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Abstract—A new phase-matching factor is derived for four- where A.g is the effective fiber core area, is the vacuum
wave mixing (FWM) that includes the effects of self-phase and wavelength, and:, is the fiber nonlinear refractive index,

cross-phase modulation in optical fibers. Theoretical results pre- i ; T
dict that the wavelength of peak FWM efficiency shifts away which is related to the nonlinear susceptibility.1, by [1]

from the fiber zero-dispersion wavelength and indicate that the 4872

conventional phase-matching factor may induce significant errors n2 = 5 X1111 3)
in FWM calculations. Experiments are presented to verify the e
new phase-matching factor and the related theoretical results. wheren is the refractive index of the fiber core anads the

The measured results agree well with those predicted by the new yacuum speed of light. Also; is the FWM efficiency, which
phase-matching factor. can be expressed as

Index Terms—Four-wave mixing (FWM), optical communica- . 2
tions, wavelength-division multiplexing (WDM), nonlinear effects. _ o’ 1 dexp(—al)sin”(AkL/2) 4
= "3 2 2 )
o? + Ak [1—exp(—al)]
|. INTRODUCTION In this expressionAk is the phase-matching factor, which

depends on the fiber dispersion and the channel spacing, and

OUR-WAVE mixing (FWM) is one of the major limiting can be expressed as

factors in wavelength division multiplexing (WDM) opti-

cal fiber communication systems that use low dispersion fibe 27 A2 A2 dD.(Ax)

[1] or narrow channel spacing. As a result, estimating FWM=" ~ ~ .. EAfir A i [DC + Q_z(Afik +Afin) X }
efficiency is becoming very important for both the design and (5)
evaluation of dense wavelength division multiplexed (DWDM)

systems. where Afn = |fm — ful, (myn = 4,7, k) is the channel

A well-known formula used for FWM estimation wasspacing (separation)p. is the fiber chromatic dispersion,
originally derived by Hillet al.[2] and was later reformulated ¢D./dX is the dispersion slope, any, is the wavelength
to include the phase-matching dependent efficiency by Shib&giresponding to the wave at frequenfy. Since Ak is not
et al. [3]. This formula, which has been widely used in recerit function of signal powers, we will henceforth call this the
years to evaluate the FWM induced crosstalk in WDM systerfigear phase-matching factor
[4]-[7], can be written as According to (4) and (5), the FWM efficiency depends
. [ — exp(—aL)]? on the fiber dispersion, the channel separation, and the fiber
Pju(L) = ~D*y*P,P; P, exp(—aL){p—Q} length, but not on the transmitted power. However, it is
9 o well known that intensity-dependent phase matching plays an
important role when power levels are high. This can occur

where P,, P;, P, are the input powers for the signals al long-distance fiberoptic communication systems when the

frequenciesf;, f;, i, respectivelyL is the fiber lengthe is inline gmplifier spacings are large. Intensity-depe_ndent phase-
the fiber attenuation coefficient, and the degeneracy fal@tormaFCh'_ng for FWM has long _bee_n mo‘."_e'ed n nonlmee_lr
equals to three or six for degenerate and nondegenerate FV\(AQIE'CS in the context of modulation |n§tap|llty anq parame_tnc
respectively. The nonlinear coefficientis given by [8] gain [9]-[16], and has used for designing nonlinear optical
components [17]-[18].
y = 2 Even though the mechanism that causes modulation instabil-
AAest ity and FWM is the same, intensity-dependent phase matching
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determined by the pump wavelengths, while the frequenciesFrom (6b)—(6d), the solutions for the pump envelopes can
of Stokes and anti-Stokes waves in modulation instability abe obtained as follows:

determined mainly by the pump power [8]-[11]. Aa(2) = As(0) exp(—az/2) exp[—iv(|A2(0

2
The intensity-dependent phase-matching factor used for |

N

calculating parametric gain [17], [18] did not include the phase +2|43(0)| + 2| A4(0)[*) exp(—az) /o]
modulation caused by Stokes and anti-Stokes waves. A more  Az(z) = A3(0) exp(—az/2) exp[—iv(2|A2(0)|?
general phase-mgtch_ factor was derived by including the phase + | A3(0)[2 + 2| A(0)?) exp(—az) /o]
modulation contributions from all the waves [10]-[11], but A — A0 —an/? (2140 (0) 2
under the assumption of a lossless medium. This assumption +(7) = A4(0) exp(—az/2) exp[—i7(2|42(0)]

will not induce significant errors if the nonlinear medium +2|43(0)]* + A4 (0)*) exp(—az)/a].  (8)

is a bulk nonlinear material or a very _short optical ﬁbeéubstituting these into (6a), we obtain
(where the total medium loss or attenuation is small), but is J .

hardly acceptable in optical fiber communication networks, = 4 — _ =4 A; 4 2iy(|A2(0)|? + |A5(0)?
where fiber lengths are hundreds or thousands of kilometers d= 2 )

and the fiber loss is a very critical parameter for evaluating + | A44(0)|%) A1 exp(—az)

fiber nonlinearities. Though a numerical analysis of intensity- 1. N 3
dependent phase-matching [15] did include the effects of loss, + 5 DivAx(0)45(0) 43 (0) exp( —5az

no explicit phase-matching factor was determined. In addition, % expl—iv(| Ao (02 4 [As(0)]2 + 3| AL (0)[2
this study was directed primarily toward predicting modulation pl=7(142(0)] 14:(0)] A(OF)

instability and parametric gain, not FWM crosstalk using x exp(—az)/a]exp(iAkz). ©)
formula (1). Using the transformation

In this paper, we derive a FWM intensity-dependent phase-
matching factor to be used in the formula (1) that includes A1(2) = Bi(2) exp(—az/2) (10)

the effects of fiber loss. The differences between the FW), ~an write 9) as

efficiencies predicted by the linear phase-matching factor (5)

and the phase-matching factors derived for the special case __ B, = 2iy(P, + P 4+ P,)By exp(—az)
of modulation-instability gain are demonstrated and compared %%

. 1
with measured results. + 5Dz‘ry(PQP?,P4)1/2 exp(igo) exp(—az)

Il. DERIVATION OF THE INTENSITY-DEPENDENT X eXp[fZ’Y(PQ + D3+ 3Py) exp(~az)/a]
PHASE-MATCHING FACTOR x exp(iAkz). (11)

We assume that three pump waves at frequeneigsws Here, ¢ = ¢2(0) + ¢3(0) — ¢4(0), where; (j = 2,3,4)
andw, are mixed and generate a new weak wave at frequeramg the initial phases for the three pump waves, respectively.
w1 through the FWM process. By including the self-phasalso, P; = |4;(0)]? (j = 2,3,4) are the input powers for
modulation (SPM) and cross-phase modulation (XPM) of tithree pump waves, respectively.
pump waves [8], [19], the coupled Séldinger equations for  To represent the fiber attenuation effect on the pump waves,

all four waves can be written as follows: we use the following transformation:

d 1 . ;

A= —g o+ 2i([ Ao + A 4 Ay ) Ay Bi(z) = Cy(2) exp [—% eXp(-@Z)} (12)

1. . .
+ 5 DivAs As A exp(ilkz) (63) \wherer; = 2v(P, + P; + P.). Substituting (12) into (11), we

d 1 ) ) ) ) obtain the following equation fo€ (z):

_A2 = ——C)CA2+Z’)/(|A2| +2|A3| +2|A4| )A2 (6b)

dz 2 acy 1 . 1/2

d 1 , ) ) y 5, = 3P0 (Pl

EA?, = —506.43 + L7(2|A2| + |A3| + 2|A4| )Ag (GC) z 3 )

< (2
d 1 ) X exp [i(/)o —az+iAkz+ =L exp(—az)} (13)
$A4 = —§aA4 + (2| A2]* + 2| As]* + |A4]*) Ay (6d) a
. . .. . where

In these expressionsd;(z) is the complex, electric-field
envelope of the wave at frequeney;, with propagation kp = Y( P2+ P — Py). (24)
numberk; (j = 1,2,3,4). Also, the phase-matching factor , ) ,
Ak is given by Integrating (13) over the fiber length, we obtain

Ak =k 4 kg — ky — k3 7) Ci(L) = %D’Y(PQP?,PAL)I/ % exp(ig)I(L) (15)

which can also be expressed as (5). In writing (6), the FWMyhere I(L) is given by
induced depletion of the pump waves has been neglected, since

L Py
the newly generated wave power is very weak compared withy( ) — / exp [_az +iNkz + Ep exp(—az)|dz.  (16)
the pump powers. 0 o
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An exact evaluation of (16) requires numerical integratiomlue to the fiber loss. However, for long fib€ts > Leg), we
This is because of the presence of the nonlinear, intensitan approximate the effective fiber length by
dependent phase terfi exp(—az), which decays exponen-

tially along the fiber. An excellent approximation 6fL) can I 1—exp(—al) 1 o4
be obtained by recognizing that this nonlinear phase term has off = o o (24)
its greatest affect for small values of since the amplitude of
the integrand decreases exponentially with increasing valugen, the phase-matching factor is simplified as
of 2. In the ranged < z < L.g, the nonlinear phase term is
well approximated by the linear expression AK = Ak —v(Py+ P3 — P)(1—1/e)

iR 1 — exp(—aLeg) ~ Ak —0.63y(Py + Ps — Py). (25)

~
~

Ry

" {1 T z} a7

where the fiber effective length. is defined by Formulas (.20) and (25) can be considgred as gener_al forms
of the intensity-dependent phase-matching factors discussed

Log = 1- exp(—aL). (18) earlier in this paper. To enable a direct comparison with the
) o earlier formulations, we now replaeein (25) with m-y, where

Errorsin (17) forL.s < z < L will have a negligible effect on m is an integer. Then, we can classify (25) into several cases.

I(L), since the integrand is small in this range. Using (17) to 1) One pump(FP,), with or without a weak probe, on a

evaluate (16) results in a closed form expression. Substituting lossless fiber. Here, the probe- and Stokes-wave induced

P —
” exp(—az)

this expression into (15) yields

1 . i
Cl(L) = 3D’V(P2P3P4)1/2 exp(zd)o) exp |:§(P2 + P3 — P4):|
exp(—aL +iAK L) — 1
% { N (19)

2)
where Ak’ is the new, intensity-dependent phase-matching

factor, given by
b o

where Ak is the linear phase-matching factor given in (5).

Substituting (19) into (12) and then substituting the resulting
expressions into (10), we finally obtain the generated FWM
power

Pi(L) = |Ay?

AK = Ak — y(Py + Ps — p@{%
aLeH

3)

[1— exz(Q—aL)]Q }

(21)

!
= %D272P2P3P4 exp(—aL){

In this expressiony’ is the new FWM efficiency, given by

4exp(—al)sin®(AK L/2) }
[1 — exp(—alL)?

/ 062
TT 2 r (AR {
(22)

where the new phase-matching factbk’ is given in (20). As
can be seen (21) is identical to (1), except that phase matching
term used in the FWM efficiency term is no&k’, rather
thanAk. Also, A% and Ak become identical when the pump
powers are small.

A special case of (20) is the equal transmitted power case,
where P, = P; = Py = Fy, and F, is the channel power. In
this case, the phase-matching factor becomes

Ak = Ak — 'YPOM~
aLeff

This is valid for both degenerate FWNw., = w3) and
nondegenerate FWNLs; # w3). We also note that the phase-
matching factor changes as the wave propagates along the fiber

(23)

phase modulation and are negligible

AK =~ Ak —2vPy, (m=2) (26)

which corresponds to the factor used in [17], [18].
Two pumps(P, = P, = Fy), neglecting Stokes wave
induced phase modulation and fiber loss:

Ak = Ak — 2y P,
Ak~ Ak — 7Py,

(Degenerate FWhm = 2)

(Nondegenerate FWMn = 1)
(27)
which corresponds to the factors used in [10], [11].
Three pumpg Py = P» = P; = F,), nondegenerate
FWM, neglecting Stokes-wave induced phase modula-
tion and fiber loss:
AK =~ Ak —~Py, (m=1) (28)
which corresponds to the factor in [10].
Two or three pumps, degenerate or nondegenerate FWM,
neglecting all the nonlinear phase modulation contribu-
tions:
AK =~ Ak,

(m =0) (29)

which is simply the linear phase factor (5) as used in
[41-{7].

Two or three pump$P, = P, = P53 = I), degenerate
or nondegenerate FWM, including fiber loss and all
pump-induced phase modulation contributions:

Ak~ Ak —0.63vP,, (m =0.63) (30)
which is new factor derived in this paper, (20). Note that
this phase-matching factor accounts for the continuous
change of intensity-induced phase-matching contribu-
tions along the fiber length, where the localized values of
m evolve from 1 at the fiber input to 0 when> L.
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Fig. 1. FWM power as a function of the channel power. Fiber length: Channel Spacing (mW)

17.5 km, loss: 0.25 dB/km, dispersion: 0.5 ps/km-nm, dispersion slope: 0.08
ps/km-nm, fiber effective core area: 5®n?, nonlinear refractive index: 2.68 Fig. 2. FWM power as a function of the channel spacing. Fiber length:
x 10729 m?/W, channel spacing: 0.8 nm. 20 km, loss: 0.25 dB/km, dispersion: 0.4 ps/km-nm, dispersion slope: 0.08
ps/km-nm, fiber effective core area: 5@n?, nonlinear refractive index: 2.68
x 1029 m?/W, channel spacing: 0.8 nm, channel power: 40 mW (16 dBm).

Clearly, differentm values correspond to different circum-

stances and approximations. I_n the r_lext two sections, \V&ried. As can be seen from the solid (“exact”) curve, SPM
compare the FWM powers predicted using these factors, alogwd XPM shift the maximum FWM point away from the zero
with “exact” calculations and measured results. channel-spacing point. The amount of shift depends on the
channel power. In this case, it is about 0.5 nm. The new phase-
1. COMPARISON OF ANALYTICAL FORMULAS matching facto(m = 0.63) provides excellent agreement with
. . the exact result. The linear phase-matching fa¢tar = 0
First, consider the FWM power generated at the end étﬁers from significant errors?upto 5dB) ang doqés not pZedict

17.5 km of dispersion-shifted fiber when two pump frequerc‘:'orrfect wavelength separation for maximum FWM production.

cies are present (i.e., the degenerate case), each with cha oo o
power F,. Fig. 1 shows the calculated FWM powers ngﬂ%ough neglecting fiber losgm = 1) caused about 2.2 dB

error, which is significanly better than either totally neglecting

Py using four formulas. The solid curve is obtained usin o .
2 : X . . tensity-induced phase-modulatigm = 0) or the case of
numerical integration of (16). We will consider this to be . : ) .
) » arametric gainm = 2), it was still more than 1 dB worse
the “exact” result. Other curves correspond to phase-matchif

factors with differentm values, including the new phase-t n the new formula derived here.
matching factor (20) (i.esn = 0.63). For these calculations,
the fiber loss is 0.25 dB/km, the fiber effective core area is 50
um?, the fiber nonlinear refractive index s = 2.68 x 10720 Experiments were conducted to measure the FWM effi-
m?/W, the fiber dispersion is 0.5 ps/km-nm at 1558 nm, and tlséency in a 17.5-km section of dispersion-shifted fiber. The
dispersion-slope is 0.08 ps/km-AmThe pump wavelengths FWM power was measured while the pump wavelengths
are 1558 nm and 1558.8 nm, resulting in a channel spacingvaére varied in unison. In this way, the wavelength spacing
0.8 nm. As can be seen, all four formulas agree well for chawas fixed, but the fiber dispersion was different for each
nel powers below 5 mW (7 dBm), where the effects of SPvheasurement. Two CW tunable lasers were used, each with
and XPM on the FWM power are negligible. However, as the polarization controller to align the polarization states. The
channel power is increased, these effects become significaten circles in Fig. 3(a) are the measured FWM efficiency
At a channel power of 40 mW (16 dBm), use of the lineass a function of the lowest pump wavelength, where the
phase-matching factdrn = 0) yields roughly a 4 dB error in FWM efficiency is defined as the FWM power, normalized
the FWM power, whereas neglecting the fiber Igss = 1) to its maximum. The pump powers for this case were each
results an error of 1.6 dB. This is in contract to calculatior mW (9 dBm) and the channel spacing was 1 nm. The
obtained using the new FWM phase matching fac¢tar = fiber had an attenuation of 0.5 dB/km, an effective core of
0.63), which results in an error of only about 0.5 dB. 50 zm?, a zero dispersion wavelength of 1551 nm, and a
Next, we consider the FWM power generated when thdispersion slope of 0.075 ps/km-nm. Also shown in this figure
pump powers are fixed at 40 mW (16 dBm) each and tleee the calculated FWM efficiencies using the new FWM
channel spacing is varied. Fig. 2 shows the FMW powephase-matching formul@n = 0.63) and the old FWM phase-
predicted by the same three analytic formulas used above foatching formulas ¢ = 0, m = 1, andm = 2). As
the case where the fiber has length 20 km, the dispersiorcém be seen, all four formulas agree well with the measured
0.4 ps/km-nm at 1556 nm, the dispersion slope is 0.08 ps/kmesults. This should be expected, since the pump powers were
nn?, and the fiber nonlinear refractive index and effectivlow enough so that the effects of SPM and XPM could be
area are the same as in the previous example. One chamegjlected. For this case, the peak of the FWM efficiency
is located at 1556 nm and the other channel’'s wavelengthissclose to the zero dispersion wavelength (1551 nm), and

IV. EXPERIMENTAL VERIFICATION



SONG et al. INTENSITY-DEPENDENT PHASE-MATCHING EFFECTS ON FWM

-1 ?j ; ,g@%\\\
z
o -5
&
£ -7 / +m=0
¢/ = m = 0.63 1\ \<)
-m=1 \
-9 { —~—m=2 W
/ © Measured \'\\
-11 l | )
1545 1547 1549 1551 1553 1555 1557
Wavelength (nm)
(@
0.5
0 e SRR Sy
* Xy
/. ﬁ%}:‘ﬂ%xx :; *x !
-05 P/. j s Y > )Ktk.\ LR..
g Sk
> f( /f AN by
5 (Xf o )(x X
©
£ Vi }f /) \ \\
AT A NN
n /
-2 }f /x —-m=0 q
}f j‘f( x/ ---m=0.63 \x
~ b P --m=1
2.5 ,{ eme2
/ © Measured
3 ¥ /1* I I \ S
1542 1546 1550 1554 1558 1562 1566 1570 1574
Wavelength (nm)
(b)

2289

V. CONCLUSION

In summary, we have shown that the influence of SPM
and XPM on the FWM process becomes significant when the
transmitted channel powers are large and the fiber dispersion or
the channel spacing is small. Consequently, the conventional
formula for calculating the phase-matching conditions for
FWM produces significant errors by neglecting the SPM
and XPM effects. We derived a new phase-matching factor
by including these effects, resulting in an additional power-
dependent term with very concise form. Both experimental
and calculated results show that the new phase-matching
factor produces greatly improved estimates of FWM power
generation.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
El

Fig. 3. FWM efficiency at different wavelengths (different fiber dispersion).
Fiber length: 17.5 km, loss: 0.25 dB/km, average zero-dispersion wavelength:

1551 nm, dispersion slope: 0.075 ps/km-nm, fiber effective core area:
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