 mW channel power and 0.4 nm channel spacing.

only small differences are seen between the old and new
phase-matching factor.

A different scenario is presented in Fig. 3(b). In this case,
we increased the channel power to 40 mW (16 dBm) and
decreased the channel spacing to 0.4 nm. Here, the influence of
SPM and XPM on FWM are significant and the peak of FWM
has shifted several nanometers. The results calculated using the
new phase-matching factor agree well with the
measured data, whereas the older formulas exhibit significant
errors. The linear phase-matching factor , since it
is unaffected by channel power, still predicts the location of
peak FWM at the zero-dispersion wavelength, which is about
5 nm from the measured peak FWM. Fig. 3(b) also shows the
calculated FWM efficiency using the phase-matching factors
for and . The calculated FWM peaks from
the measured peak is about 3 nm away for and nm
away for . Clearly, if FWM is used to measure the zero-
dispersion wavelength of DSF, the old formulas may result in
significant errors.

V. CONCLUSION

In summary, we have shown that the influence of SPM
and XPM on the FWM process becomes significant when the
transmitted channel powers are large and the fiber dispersion or
the channel spacing is small. Consequently, the conventional
formula for calculating the phase-matching conditions for
FWM produces significant errors by neglecting the SPM
and XPM effects. We derived a new phase-matching factor
by including these effects, resulting in an additional power-
dependent term with very concise form. Both experimental
and calculated results show that the new phase-matching
factor produces greatly improved estimates of FWM power
generation.
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