
The University of Kansas

Copyright © 2003:
The University of Kansas Center for Research, Inc.
2335 Irving Hill Road, Lawrence, KS 66045-7612.
All Rights Reserved.

Technical Report

Building a Reliable Multicast Service
Based on Composite Protocols

Sandeep Subramaniam, Ed Komp, Gary Minden and Joe Evans

ITTC-F2004-TR-19740-11

July 2003

Defense Advanced Research Projects Agency and the
United States Air Force Research Laboratory,

Contract no. F30602-99-0516

Abstract

Active networking allows end-users of the network to define, implement and deploy

their own customized protocols and services without the need of network-wide

standardization. Composite protocols provide an approach for rapid deployment of

correct and flexible protocol stacks. A composite protocol is a collection of single-

function protocol components arranged in an orderly manner providing a network

communications capability. A network service primarily consists of two or more co-

operating composite protocols. This report demonstrates the feasibilty of applying the

composite protocol approach to design, specify and implement wider range of

protocols and network services. Reliable multicast service is chosen as a case study as

it consists of protocols for reliable replication of data in the network, multicast

routing and group membership protocols. One of the main challenges in designing a

network service is to handle interaction between multiple protocol stacks. In this

report, we propose a solution for such co-operating protocols to communicate with

each other by means of global memory objects. Global memory features,

initialization,implementation and their interaction with composite protocol stacks are

discussed. The functionality of all the individual protocol components and global

memory objects in the multicast service that were implemented are also discussed in

detail.

 ii

This report finally presents the results of various functionality and performance tests

conducted on a medium-sized test network. The performance of the multicast service

has been compared with Linux IP Multicast implementation.

 iii

Table of Contents

1. INTRODUCTION...1
1.1 ACTIVE NETWORKS..1

1.2 MOTIVATION FOR COMPOSITE PROTOCOLS...1

1.3 PROTOCOL COMPONENTS, COMPOSITE PROTOCOL, COMPOSABLE SERVICES.....................................2

1.4 CROSS-PROTOCOL COMMUNICATION AND GLOBAL MEMORY...3

1.5 REPORT ORGANIZATION...4

2. COMPOSITE PROTOCOL FRAMEWORK ..6
2.1 FRAMEWORK MODULES..6

2.2 FRAMEWORK FUNCTIONS...8

2.3 FRAMEWORK MEMORY MODEL...9

3. DESIGN OF COMPOSABLE MULTICAST SERVICE ..11
3.1 STEPS IN BUILDING A COMPOSABLE SERVICE..12

3.1.1 Decomposition:..12

3.1.2 Specification of protocol components..12

3.1.3 Building the stacks...13

3.1.4 Deployment - Placing the stacks in the network..16

3.2 INTRA-STACK COMMUNICATION ..17

3.3 INTER-STACK COMMUNICATION AND GLOBAL MEMORY ..19

3.3.1 Global Memory features:...21

3.3.2 Implementing global memory:...22

3.3.3 Initialization ..24

3.3.4 Independence...25

4. IMPLEMENTATION...26
4.1 THE FRAMEWORK ..26

 iv

4.1.1 Reasons for choosing Ensemble ..26

4.1.2 State Machine Executor in Ensemble ..27

4.1.3 Mapping of framework functions...29

4.1.4 Timer implementation..30

4.2 THE POINT-TO-MULTIPOINT MULTICAST MODEL:..32

4.3 GLOBAL MEMORY USING SHARED MEMORY MODEL:...33

4.3.1 Shared memory:...33

4.3.2 Creating a global memory object ..35

4.3.2.1 Specification of read/write functional interface using CamlIDL.. 36

4.3.2.2 Implement the functional interface using Shared Memory system calls... 38

4.3.2.3 Handling concurrency issues using semaphores:.. 40

4.3.2.4 Dynamically linking shared global objects with the stacks .. 44

4.3.3 Global Memory Initialization ..44

4.3.4 Multicast Service Objects and their Functional Interface...47

4.3.4.1 Neighbor Table... 47

4.3.4.2 Routing Table... 48

4.3.4.3 Source Tree .. 49

4.3.4.4 Prune Table .. 50

4.3.4.5 Group Table ... 51

4.3.5 Protocol Interactions Through Global Memory..52

4.4 COMPONENT IMPLEMENTATION..55

4.4.1 MULTICAST DATA STACK components:...55

4.4.1.1 Multicast forwarding .. 55

4.4.1.2 Replicator ... 59

4.4.1.3 Multicast in-order component .. 61

4.4.1.4 End-to-End Reliable (without NACK implosion prevention) .. 63

4.4.1.5 Reliable with NACK- implosion prevention .. 68

4.4.2 MULTICAST ROUTING STACK components: ...70

 v

4.4.2.1 Neighbor Discovery ... 70

4.4.2.2 Route Exchange ... 73

4.4.2.3 Spanning Tree .. 76

4.4.2.4 Pruning... 78

4.4.2.5 Grafting .. 81

4.4.3 GROUP MEMBERSHIP STACK components: ...83

4.4.3.1 Join/Leave component with its control interface.. 83

5. TESTING AND PERFORMANCE ...87
5.1 FUNCTIONALITY TESTING ..87

5.2 PERFORMANCE TESTING ..95

5.2.1 Test 1: Measurement of stack latencies ...98

5.2.2 Test 2: Measurement of Component Transmit and Receive Latencies100

5.2.3 Test 3: Measurement of one-way latency ..101

5.2.4 Test 4: Measurement of end-to-end throughput ..103

5.2.5 Test 5: Measurement of throughput for reliable multicast ..105

5.2.6 Test 6: Measurement of join and leave latency ...107

5.3 COMPARISON WITH LINUX IP MULTICAST ...109

6. SUMMARY AND FUTURE WORK...113
6.1 FUTURE WORK...114

BIBLIOGRAPHY ...115

 vi

LIST OF FIGURES

FIGURE 1: COMPOSITE PROTOCOL FRAMEWORK ..6

FIGURE 2: MULTICAST SERVICE STACKS...13

FIGURE 3: DEPLOYMENT OF STACKS ..16

FIGURE 4: GLOBAL MEMORY OBJECTS - FUNCTIONAL INTERFACE ...19

FIGURE 5: STATE MACHINE EXECUTOR ...28

FIGURE 6: TEST NETWORK...87

FIGURE 7: VARIATION OF STACK LATENCY WITH MESSAGE SIZE ...98

FIGURE 8: 6-HOP TEST NETWORK...101

FIGURE 9: VARIATION OF ONE-WAY LATENCY WITH MESSAGE SIZE102

FIGURE 10: VARIATION OF THROUGHPUT WITH MESSAGE SIZE ...104

FIGURE 11: VARIATION OF RELIABLE MULTICAST THROUGHPUT WITH ERROR RATE.......106

FIGURE 12: PRUNE DEPTH OF A MULTICAST TREE..108

 vii

List Of Tables

TABLE 1: FRAMEWORK FUNCTIONS - CORRESPONDING ENSEMBLE EVENTS.........................29

TABLE 2: NEIGHBOR TABLE- FUNCTIONAL INTERFACE ..48

TABLE 3: ROUTING TABLE – FUNCTIONAL INTERFACE ...49

TABLE 4: SOURCE TREE – FUNCTIONAL INTERFACE ..49

TABLE 5: PRUNE TABLE – FUNCTIONAL INTERFACE..51

TABLE 6: GROUP TABLE – FUNCTIONAL INTERFACE ...52

TABLE 7: VARIATION OF STACK LATENCY WITH MESSAGE SIZE...99

TABLE 8: COMPONENT LATENCIES AT SENDER...100

TABLE 9: COMPONENT LATENCIES AT RECEIVER...100

TABLE 10: VARIATION OF END-TO-END LATENCY WITH HOPS ...103

TABLE 11: VARIATION OF THROUGHPUT WITH MESSAGE SIZE...105

TABLE 12: VARIATION OF RELIABLE MULTICAST THROUGHPUT WITH ERROR RATE107

TABLE 13: VARIATION OF JOIN LATENCY WITH PRUNE-DEPTH ..109

TABLE 14: COMPARISON WITH LINUX IP MULTICAST..111

 1

1. Introduction

1.1 Active Networks

Traditional data networks passively transfer data from one end of the network to another.

Routers in conventional networks just forward user data by processing packet headers.

This network property was changed with the advent of active networking. Nodes in an

active network called active nodes can, not only forward user data but can also perform

customized computations on data flowing through them. Active networking enabled users

to inject their customized code or programs within the network thereby tailoring the

network to meet user and application specific needs. This mechanism allows introduction

of customized network protocols and services without the need of network-wide

standardization unlike conventional rigid network implementations. Several active

networking architectures like ANTS[1], PLAN[2], Magician[3] etc,have been developed

to deploy services need by an application on intermediate nodes of the network. This

report focuses not on deployment mechanisms but on developing a framework to build

user-specific and customized network services that are not only easy to design, test and

deploy but are also formally correct in their property and behavior. Composite protocols

for innovative active services [4] is a modular approach for specifying and implementing

network protocols providing such a framework.

1.2 Motivation for composite protocols

Traditional monolithic protocol implementations following the OSI model [5] are

modular in design employing the layering principle, with each layer providing a service

 2

to the layer above it. However, layered implementations were found to perform poorly as

compared to monolithic implementations, so modularity was compromised for efficiency

and performance reasons. Protocol correctness was not considered to be an important

aspect in its design. Monolithic implementation of protocols made it difficult to analyze

and assert properties about protocol behavior and correctness. The OSI model and the

TCP/IP architecture embedded multiple functionality in a single layer. The network layer,

IP handled routing, fragmentation etc, TCP handled reliable delivery, sequential delivery,

flow-control etc. This architecture does not provide the much-needed flexibility to the

user/application of choosing a protocol with a collection of properties. The

user/application has to choose TCP even if it wants only its reliable-delivery service and

not any of its other services. The idea of code reuse is a common principle being used in

software engineering for a long time, but it has not been used yet in protocol

implementations. All these aspects of existing protocol implementations motivate the

need for design and development of composite protocols.

1.3 Protocol components, composite protocol, composable services

Reliable-delivery, sequential delivery, error checking, some form of routing,

authentication, request/reply protocols are some of the common properties or functions

which are used in the existing protocols. Any new protocol developed may also demand

the use of some of these functions. We call such single-functional protocol modules,

protocol components. A group of such protocol components collected and connected

together by means of a composition operator constitutes a protocol. For example, TTL,

Fragmentation, Header Checksum, Forwarding and Addressing are protocol components,

which composed give an IP protocol. Though many forms of composition exist, the most

 3

common form of composition and the one used in our implementation is a linear

composition. A collection of two or more cooperating protocols is called a service.

Multicast is an example of such a service. Multicast consists of protocols for group

membership and management, multicast routing and spanning trees, tunneling and

reliable replication of multicast data.

Traditional IP-based multicast network services typically consist of multicast routing

protocols like DVMRP[6], MOSPF[7] or PIM[8] and group-management protocols like

IGMP[9] in operation. These traditional multicast protocols are decomposed into

individual and independent smaller units called protocol components, each performing

only a single-function. Each protocol component is completely specified in terms of the

Augmented State Machine model, memory requirements and properties [10]. This report

describes how a component based multicast service is built by linearly stacking protocol

components into three different protocol stacks viz. a DVMRP like multicast routing

stack for creating and managing multicast routing tables and spanning trees, an IGMP

like group-management stack for managing group-memberships and a multicast-traffic

delivery stack for reliable transmission of application data.

1.4 Cross-Protocol Communication and Global Memory

The definition and implementation of network services introduce new issues into the

active networking environment. Key issues are cross protocol communication among the

protocols contributing the service and to the protocol(s) using the service, maintaining

independence between active network protocols which use a service and the protocols

providing the service, while allowing them to communicate effectively among others.

 4

This report focuses on addressing the issue of supporting cross protocol communication

that minimizes the degree of interdependence between cooperating protocols while

building a network service. To support communication between independent protocols

stacks, we require a memory with both scope and extent greater than any single protocol

that accesses it. We use the category, global memory, for these memory units. Due to

these scope and extent requirements, a global memory must exist independently of any

specific protocol. We define an active global memory object for each unit of global

memory required in a system. This active object is responsible for initialization and

maintenance of the shared information. Any protocol component needing access to the

shared information, must contact the corresponding global memory object. Thus global

memory objects provide a mechanism for exhange of information between protocol

stacks and aid in the development of complex network services.

1.5 Report Organization

The rest of this document is organized as follows. Chapter 2 summarizes the salient

features of the composite protocol framework. Chapter 3 deals with the detailed design of

building a composable service using composite protocol stacks and global memory

objects with reliable multicast service as an example. Identification of components

through decomposition, specification, composition using linear-stacking and deployment

of stacks are described. Also describes the design issues related to inter-stack

communication and global memory. Chapter 4 is dedicated to implementation. Reasons

for choosing Ensemble[11] as a base framework for implementation are listed.

Extensions and modifications made to Ensemble to support our framework, including

framework functions, events and timers are discussed. It then describes in detail the

 5

shared memory implementation of global memory, lists the functional interfaces provided

by the various global memory objects in the multicast service implementation and how

the protocols of the service interact through global memory. Finally, the working of each

component used in the service is explained. Chapter 5 on testing, reports results from

various experiments conducted and tests performed to confirm the functionality of

multicast service across the network. Several network performance tests were also

performed. The performance of the composite multicast service is also compared to

Linux IP Multicast on a medium sized test network. Chapter 6 summarizes the results of

this report and suggests enhancements and future work

 6

2. COMPOSITE PROTOCOL FRAMEWORK

2.1 Framework modules

This section describes the various modules of the composite protocol framework

TSM RSM

Gl
ob
al
Me
mo
ry

Local Memory

SM
Local Memory

TSM RSM
Local Memory

SLP SLP

SLP SLP

SM
Local Memory

SM
Local Memory

TSM RSM

Local Memory

SLP SLP

SLP SLP

Composite
Protocol X

Composite
Protocol Y

ENDPOINT A

SM

Gl
ob
al
Me
mo
ry

Local Memory

SM

Local Memory

TSM RSM

Local Memory

SLP SLP

SLP SLP

TSM RSM

Local Memory

SM
Local Memory

TSM RSM

Local Memory

SLP SLP

SLP SLP

Composite
Protocol Y

Composite
Protocol X

ENDPOINT B

Protocol component

Composite protocol

Packet
 Memory

Packet
 Memory

Packet
 Memory

Figure 1: Composite Protocol Framework

The composite protocol framework provides the following to the user:

• A template to formally specify the individual components using AFSMs.

• A composition method to create composite protocols stacks from components.

• A mechanism to construct a service from protocol components.

• Support for dynamic linking of components and switching of protocols on the fly,

enabling users to add, remove or re-order components in a stack.

 7

• Support for intra-stack and inter-stack communication between components.

We shall now briefly describe the individual parts that make up the composite protocol

framework.

Protocol components are the building blocks of a composable protocol service. Each

protocol component implements a single-function either by operating on application data

or by independently providing a specific functionality. The former is termed as data-

oriented components and the latter control-oriented components. In both cases, peer-to-

peer communication between components over the network is necessary. Each protocol

component is specified in terms of two Augmented Finite State Machines (AFSMs) viz.

Transmit State Machine (TSM) and Receive State Machine (RSM) on the sending and

receiving side of the communication channel.

An AFSM consists of a finite set of states with a finite set of transitions between one

state to another. Each transition is defined by the current-state, next-state, an event, a

guard expression, action and local memory update functions. Events trigger a transition

from one state to another. Guards are boolean expressions that conditionalize the

transition from one state to another. A transition is activated by its corresponding event

only if the guard expression evaluates to true. Action functions describe the response of

the protocol component to the associated event. They typically consist of executing any

one of the well-defined set of framework functions.

Each component has well-defined data interfaces for transmitting and receiving data. On

transmission, packets are accepted from a higher layer/component, operated upon if

necessary and sent to a lower component after adding a header. On reception packets are

accepted from a lower component, its corresponding header stripped and operated upon

 8

and sent to the upper component. The component also has a control interface for handling

initialization during start-up and for communication between other components in the

stack and the application.

Protocol components are linearly composed in the form of a stack called a composite

protocol stack. Stack X and Y in figure 1 are composite protocol stacks. Though

different methods of component composition are available we have chosen the linear

composition method for our framework. Events in the framework are broadly classified

into two types viz. data and control events. Data events are used for sending and

receiving packets either between applications (event generated by application) or between

peer-to-peer components (events generated by individual components) e.g. packet arrival

event. Control events are further sub-divided into two types: stack-wide control events

and component specific control events. Stack-wide control events are used for stack

initialization, generating timers etc. Component-specific control events are for

communication between two or more components in a composite protocol stack.

2.2 Framework Functions

The set of framework functions associated with the above events are given below.

Packet Transfer Functions (associated with data events)

PktSend() - send data from application / higher-level component down the stack.

NewPktSend() - send component's own data to peer.

PktDeliver() - deliver data to application / higher-level component up the stack.

NewPktDeliver() - deliver component's own data to the application

DropPkt() - discard application data

 9

Note: All send functions involve sending data down the stack from the component onto

the wire for transmission. All deliver functions involve delivering data up the stack either

ultimately to the application or to a component above in the stack.

Buffer Management Functions

KeepPacket() - buffer the data locally

DeliverKeptPacket() - deliver stored data to application/higher-level component

DropKeptPacket() - discard locally stored data

SendKeptPacket() - send buffered application/higher-level data on the wire

Control functions

Stack-wide control events: (timers)

SetTimer() - request a timeout from the framework

ResetTimer () - reset the value of the timer

CancelTimer () - cancel existing timer

Intra-stack communication: (control events)

SendUpControl() - generate a control event and send it up the stack.

SendDownControl () - generate a control event and send it down the stack.

2.3 Framework memory model

We have classified the protocol memory into 4 categories based on its accessibility and

scope:

Component-Local Memory: this is internal to the component. Accessible only by the

action functions within the TSM and the RSM of the component. They are separately

 10

initialized by at the sending and the receiving sides. E.g.: sliding window buffer in the

Reliable Delivery component.

Stack-Local Memory: provides a mechanism for components within a stack to share

information. This is accessible to all components in a stack. Since SLPM is associated

with an event, the extent of this memory is limited to the life of the event in the stack.

Global Memory: This part of memory is external to a stack and is used for

communicating or sharing information between multiple protocol stacks. In our model,

global memory access is abstracted through a functional interface for both reading and

writing values. Global memory issues shall be discussed in detail under Inter-stack

Communication in section 3.

Packet Memory: This memory represents the header added by each component to the

data from the application / higher-level component. Each component independently

defines it own packet memory. It is accessible only by this component at the sending and

receiving ends. All other components have an opaque view of this memory as a read-only

linear sequence of bytes.

 11

3. DESIGN OF COMPOSABLE MULTICAST SERVICE

This section describes the various steps involved in building a composable service using

our framework with multicast service as a case study. Also discusses intra-stack and

inter-stack communication. Multicast is an excellent example of a network service, which

is made up of several cooperating protocols. Any form of multicast service would require

functions for multicast routing, creation of spanning trees, reliable replication of

multicast data and joining/leaving multicast groups. IP Multicast is a collection of

multicast routing protocols like DVMRP, MOSPF, PIM, reliable multicast protocols like

RMTP[12] and group management protocols like IGMP working in tandem with IP for

best-effort multicast delivery. The reason for studying multicast service is that it

combines data and control-oriented protocols. TCP and IP are data-oriented protocols,

while routing protocols like RIP[13], OSPF[14], DVMRP and group-management

protocols like IGMP are control oriented (belong to the control-plane). It should be noted

that protocol components that we specify and implement are not in accordance with any

Internet standards like RFCs and internet-drafts for DVRMP, RMTP, IGMPv1, and

IGMPv2. What we are interested is the basic functionality of these protocols. Only a sub-

set of the standard functionality is specified and implemented. Also, we assume that the

reader has a basic understanding how IP multicast and other protocols like DVMRP and

IGMP work in general. We now describe the various steps in building a composable

service using our framework.

 12

3.1 Steps in building a composable service

3.1.1 Decomposition:

Decomposition is the initial process of identifying the key functional protocol components

in a monolithic implementation of a protocol.

For multicast service, we decomposed the monolithic DVMRP protocol into the

following protocol components: Neighbor Discovery, Route Exchange, Spanning Tree,

Pruning and Grafting. The IGMP protocol was decomposed into the following

components: Join/Leave and Query/Report. Other components that form part of the data

stack include Multicast Forwarding, Unicast Forwarding, variants of Reliable Multicast

like with/without ACK implosion prevention, hop-to-hop reliable, Multicast Inorder,

Replicator. These components are not a result of direct decomposition from any other

protocol.

3.1.2 Specification of protocol components

Once all the individual components are identified, the next step is to specify each of these

components using AFSMs as described in [4]. Each component is represented by a TSM

and a RSM, the set of events (data and control) that can invoke this component, its

memory requirements: local, stack-local, global and packet memory along with its

properties and some assumptions. The individual functionality of each protocol

component is described later in section 4.4. While specifying these components, care

should be taken to ensure that each protocol component performs only a single-function

and is totally independent of other components. Achieving total independence is only an

ideal case, practically some minor amount of dependence on other protocol components

may be required. Also, it may not be possible to represent each decomposed protocol in

 13

optional

Grafting

Spanning Tree

Pruning

Route Exchange

Neighbor Discovery

Multicast routing

Join_Leave

Group
 management

TTL

Fragment

Checksum

Multicast Forward

Basic Multicast

Application

Replicator

Reliable Multicast

Application

Reliable Multicast

Unicast Forward

Application

Multicast Inorder

Multicast In-order

IPFragment

Checksum

Fragment

Checksum

TTL

Fragment

Checksum

Replicator

Replicator

Checksum

Fragment

TTL

Multicast Forward Multicast Forward

Multicast

Application

terms of state machines or in accordance with the composite protocol specifications. In

such cases the decomposed protocol may have to be either merged with other protocols or

re-specified appropriately so that they meet the specifications. E.g. A decomposed

protocol having no header information (bits-on-the-wire) can always be merged with

another protocol. However, we shall elicit on the individual functionality of each protocol

component in section 4.4.

3.1.3 Building the stacks

Figure 2: Multicast Service Stacks

 14

Once all the individual protocol components are specified, related components are

grouped in protocol stacks called composite protocol stacks. The composable service is

just the collection of these stacks and global memory objects (described later in this

section). Multicast service is a collection of three stacks viz. Multicast routing stack,

Group Management stack and Multicast data/traffic stack and the global memory objects.

We have decided to compose stacks using the linear stacking approach. In this approach,

while composing stacks, the order of stacking can play an important role depending on

whether the components being stacked are property oriented or control oriented.

A property based component is one which provides a well defined property or

functionality to the component/application above it by adding headers to application data.

Typical examples are TCP components like Reliable delivery, in-order delivery, or IP

components like TTL, Fragment. Control based components do not provide any property

to the component above, though they implement a separate function on their own. They

mainly exchange peer-to-peer messages only.

We find lot of examples of such control components in Neighbor Discovery, Route

Exchange etc. When these 2 components are stacked up with Neighbor Discovery on top

of Route Exchange, it should be noted that the Route Exchange component does not

operate or perform any computation on data sent by Neighbor Discovery. It merely

passes it down without appending its header. These types of components are responsible

for creating, managing global data structures, which may be accessed by other stacks.

They may or may not interact with each other. Interaction if present is generally through

control events (Intra Stack communication). Relative ordering of control oriented

components does not affect the overall general functioning of the stack. They make

 15

however affect stack performance. It may be a good idea to consider placing the

component that exchanges peer-to-peer messages most frequently, bottom-most in the

stack and that which exchanges messages least frequently, top-most the stack. Placing the

component as low in the stack as possible shall minimize end-to-end delay and also

reduce extra overhead (caused by dummy headers) added by other components. Placing

the Neighbor Discovery component low in the stack, and Pruning/Grafting high in the

stack may be a good stacking arrangement.

Property based components impose a strict ordering on components above/below it. E.g.

If reliability is needed hop-to-hop, the reliable component has to be placed below the

multicast forwarding component, where-as if reliability is needed end-to-end, it has to be

placed above the multicast forwarding component.

 The framework offers the much-needed flexibility in this regard. Components can be

easily added to stacks, removed from stacks or even re-ordered within stacks rendering

different protocol stack properties to the user. Thus , building stacks with an optimal

ordering is an important and challenging task in building a service.

 16

3.1.4 Deployment - Placing the stacks in the network

C1

C3

L2 L3

L1

S

C2

Multicast data
 stack

Group management
stack

Multicast core
 router

Multicast leaf
 router

Multicast routing
 stack

end hosts

Figure 3: Deployment of Stacks

This report focuses mainly on service composition and not on automatic deployment

issues in an active network. Automatic deployment of composite protocol stacks and then

running these stacks on an Active Node is a subject of future research.

In this report, the composite protocol stacks are manually deployed on normal nodes

(non-Active nodes).

 17

Figure 3 shows an example multicast network with the different stacks deployed at

various nodes:

• Multicast Sender: sends multicast data destined for a particular group. Need not

be a part of a multicast group to send a multicast packet. Typically attached to a

multicast core-router.

• Multicast Core Router: present in the core of the multicast network. They are

responsible for creating and managing multicast routing tables and setting up per

source group multicast delivery trees.

• Multicast Leaf Router: these are nodes that do not have downstream neighbors

and are directly attached to multicast receivers (end-hosts).

• Multicast Receivers: these are end-hosts that have joined a particular group and

are entitled to receive multicast traffic destined to that particular group.

Note that both Multicast core routers and Multicast Leaf routers can also be Multicast

Receivers and Multicast Senders

3.2 Intra-stack Communication

Intra-stack communication refers to communication between two components in a stack

or communication between the application and a protocol component in the composite

protocol stack. This form of communication is handled by use of control events in the

framework and by extending components to provide control interfaces. The PIPO

(packet-in packet-out) interface is sufficient for data-plane components (property-

oriented) as discussed before. E.g. For components like reliable-delivery, checksum,

fragment etc, it may be enough to just act and process the packet passed from above.

 18

Each component just adds its own header for payload from above and strips off the

corresponding header at the receiving side. This interface will not be sufficient for

components that depend on some control information or set of user-level commands from

the application. This demands a need for a control interface to enable communication

between components or between the application and a component.

The component which implements a control interface offers a service to components

above it or to the application and is called the controlled component. The component

above this or the application that utilizes the provided service is called the controlling

component.

In the multicast service, the JoinLeave component of the GroupMembership stack is an

example of a component that makes use of such control events in the framework and is

the controlled component. The application which uses its control interface to join/leave

multicast groups is the controlling component.

SLPM (Stack-Local Packet Memory) can also be viewed as another form of intra-stack

communication in our framework. SLPM is an auxiliary data structure attached to the

packet as it is processed by components in the stack. SLPM fields are implemented as

(name, value) pairs and a set of framework functions are provided to access SLPM.

SLPM is often used to transfer packet information between components. A high-level

component can add a field to SLPM that is then read and used by a low-level component.

E.g. the next-hop IP address is added to SLPM by the Forward component and is read

from SLPM by a lower-level data link component.

Thus intra-stack communication is mainly accomplished by use of control events in the

framework and in some cases through use of SLPM.

 19

3.3 Inter-Stack Communication and Global Memory

One of the challenging problems in designing a network service is to identify and address

the issue of how different protocols interact with each other. Network services require the

cooperation of two or more network protocols; that is they need to share information. In

Figure 4: Global Memory Objects - Functional Interface

Neighbor
Table

Routing
Table

Source
Tree

Prune
Table

Group
Member

Table

Neighbor
Discovery

Spanning
Tree

Route
 Exchange

Pruning

Grafting

Multicast
Forwarding

Global Memory
objects

Join
Leave

Global
Memory
object

WRITE

READ

WRITE

READ

Functional Interface

Unicast
Forwarding

Write access

Read access

Routing stack

Data stack

Group Mgmt

 20

this section, we will describe our solution to this challenging problem.

Our solution is to generate a global memory object, independent of any protocol that uses

it, for the storage of information shared among two or more protocols. The scope and

extent of this object must be greater than that of any single protocol, which accesses the

information, stored in the global memory object. Access to read / write the contents of the

shared information is provided through a functional interface. A protocol component

expresses its requirements for access to global memory object(s) by listing the external

functions it uses in its implementation.E.g. The RouteExchange component needs a

function to write new routes into the Routing Table. So, it would use a function like

addNewRouteEntry (rt_entry) to add a new route entry to the routing table. The IP

forwarding function needs to know the nexthop address for each destination. It would

require an external function like ipaddr getNextHopForDest (dest_addr) to get the

nexthop address. These functions addNewRouteEntry() and getNextHopForDest() are

provided through the write and read functional interface of the global Routing Table

object respectively.

Very generally, the global memory object can be regarded as a server, providing access to

shared information to its clients, the protocol reading/writing this information. For

example, in the TCP/IP world the IP Routing Table is created and maintained by

protocols like RIP, OSPF etc. and is accessed by IP while forwarding data packets. In our

framework, the routing table is maintained as a global memory object that is external to

both protocols IP and RIP. We shall now discuss the various features and requirements of

global memory in our framework.

 21

3.3.1 Global Memory features:

Functional interface:

In our framework, global memory access is abstracted through a functional interface for

both reading and writing data. The functional interface model helps in encapsulating the

data and hides the internal representation of the object.

Synchronization:

Protocols can access global memory only through the functional interface, so the use of

semaphores and/or any other control mechanisms to provide necessary synchronization

are embedded in these functions in a uniform and robust manner. Synchronization is not

delegated to the users of the shared object(s). Furthermore, since the interface is truly

functional, no pointers are shared, which eliminates any possibility of conflicts from

implicit sharing through multiple references to the same object. In a similar manner,

implementation of the functional interfaces can apply access-rights controls to limit

access to sensitive data. This approach makes protocol interfaces to the global memory

are very simple. Complex issues of synchronization and access control are addressed just

once in the design and implementation of the global memory object, instead of requiring

each protocol that shares the information to incorporate these controls in its

implementation. And the solution is much more robust, since the integrity of the shared

data cannot be compromised by a single protocol, which does not correctly implement

synchronization algorithm.

 22

Extensibility:

The global memory object definition can be extended by adding new functions to its

functional interface, to provide services for new protocols developed which use/access

information in an existing global memory object. This provides a powerful mechanism

for developing new protocols and/or improving existing implementations, while

maintaining backward compatibility for previous clients (protocols) that use the global

memory object. Previous clients continue to use the existing interfaces while the new

protocols use the new extended version.

3.3.2 Implementing global memory:

We now discuss a few approaches to implement global memory.

Process model:

In this model, each global memory object is implemented with a separate process running

as a server on each node. Typically, each global memory server is started up during the

node initialization sequence. This server process maintains a single internal

representation for its global memory object. The server can choose any representation for

the data, because this structure is entirely local to the server. The server implements an

inter-process communication (IPC) interface according to the functional definition of

global memory. Any protocol that accesses a global memory contacts the corresponding

server process as a client. Communication between the clients (protocols) and server is

limited to the IPC interface advertised by the server process. This implementation

strategy is a direct implementation of the abstract model we propose for a global memory

object. Unfortunately, the overheads associated with inter-process communication, even

 23

within a single node, may be too large for the performance requirements of network

protocol implementations.

Shared-Memory model:

In this model, the data to be shared by multiple stacks is stored in shared memory. The

functional interface containing the set of all functions provided by the global memory

object is packaged into a dynamic link library (DLL). The protocol stacks, which run as

individual processes on a node, will link to the dynamic library defined for the global

memory it uses.

Accesses to global memory are simply function invocations in the process image. The

actual implementation of the functional interface is entirely opaque to the clients

(protocol stacks). The implementation uses operating system calls to access a section of

shared memory; so each protocol stack (independent processes) references the same

object stored in shared memory. The implementation is responsible for handling

synchronization issues, typically using semaphores provided by the operating system in

its shared memory interface.

This implementation approach strongly preserves the abstract functional interface we

want for global memory. Users of global memory have only an opaque view of it through

the functional interface provided by the DLL. Protocol stack implementations remain

operating system independent. The implementation of global memory objects, with node

local resources, may need to be adapted to the details of shared memory access interface

provided by the operating system.

 24

This implementation provides the same abstract view of global memory objects as the

server process model, but is significantly more efficient. Global memory access is

accomplished through a local function call instead of an inter-process communication.

Node-OS model:

For the highest execution performance, an alternative is to embed global memory objects

directly in the operating system on which the protocol stacks run. With this alternative,

the operating system (kernel) interface must be expanded to incorporate the functional

interface, which defines the global memory object(s). The operating system implicitly

operates as the global memory object server. The protocols using the global memory

object obtain direct access through the (new) system function calls introduced with the

global memory object. This approach is worthy of consideration only for a few special

and widely accessed global memory objects, such as the routing table. The solution is

vendor/operating system specific. In addition, it requires extensions to the operating

system interface. For example, the current TCP/IP implementations use a strategy similar

to this (though not employing a pure functional interface)to provide shared access to the

routing table.

3.3.3 Initialization

Each global memory is independent of any network protocol, which uses it. From

the perspective of a protocol running on a node, the global memory is a "service"

provided by the node. Therefore creation of, and initialization of the global memory is a

responsibility of the node environment. Dynamic deployment of network services must

 25

determine if the global memory object(s) used by the protocols, which form the service,

are already available on the nodes.

Figure 4 illustrates different protocols of the multicast service cooperating by means of

global memory objects. NeighborTable, RoutingTable, SourceTree, PruneTable and

GroupMemberTable are all global memory objects that provide a set of read/write

functions through their respective functional interfaces. E.g. The Route Exchange

component of the multicast routing stack writes into global memory using the write

interface of the global RoutingTable object and the Multicast Forwarding component of

the multicast data stack reads using the read interface of the object. Each protocol

component includes the list of external memory functions it accesses.

getDownStreamNeighborsForSource(src_addr,group_addr), addNewRoute(route_entry)

are typical examples of read and write external functions for the Route Exchange

component.

3.3.4 Independence

The global memory objects are designed to be mutually independent with each other. E.g.

in the above example, the Routing Table does not have any dependencies with the

Spanning Tree global memory object and vice versa. The reason is this. A multicast

service may need both the global memory objects Routing Table and Spanning Tree, but

say another service requires only the services of the Routing Table object; its dependency

on Spanning Tree is by design an undesirable feature.

Also the global memory objects are designed so that it can be used across several

services. E.g. the Routing Table object can be used in unicast as well as multicast, with

possible variations in its set of functional interfaces.

 26

4. IMPLEMENTATION

Ensemble, a group communication system developed primarily by Mark Hayden of

Cornell University was used as a base framework for implementation of our composite

protocol framework specifications. Extensions and modifications were made to

Ensemble to represent each Ensemble layer with the corresponding state machine

representation of the component. In this section, we first give reasons on why we chose

Ensemble as our implementation framework, then describe briefly the state machine

executor built in Ensemble, depict the mapping of our framework functions with

Ensemble events and then discuss timer implementation. The features and limitations of

the point-to-multipoint multicast model is then described. This is followed by a detailed

description of global memory implementation and finally the working of each protocol

component that make up the multicast service is explained.

4.1 The Framework

4.1.1 Reasons for choosing Ensemble

• Ensemble is written in Ocaml[15], a functional programming language, and

dialect of ML[16]. Use of functional programming languages aid in easy formal

analysis of code.

• Ensemble uses linear stacking of protocol layers to form a stack, the same

composition methodology that our framework demands.

• Event handlers are atomically executed.

• Unbounded message queues between any two layers.

 27

• Provides an uniform interface through its up and down event handlers, thus

enabling arbitrary composition of layers to form protocols.

• Provides support for dynamic linking of components and switching of protocols

on the fly, enabling users to add or remove components from a stack.

As Ensemble already provided a good base framework for implementing our

specification, it was decided to make use of it instead of developing a new framework

from scratch. Lot of code necessary for the original group communication to work was

removed; only bare essential code was retained. This resulted in a much smaller

Ensemble code base.

4.1.2 State Machine Executor in Ensemble

Individual layers that made up an Ensemble stack had no concept of state machines. All

layer functionality was implemented as part of their event handlers. With the introduction

of state machine representation for each component in our framework, each Ensemble

layer was made to internally invoke its corresponding state machine if necessary. A

common state machine executor was built for this purpose. Its design is shown in Figure

5. For each component, the pair of state machines TSM and RSM are defined in Ocaml.

Each state machine consists of list of states and a set of transitions from each state. Each

transition is a defined as a record containing enumerated next-state, current-state value,

enumerated event-type, guard function, action function and local-memory update. The

state machine executor has common functionality to execute any arbitrary state machine

defined as described above. It starts from an initial state, and moves through a set of

 28

states depending on events and guards and executing action and local memory update

functions. It also supports synchronous states and transitions.

TSM RSM

Ensemble events (ECast, ESend, ELeave…)

FSM events (PktArrival, Timeout…)

TTL

Checksum

Forwarder

Fragmentation
FSM executor

Custom Composite Protocol

Figure 5: State Machine Executor

For example, for Ensemble down events ESend(Dn) the FSM executor maps to a

PktArrival event and invokes the TSM . TSM is then executed as defined. After state

machine execution, the FSM executor passes the PktArrival event back to the Ensemble

layer through defined framework functions eg. pkt_send.. Similar mapping of events take

place for Up Ensemble events, they are directed to the RSM. Certain Ensemble events

need not be passed to the FSM if not needed by it. The implementation allows by-pass of

such events, which are of no interest to the state machines.

 29

The next-sub section describes the mapping between our framework functions and

Ensemble up and down event handlers.

4.1.3 Mapping of framework functions

 The table shows the mapping between few of our framework functions (as listed

in section 2) and Ensemble UP and DN events

Framework Functions Ensemble Event

Packet Transfer

pkt_send(pktmem) DN (EV, ABV, hdr)

new_pkt_send(pktmem) DNLM (ev, hdr)

pkt_deliver() UP (EV, ABV)

new_pkt_deliver(pktpayld) UP (ev, pktpayld)

Buffer Management

send_kept_packet(pktpayld) DN (ev, hdr, pktpayld)

deliver_kept_packet(pktpayld) UP (ev, pktpayld)

Table 1: Framework Functions - Corresponding Ensemble Events

Words in small letters refer to component generated fields. E.g. In a new_pkt_deliver() ,

the pktpayld is generated by the component, whereas in pkt_deliver() ABV already exists

along with the event.

Note the difference between existing and generated fields:

EV: Incoming/Outgoing Ensemble event, ev: component generated Ensemble event.

ABV: Existing packet payload , pktpayld : component generated packet payload

hdr : component generated header.

Timer-related framework functions are described in the next sub-section.

 30

4.1.4 Timer implementation

 Component specification demands implementation of the following framework

functions:

• set_timer (timer_id: int, timeout: time)

This function requests a TimerEvent with unique-id timer_id from the framework

after time seconds.

• cancel_timer(timer_id:int)

 This function is used to cancel an existing timer with id timer_id

• reset_timer(timer_id:int , timeout:time)

This function is used to reset the value of the timer with id timer_id and request another

timer that expires after time seconds.

In the Ensemble system, timers are implemented as Control events flowing up and down

the stack. ETimer the Ensemble heart-beat timer propagates all the way from the layer

bottom upto the topmost layer and is again reflected down the stack. But this timer did

not have the notion of a timer-id associated with it, which is needed by our specifications.

So to cater to this requirement and to interface our timer framework functions with the

Ensemble timer, a Timer Module was built.

The Timer Module is defined as a list of timer objects. Timer object is a record of

type timer_rec:

 31

The Timer module also provides several functions to perform operations on timer objects.

• create() : creates a empty list of timer objects.

• length(): returns number of timer objects in list.

• add(timer_rec, timer_list): adds a new timer object timer_rec to the existing list

timer_list.

• sort(timer_list): sorts the list timer_list based on the increasing timeout value.

• lookup(timer_list, time, timer_dir): returns list of expired timers from timer_list

based on values of time and timer_dir.

• remove_all(timer_list, timeoutid, timer_dir): removes all timer objects from list

timer_list matching timeoutid and timer_dir.

The framework creates an empty list of timer objects for each component on startup.

When the component invokes the set_timer() framework function as described above, a

new timer object is created with appropriate values for timeoutid, timeout and

timer_direction. This is added to the existing list of timers and then sorted in an

increasing order based on the timeout value. When set_timer() is invoked by the TSM the

timer_direction is set to TimerDn and when invoked by the RSM is set to TimerUp. A

type timer_dir_type =

 | TimerUp // Up timer events requested by RSM

 | TimerDn // Dn timer events requested by TSM

type timer_rec = {

 timeoutid : int; // the unique timeout-id

 timeout : Time.t; // time-period for expiry of timer

 timer_direction: timer_dir_type; // direction of requested timer

}

 32

component can request for any number of timers provided each is requested with a stack-

wide timer-id value.

When an ETimer event reaches an Ensemble layer of a component, its time is compared

with the list of time values in the timer_list to yield a list of expired timers along with

their timeoutid values. For each expired timer, a new event called TimerEvent(timeoutid)

is created and then sent to the appropriate state machine (all UP events are sent to RSM

and all DN events are sent to TSM. All expired timers are always removed from the list

using remove_all().

This ensures and produces the much-needed Timer Event with the unique timerid for the

state machine. Cancel_timer(timeoutid) framework function directly removes the

corresponding timer with id timer-id from the list , even before its expiry.

 It should be noted that Timeout events shall be generated for the same state

machine that invoked the set_timer() framework function.

4.2 The point-to-multipoint multicast model:

The multicast service implemented is for multicast data flow in a point-to-multipoint

multicast network. Here, we have a multicast sender transmitting data on a dynamically

established and maintained multicast tree to a group of receivers. Receivers (end-hosts) in

this model can only join / leave certain multicast groups, they cannot in-turn, multicast to

other group members.

This model is well suited and applicable to situations like streaming video/audio from a

server, file downloads etc. This will not be appropriate for video-conferencing types of

multicast applications where we need a multipoint-to-multipoint data flow. Note that in

 33

our model, we can have N different multicast senders in the network multicasting data on

their respective trees, but each should be viewed as N separate multicast data flows.

Receivers in a flow are allowed only to send back unicast data back to the sender e.g.

ACK packets.

4.3 Global memory using Shared Memory model:

This section describes the implementation of global memory using the Shared Memory

approach. A brief description of Linux shared memory, the kernel data structures and

shared memory system calls follows.

4.3.1 Shared memory:

Shared memory is another method of inter-process communication (IPC) whereby 2 or

more processes share a single chunk of memory to communicate. Shared memory is

described as the mapping of an area (segment) of memory that will be mapped and shared

by more than one process. This is the fastest form of IPC, because there is no

intermediation (i.e. a pipe, a message queue etc). Instead, information is mapped directly

from a memory segment, and into the addressing space of the calling process. A segment

can be created by one process and subsequently written to and read from by any number

of processes.

 34

Kernel shmid_ds structure:

The Linux kernel maintains a special internal data structure for each shared memory

segment which exists within its addressing space. This structure is of type shmid_ds, and

is defined in linux/shm.h as follows:

Shared memory system calls used:

shmget():

shmat():

shmdt():

Accessing a Shared Memory Segment:

shmget() is used to obtain access to a shared memory segment.

Prototype : int shmget(key_t key, size_t size, int shmflg);

The key value is a access value associated with the semaphore ID.

The size argument is the size in bytes of the requested shared memory

 // One shmid data structure for each shared memory segment in the system.
 struct shmid_ds {
 struct ipc_perm shm_perm; // operation perms
 int shm_segsz; // size of segment (bytes)
 time_t shm_atime; // last attach time
 time_t shm_dtime; // last detach time
 time_t shm_ctime; // last change time
 unsigned short shm_cpid; // pid of creator
 unsigned short shm_lpid; // pid of last operator
 short shm_nattch; / no. of current attaches
 //the following are private
 unsigned short shm_npages; // size of segment (pages)
 unsigned long *shm_pages; // array of ptrs to frames -> SHMMAX
 struct vm_area_struct *attaches; // descriptors for attaches
 };

 35

The shmflg argument specifies the initial access permissions and creation control flags.

When the call succeeds, it returns the shared memory segment ID. This call is also used

to get the ID of an existing shared segment.

Attaching and Detaching a Shared Memory Segment:

shmat() and shmdt() are used to attach and detach shared memory segments.

Their prototypes are as follows:

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

shmat() returns a pointer, shmaddr, to the head of the shared segment associated with a

valid shmid. shmdt() detaches the shared memory segment located at the address

indicated by shmaddr.

4.3.2 Creating a global memory object

The steps in creating a global memory object are as follows:

• Specify read/write functional interface using CamlIDL[15].

• Implement the functions using Linux shared memory system calls.

• Handle synchronization issues for each function by appropriate use of the correct

semaphore model (multiple readers and single writer)

• Dynamically link the global object with the stacks at run-time.

We shall describe each of the above steps in sufficient detail with examples from the

multicast service objects.

 36

4.3.2.1 Specification of read/write functional interface using CamlIDL

CamlIDL:

Camlidl is a stub code generator and COM binding for Objective Caml.

CamlIDL comprises of two parts :

• a stub-code generator that generates the C stub code required for the Caml/C

interface based on an IDL specification.

• a library of functions and tools to import COM components in Caml applications

and export Caml code as COM components.

In this implementation we make use of only the stub-code generation feature of

CamlIDL. It automates the most tedious task in interfacing C libraries with Caml

programs. IDL stands for Interface Description Language , which is a generic term for a

family of small languages that have been developed to provide type specifications for

libraries written in C and C++. For more information on CamlIDL refer to [17].

The IDL file:

A typical IDL file describing a set of read/write functional interface would look like this:

struct ntable_entry {

....

};

// write functions :

void write_ntable([in] struct ntable_entry ntable[], [in] int num);

// read functions :

int getNeighborForInterface([in] int intf);

boolean isAddrNeighbor([in] int addr);

int getInterfaceForNeighbor([in] int nbor);

void read_ntable([out] struct ntable_entry ntable[20]);

 37

The function signature including input/output arguments and return types are completely

specified. These functions along with the needed data-structures are saved in a .idl file

Generating the stub-code:

The camlidl stub code generator is invoked as follows:

camldil [options] file1.idl file2.idl

for each file f.idl , camlidl generates the following files:

• A Caml interface file f.mli that defines the Caml view of the IDL file. It contains

Caml defintions for the types declared in the IDL file, as well as declarations for

the functions and the interfaces.

• A Caml implementation file f.ml that implements the f.mli file

• A C source file f_stubs.c that contains the stub functions for converting between C

and Caml data representations.

• If the -header option is given , a C header file f.h containing C declarations for the

types declared in the IDL file

Eg: camlidl -header ntable.idl generates the following files:

ntable.mli, ntable.ml, ntable_stubs.c,ntable.h

For the IDL specification as in ntable.idl (above), ntable.ml and ntable.mli would

contain:

type ntable_entry = {

…..

 }

external write_ntable : ntable_entry array -> int -> unit = "camlidl_ntable_write_ntable"

external getNeighborForInterface : int -> int = "camlidl_ntable_getNeighborForInterface"

external isAddrNeighbor : int -> bool = "camlidl_ntable_isAddrNeighbor"

external getInterfaceForNeighbor : int -> int = "camlidl_ntable_getInterfaceForNeighbor"

external read_ntable : unit -> ntable_entry array = "camlidl_ntable_read_ntable"

 38

ntable_stubs.c:

example stub-function:

The function getNeighborForInterface(intf) has to be implemented by the user in the

corresponding header file ntable.h

Once all these files are generated, the header file has to be implemented which is

described next.

4.3.2.2 Implement the functional interface using Shared Memory system
calls

Functions are of two types read/write:

• Write functions write data into shared memory segments

• Read functions read data from shared memory segments

Both write/read functions consists of invoking the following system calls:

• Creating a segment using the shmget() system call.

• Attach the process to the segment using the shmat() system call.

• Perform either write/read of shared data to/from shared memory segment

• Detach the process from the segment after completion using the shmdt() system call

value camlidl_ntable_getNeighborForInterface(value _v_intf)

{

 int intf; /*in*/

 int _res;

 value _vres;

 intf = Int_val(_v_intf);

 _res = getNeighborForInterface(intf);

 _vres = Val_int(_res);

 return _vres;

}

 39

A typical code would look like this:

eg : WRITE function:

void write_ntable(struct ntable_entry * ntable, int n) {

// Initialize variables

key_t key;

int shmid,shmsize

struct ntable_entry *shm, *s;

// key value

key = NTABLE_SHMKEY;

shmsize = sizeof(struct ntable_entry) * n;

 // Create the segment

if ((shmid = shmget(key,4096,IPC_CREAT | 0666)) < 0) {

 perror("shmget");

 exit(1);

 }

// key is chosen to be a predefined unique value

// shared memory size is 4096 bytes

// Attach the segment

 if ((shm = shmat(shmid, NULL, 0)) == (struct ntable_entry *) -1) {

 perror("shmat");

 exit(1);

 }

// Write DATA into SHARED MEMORY

// Store the array of structures in shared memory

 s = shm;

 memcpy(s,ntable,shmsize);

// Detach the process from the shared memory segment

 if((ret = shmdt(shm)) < 0) {

 perror("shmdt");

 exit(1);

 }

}

 40

All WRITE functions are implemented in a similar manner. READ functions also have

similar structure except that they READ from shared memory segments.

4.3.2.3 Handling concurrency issues using semaphores:

Since we have multiple processes modifying the shared memory segment, it is possible

that certain errors could crop up when updates to the segment occur simultaneously. This

concurrent access is almost always a problem when you have multiple writers to a shared

object. Using semaphores to lock the shared memory segment while a process is writing

to it can solve this problem.

It should be noted that the implementation allows multiple readers to READ from shared

Pseudo Code:

Global variables:

 mutex,db : semaphore := 1 // mutual exclusion semaphores

 readcount : integer := 0

READER:

 p(mutex);

 readcount++;

 if (readcount is 1) then p(db);

 v(mutex);
 CRITICAL SECTION READ

 p(mutex);

 readcount--;

 if(readcount is 0) then v(db);

 v(mutex);

WRITER:

 p(db);

 CRITICAL SECTION for WRITE

 v(db);

 41

memory but allows only a single WRITER to write into shared memory at any particular

time. So multiple READERS are ALLOWED but multiple WRITERS are NOT

ALLOWED.

The solution used for the Readers and Writers problem is shown in the above segment

of pseudo-code.

In this solution, on semaphore db we have utmost one reader (all other readers will wait

on mutex). But once a reader gets in, all waiting readers can get in ahead of waiting

writers. When a writer finishes, if there are waiting readers and writers, either readers or a

writer will run.

An example of a Linux semaphore implementation for the above solution to handle

concurrency control for shared memory access follows:

Let us consider the use of semaphores for accessing the Neighbor Table write function

write_ntable(). Only semaphore related code is shown and discussed.

Explanation of Linux semaphore functions used:

semget(): used to create the semaphore set or grab the existing semaphore set.

usage:

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

returns a semaphore identifier associated with the key.

key is an unique identifier that is used by different processes to identify this semaphore

set.

nsems argument is the number of semaphores in this semaphore set

semflg argument holds the permissions on the new semaphore set .

 42

For creating a new set, the access permissions is bit-wise ORed with IPC_CREAT.

0 is passed for using the existing set. The semaphores are created during the global

memory initialization phase itself. So read/write functions here just access the existing

semaphore set.

semop():

prototype :

int semop(int semid ,struct sembuf *sops, unsigned int nsops);

All operations that set, get, or test-n-set a semaphore this system call. Its functionality is

dictated by the structure <struct sembuf> that is passed to it.

struct sembuf {

ushort sem_num;

short sem_op;

short sem_flg;

};

sem_num is the number of the semaphore in the set that is to be manipulated.

sem_op is the action to be performed on the semaphore.

It depends on whether sem_op is positive, negative or zero as given below :

positive: the value of sem_op is added to the semaphore's value. Used in a V() operation.

negative : if the absolute value of sem_op is greater than the value of the semaphore, the

calling process will block until the value of the semaphore reaches that of the absolute

value of sem_op. Finally, the absolute value of sem_op will be subracted from the

semaphore 's value. This is used in the P() operation on the db semaphore in the above

example.

 43

zero : the process will wait until the semaphore reaches 0.

*sops is a pointer to the struct sembuf that is filled with semaphore commands. semid

argument is the number obtained from a call to semget().

READ functions also use these functions in accordance with the algorithm for

READERS as described previously.

void write_ntable(struct ntable_entry *ntable, int n) {

 key_t ntable_db_key;

 int ntable_db_semid,sem_val;

 struct ntable_entry *shm, *s;

 struct sembuf ntable_db_sb = {0, -1, 0}; /* semop value is -1 */

 ntable_db_key = NTABLE_DBKEY; /* key value */

 /* Grab the db semaphore */

 if((ntable_db_semid = semget(ntable_db_key, 1, 0)) == -1) {

 perror("semget");

 exit(1);

 }

 /* get the current value of db semaphore

 if((sem_val = semctl(ntable_db_semid,0,GETVAL,0)) == -1) {

 perror("semctl");

 exit(1);

 }
 /* P(db)The P() operation on the semaphore */

 if(semop(ntable_db_semid, &ntable_db_sb, 1) == -1) {

 perror("semop");

 exit(1);

 }

/* ENTER CRITICAL SECTION */

/* LEAVE CRITICAL SECTION */

 ntable_db_sb.sem_op = 1; /*free resource */

 /* V(db) */ The V() operation on the db semaphore

 if(semop(ntable_db_semid,&ntable_db_sb,1) == -1) {

 perror("semop");

 exit(1);

 }

 44

4.3.2.4 Dynamically linking shared global objects with the stacks

For each global memory object <obj> we shall have a obj_stubs.c and obj.h file.

Object file obj_stubs.o is created using the command

gcc -c -fpic obj_stubs.c

Shared object dllobj.so is created using the command

gcc -shared -lc -o dllobj.so obj_stubs.o

All shared objects (dll_.so files) are dynamically linked with the stacks that need them at

run-time.

4.3.3 Global Memory Initialization

Both shared memory and semaphores, which are part of global memory, are created and

stored in the Linux kernel. Global memory initialization on a node has to be done prior to

running the composite protocol stacks that use them. Initialization comprises of shared

memory initialization and semaphore initialization.

Shared Memory Initialization: consists of creating the necessary shared memory

segments for all the global memory objects.

Semaphore Initialization: consists of initializing the set of semaphores (3 of them) for

each global memory object.

mutex, db, readcount are the three semaphores . mutex and db are initialized to 1 ,

readcount is initialized to 0 .

 45

The content of shared memory segment and semaphores on a node can be viewed using

the Linux command <ipcs>

Sample initialization code from <ntable_shminit.c>
#include <stdio.h>
#include <sys/shm.h>
#include <sys/ipc.h>
#include "../keys.h"

/* A maximum of 20 neighbor table entries can be stored in shared memory */
struct ntable_entry {
 int intf_addr;
 int nbor_addr;
 int lastbit;
};

int main ()
{
 key_t key;
 int shmsize,shmid,i,j;
 struct ntable_entry *s,*shm,init_arr[20];

 /* Initialize the init_arr */
 for(i=0;i<20;i++) {
 init_arr[i].intf_addr = 0;
 init_arr[i].nbor_addr = 0;
 init_arr[i].lastbit = 0;
 }
 /* key value */
 key = NTABLE_SHMKEY;

 /* Create the segment */
 if ((shmid = shmget(key,4096,IPC_CREAT | 0666)) < 0) {
 perror("shmget");
 exit(1);
 }

 /* Attach the segment */
 if ((shm = shmat(shmid, NULL, 0)) == (struct ntable_entry *) -1) {
 perror("shmat");
 exit(1);
 }

/* copy the init_arr to shared memory */
s = shm;
shmsize = sizeof(struct ntable_entry) * 20;
printf("Initializing NEIGHBOR TABLE \n");
memcpy(s,init_arr,shmsize);
printf("no of bytes written: %d\n",shmsize);
}

 46

Sample semaphore initialization code

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include "../keys.h"

int main (void)
{
 key_t ntable_mutex_key,ntable_db_key,ntable_rc_key;
 int ntable_mutex_semid,ntable_db_semid,ntable_rc_semid;
 union semun arg;

 ntable_mutex_key = NTABLE_MUTEXKEY;
 ntable_db_key = NTABLE_DBKEY;
 ntable_rc_key = NTABLE_RCKEY;

 if((ntable_mutex_semid = semget(ntable_mutex_key,1,0666 | IPC_CREAT)) == -1) {
 perror("semget");
 exit(1);
 }
 if((ntable_db_semid = semget(ntable_db_key,1,0666 | IPC_CREAT)) == -1) {
 perror("semget");
 exit(1);
 }
 if((ntable_rc_semid = semget(ntable_rc_key,1,0666 | IPC_CREAT)) == -1) {
 perror("semget");
 exit(1);
 }
 /* initialize mutex and db semaphores to 1 */
 arg.val = 1;
 if(semctl(ntable_mutex_semid,0,SETVAL,arg) == -1) {
 perror("semctl");
 exit(1);
 }
 if(semctl(ntable_db_semid,0,SETVAL,arg) == -1) {
 perror("semctl");
 exit(1);
 }
 return 0;
}

 47

4.3.4 Multicast Service Objects and their Functional Interface

The global memory objects used by the multicast service are

• Neighbor Table

• Routing Table

• Source Tree

• Group Table

• Prune Table

For each global memory object, the ML data structure types and the list of functional

interfaces they provide is listed in this sub-section. Since shared memory is always

available as a contiguous chunk of memory, global memory data structures cannot be

stored in the form of linked-lists or hash-tables. All objects are stored as an array of

structures (contiguous memory) in its own allocated and initialized shared memory space.

4.3.4.1 Neighbor Table

The neighbor table stores multiple 1-1 mappings between an interface and the

corresponding neighbor detected on that interface. Its functional interface allows creation

and update of these mappings through its Write functions and provides functions to

retrieve an element of a map given the other. In general, this object can be used by any

protocol to store interface-neighbor mappings. For example, it could be used by OSPF’s

hello-protocol. In this multicast service, the Write interface is used by Neighbor

Discovery and the Read interface is primarily used by the Multicast Forwarding

component. The table below lists some of the core functions.

 48

WRITE void write_ntable([in] struct ntable_entry ntable[], [in] int num);

 invoked by Neighbor Discovery when new neighbor is discovered or

 when existing neighbor is found dead

READ [int32] int getNeighborForInterface([in,int32] int intf);

 returns the neighbor's IP address given the interface IP address

 boolean isAddrNeighbor([in,int32] int addr);

 returns true if the input IP address is a neighbor and false if not

 [int32] int getInterfaceForNeighbor([in,int32] int nbor);

 returns the interface's IP address given the neighbor's IP address

 void read_ntable([out] struct ntable_entry ntable[]);

 returns the entire content of the Neighbor Table.

Table 2: Neighbor Table- Functional Interface
struct ntable_entry {

int32 intf_addr; // interface IP address

int32 nbor_addr; // neighbor IP address

boolean lastbit; //flag

};

4.3.4.2 Routing Table

The routing table is a repository for unicast-routes. The metric and next-hop information

for each route prefix is stored in this object. In general, any protocol that needs to create

and store routes can use this e.g. RIP can also use this. Here the Route Exchange

component interacts with this object to store its routes. Multicast Forwarding primarily

uses its Read interface during RPF checks and Unicast Forwarding uses it during

forwarding unicast packets. The table lists the core functional interfaces for the object.

 49

WRITE void write_rtable([in] struct rtable_entry rtable[], [in] int num);

 invoked by Route Exchange when new routes are found

READ [int32] int getNextHopForDest([in,int32] int dest_addr);

 returns the next-hop IP address for a given destination IP address.

Table 3: Routing Table – Functional Interface

struct rtable_entry{

int32 rt_netaddr; // network address

int32 rt_netmask;// network mask

int metric; // hop-count

int32 nexthop;// next-hop address

boolean rt_lastbit; //flag }

4.3.4.3 Source Tree

The source tree object maintains spanning trees for each multicast source in the network.

A spanning tree for each source network contains information on the dependent

downstream neighbors for that source. Here, the Spanning Tree component interacts with

this object when its creates/updates spanning tree information. The Multicast Forwarding

component uses its Read interface during the forwarding process. The table lists the core

functional interfaces offered by this object.

WRITE void write_source_tree([in] struct tree_entry tree[], [in] int num);

 invoked by Poison Reverse component when a Poison packet is received

READ void getDnStreamNeighborsForSrc([in,int32] int src_addr, [out] t0 nbor_list[]);

 returns downstream dependent neighbors for a particular source address

 void read_source_tree([out] struct tree_entry tree[]);

 returns the entire contents of the Source Tree

Table 4: Source Tree – Functional Interface

 50

struct tree_entry{

int32 tree_netaddr; // network address

int32 tree_netmask; // network mask

int32 nbor_list[]; // downstream dependent neighbors

boolean tree_lastbit;

};

4.3.4.4 Prune Table

The prune table stores interface prune state information for each source-group pair in the

network. Interfaces can be in any of the three states: un-pruned, pruned or grafted. This

object provides functions to prune/graft specific interfaces for specific source-group

pairs. Its Read interface provides functions to retrieve interface state for a specific source-

group pair which is used by Multicast Forwarding. The Write functions are used by the

Pruning, Grafting and the Join/Leave components. This object is not accessed / used

when pruning feature is disabled. The table below lists the core functional interfaces:

WRITE void pruneIGMPIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int intf_ipaddr);

 Add/update prune table entry for (src_addr,grp_addr) pruning igmp interface intf_ipaddr

 void pruneIGMPIntfforGrp([in,int64] int grp_addr, [in] int intf_ipaddr);

 Add/update prune table entry for (all src_addr's,grp_addr) pruning igmp interface intf_ipaddr

 void pruneCoreIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int intf_ipaddr);

 Add/update prune table entry for (src_addr,grp_addr) pruning core interface intf_ipaddr

 void graftCoreIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int intf_ipaddr);

 Add/update prune table entry for (src_addr,grp_addr) grafting core interface intf_ipaddr

 void graftIGMPIntfforGrp([in,int32] int grp_addr, [in,int32] int intf_ipaddr);

 Add/update prune table entry for (src_addr,grp_addr) grafting the igmp interface intf_ipaddr

 51

READ int get_no_of_entries();

 returns the number of entries present in the Prune Table.

 struct prunetable_entry getentry([in] int n);

 returns the nth entry from the Prune Table

 struct prunetable_entry getentryForSrcGrp([in,int32] int src, [in,int32] int grp_addr);

 returns the Prune Table entry corresponding to the (source,group) pair (src,grp_addr)

Table 5: Prune Table – Functional Interface

struct intf_entry{

int32 ipaddr // Interface IP address;

int intf_state; // either un-pruned, pruned or grafted

};

struct prunetable_entry {

int32 src_addr; // source address

int32 grp_addr; // multicast group address

struct intf_entry igmp_intf[]; // list of igmp interfaces

struct intf_entry core_intf[]; // list of core interfaces

};

4.3.4.5 Group Table

The group table stores group membership information for each interface. It allows

dynamic addition of new entries and updating existing entries when members on attached

interfaces join and leave multicast groups. It also provides an interface to check if a

particular group member is present on an interface. The Join Leave component accesses

the Write interface and Multicast Forwarding uses the Read interface. The following

table lists the functional interfaces:

 52

WRITE void write_grptable([in] struct grptable_entry grptable[], [in] int num);

 invoked by the Join-Leave component on the leaf router periodically

READ boolean checkGrpAddrForIntf([in,int32] int gaddr, [in,int32] int intf_addr);

 checks if the group address gaddr is present on the interface intf_addr, returns true if present.

 void read_grptable([out] struct grptable_entry grptable[10]);

 returns entire contents of the Group Table

Table 6: Group Table – Functional Interface

struct grptable_entry{

int32 intf;

int32 grpmem_addr[10];

boolean grp_lastbit;

};

4.3.5 Protocol Interactions Through Global Memory

In this sub-section we present a brief operational overview of how the protocol stacks

interact with each other using global memory. Global memory is accessed before data

transfer, during transfer, when members join and leave groups and also during

pruning/grafting of the tree branches.

Before data transfer:

At startup, the global memory objects on all nodes are initialized. Before any transfer of

data can take place, the multicast routing and the group management stacks are started.

The routing stack components work independently of each other generating and sending

packets to their corresponding peers. Neighbor Discovery dynamically updates the

Neighbor Table, Route Exchange updates the Routing Table and Spanning Tree creates

and maintains the Source Tree global object. Route Exchange makes use of Neighbor

 53

Table and Spanning Tree makes use of Routing Table and Source Tree global objects for

its operation. The pruning and grafting components during this place are not active and

thus the global memory Prune Table remains un-accessed and empty.

Spanning trees are now fully set-up for data transfer to take place. If members join

groups in this phase, the Join Leave component updates the Group Table at

corresponding nodes. They will just remain listening for data, as data transfer has not yet

started.

Data Transfer:

Multicast Forwarding in the data stack is the core component, which accesses all the

global memory objects. It accesses Neighbor Table for interface-neighbor mappings,

reads Routing Table during its Reverse Path Forwarding [6] check, reads SourceTree to

get the list of dependent downstream neighbors, reads GroupTable to find if there are any

group members on its leaf interfaces. If there are no group members on a leaf interface,

its prunes the leaf interface and writes into Prune Table. It finally reads from PruneTable

to get the list of un-pruned/grafted interfaces before forwarding the packet.

Meanwhile, as soon as PruneTable entries get created at the leaf nodes, the Pruning

component becomes active and prunes are sent upward. It should be noted that all the

other components of the routing stack Neighbor Discovery, Route Exchange, Source Tree

still remain active during this phase dynamically maintaining their respective global

objects.

Member join/leave:

The Group Table is updated whenever member joins/leaves a group both at leaf router

and at end-hosts. In addition to this, when a member joins a group all previously pruned

 54

interfaces corresponding to that group are grafted and this information is written into the

Prune Table. Thus the Join/Leave component writes into both Prune Table and Group

Member Table as shown above.

Pruning and Grafting: At the core the Pruning component writes into Prune Table on

receiving a prune and Grafting writes into the Prune Table on receiving a graft.

Thus the stacks work in tandem, interacting with each other using the shared information

in the global memory to provide multicast of data through the branches of the multicast

tree.

Note: When reliable multicast is used Unicast Forwarding uses Routing Table to forward

unicast NACKs and re-transmissions.

 55

4.4 COMPONENT IMPLEMENTATION

In this section, we shall describe the working of all protocol components used in the

multicast service. For each component, we discuss the following features:

• The sender TSM and receiver RSM functionality.

• Memory: Local memory structure, SLPM requirements/usage, packet-memory (bits-

on-the-wire) and global memory access.

• Events: how the component responds to data, control and timer events.

• Component- reusability

• Stack placement (position in the stack)

4.4.1 MULTICAST DATA STACK components:

4.4.1.1 Multicast forwarding

This component is the core component in the multicast data stack. It is present on all the

nodes i.e. at senders, core and leaf routers as well as end-host receivers. It is responsible

for the transmission of multicast data packets on the un-pruned/grafted branches of the

multicast tree. Initially when the branches of the tree are not pruned, packets follow the

source broadcast tree. But when pruning comes into operation and builds the source-

group multicast trees, packets are multicast on the un-pruned branches of the multicast

tree.

The TSM is operational only on nodes, which act as Multicast senders. On all other

nodes, which either forward multicast data (core and leaf routers) or deliver it to the

 56

application (end-hosts multicast receivers) the TSM remains inactive and only the RSM

is operational.

The TSM sends the packet on all un-pruned/grafted interfaces having downstream

dependent neighbors for the corresponding (src,grp) pair. The packet is dropped if no

downstream neighbors are present for the (src,grp) pair.

Note: In order to prevent sending multiple Esend events (one for each downstream

interface) down the stack, this component only generates a single Esend and sends it

down with the list of downstream neighbors attached in stack local packet memory

(SLPM). The packet will be then handled by the Replicator component down below the

stack, which actually is responsible for replicating the packet and sending it to the list of

downstream interfaces as read from SLPM.

At the router: The RSM contains most of the functionality. It first performs the RPF

(Reverse Path Forwarding) check on the packet. This checks if the packet is received on

the correct upstream interface, one that is used to reach the source of the multicast packet.

If the RPF check fails the packet is dropped. If it is successful, each leaf interface is

checked, if any, for group members. If a group member is present on the interface, the

packet is multicast on the leaf interface, otherwise the leaf interface is pruned for this

(src,grp) pair. The packet is then multicast on all un-pruned/grafted branches of the tree

to all dependent downstream neighbors. At the destination (end host multicast receiver)

The multicast packet is delivered to the host.

 57

Local memory:

Packet Memory (header):

McastForwHdr is used for all packets sent from the multicast sender or forwarded

at core/leaf multicast routers.

SLPM:

setSrcAddr() , setNextHopAddrList() SLPM functions used.

• setSrcAddr() sets source address of packet in SLPM. TTL component requires this.

• setNextHopAddrList() used to set list of next-hop addresses (dependent downstream

neighbors) , Replicator component requires this.

(from /component/dvmrp/mcast_forward_sm.ml):

type state = {

 node_addr : Addr.set; // host address

 group_addr : string; // multicast packet’s group address

 mutable noIntf : int;

 totalIntf : int;

 source_addr : Hsys.inet;

}

type hdr_t ={

 src_addr : int32; // multicast packet’s source address

 grp_addr : int32 // multicast packet’s group address

}

type header = NoHdr | MCastForwHdr of hdr_t

 int32 type used to impove performance

 58

Global Memory access:

Neighbor Table: getNeighborForInterface(), getInterfaceForNeighbor(),

isAddrNeighbor()

Routing Table: getNextHopForDest()

Source Tree: getDnStreamNeighborsForSrc()

Group Table: checkGrpAddrForIntf()

Prune Table: pruneIGMPIntfforSrcGrp() , getentryForSrcGrp()

This component accesses all the global memory objects.

Events:

Data:

• TSM sends all multicast data using pkt_send() with McastForwHdr if necessary or

drops it using drop_pkt(). For unicast packets, this component just attaches a dummy

NoHdr. Note: multicast /unicast packets are identified using a SLPM field "pktType"

which is set to "multicast" or "unicast" respectively.

• RSM (at core-routers) forward all packets using pkt_send() , at leaf-routers attach a

MCastLeafHdr and forward using pkt_send() and at end-host receivers , deliver using

pkt_deliver(). All unicast packets with NoHdr attached are just passed up without any

processing.

Control: does not make use of control events

Timers: does not request any timers.

 59

4.4.1.2 Replicator

 This component is actually used by the multicast forwarder to replicate the packet

N times and send the packet on N different interfaces. Without this component, the

multicast forwarder had to send N separate ESend events down the stack to send the

packet on N interfaces. This caused lot of overhead and extra processing for the

intermediate components in the stack like Fragment, Checksum etc. To prevent this extra

overhead the multicast forwarder runs over the replicator (placed bottommost in the

stack), and sends only a single ESend event with list of next-hop attached in SLPM. The

replicator reads from SLPM, gets the list of N next-hop addresses and sends the same

packet on N different interfaces. The core-functionality is embedded in the TSM, which

reads from SLPM and replicates the packet and sends it. The RSM is almost dummy, it

only delivers the packet after setting appropriate SLPM fields like IncomingInterface()

and McastSrc()

Note: This component acts only on "multicast" packets. All "unicast" packets are passed

with a NoHdr attached.

Local memory:

(from /component/mcast/replicator_sm.ml):

type state = {

 mutable mcastsrc : Hsys.inet ; // multicast source address of packet

 node_type : node; // node-identifier , sender, router or receiver

}

 60

Packet Memory (header):

A NoHdr is attached for all unicast packets. Address header attached for all multicast

packets.

The reason the multicast source address is part of the header is that some components

(eg: RMTP discussed later) below the multicast forward may need to know the original

source address of the multicast packet. So the source address carried as part of header is

then set in SLPM at the destination for other components to read. Also, the dest_addr is

used to set the SLPM field IncomingInterface at the destination stack.

SLPM: The TSM reads the list of next-hop addresses from SLPM using the

getNextHopAddrList() SLPM read function and sets the next-hop destination address

using the setDestAddr(). The RSM sets the SLPM fields using setIncomingInterface() and

setMCastSrc().

Global Memory:

Does not make use of any global memory objects.

Events:

Data: Acts only on "multicast" packets, replicates and attaches header Address. All

"unicast" packets are passed with header NoHdr.

type hdr_t ={

mcastsrc_addr : Hsys.inet; // multicast source address of packet

dest_addr : Hsys.inet; // the intermediate next-hop address

}

type header = NoHdr | Address of hdr_t

 61

Control: Does not make use of control events

Timers: Does not make use of any timers.

Stack Placement:

Has to be placed below the multicast forwarding component and as below/bottom in the

stack as possible for reducing the overhead incurred for other intermediate components in

the stack. The remaining components described in this sub-section are all property-

oriented optional components in the multicast-data stack.

4.4.1.3 Multicast in-order component

This component provides in-order delivery of all packets flowing in a point-to-multipoint

multicast network (i.e. from a single sender to multiple receivers). The TSM is fairly

simple, each packet is sent after tagging it with a sequence number. The sequence number

is incremented monotonically after sending each packet. The core in-order functionality

lies in the RSM. The component maintains a separate receive window buffer for each

unique sender in the network.

All in-order packets are directly delivered to the application. Out-of order packets are

buffered in the receive window. They are actually inserted at the tail of the buffer and

then sorted based on increasing sequence numbers. Timers are associated with each

buffered packet to prevent it from remaining forever in the buffer. Buffered packets are

delivered when their corresponding timers expire.

Limitations: cases when this component does not deliver packets in-order:

 62

• When the buffer is full and an out-of-order packet arrives, the first packet in the

buffer is delivered. So the in-order property is limited by the degree of in-orderness,

which should not exceed the window size.

• A buffered packet's timer expires (usually set to a large value).

Local Memory

Packet Memory (header):

type header = NoHdr | DataPkt of int

Header carries just the in-order sequence number.

(from /components/mcast/mcast_inorder_sm.ml)

type 'abv seq_rec ={ // buffer contents

sq_num : int; // sequence number of buffered packet

payload : 'abv pktpayld; // payload of the buffered packet

}

type 'abv recv_window ={ // receiver window parameters

mutable exp_seq : int; // next expected sequence number

mutable last_seq_num : int; // the last sequence number delivered to the application

mutable count : int; // count of no of packets buffered

mutable j : int;

buffer : 'abv seq_rec array; // packet buffer

max_size : int; // size of the receiver window

}

type 'abv state = {

buffer_sweep : Time.t // maximum time a packet can be buffered at the receiver

mutable send_next : int; // The next sequence number to be generated at the sender

recv_buffer : (Hsys.inet * ('abv recv_window)) list ref; // unique buffer for each sender

mutable window : 'abv recv_window // window for the current source

}

 63

SLPM: not used

Global Memory: not used

Events:

Data: TSM sends all "multicast" packets with header DataPkt using pkt_send().

RSM delivers all in-order packets using pkt_deliver(), and buffered packets sent using

deliver_kept_packet().

Control: does make use of any control event.

Timers: buffer timer used to deliver packets buffered for too long.

Stack Placement: to be placed above the multicast forwarding component to provide the

desired end-to-end point-to-multipoint in-order delivery.

4.4.1.4 End-to-End Reliable (without NACK implosion prevention)

This component provides end-to-end reliable and in-order delivery of packets in a point-

to-multipoint network (i.e. from a single sender to multiple receivers). The working of

this component is based on RMTP, but this does not implement the NACK-implosion

prevention mechanism. (NACKs are sent all the way up the tree to the original multicast

sender). This component is operational only at the multicast sender and at all end-host

multicast receivers.

The multicast sender handles:

(a). Transmission of multicast packets, (b) buffering of un-ACKed data in send buffer (c)

NACK processing (d) Re-transmission of data using either multicast or unicast.

The receiver is responsible for:

 64

(a). periodic transmission of a NACK packet (reporting packets that are not yet received)

back to the sender. (b) buffering out-of-order packets in receive buffer. (c) delivering in-

order data to the application.

Timers used are dally_timer (Tdally) , retrans_timer(Tretrans) and nack_timer(Tnack).

Transmission/buffering of multicast packets: (handled by TSM at multicast sender)

 Each multicast packet is tagged with a sequence number. (starts from 0 and is

monotonically increased for every packet). All packets sent are buffered in send_buffer

for later re-transmission if needed. The retrans_timer is also started after sending the first

packet.

It should be noted that in this type of multicast network, the sender does not explicitly

know who the receivers are. Receivers can dynamically join/leave a particular multicast

session. The goal is to provide reliable delivery to the current members of the session. So

the creation and termination of sessions is timer based. dally_timer is used for this

purpose. After sending the last packet in the session, the dally_timer is started. Tdally is

defined as atleast twice the lifetime of the packet in the network. Receivers send back

their REQ packets only if they have lost packets. The dally_timer is reset on receiving a

REQ from any of the receivers. Also, time interval between sending two consecutive

REQs is much smaller than Tdally. So, expiry of the dally_timer implies that either (a).

all current receivers have correctly received all packets (b). something exceptional like a

permanent link breakdown has occurred. This ensures termination of the session and all

connection state (e.g. send buffer contents) are deleted.

Negative Acknowledgement packets (NACKs)

 65

NACK packets are used to periodically (Tnack) report the contents of the receiver

window to the sender. They contain the next expected sequence number at the receiver

and a sequence list of packets that have not received. When all packets are correctly

received and in-order, the receiver window is empty and thus no NACK packets are sent.

Receiving NACKs (handled by RSM at multicast sender)

The sender buffers all NACK packets in nack_buffer received during every period

Tretrans. These NACK packets from different receivers in the network will be later

processed when the retrans_timer expires.

NACK processing and retransmissions (handled by TSM at sender):

When the retrans_timer expires , the nack_buffer is processed and a retrans_list is

created. Each element in the list contains the packet sequence number and list of

receivers that has requested this packet. to be transmitted. For each retransmission, if the

number of receivers requesting packet exceeds a threshold Mcast_Threshold , the packet

is re-transmitted using multicast, if not is it unicast back to the particular receiver.

 66

Local Memory

Packet Memory (header)

(from /components/mcast/mcast_reliable_sm.ml)

type 'abv state = {

node_addr : Addr.set; // host address

dally_sweep : Time.t; // The dally timer interval

retrans_sweep : Time.t; // The re-transmit timer interval

ack_sweep : Time.t; // The ACK timer interval

buffer_sweep : Time.t // maximum time a packet can be buffered at the receiver

mutable send_next : int; //The next sequence number to be generated at the sender

mutable send_left : int; // Send window left edge

mutable send_count : int; // no of packets in the send buffer

send_buffer : 'abv seq_rec array; // store all un-ACKed packets at the sender

ack_buffer : (Hsys.inet * ack_buf) list ref; // store all ACK packets

send_max : int; // send window size

// store all out-of-order packets at the receiver, a buffer for each unique sender

recv_buffer : (Hsys.inet * ('abv recv_window)) list ref;

mutable window : 'abv recv_window ; // window for the current source

threshold : int ; // re-transmission unicast/multicast threshold

mutable pktseqno : int; // a loop count

}

recv_window and seq_rec are same as that used in mcast_inorder component.

// buffer to store contents of ACK

type ack_buf ={

buf_left_edge : int;

buf_bitvector : bool array;

}

type ack_header ={

src : Hsys.inet; // The source address of the ACK

left_edge:int; // the sequence number corresponding to the left-edge

bitvector: bool array; // the bit vector , 0 for lost/un-received pkts 1 for received pkts

}

type header = NoHdr | DataPkt of int | Ack of ack_header

 67

Two types of packets: data sent using header DataPkt, ACKs sent using header Ack.

SLPM:

getMCastSrc() used to get the source address of the multicast packet. This should be set

by the multicast forwarding component down below.

Global Memory:

Does not make use of any global memory objects

Events:

Data:

• Initial transmission of multicast data by TSM using pkt_send () with header DataPkt.

• Unicast re-transmission by TSM using send_kept_packet () with "unicast" tag in

SLPM.

• Multicast re-transmission by TSM using send_kept_packet () with "multicast" tag in

SLPM.

• Deliver in-order received packets using pkt_deliver ()

• Deliver buffered packets using deliver_kept_packet ()

• ACKs sent by RSM using new_pkt_send () with header ACK

Control: does not make use of any control events

Timers:

dally_timer(timer-id: 1001) and retransmit_timer(timer-id:1002) both used by TSM

ack_timer(timer-id: 1003) used by RSM

Stack Placement: must be placed above the multicast forwarding component to provide

end-to-end reliable delivery.

 68

4.4.1.5 Reliable with NACK- implosion prevention

The component described in the previous section does not prevent the NACK-implosion

problem. NACK implosion refers to the undesirable situation when an upstream link gets

congested due to excessive number of NACK packets flowing through it resulting from

the flow of several individual NACKs from downstream receivers.

The RMTP approach to solve the NACK-implosion problem is as follows:

RMTP is based on a hierarchical structure where the receivers are grouped into local

regions or domains and in each domain there is a special receiver called designated

receiver DR which is responsible for sending NACKs periodically to the sender, for

processing NACKs from receivers in it domain and for re-transmitting lost packets to

receivers in its domain. Since lost packets are recovered by local retransmissions as

opposed to retransmissions from original sender, the end-to-end latency is considerably

reduced and the overall throughput is improved as well. Since only DRs send NACKs

back to the sender, instead of all receivers sending their NACKs to the sender, only one

NACK is generated per local region and thus NACK implosion is prevented. Receivers

now send their NACKs periodically to the DR in their local region.

We now describe only the modifications and enhancements made to the previous end-to-

end reliable component to yield this RMTP-like component.

The following modifications had to be made:

(a). Change in stack position: Earlier, the end-to-end reliable component was placed

above the mcast_forward component. But here we need the DRs (which are actually

core/leaf routers in the network) to act on data packets, send NACKs etc. As on routers,

data packets are always only forwarded by the mcast_forward component and are never

 69

delivered above, packets would never reach this component if it were placed above the

mcast_forward component. So this component has to be placed below mcast_forward.

(b). Node Types: The end-to-end reliable component is operational only at the original

sender (S) and at the end-host receivers (Rs). Here we define two more node types DRs

and NDRs (non-designated receivers).

(c). Sender: same functionality except that re-transmissions cannot be multicast; they can

only be unicast back to the sender. This is because mcast_forward is above this

component.

(d). Non-designated receivers (NDRs): This does not act on data packets, it only passes

them around. The RSM reads the sequence number from the packet and sets the SLPM

field RelSeqNo , which is then read by the TSM (after packet turn around by

mcast_forward) and placed back onto the header.

(e). Designated receivers (DRs): are responsible for sending NACKs periodically back to

the original sender, storing out-of-order packets in receive buffers, deliver in-order

packets to the component above and also store them in send_buffer for later

retransmission to receivers (Rs), process NACKs from receivers in their region.

(f) Normal receivers (Rs): same functionality except that the NACKs are now sent to the

corresponding configured DR.

Local Memory and Packet Memory: same as in previous component.

SLPM access:

SetRelSeqNo and getRelSeqNo() are used to set/get the sequence number to/from SLPM

on NDRs.

 70

getMcastSrc() used to find out original source address of multicast packet. This SLPM

value should be set down below by either the Replicator (for multicast pkts) or by the

Forward (for unicast pkts).

Global Memory: does not make use of global memory objects.

Events: All data events are handled in a similar way . No control events are used. Make

use of the timers dally_timer, retrans_timer and ack_timer as before.

Note: the choice of configuring a node as a DR is done manually at configuration time.

Stack Placement : As discussed earlier placed below the mcast_forward.

Other components: Unicast_Forward, TTL , Fragment , Checksum are a few of the

other components that can/are used in the multicast data stack.

Unicast_Forward : used by the stack to send unicast packets eg : ACKs / retransmissions

4.4.2 MULTICAST ROUTING STACK components:

4.4.2.1 Neighbor Discovery

The main functionality of this component is to dynamically discover neighbors (multicast

routers) on all its interfaces.

The TSM periodically broadcasts probe packets (hello packets) on all multicast-enabled

interfaces. Each probe packet sent on a particular interface contains a list of neighbors for

which neighbor probe messages have been received on that interface.

Packets from other components above, if any, are passed with a dummy header NoHdr

attached.

 71

The RSM first checks if the neighbor probe packet is received on one of its locally

defined interfaces and if yes, updates in its local memory: the neighbor address and the

interface on which it is received. It then checks for 2-way adjacency i.e. if the local

interface address is present in the neighbor list of the probe packet. If present, then a 2-

way adjacency is established and neighbor is discovered on that interface. This

information is written into and maintained in the global memory data structure Neighbor

Table.

Packets with header NoHdr are not processed and are delivered to the component above.

The RSM also provides a keep-alive function in order to quickly detect neighbor loss.

When a neighbor is discovered for the first time, the timer neighbor_expiry is set. If no

probe packet is received within the time neighbor_expiry_sweep the timer is cancelled

and this neighbor entry is removed from the global memory Neighbor Table. On

receiving probe packets, this timer value is reset.

Local memory:

(from /components/dvmrp/neighbor_discovery_sm.ml)

type state = {

probe_sweep : Time.t; // probe timer interval timer-id: 20000

neighbor_expiry_sweep : Time.t; // neighbor-expiry timer interval

ntable : (Hsys.inet * Hsys.inet) list ref; // an association for the local neighbor table

ipaddr : Hsys.inet ref; // the incoming IP interface address

}

 72

Packet Memory (header):

This component does not depend on any other component for addressing. So address

information is carried as header in this component itself. All probe packets are sent with

header Probe and all packets from component above are sent with NoHdr.

SLPM:

 setSrcAddr() and setDestAddr() SLPM functions are used. The TTL component

that runs below this component expects the SrcAddr field in SLPM (the source address of

the packet). The DestAddr field in SLPM carries the next-hop address and is used by a

component below bottom to forward the packet to the next-hop.

Global Memory access:

Writes into global memory Neighbor Table using the external function write_ntable()

Events:

Data:

• TSM passes all ESend events with NoHdr attached using pkt_send() and RSM

delivers all packets with NoHdr using pkt_deliver().

• Probe packets sent with header Probe using new_pkt_send().

Control: does not need control events.

Timers:

type hdr_t = {

src_addr : Hsys.inet; // source IP address

dest_addr : Hsys.inet; // probe broadcast address

neighboraddr_list : Hsys.inet list; // list of neighbor IP addresses

}

type header = NoHdr | Probe of hdr_t

 73

• probe_timer with timer-id 20000 for periodically sending probe packets.

• neighbor_expiry_timer for detecting dead neighbors. Timer-id is chosen as the integer

value of the neighbor’s IP address.

Component-reuse: This component can be used in other protocols where there is a need

for neighbor discovery e.g. in unicast routing protocols like RIP and OSPF.

Stack-placement: This component being a control oriented peer-to-peer component can

be placed anywhere among the DVMRP components in the stack. For performance

reasons it is recommended that this component be placed lowest among the other

multicast routing components as this sends peer-to-peer messages most frequently.

4.4.2.2 Route Exchange

 The main functionality of this component is to dynamically create and maintain

the routing tables at the multicast routers through periodic exchange of route exchange

packets with neighbors. This is a RIP-like protocol component, with metric based on hop-

counts.

The TSM periodically sends route exchange packets to all its neighbors. The list

of neighbors is read from the global memory Neighbor Table. Each route exchange

packet contains a list of routes with each route comprised of a network prefix, mask and

metric. All packets from any component above are passed with a dummy header NoHdr

attached.

The RSM, for each route exchange packet received, first checks with its local

route cache if the received route is a new route or not. If new then the route is stored in

the local route cache. If not, then the received metric for the route is compared with the

 74

existing metric after adding the cost of the incoming interface to the received metric. If

the resultant metric is better than the existing one, then the local route cache is updated.

After all the received routes are processed, the contents of the local route cache are

written to a global data structure Routing Table in global memory. The Routing Table

contains entries of the form prefix, mask, metric, next-hop.

All packets with a NoHdr attached are just passed up to the component above.

Local memory:

Packet Memory (header):

This component does not depend on any other component for addressing. So address

information is carried as header in this component itself. All route exchange packets are

 (from /components/dvmrp/route_exchange_sm.ml)

type state = {

sweep : Time.t; //route_exchange timer interval

node_addr : Addr.set; // host’s address

rt_list : ((Hsys.inet * Hsys.inet) * (int * Hsys.inet)) list ref; // local routing table

mutable noRoutes : int;

mutable noRoutesChecked :int;

}

type route = {

net_addr : Hsys.inet; // network IP address

netmask : Hsys.inet; // network mask

metric : int; // route metric/ hop-count

}

type hdr_t ={

src_addr : Hsys.inet; // source of the Route_Exchange packet

dest_addr : Hsys.inet; // Route_Exchange destination address

 75

sent with header RouteExchange and all packets from component above are sent with the

dummy header NoHdr.

SLPM:

setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in

Neighbor Discovery.

Global Memory access:

• Reads from the Neighbor Table using the external function

getNeighborForInterface()

• Writes into the Routing Table using the external function write_rtable()

Events:

Data:

• TSM passes all ESend events from above with NoHdr attached using pkt_send() and

RSM delivers all packets with NoHdr using pkt_deliver().

• Route Exchange packets are sent with header RouteExchange using new_pkt_send().

Control: does not need control events.

Timers:

Route_exchange_timer with timer-id 30000 for periodically sending route_exchange

packets.

Component-reuse: This component can be re-used in other distance vector-based unicast

routing protocols like RIP.

Stack-placement: This component being a control oriented peer-to-peer component can

be placed anywhere among the DVMRP components in the stack. However, it needs to

be placed over TTL for sending route exchange packets with a TTL of 1.

 76

4.4.2.3 Spanning Tree

In DVMRP, the poison reverse functionality and creation of spanning trees is embedded

as part of the route exchange process itself. Here the functionality is built into a separate

component. This component enables each upstream router to form a list of dependent

downstream routers for a particular multicast source. Each downstream router informs its

upstream router that it depends on it to receive multicast packets from a particular source.

This is done through periodic exchange of Poison Reverse packets.

The TSM needs access to the global memory Neighbor Table and Routing Table. The

entries in the Routing Table are grouped based on next-hop information. All prefixes

having the same next-hop are grouped together in different lists called poison reverse

lists. Each of these lists is sent in the form of poison reverse packets to their

corresponding next-hops (which are actually upstream neighbors for the source networks

in the list). All packets from any component above are passed with a dummy header

NoHdr attached.

The RSM on the upstream neighbor uses all the poison reverse lists it receives to form a

spanning tree for each source. Thus, this component builds a list of downstream

dependent neighbors for each source network. The tree is stored in global memory as

Source Tree.

All packets with a NoHdr attached are just passed up to the component above.

 77

Local memory:

Packet Memory (header):

This component does not depend on any other component for addressing. So address

information is carried as header in this component itself. All poison reverse packets are

sent with header PoisonReverse and all packets from component above are sent with the

dummy header NoHdr.

SLPM:

 setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in

Neighbor Discovery.

 (from /components/dvmrp/poison_reverse_sm.ml)

type prefix ={

net_addr : Hsys.inet; // Network address

netmask : Hsys.inet; // Network mask

}

type state = {

poison_reverse_sweep : Time.t; // poison_reverse timer interval

node_addr : Addr.set; // hosts unique address

type hdr_t ={

src_addr : Hsys.inet; // source IP address (downstream router)

dest_addr : Hsys.inet; // destination IP address (upstream router)

src_nw_list : prefix list; // poison reverse list

}

type header = NoHdr | PoisonReverse of hdr_t

 78

Global Memory access:

• Neighbor Table READ using external function getInterfaceForNeighbor()

• Routing Table READ using read_rtable().

• Source Tree WRITE using write_source_tree()

Events:

Data:

• TSM passes all ESend events from above with NoHdr attached using pkt_send() and

RSM delivers all packets with NoHdr using pkt_deliver().

• Poison Reverse packets are sent with header PoisonReverse using new_pkt_send().

Control: does not need control events.

Timers:

Poison_Reverse_timer with timer-id 50000 for periodically sending the PoisonReverse

packets.

Stack-placement: This component being a control oriented peer-to-peer component can

be placed anywhere among the DVMRP components in the stack. However, it needs to

be placed over TTL for sending the poison reverse packets with a TTL of 1.

4.4.2.4 Pruning

The primary purpose of this component is to create and maintain the global data structure

Prune Table on each node that stores the list of pruned downstream interfaces for each

source/group pair. This along with the Spanning Tree component constructs per source-

group multicast trees at each node. (Note: the Spanning Tree component by itself

constructs a per-source broadcast tree at each node).

 79

The TSM is responsible for sending prune packets for a particular source-group pair

addressed to the corresponding upstream neighbor under the following conditions:

(a). If all its downstream dependent neighbors have sent prunes and all its IGMP

interfaces are also pruned.

(b). If all its downstream dependent neighbors have sent prunes and there are no IGMP

interfaces (at multicast core routers).

(c). If there are no downstream dependent neighbors and all IGMP interfaces are pruned

(at multicast leaf routers).

For this, the TSM reads all the entries of the Prune Table periodically using a prune timer

and if needed sends a prune packet for the (source, group) upstream towards the source.

All packets from any component above are passed with a dummy header NoHdr attached.

The RSM is mainly responsible for updating the global memory Prune Table. When a

prune packet for (src,grp) is received on an interface intf , it adds an core interface prune

entry in the Prune Table containing source src, group grp and incoming core interface intf

(interface to be pruned). All packets with a NoHdr attached are just passed up to the

component above. Note that the TSM reads from the Prune Table and the RSM writes to

the Prune Table.

Local memory:

 (from /components/dvmrp/pruning_sm.ml)

type state = {

prune_sweep : Time.t; // timer for periodically checking Prune Table entries

node_addr : Addr.set; // host address

mutable noEntriesChecked : int;

mutable total_prunes : int;

mutable prune_entry : prunetable_entry; // a prune table entry

}

 80

Packet Memory (header):

A NoHdr header is attached for all messages from above. For messages generated from

this component a Prune header is attached.

SLPM:

 setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in

Neighbor Discovery.

Global Memory access:

• Neighbor Table: getInterfaceForNeighbor() and getNeighborForInterface()

• Routing Table: getNextHopForDest()

• Source Tree: getDnStreamNeighborsForSrc()

• Prune Table: getEntry() , get_no_of_entries() and pruneCoreIntfforSrcGrp()

Events:

Data:

• TSM passes all ESend events from above with NoHdr attached using pkt_send() and

RSM delivers all packets with NoHdr using pkt_deliver().

• Prune packets are sent with header Prune using new_pkt_send().

Control: does not need control events.

type hdr_t = {

saddr : Hsys.inet; // address of router sending prune

dest_addr : Hsys.inet; // address of router receiving the prune

pr_src_addr : Hsys.inet ; // multicast source address

group_addr : string; // group address

}
type header = NoHdr | Prune of hdr_t

 81

Timers:

Prune_timer with timer-id 70000 for periodically sending the Prune packets.

Stack-placement: This component being a control oriented peer-to-peer component can

be placed anywhere among the DVMRP components in the stack. However, it needs to

be placed over TTL for sending the prune packets with a TTL of 1.

4.4.2.5 Grafting

This component is responsible for removing the appropriate pruned branches of the

multicast tree when a host rejoins a multicast group. When a group join occurs for a

group that the router has previously sent a prune, the global Prune Table is updated by

the Join Leave component to un-prune the local IGMP interface for that particular group.

The TSM periodically reads from the global Prune Table, and sends a separate graft

packet for a particular (src,grp) to appropriate upstream routers for each source network

under the following conditions:

(a) On leaf-routers if the interface attached to all hosts is un-pruned.

(b) On core routers if a graft packet is received on any of the previously pruned

downstream interfaces.

All packets from any component above are passed with a dummy header NoHdr attached.

The RSM on receiving a graft packet writes to the global Prune Table to update the list

of grafted core interfaces per source-group. Thus, this component along with the Pruning

component maintains the global Prune Table by dynamically updating the list of

pruned/grafted downstream interfaces for each source-group pair. All packets with a

NoHdr attached are just passed up to the component above.

 82

This component assumes a Reliable component underneath it for reliability of its Graft

packets. This obviates the need for this component to handle Graft ACK packets as in

traditional DVMRP.

Local memory:

Packet Memory (header)

A NoHdr header is attached for all messages from components above. Packets generated

from this component attach a Graft header.

type header = NoHdr | Graft of hdr_t

SLPM:

 setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in

Neighbor Discovery.

(from /components/dvmrp/grafting_sm.ml)

type state = {

graft_sweep : Time.t; // timer for periodically checking PruneTable

node_addr : Addr.set; // host address

mutable noGraftCheckedt : int;

mutable total_grafts : int;

mutable prune_entry : prunetable_entry; // an entry of Prune Table

}

type hdr_t ={

sr_addr : Hsys.inet; // address of router sending graf)

dest_addr : Hsys.inet; // address of router receiving the graft)

graft_src_addr : Hsys.inet ; // multicast source address

graft_group_addr : string; // group address

}

 83

Global Memory access:

• Neighbor Table: getInterfaceForNeighbor()

• Routing Table: getNextHopForDest()

• Prune Table: getEntry() , get_no_of_entries() and graftCoreIntfforSrcGrp()

Events:

Data:

• TSM passes all ESend events from above with NoHdr attached using pkt_send() and

RSM delivers all packets with NoHdr using pkt_deliver().

• Graft packets are sent with header Graft using new_pkt_send().

Control: does not need control events.

Timers:

Graft_timer with timer-id 80000 for periodically sending the graft packets.

Stack-placement: This component being a control oriented peer-to-peer component can

be placed anywhere among the DVMRP components in the stack. However, it needs to

be placed over TTL for sending the graft packets with a TTL of 1.

4.4.3 GROUP MEMBERSHIP STACK components:

4.4.3.1 Join/Leave component with its control interface

Initially, the IGMP protocol was decomposed into two separate components: Join_Leave

and Query_Report. The Join_Leave component to handle user join and leave to a

multicast group and the Query_Report component to handle group membership updates

from end-hosts to leaf-routers. But the Join_Leave component did not fully satisfy our

definition of a protocol component. Its TSM did not send packets on the wire and it had

 84

no RSM functionality. So, finally these were merged into a single component called

Join_Leave. Another interesting feature about this component is that it is asymmetric in

nature. The TSM and RSM functionality differs depending on where the component is

deployed at the end-host or at the leaf multicast router. So, in order to make the state

machines symmetric both the state machines contain exclusive transitions for end-hosts

and routers.

 We describe the TSM and RSM functionality separately at the end-hosts and at

the leaf-router.

At the end-host:

The TSM responds to control event EControl of type JoinGroup and LeaveGroup. (These

events are generated by the application when the host wants to join or leave a particular

multicast group). The local group cache is updated when these events occur to always

store the current list of group addresses to which this host belongs. The RSM responds to

the Query packets from the leaf-router by sending back a separate Report packet for each

group of which it is a member.

At the multicast-leaf router:

The TSM periodically performs the following tasks on expiry of the query timer:

multicasts query packets on the local network to the "all-hosts-group".

computes the list of newly joined as well as the list of newly left group addresses on each

attached interface over the last timer interval. For each newly joined group address on a

particular interface the global memory Prune Table is updated by grafting the interface

for that group address.

writes the contents of the local router_group_cache into global memory Group Table.

 85

The RSM processes the Report packets received from its attached hosts and updates the

local router_group cache. Note that the local router_group cache maintains information

on list of group members on each attached interface. It should be noted that the

component at the end-host is initialized "actively" and that at the router "passively "

through EActiveInit and EPassiveInit events respectively.

Local memory:

Packet Memory (header):

Note: For Query packets, src_addr is the address of the leaf router's interface. For Report

packets src_addr is the address of the host sending the report and dest_addr is the

address of the multicast leaf router. group_address in Report packets refers to the group

address being reported.

(from /components/igmp/join_leave_sm.ml)

type state = {

query_sweep : Time.t; // timer interval for query timer

group_list : (string list) ref; // list of group address of which this host is a member

router_group_list : ((Hsys.inet * string list) list) ref; // group address list at router

prev_router_group_list : ((Hsys.inet * string list) list) ref; // value in previous time-interval

node_addr : Addr.set; // host address

}

type hdr_t ={

src_addr : Hsys.inet;

dest_addr : Hsys.inet;

group_address : string;

}

type header = NoHdr | Query of hdr_t | Report of hdr_t

 86

SLPM:

 setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in

Neighbor Discovery.

Global Memory access:

• Group Table: write_grptable()

• Prune Table: graftIGMPIntfforGrp()

Events:

Data: Query and Report packets are sent with header Query and Report using

new_pkt_send().

Control: Responds to EControl event of type JoinGroup and LeaveGroup.

Timers: Query timer with timer-id 40000 for periodically sending query packets.

 87

5. Testing and Performance
 This section describes the nature and results of various tests and experiments that

were performed to verify correct operation of the composite multicast service running on

a reasonably sized 12-node multicast network. The tests can be divided into two major

categories, functionality testing and performance testing. In functionality testing, the

primary objective is to verify the correct operation of all protocol components and the

service as a whole. In performance testing, we conduct test experiments to measure

various network parameters like end-to-end throughout, one-way latency, join/leave

latencies and also study and observe their variance and effect for different stack

combinations, message sizes, error rates etc. Section 5.1 describes the functionality test

and section 5.2 describes the various performance measurement tests that were performed

using composite protocol stacks.

5.1 Functionality Testing

The following figure shows the test network set-up that was used.

Figure 6: Test Network

 88

The test network consists of 8 routers (R1 to R8) and 7 hosts (H1 to H7). All links are

point-to-point 100 Mbps Ethernet.

Addressing scheme: All core links i.e. links connecting routers, have network address of

the form 10.10.xy.0/24. where x < y. eg: the link connecting R1 and R2 is named as

10.10.12.0/24 and the interface at R1s end has always a lower IP address 10.10.12.1 and

R2 has a higher IP address 10.10.12.2. All leaf interfaces have addresses of the form

10.n.1.0/24, where n is the router-no they connect to, e.g: The link between R5 and H1 is

addressed as 10.5.1.1 at the router end and as 10.5.1.2 at the host-end. Knowing this

addressing scheme will help in better understanding of the test results later on in the

section.

Stacks: The multicast data stack is run on all nodes (sender, routers and receivers).

The multicast routing stack is run only on the routers from R1 to R8. The group

membership stack is run on all leaf routers (R2 to R7) and hosts (H1 to H7).

Global Memory Initialization: This has to be done prior to running the stacks on each

node. So on each node the script /ensemble/global_memory/shminit is run that allocates

and initializes the various global memory objects to be used by the stack. The script

/ensemble/global_memory/sem_initall is then run to initialize all semaphore values used.

Note: the Linux ipcs command can be used to view shared-memory and semaphore

related information.

Configuration files: node.itable and node.igmptable are 2 configuration files that are

needed by the stack to initialize their interface addressing information. Node.itable

consists of total list of interfaces and node.igmptable consists of list of leaf interfaces.

Running the Multicast Routing stack:

 89

The following command-line shows how to run the Multicast Routing stack on router R1:

../demo/dvmrp_appl -remove_prop forward -add_prop neighbor_discovery -add_prop

route_exchange -add_prop poison_reverse -add_prop grafting -add_prop pruning -pstr

interface_table=bn1.itable -pstr igmp_interface_table=bn1.igmptable -port 9500

The stack ordering from top to bottom is pruning, grafting, poison_reverse, route

exchange, neighbor_discovery over the default checksum component. The component

that generates packets most frequently is kept at the bottom-most. So neighbor_discovery

was placed at the bottom and grafting was placed at the topmost. We expect to have a

better performance improvement if this ordered is maintained. There is no need to make

use of TTL as multicast routing stack packets are not sent farther than a hop. Also the

default forward component is removed as there is no need of forwarding. The interface

information is read from the two input files .itable and .igmptable.

 90

The stack is run over UDP on port no 9500. Similar commands are executed on all

routers (from R1 to R8).We now show the global memory output at 3 routers, R1, R3 and

R5. Output at other routers are similar. The output corresponds to when the full tree is

active and no pruning has started. The global memory output is self-explanatory. From

the above output it can be noted that all core and leaf interfaces are advertised by the

 91

route exchange component. The spanning tree at R1 is empty as downstream neighbors

do not exist for any source in the network. The group table is empty, as there are no

attached leaf interfaces. Prune Table also does have any entries has pruning has not

started.

The spanning tree displays the list of downstream dependent neighbors for each source

network/mask pair in the network. The Group Table indicates that a member of the group

225.0.0.5 is present on the interface 10.3.1.1. This is a result of the host H7 joining the

group 225.0.0.5.

 92

The group table entry is the result of host H1 joining the group 225.0.0.5. As output from

other routers are remarkably similar we do not show the output. This output verifies the

correct operation of three Multicast Routing stack components: Neighbor Discovery,

Route Exchange and Spanning Tree as the Neighbor Table, Routing Table and Source

Tree entries are all correctly created and maintained.

To test functionality of the Pruning and Grafting components the following sequence of

events were made to occur.

Initial State: We have an un-pruned tree rooted at the source R1 as shown in the figure

6. All the hosts have joined the group 225.0.0.5 and have started receiving data from the

source.

Event A: H1 leaves group 225.0.0.5.

Observation: We observe changes in global memory at routers R5 and R3. We show

group table and prune table contents only, as contents of other tables are not expected to

change due to group joins and leaves. At router R5, the leaf interface 10.5.1.1 connecting

H5 and H1 gets pruned for the (source, group) pair of (10.10.12.1,225.0.0.5) after H1

leaves. The group member table also deletes the membership entry.

At router R3, the core interface 10.10.35.1(interface connecting R3 and R5) gets pruned.

 93

This is the result of the downstream router R5 sending a prune for the (source, group)

pair of (10.10.12.1,225.0.0.5) upwards to R3.

Event B: H2 leaves group 225.0.0.5

Observation: we observe changes in group table and prune table entries at R6 and R3.

At router R6, the leaf interface 10.6.1.1 gets pruned, and the group member table deletes

the entry for the group 225.0.0.5. At router R3, both the core interfaces 10.10.35.1 and

10.10.36.1 get pruned.

Event C: H7 also leaves the group 225.0.0.5.

Observation: We observe the effect of this leave on routers R3 and R2.

At router R3, the leaf interface 10.3.1.1 gets pruned as a result of which R3 sends a prune

upstream towards R2. The group member table is also updated deleting the membership

 94

entry. At router R2, the core interface 10.10.23.1 gets pruned as a result of receiving a

prune on that interface from downstream router R3. At this stage, the whole left-side of

the tree is pruned. We now observed the effect of group leaves on pruning of trees and

global memory contents. Events D and E are group re-joins. We shall observe its effect

on grafting of trees next.

Event D: H1 re-joins the group 225.0.0.5

Observation: We observe the effect of this join at R3 and R2. The corresponding

branches of the tree are grafted back.

At R3 and R2, we find that the core interfaces 10.10.35.1 and 10.10.23.1 are grafted

respectively.

Event E: H2 re-joins the group 225.0.0.5

Observation: We observe the effect of join on routers R6 and R3.

 95

At R6, the leaf interface gets grafted back again. At upstream router R3, both the core

interfaces are now grafted. At this stage multicast traffic starts flowing to both H1 and

H2. We have thus observed the effect of joins on the working of grafting component.

Testing the Group Membership stack for functionality is fairly simple. Just check if the

leaf router's group table is updated for every host's join or leave event. The functionality

of the data stack was verified using per-component log messages and monitoring traffic

on the links using network sniffers like tcpdump. The very fact that data was delivered

successfully from end-to-end proved most of the functionality. The multicast data stack is

rigorously tested with various network metrics like throughput and latency. This is

described in the next section.

5.2 Performance Testing

Functionality testing only proves that the components work as intended, but gives

no indication on how fast or slow the stacks are. The multicast data stack is tested for

performance based on network measurement metrics like end-to-end latency and

throughput. Several performance measurements were made using our composite protocol

stacks. The list of performance tests that were conducted is as follows. Each test

experiment is explained in detail later with the results analyzed.

Test 1: Measurement of stack latencies at sender, router and receivers for the basic

multicast data stack for varying message sizes. The results are tabulated and plotted.

Test 2: Measurement of per-component transmit and receive state machine latencies for

all components of the basic multicast data stack for varying message sizes. The results

are tabulated.

 96

Test 3: Measurement of end-to-end one-way latency for the basic multicast stack. NTP

was used to synchronize the machines. We plot the variation of one way latency with

message size and number of hops.

Test 4: Measurement of end-to-end throughput for the basic multicast stack for varying

message size.

Test 5: Measurement of end-to-end throughput for the reliable multicast stack for

different link error probabilities. The results are tabulated as well as plotted.

Test 6: Measurement of join latency and leave latency. Join latency measurements were

made for varying prune depth values.

The basic multicast stack consists of the components MCAST_FORWARD, FRAGMENT,

CHECKSUM and REPLICATOR. The reliable multicast stack consists of the components

MCAST_RELIABLE, MCAST_FORWARD, UCAST_FORWARD, FRAGMENT,

CHECKSUM, REPLICATOR and RANDOM DROP. RANDOM_DROP is a component

that simulates link error and drops packets with a user defined error probability of p.

Several factors were considered and changes made to make the components from merely

functional to relatively high-speed, low delay units.

Some of them are listed below:

• Choice of Ocaml compiler: Using Ocaml high-performance native-code compiler

ocamlopt instead of byte-code compiler ocamlc. The native-code compiler produces

code that runs faster than the byte-code version at the cost of increased compilation

time and executable code size. However, compatibility with the byte-code compiler is

extremely high, the same source code should run identically when compiled with

ocamlc and ocamlopt.

 97

• Reducing the number of global memory lookups. On an average each global memory

function lookup access time was measured to be about 20µs. A typical packet trace in

the multicast forwarding component at a router made about 6-8 global memory

function lookups. This induces lot of per-packet delay. To avoid such a high per-

packet delay, it was decided to use fast-lookup caches inside the multicast forwarding

component. These caches were part of the component’s local memory. Global

memory lookups are now not made for each and every packet, they are made only

once in N packets, where N is called the global memory lookup frequency.

Considering a packet flow of 1000 packets and a N value of 100, 990 packets would

use values from the cache and only 10 packets would use actual global memory

values. Caches are always refreshed once in N packets. For a highly stable network

where there are not many route changes or group joins or leaves one would want to

have a high value of N and for a highly dynamic network with lot of route changes

and group joins/leaves, a low value of N has to be chosen. The uses of caches

significantly improved forwarding delays at a router.

• Order of guards: The order in which the guards are executed at a particular state can

also affect performance. It should be taken care that the most frequently occurring

guard condition is executed first. This is because guards are evaluated only till the

first true match is found.

• Removing costly memory and file operations: File operations are very costly and

should be always removed if possible. Several costly memory operations were

modified for better performance.

 98

The individual tests are now explained in detail.

5.2.1 Test 1: Measurement of stack latencies

The stack latencies are measured at sender, router and receivers for the basic multicast

data stack for varying message sizes. At the sender, the stack latency is defined as the

time taken for an application packet, to traverse through the transmit state machines of

the sender stack till its written onto the UDP/ETH socket. At the router, it refers to the

total time spent in the Ensemble stack to forward a packet and at the receiver it refers to

time elapsed between the reception of the packet from an ETH/UDP socket and delivery

to the application.

 Stack Latency vs Msg Size

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

Msg Size in bytes

La
te

nc
y

in
 m

ic
ro

-s
ec

s

Router
Sender
Receiver

STACK
Mcast_Fwd
Fragment
Checksum
Replicator

(averaged for 1000 pkts, 5 runs each)

Figure 7: Variation Of Stack Latency With Message Size

 99

The above plot shows how the stack latencies at the sender vary with message size. All

values are computed after averaging over 1000 packets and 5 runs each. Message size is

varied from 1 byte to 1300 bytes. From the graph, we find that on the whole, latencies

increase with increase in message size. This fact is mainly attributed to the checksum

component that is the only component in the stack whose performance depends on

message size. At the sender, this result is not that evident. But at the routers we find a

significant increase in latency from 113µs for 1 byte message to 143µs for a 1300-byte

message. At the receiver it increases from 27.8µs to 43.5µs. The global memory lookup

frequency was set to 100.

The results are also tabulated as under:

 Stack Latency
Msg Size Sender Router Receiver
(bytes) (in micro-seconds)

1 70.53 113 27.72
10 69.33 116 27.94
50 70.45 115 28.79

100 69.18 117 29.72
200 71.57 119 30.06
300 72.23 123 31.31
400 73.3 121 32.40
500 74.68 121 33.53
600 75.97 124 34.64
700 76.01 130 36.20
800 72.61 131 37.13
900 72.11 132 38.15

1000 73.11 140 39.42
1100 72 139 41.62
1200 72.62 140 42.40
1300 74.27 143 43.46

Table 7: Variation Of Stack Latency With Message Size

 100

5.2.2 Test 2: Measurement of Component Transmit and Receive Latencies

 In this test, we measure the transmit and receive latencies of individual

components in the multicast stack for different message sizes.

Msg Component Latency (SENDER)
Size (in microseconds)

(in bytes) MCAST FRAG CHK REPL
1 29.57 7.98 8.01 6.28
10 32.83 8.35 8.06 6.03
50 36.15 8.18 8.44 6.31

100 34.96 7.96 8.86 6.49
200 35.86 8.15 9.89 6.63
300 30.62 12.60 10.85 6.47
400 30.73 9.84 14.94 6.45
500 27.78 12.24 16.01 7.03
600 26.86 8.78 20.89 7.90
700 26.34 9.18 17.08 11.34
800 26.56 9.22 16.62 8.65
900 26.26 8.52 18.44 7.70

1000 26.09 8.23 20.49 7.61
1100 26.12 8.30 20.23 7.94
1200 25.96 7.98 19.94 7.03
1300 27.15 8.49 20.93 7.57
Table 8: Component Latencies At Sender

Msg Component Latency (RECEIVER)
Size (in microseconds)

(in bytes) MCAST FRAG CHK REPL
1 3.06 3.193 9.693 4.568

10 3.06 3.21 10.23 5.58
50 3.06 3.21 10.32 5.59
100 3.06 3.26 10.52 4.58
200 3.06 3.17 11.68 4.61
300 3.23 3.33 12.38 4.75
400 3.13 3.19 13.39 4.68
500 3.21 3.30 14.46 4.79
600 3.29 3.31 15.40 4.79
700 3.16 3.28 16.23 4.90
800 3.31 3.27 17.70 4.86
900 3.33 3.28 18.35 5.15

1000 3.26 3.37 19.41 5.04
1100 3.84 3.42 21.22 5.18
1200 3.30 3.26 21.70 5.12
1300 3.31 3.38 22.70 5.22

Table 9: Component Latencies At Receiver

 101

From the results, we find that the checksum component’s latency increases significantly

with message size, both at the sender and at the receiver. Other components do not show

significant increase.

Test 3: Measurement of one-way latency

 One-way latency is defined as the total time taken by the packet from the sender

application to the receiver application. Before taking timing measurements, all machines

have to be synchronized, so that the results reflect the correct values. NTP[18] was used

to synchronize the machines. For each measurement the receiver and sender NTP offsets

are also noted and are used while computing the net end-to-end one way latency. One-

way latencies measurements were made for different message sizes and also by changing

the number of hops. The following test set-up was used to measure one-way latencies

upto 6 network hops.

Figure 8: 6-Hop Test Network

 102

One-Way Latency vs Msg Size

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600 1800

Msg Size in bytes

La
te

nc
y

in
 m

ic
ro

-s
ec

on
ds

2 hops
4 hops
6 hops

(averaged for 2000pkts, 5 runs each)
measured after synchronizing nodes using NTP

STACK
Mcast_Fwd
Frag
Checksum
Replicator

Measurements are made at the sender R1, 2-hop host H5, 4-hop host H1 and the 6-hop

host H3.

Figure 9: Variation Of One-Way Latency With Message Size

The plot shows how one-way latency varies with message size and number of hops.

As expected the end-to-end latency values increase with increase in message size and

increase in number of hops. The values are tabulated as under.

 103

Msg End-to-End Latency
Size (in microseconds)

(in bytes) 2-hop 4-hop 6-hop
20 506 650 895
30 603 837 943
70 634 847 1020
100 682 876 1044
200 725 894 1141
300 748 889 1147
400 759 875 1189
500 811 942 1278
600 777 978 1312
700 824 1023 1336
800 836 1089 1389
900 850 1137 1454

1000 896 1147 1690
1100 915 1254 1748
1200 1093 1372 1765
1300 1170 1460 1815
1400 1439 1622 1876
1500 1467 1626 1889
1600 1489 1708 1945

Table 10: Variation Of End-To-End Latency With Hops

The message sent from the sender consists of a 20-byte timestamp followed by a variable

length message field. So the minimum message size is 20-bytes.

5.2.3 Test 4: Measurement of end-to-end throughput

 End-to-end throughput refers to receiver throughput, which is defined as follows:

Throughput in bits/sec = (No of bytes received * 8) / (Tlast - Tfirst) secs, where, Tlast is the

time when the last packet is received and Tfirst is the time when the first packet is

received. End-to-end throughput values were measured for 2 stack combinations, a stack

with only MCAST_FORWARD and REPLICATOR and for the basic multicast stack.

 The throughput values were measured at 4 receivers H1, H2, H3 and H4 each 4

hops away from the multicast source R1, values obtained are averaged. As we do not

 104

have a flow control component the sender needs to be slowed down if the receiver is not

able to sustain the sender rate. A sender slow-down factor of 70 was used for all the

measurements.

Throughput vs Msg Size
Averaged over 4 receivers, each 4 hops from multicast source

for 1000 packets and 5 runs

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600 1800
Msg size in bytes

Th
ro

ug
hp

ut
 in

 M
bp

s

Stack A

Stack B

Stack A
Mcast
Repl

Stack B
Mcast
Frag
Chk
Repl

Figure 10: Variation Of Throughput With Message Size

We find that for both curves the throughput increases with increase in message size from

1 byte to 1300 bytes. Stack A does not have our FRAGMENT component, so IP

fragmentation comes into effect after 1300 bytes. Stack B has the FRAGMENT

component in it. We find a steeper drop in Stack B curve compared to Stack A curve after

1300 bytes. This is due to the difference in performance of our fragment component and

IP fragmentation. We find that addition of Checksum and Fragment in Stack B has

resulted in a decrease in throughput. We achieve the highest throughput of 43.17 Mbps

 105

for 1300-byte sized message for Stack A and a highest throughput of 33.9 Mbps at 1300

bytes for Stack B. The increase in throughput for both the curves is also very consistent.

The individual values are tabulated as under:

Msg Throughput
size (in Mbps)

(in bytes) Stack A Stack B
1 0.035 0.033
10 0.347 0.306
50 1.7 1.539

100 3.433 3.087
200 6.93 6.298
300 10.357 9.041
400 13.789 11.938
500 17.241 14.716
600 20.437 17.74
700 23.861 20.151
800 26.579 23.017
900 30.003 25.157
1000 33.484 27.568
1100 36.546 29.622
1200 39.678 32.343
1300 43.172 33.935
1400 39.051 13.748
1500 39.237 13.242
1600 42.596 15.349

Table 11: Variation Of Throughput With Message Size

5.2.4 Test 5: Measurement of throughput for reliable multicast

The reliable multicast stack consists of 7 components viz. Mcast_Reliable,

Mcast_Forward, Ucast_Forward, Fragment, Checksum, Replicator and Random Drop.

Throughput for the reliable multicast stack was measured by varying link error rates

using the Random Drop component. The values were measured at receivers H1, H2, H3

and H4 which are 4-hops from the multicast source. 1000 packets were transmitted from

source each with packet size of 1000 bytes. A 1% error probability implies that out of

1000 packets, 990 packets are reliably transmitted and 10 are re-transmitted from the

 106

source. NACK status packets if any, are sent from all receivers every 10ms. Re-

transmissions at the sender also take place every 10ms. A dally timer interval of 30s is

used. The multicast re-transmission threshold was set at 2 i.e. if 2 or more receivers

request a packet to be re-transmitted it will be multicast on the network, else re-

transmissions are separately unicast back to each receiver.

Reliable Multicast Throughput

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12

% Error Rate

Th
ro

ug
hp

ut
 in

 M
bp

s

Average Throughput

Averaged over 4 receivers , each 4 hops from multicast source
for 1000 packets , packet size 1000 bytes

Rel_Mcast
Mcast_Fwd
Ucast_Fwd
Frag
Checksum
Rnd_Drop
Replicator

STACK

Figure 11: Variation Of Reliable Multicast Throughput With Error Rate
For a 0% link-error probability (e), a throughput of 17.18 Mbps is achieved. For

1000 bytes the basic multicast stack gave a throughput of 27.57 Mbps (previous test

result). This reduction can be attributed to the addition of 3 more components in the stack

and buffering operations at the reliable component’s sender. No reverse ACK flow occurs

here and there are no-retransmission too. The throughput only decreases gradually from

17.18 Mbps to 13.82 Mbps at an error probability of 6%. A 6% error probablity in the

 107

link leads to about 60 retransmissions from source. There is a much steeper decrease

from 6% to 10% and the throughput drops to 6.18Mbps. On the whole, the throughput

values are good even for high error rates. The individual values are tabulated as under:

Error Throughput
% (Mbps)
0 17.17

0.2 16.84
0.4 16.47
0.6 16.23
0.8 16.15
1 15.9

1.2 15.62
1.4 15.35
1.6 15.46
1.8 15.33
2 15.26
3 15.2
4 14.8
5 14.01
6 13.83
7 12.17
8 8.69
9 6.78

10 6.18

Table 12: Variation Of Reliable Multicast Throughput With Error Rate

5.2.5 Test 6: Measurement of join and leave latency

 Join Latency is defined as the time taken for a receiver host to start receiving data

from the source after it has joined the corresponding group. Join Latency can be

controlled by adjusting the values of the query timer and the graft timer and it is also

dependent on prune depth (how far the tree is pruned).

The following sequence of operations occur after a host joins a group:

 108

• The local group cache is first updated, a report packet is sent to the leaf router on

receiving a query and the global memory group table gets updated at the leaf router.

Let the time taken for this sequence be T1.

• On expiry of the graft timer, the grafting component sends a graft message upstream,

which then grafts all interfaces till either an un-pruned branch is reached or till the

source is reached. Let this time be T2.

• Then, data has to flow from that node back to the receiver. Let this time be T3.

The join latency is the sum T1 + T2 + T3 approximately.

Join latency was measured for 3 cases, for prune depth of 1, 2 and 3.

 The prune timer, graft timer and the query timer were all set to 100ms. The sender

date rate was set to 10 packets/sec. The following figure shows all the 3 cases:

Figure 12: Prune Depth Of A Multicast Tree

 109

The join latency test results are tabulated as under:

Prune Average Join Latency
Depth (in milli-seconds)

1 405
2 458
3 535

Table 13: Variation Of Join Latency With Prune-Depth

As expected we find that join latency increases with increase in prune depth. However, it

should be noted that join latency is very controllable and can be affected due to change in

any of the above timer values. Making the timers expire more frequently will definitely

improve join latency but will also increase the amount of traffic in the links because more

number of query, prune and graft messages will be sent.

Leave latency is defined as the time taken for the receiver to stop receiving data after it

has left the corresponding group. Leave latency just depends on the query timer interval.

For a query timer interval of 100ms, a leave latency of 146ms was obtained.

Leave latency can also be improved by increasing the query timer frequency at the cost of

more link traffic. Both leave and join latency valued reported above are averaged over 5

runs.

 We have thus described the functionality tests and performance tests that were

performed on the multicast composite protocols.

5.3 Comparison with Linux IP Multicast

The throughput values attained by the composite protocol implementation are compared

with those using Linux IP multicast. Mrouted[19], the Linux IP multicast implementation

for DVMRP was used on the same test network. Mrouted was installed on all router (R1

to R8). Iperf [20] was used to measure the end-to-end multicast throughput.

Timer (seconds)
Query 0.1
Graft 0.1
Prune 0.1

 110

Throughput measurements were made for varying packet sizes ranging from 10 to 2000

bytes. The sender is made to send at a maximum possible data rate, so that there is no

receiver loss. 1000 packets are sent in each throughput measurement test. The throughput

increases from 2.81 Mbps for a 10-byte packet to 95.8 Mbps for 1400 byte packet. There

is a sheer drop of throughput at around 1500 bytes due to IP fragmentation. Figure x

illustrates the end-to-end throughput performance of Linux IP multicast and the basic

Composite Protocols multicast data stack.

Mrouted vs Composite Multicast Throughput
Averaged over 4 receivers each 4 hops away from multicast source

for 1000 packets and 5 runs

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Packet size in bytes

Th
ro

ug
hp

ut
 in

 M
bp

s

Mrouted Throughput
Composite Multicast

Figure 13: Comparison With Linux IP Multicast Throughput

The composite multicast achieves a highest throughput of 34 Mbps compared to its Linux

counterpart, which achieves about 95 Mbps for packet sizes of 1300 bytes. The fact that

the composite protocol implementation is about 2-3 times slower is not surprising.

 111

Msg Throughput
size (in Mbps)

(in bytes)
Linux IP
Multicast

Composite
Protocols

10 2.81 0.306
50 13.7 1.539
100 24 3.087
200 58.2 6.298
300 66.1 9.041
400 74.3 11.938
500 80.5 14.716
600 87.5 17.74
700 89.4 20.151
800 92.2 23.017
900 93.2 25.157

1000 94.1 27.568
1100 94.6 29.622
1200 95.2 32.343
1300 95.6 33.935
1400 95.8 13.748
1500 55.1 13.242
1600 55.7 15.349

Table 14: Comparison With Linux IP Multicast

Given the constraints imposed by the specification methodology and limitations of the

current implementation, this is a reasonable performance penalty to pay. A few reasons

are:

• Executing a component's state machine incurs a non-trivial amount of overhead,

which the in-kernel implementation in Linux does not.

• There are no well-defined boundaries between layers in the Linux implementation

with respect to memory access and all layers operate on a common instance of a

socket buffer. Linux protocol software can afford to perform pointer arithmetic on

socket buffers and minimize memory copies. The strict layering enforced by the

composite protocol framework makes it impossible to access the local memory of

another component.

 112

• Moreover, Ensemble is a user-level program and hence incurs further overhead in

sending and receiving messages compared to the Linux in-kernel implementation.

• Finally, the Linux implementation has matured over many years of use and

improvement, whereas only limited time could be spent so far in optimizing the

current implementation of composite protocols.

 113

6. Summary and Future Work

This report presents a novel approach of building network services from composite

protocols consisting of single-function protocol components. It demonstrates the

applicability of the composite protocol approach to wider-range of network protocols and

services, both data-oriented/data plane and control-oriented/control plane protocols can

be built and composed into stacks using this approach. This report addresses one of the

main challenges in building network services, inter-stack and cross-protocol

communication that is addressed through use of global memory objects.

As a case study, a reliable multicast service is built using three composite protocol stacks

and 5 global memory objects. A multicast data stack for reliable replication of data in the

network, a multicast routing stack for dynamically creating and maintaining neighbor

tables, routing tables, spanning trees in the network and a group-membership stack for

members to join/leave multicast groups in an ad-hoc fashion. The global memory objects

are implemented as part of shared memory which link to the stacks at run-time. They

provide a functional interface and simultaneous access to them is controlled using

semaphores.

The reliable multicast service is also tested for both functionalilty and performance on a

medium sized 12-mode test network. The functionality tests confirm the expected

behaviour of the stacks , including dynamic pruning and grafting of stacks. Performance

tests measured end-to-end throughput, one-way latency, reliable-multicast throughput and

individual per-component send and receive latencies. The performance of composite

reliable multicast is also compared to Linux IP multicast.

 114

6.1 Future Work

This section suggest possible improvements and enhancements, and identifies scope of

future work in this area.

• The multicast service designed and implemented here supports only point-to-

multipoint data transfer used in applications like file-transfer and audio streaming.

This can be extended to support multi-point to multi-point multicast which can be

used in applications like video-conferencing.

• Complex multicast protocols like MOSPF and PIM can be implemented using

this approach.

• More composable services can be built , security protocols ,network management

protocols can be built to test the feasibilty, demonstrate component re-use and

expand the library of components.

• The main focus of this work was to focus on demonstrate the feasibility of the

composite protocol approach to design and implement network services,

performance was not the major focus. A lot of work can be done to improve and

optimize the performance of these composite protocol stacks and make them

come into speed with IP based implementations.

• Deployment of composable services on an active network is another big

challenge.

• Automating the process of verifying specification of components, tools to

automatically transalate from specification to implementation, a Property-In

Protocol Out conversion tool are also possible areas of improvement.

 115

Bibliography

[1] David J. Wetherall, John Guttag, and David L. Tennenhouse. ANTS: A Toolkit

for Building and Dynamically Deploying Network Protocols. In IEEE

OPENARCH, April 1998.

[2] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott

Nettles. PLAN: A packet language for active networks. In Proceedings of the

International Conference on Functional Programming Languages. ACM, 1998.

[3] A. B. Kulkarni, G. J. Minden, R. Hill, Y. Wijata, S. Sheth, H. Pindi, F. Wah-hab,

A. Gopinath, and A. Nagarajan. Implementation of a Prototype Active Network.

In OPENARCH ’98, 1998.

[4] G. J. Minden, E. Komp et al, "Composite Protocols for Innovative Active

Services", DARPA Active Networks Conference and Exposition (DANCE 2002),

San Francisco, USA, May 2002.

[5] ISO, "Information Processing Systems - OSI Reference Model - The Basic

Model", ISO/IEC 7498-1, 1994.

[6] T. Pusateri, "DVMRP version 3," draft-ietf-idmr-dvmrp-v3-10, August 2000.

[7] J. Moy. Multicast Extensions to OSPF. Internet Requests For Comments (RFC)

1075, Mar. 1994.

[8] Deering, Estrin, Jacobson et al, "Protocol Independent Multicast-Sparse Mode

(PIM-SM): Motivation and Architecture" draft-ietf-idmr-pim-arch-01.ps , Internet

Draft.

[9] W. Fenner, "Internet Group Management Protocol, Version 2", RFC 2236, Xerox

PARC, November 1997.

 116

[10] Yuri Gurevich, “Sequential Abstract State Machines Capture Sequential

Algorithms,”ACM Transactions on Computational Logic, vol. 1, no. 1, July 2000,

77-111.

[11] M. Hayden, "The Ensemble system", Ph.D. dissertation, Cornell University

Computer Science Department, January 1998.

[12] J. C. Lin and S. Paul, "RMTP: A reliable multicast transport protocol," in Proc.

IEEE Infocom, pp. 1414--1425, March 1996.

[13] C.Hedrick. Routing Information Protocol. RFC 1058, June 1988.

[14] J. Moy, OSPF Version 2, Internet Request for Comments, RFC 2178, July 1997.

[15] X. Leroy, "The Objective Caml system, release 3.04", Documentation and user's

manual,INRIA, France, December 2001.

[16] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In

Third International Symposium on Programming Language Implementation and

Logic Programming, number 528 in Lecture Notes in Computer Science, pages 1-

-13, Passau, Germany, August 1991.

[17] Mills, D. L. Network Time Protocol (version1) specification and

implementation. DARPA-Internet ReportRFC-1059, DARPA, 1988.

[18] B. Fenner. “The multicast router daemon - mrouted,”

ftp://ftp.parc.xerox.com/pub/net-research/ipmulti.

[19] Distributed Application Support Team, "Iperf",

http://dast.nlanr.net/Projects/Iperf

