
The University of Kansas

Copyright © 2003: 
The University of Kansas Center for Research, Inc. 
2335 Irving Hill Road, Lawrence, KS  66045-7612. 
All Rights Reserved. 

Technical Report 

Building a Reliable Multicast Service  
Based on Composite Protocols 

Sandeep Subramaniam, Ed Komp, Gary Minden and Joe Evans 

 

ITTC-F2004-TR-19740-11 

July 2003 

Defense Advanced Research Projects Agency and the  
United States Air Force Research Laboratory, 

Contract no. F30602-99-0516 





 

Abstract 
 

Active networking allows end-users of the network to define, implement and deploy 

their own customized protocols and services without the need of network-wide 

standardization. Composite protocols provide an approach for rapid deployment of 

correct and flexible protocol stacks. A composite protocol is  a collection of single-

function protocol components arranged in an orderly manner providing a network 

communications capability. A network service primarily consists of two or more co-

operating composite protocols. This report demonstrates the feasibilty of applying the 

composite protocol approach to design, specify and implement wider range of 

protocols and network services. Reliable multicast service is chosen as a case study as 

it consists of  protocols for reliable replication of data in the network, multicast 

routing and group membership protocols. One of the main challenges in designing a 

network service is to handle interaction between multiple protocol stacks. In this 

report, we propose a solution for such co-operating protocols to communicate with 

each other by means of global memory objects.  Global memory features, 

initialization,implementation and their interaction with composite protocol stacks are 

discussed. The functionality of all the individual protocol components and global 

memory objects in the multicast service that were implemented are also discussed in 

detail.  
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This report finally presents the results of various functionality and performance tests 

conducted on a medium-sized test network. The performance of the multicast service 

has been compared with Linux IP Multicast implementation. 
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1. Introduction 
 

1.1 Active Networks 
 

Traditional data networks passively transfer data from one end of the network to another. 

Routers in conventional networks just forward user data by processing packet headers. 

This network property was changed with the advent of active networking. Nodes in an 

active network called active nodes can, not only forward user data but can also perform 

customized computations on data flowing through them. Active networking enabled users 

to inject their customized code or programs within the network thereby tailoring the 

network to meet user and application specific needs. This mechanism allows introduction 

of customized network protocols and services without the need of network-wide 

standardization unlike conventional rigid network implementations. Several active 

networking architectures like ANTS[1], PLAN[2], Magician[3] etc,have been developed 

to deploy services need by an application on intermediate nodes of the network. This 

report focuses not on deployment mechanisms but on developing a framework to build 

user-specific and customized network services that are not only easy to design, test and 

deploy but are also formally correct in their property and behavior. Composite protocols 

for innovative active services [4] is a modular approach for specifying and implementing 

network protocols providing such a framework.  

1.2 Motivation for composite protocols 
 

Traditional monolithic protocol implementations following the OSI model [5] are 

modular in design employing the layering principle, with each layer providing a service 
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to the layer above it. However, layered implementations were found to perform poorly as 

compared to monolithic implementations, so modularity was compromised for efficiency 

and performance reasons. Protocol correctness was not considered to be an important 

aspect in its design. Monolithic implementation of protocols made it difficult to analyze 

and assert properties about protocol behavior and correctness. The OSI model and the 

TCP/IP architecture embedded multiple functionality in a single layer. The network layer, 

IP handled routing, fragmentation etc, TCP handled reliable delivery, sequential delivery, 

flow-control etc. This architecture does not provide the much-needed flexibility to the 

user/application of choosing a protocol with a collection of properties. The 

user/application has to choose TCP even if it wants only its reliable-delivery service and 

not any of its other services. The idea of code reuse is a common principle being used in 

software engineering for a long time, but it has not been used yet in protocol 

implementations. All these aspects of existing protocol implementations motivate the 

need for design and development of composite protocols. 

1.3 Protocol components, composite protocol, composable services 
 
Reliable-delivery, sequential delivery, error checking, some form of routing, 

authentication, request/reply protocols are some of the common properties or functions 

which are used in the existing protocols. Any new protocol developed may also demand 

the use of some of these functions. We call such single-functional protocol modules, 

protocol components. A group of such protocol components collected and connected 

together by means of a composition operator constitutes a protocol. For example, TTL, 

Fragmentation, Header Checksum, Forwarding and Addressing are protocol components, 

which composed give an IP protocol. Though many forms of composition exist, the most 
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common form of composition and the one used in our implementation is a linear 

composition. A collection of two or more cooperating protocols is called a service. 

Multicast is an example of such a service. Multicast consists of protocols for group 

membership and management, multicast routing and spanning trees, tunneling and 

reliable replication of multicast data. 

Traditional IP-based multicast network services typically consist of multicast routing 

protocols like DVMRP[6], MOSPF[7] or PIM[8] and group-management protocols like 

IGMP[9] in operation. These traditional multicast protocols are decomposed into 

individual and independent smaller units called protocol components, each performing 

only a single-function. Each protocol component is completely specified in terms of the 

Augmented State Machine model, memory requirements and properties [10]. This report 

describes how a component based multicast service is built by linearly stacking protocol 

components into three different protocol stacks viz. a DVMRP like multicast routing 

stack for creating and managing multicast routing tables and spanning trees, an IGMP 

like group-management stack for managing group-memberships and a multicast-traffic 

delivery stack for reliable transmission of application data. 

 

1.4 Cross-Protocol Communication and Global Memory 

The definition and implementation of network services introduce new issues into the 

active networking environment. Key issues are cross protocol communication among the 

protocols contributing the service and to the protocol(s) using the service, maintaining 

independence between active network protocols which use a service and the protocols 

providing the service, while allowing them to communicate effectively among others.  
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This report focuses on addressing the issue of supporting cross protocol communication 

that minimizes the degree of interdependence between cooperating protocols while 

building a network service. To support communication between independent protocols 

stacks, we require a memory with both  scope and extent greater than any single protocol 

that accesses it. We use the category, global memory, for these memory units. Due to 

these scope and extent requirements,  a global memory must exist independently of any 

specific protocol.  We define an active global memory object for each unit of global 

memory required in a system.  This active object is responsible for initialization and 

maintenance of the shared information.  Any protocol component needing access to the 

shared information, must contact the corresponding global memory object. Thus global 

memory objects provide a mechanism for exhange of information between protocol 

stacks and aid in the development of complex network services.  

1.5 Report Organization 
 
The rest of this document is organized as follows. Chapter 2 summarizes the salient 

features of the composite protocol framework. Chapter 3 deals with the detailed design of 

building a composable service using composite protocol stacks and global memory 

objects with reliable multicast service as an example. Identification of components 

through decomposition, specification, composition using linear-stacking and deployment 

of stacks are described. Also describes the design issues related to inter-stack 

communication and global memory. Chapter 4 is dedicated to implementation. Reasons 

for choosing Ensemble[11] as a base framework for implementation are listed. 

Extensions and modifications made to Ensemble to support our framework, including 

framework functions, events and timers are discussed. It then describes in detail the 
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shared memory implementation of global memory, lists the functional interfaces provided 

by the various global memory objects in the multicast service implementation and how 

the protocols of the service interact through global memory. Finally, the working of each 

component used in the service is explained. Chapter 5 on testing, reports results from 

various experiments conducted and tests performed to confirm the functionality of 

multicast service across the network. Several network performance tests were also 

performed. The performance of the composite multicast service is also compared to 

Linux IP Multicast on a medium sized test network. Chapter 6 summarizes the results of 

this report and suggests enhancements and future work 
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2. COMPOSITE PROTOCOL FRAMEWORK 

2.1 Framework modules 
 
This section describes the various modules of the composite protocol framework  
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Figure 1: Composite Protocol Framework 
 

The composite protocol framework provides the following to the user: 

• A template to formally specify the individual components using AFSMs. 

• A composition method to create composite protocols stacks from components. 

• A mechanism to construct a service from protocol components. 

• Support for dynamic linking of components and switching of protocols on the fly, 

enabling users to add, remove or re-order components in a stack. 
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• Support for intra-stack and inter-stack communication between components. 

We shall now briefly describe the individual parts that make up the composite protocol 

framework. 

Protocol components are the building blocks of a composable protocol service. Each 

protocol component implements a single-function either by operating on application data 

or by independently providing a specific functionality. The former is termed as data-

oriented components and the latter control-oriented components. In both cases, peer-to-

peer communication between components over the network is necessary. Each protocol 

component is specified in terms of two Augmented Finite State Machines (AFSMs) viz. 

Transmit State Machine (TSM) and Receive State Machine (RSM) on the sending and 

receiving side of the communication channel. 

An AFSM consists of a finite set of states with a finite set of transitions between one 

state to another. Each transition is defined by the current-state, next-state, an event, a 

guard expression, action and local memory update functions. Events trigger a transition 

from one state to another. Guards are boolean expressions that conditionalize the 

transition from one state to another. A transition is activated by its corresponding event 

only if the guard expression evaluates to true. Action functions describe the response of 

the protocol component to the associated event. They typically consist of executing any 

one of the well-defined set of framework functions.  

Each component has well-defined data interfaces for transmitting and receiving data. On 

transmission, packets are accepted from a higher layer/component, operated upon if 

necessary and sent to a lower component after adding a header. On reception packets are 

accepted from a lower component, its corresponding header stripped and operated upon 
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and sent to the upper component. The component also has a control interface for handling 

initialization during start-up and for communication between other components in the 

stack and the application. 

Protocol components are linearly composed in the form of a stack called a composite 

protocol stack. Stack X and Y in figure 1 are composite protocol stacks. Though 

different methods of component composition are available we have chosen the linear 

composition method for our framework. Events in the framework are broadly classified 

into two types viz. data and control events. Data events are used for sending and 

receiving packets either between applications (event generated by application) or between 

peer-to-peer components (events generated by individual components) e.g. packet arrival 

event. Control events are further sub-divided into two types: stack-wide control events 

and component specific control events. Stack-wide control events are used for stack 

initialization, generating timers etc. Component-specific control events are for 

communication between two or more components in a composite protocol stack.  

2.2 Framework Functions 
 
The set of framework functions associated with the above events are given below. 

Packet Transfer Functions (associated with data events) 

PktSend() - send data from application /  higher-level component down the stack. 

NewPktSend() - send component's own data to peer.  

PktDeliver() - deliver data to application / higher-level component up the stack. 

NewPktDeliver() - deliver component's own data to the application 

DropPkt() - discard application data  
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Note: All send functions involve sending data down the stack from the component onto 

the wire for transmission. All deliver functions involve delivering data up the stack either 

ultimately to the application or to a component above in the stack. 

Buffer Management Functions 

KeepPacket() - buffer the data locally  

DeliverKeptPacket() - deliver stored data to application/higher-level component 

DropKeptPacket() - discard locally stored data 

SendKeptPacket() - send buffered application/higher-level data on the wire 

Control functions 

Stack-wide control events: (timers) 

SetTimer() - request a timeout from the framework  

ResetTimer () - reset the value of the timer 

CancelTimer () - cancel existing timer 

Intra-stack communication: (control events) 

SendUpControl()  - generate a control event and send it up the stack. 

SendDownControl () - generate a control  event and send it down the stack. 

 

2.3 Framework memory model 
 

We have classified the protocol memory into 4 categories based on its accessibility and 

scope: 

Component-Local Memory: this is internal to the component. Accessible only by the 

action functions within the TSM and the RSM of the component. They are separately 
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initialized by at the sending and the receiving sides. E.g.: sliding window buffer in the 

Reliable Delivery component. 

Stack-Local Memory: provides a mechanism for components within a stack to share 

information. This is accessible to all components in a stack. Since SLPM is associated 

with an event, the extent of this memory is limited to the life of the event in the stack.   

Global Memory: This part of memory is external to a stack and is used for 

communicating or sharing information between multiple protocol stacks. In our model, 

global memory access is abstracted through a functional interface for both reading and 

writing values. Global memory issues shall be discussed in detail under Inter-stack 

Communication in section 3. 

Packet Memory: This memory represents the header added by each component to the 

data from the application / higher-level component. Each component independently 

defines it own packet memory. It is accessible only by this component at the sending and 

receiving ends. All other components have an opaque view of this memory as a read-only 

linear sequence of bytes. 
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3. DESIGN OF COMPOSABLE MULTICAST SERVICE  
 
This section describes the various steps involved in building a composable service using 

our framework with multicast service as a case study. Also discusses intra-stack and 

inter-stack communication. Multicast is an excellent example of a network service, which 

is made up of several cooperating protocols. Any form of multicast service would require 

functions for multicast routing, creation of spanning trees, reliable replication of 

multicast data and joining/leaving multicast groups. IP Multicast is a collection of 

multicast routing protocols like DVMRP, MOSPF, PIM, reliable multicast protocols like 

RMTP[12] and group management protocols like IGMP working in tandem with IP for 

best-effort multicast delivery. The reason for studying multicast service is that it 

combines data and control-oriented protocols. TCP and IP are data-oriented protocols, 

while routing protocols like RIP[13], OSPF[14], DVMRP and group-management 

protocols like IGMP are control oriented (belong to the control-plane). It should be noted 

that protocol components that we specify and implement are not in accordance with any 

Internet standards like RFCs and internet-drafts for DVRMP, RMTP, IGMPv1, and 

IGMPv2. What we are interested is the basic functionality of these protocols. Only a sub-

set of the standard functionality is specified and implemented. Also, we assume that the 

reader has a basic understanding how IP multicast and other protocols like DVMRP and 

IGMP work in general. We now describe the various steps in building a composable 

service using our framework. 
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3.1 Steps in building a composable service 

3.1.1 Decomposition: 
 
Decomposition is the initial process of identifying the key functional protocol components 

in a monolithic implementation of a protocol. 

For multicast service, we decomposed the monolithic DVMRP protocol into the 

following protocol components: Neighbor Discovery, Route Exchange, Spanning Tree, 

Pruning and Grafting. The IGMP protocol was decomposed into the following 

components: Join/Leave and Query/Report. Other components that form part of the data 

stack include Multicast Forwarding, Unicast Forwarding, variants of Reliable Multicast 

like with/without ACK implosion prevention, hop-to-hop reliable, Multicast Inorder, 

Replicator. These components are not a result of direct decomposition from any other 

protocol. 

3.1.2 Specification of protocol components 
 
Once all the individual components are identified, the next step is to specify each of these 

components using AFSMs as described in [4]. Each component is represented by a TSM 

and a RSM, the set of events (data and control) that can invoke this component, its 

memory requirements: local, stack-local, global and packet memory along with its 

properties and some assumptions. The individual functionality of each protocol 

component is described later in section 4.4. While specifying these components, care 

should be taken to ensure that each protocol component performs only a single-function 

and is totally independent of other components. Achieving total independence is only an 

ideal case, practically some minor amount of dependence on other protocol components 

may be required. Also, it may not be possible to represent each decomposed protocol in 
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terms of state machines or in accordance with the composite protocol specifications. In 

such cases the decomposed protocol may have to be either merged with other protocols or 

re-specified appropriately so that they meet the specifications. E.g. A decomposed 

protocol having no header information (bits-on-the-wire) can always be merged with 

another protocol. However, we shall elicit on the individual functionality of each protocol 

component in section 4.4. 

3.1.3 Building the stacks 

 

Figure 2: Multicast Service Stacks 
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Once all the individual protocol components are specified, related components are 

grouped in protocol stacks called composite protocol stacks. The composable service is 

just the collection of these stacks and global memory objects (described later in this 

section). Multicast service is a collection of three stacks viz. Multicast routing stack, 

Group Management stack and Multicast data/traffic stack and the global memory objects. 

We have decided to compose stacks using the linear stacking approach. In this approach, 

while composing stacks, the order of stacking can play an important role depending on 

whether the components being stacked are property oriented or control oriented.  

A property based component is one which provides a well defined property or 

functionality to the component/application above it by adding headers to application data. 

Typical examples are TCP components like Reliable delivery, in-order delivery, or IP 

components like TTL, Fragment. Control based components do not provide any property 

to the component above, though they implement a separate function on their own. They 

mainly exchange peer-to-peer messages only. 

We find lot of examples of such control components in Neighbor Discovery, Route 

Exchange etc. When these 2 components are stacked up with Neighbor Discovery on top 

of Route Exchange, it should be noted that the Route Exchange component does not 

operate or perform any computation on data sent by Neighbor Discovery. It merely 

passes it down without appending its header. These types of components are responsible 

for creating, managing global data structures, which may be accessed by other stacks. 

They may or may not interact with each other. Interaction if present is generally through 

control events (Intra Stack communication). Relative ordering of control oriented 

components does not affect the overall general functioning of the stack. They make 
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however affect stack performance. It may be a good idea to consider placing the 

component that exchanges peer-to-peer messages most frequently, bottom-most in the 

stack and that which exchanges messages least frequently, top-most the stack. Placing the 

component as low in the stack as possible shall minimize end-to-end delay and also 

reduce extra overhead (caused by dummy headers) added by other components. Placing 

the Neighbor Discovery component low in the stack, and Pruning/Grafting high in the 

stack may be a good stacking arrangement. 

Property based components impose a strict ordering on components above/below it. E.g. 

If reliability is needed hop-to-hop, the reliable component has to be placed below the 

multicast forwarding component, where-as if reliability is needed end-to-end, it has to be 

placed above the multicast forwarding component. 

 The framework offers the much-needed flexibility in this regard. Components can be 

easily added to stacks, removed from stacks or even re-ordered within stacks rendering 

different protocol stack properties to the user. Thus , building stacks with an optimal 

ordering is an important and challenging task in building a service.  
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3.1.4 Deployment - Placing the stacks in the network 
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Figure 3: Deployment of Stacks 

This report focuses mainly on service composition and not on automatic deployment 

issues in an active network. Automatic deployment of composite protocol stacks and then 

running these stacks on an Active Node is a subject of future research. 

In this report, the composite protocol stacks are manually deployed on normal nodes 

(non-Active nodes). 
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Figure 3 shows an example multicast network with the different stacks deployed at 

various nodes: 

• Multicast Sender: sends multicast data destined for a particular group. Need not 

be a part of a multicast group to send a multicast packet. Typically attached to a 

multicast core-router. 

• Multicast Core Router: present in the core of the multicast network. They are 

responsible for creating and managing multicast routing tables and setting up per 

source group multicast delivery trees. 

• Multicast Leaf Router: these are nodes that do not have downstream neighbors 

and are directly attached to multicast receivers (end-hosts). 

• Multicast Receivers: these are end-hosts that have joined a particular group and 

are entitled to receive multicast traffic destined to that particular group. 

Note that both Multicast core routers and Multicast Leaf routers can also be Multicast 

Receivers and Multicast Senders 

 

3.2 Intra-stack Communication 
 

Intra-stack communication refers to communication between two components in a stack 

or communication between the application and a protocol component in the composite 

protocol stack. This form of communication is handled by use of control events in the 

framework and by extending components to provide control interfaces. The PIPO 

(packet-in packet-out) interface is sufficient for data-plane components (property-

oriented) as discussed before. E.g. For components like reliable-delivery, checksum, 

fragment etc, it may be enough to just act and process the packet passed from above. 
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Each component just adds its own header for payload from above and strips off the 

corresponding header at the receiving side. This interface will not be sufficient for 

components that depend on some control information or set of user-level commands from 

the application. This demands a need for a control interface to enable communication 

between components or between the application and a component. 

The component which implements a control interface offers a service to components 

above it or to the application and is called the controlled component. The component 

above this or the application that utilizes the provided service is called the controlling 

component. 

In the multicast service, the JoinLeave component of the GroupMembership stack is an 

example of a component that makes use of such control events in the framework and is 

the controlled component. The application which uses its control interface to join/leave 

multicast groups is the controlling component.  

SLPM (Stack-Local Packet Memory) can also be viewed as another form of intra-stack 

communication in our framework. SLPM is an auxiliary data structure attached to the 

packet as it is processed by components in the stack. SLPM fields are implemented as 

(name, value) pairs and a set of framework functions are provided to access SLPM. 

SLPM is often used to transfer packet information between components. A high-level 

component can add a field to SLPM that is then read and used by a low-level component. 

E.g. the next-hop IP address is added to SLPM by the Forward component and is read 

from SLPM by a lower-level data link component.  

Thus intra-stack communication is mainly accomplished by use of control events in the 

framework and in some cases through use of SLPM. 
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3.3 Inter-Stack Communication and Global Memory 
 
One of the challenging problems in designing a network service is to identify and address 

the issue of how different protocols interact with each other. Network services require the 

cooperation of two or more network protocols; that is they need to share information. In  

Figure 4: Global Memory Objects - Functional Interface 
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this section, we will describe our solution to this challenging problem. 

Our solution is to generate a global memory object, independent of any protocol that uses 

it, for the storage of information shared among two or more protocols. The scope and 

extent of this object must be greater than that of any single protocol, which accesses the 

information, stored in the global memory object. Access to read / write the contents of the 

shared information is provided through a functional interface. A protocol component 

expresses its requirements for access to global memory object(s) by listing the external 

functions it uses in its implementation.E.g. The RouteExchange component needs a 

function to write new routes into the Routing Table. So, it would use a function like 

addNewRouteEntry (rt_entry) to add a new route entry to the routing table. The IP 

forwarding function needs to know the nexthop address for each destination. It would 

require an external function like ipaddr getNextHopForDest (dest_addr) to get the 

nexthop address. These functions addNewRouteEntry() and getNextHopForDest() are 

provided through the write and read functional interface of the global Routing Table 

object respectively. 

Very generally, the global memory object can be regarded as a server, providing access to 

shared information to its clients, the protocol reading/writing this information. For 

example, in the TCP/IP world the IP Routing Table is created and maintained by 

protocols like RIP, OSPF etc. and is accessed by IP while forwarding data packets. In our 

framework, the routing table is maintained as a global memory object that is external to 

both protocols IP and RIP. We shall now discuss the various features and requirements of 

global memory in our framework. 
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3.3.1 Global Memory features: 
 
Functional interface: 

In our framework, global memory access is abstracted through a functional interface for 

both reading and writing data. The functional interface model helps in encapsulating the 

data and hides the internal representation of the object. 

Synchronization: 

Protocols can access global memory only through the functional interface, so the use of 

semaphores and/or any other control mechanisms to provide necessary synchronization 

are embedded in these functions in a uniform and robust manner. Synchronization is not 

delegated to the users of the shared object(s). Furthermore, since the interface is truly 

functional, no pointers are shared, which eliminates any possibility of conflicts from 

implicit sharing through multiple references to the same object. In a similar manner, 

implementation of the functional interfaces can apply access-rights controls to limit 

access to sensitive data. This approach makes protocol interfaces to the global memory 

are very simple. Complex issues of synchronization and access control are addressed just 

once in the design and implementation of the global memory object, instead of requiring 

each protocol that shares the information to incorporate these controls in its 

implementation. And the solution is much more robust, since the integrity of the shared 

data cannot be compromised by a single protocol, which does not correctly implement 

synchronization algorithm. 
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Extensibility: 

The global memory object definition can be extended by adding new functions to its 

functional interface, to provide services for new protocols developed which use/access 

information in an existing global memory object. This provides a powerful mechanism 

for developing new protocols and/or improving existing implementations, while 

maintaining backward compatibility for previous clients (protocols) that use the global 

memory object. Previous clients continue to use the existing interfaces while the new 

protocols use the new extended version. 

3.3.2 Implementing global memory: 
 
We now discuss a few approaches to implement global memory. 

Process model: 

In this model, each global memory object is implemented with a separate process running 

as a server on each node. Typically, each global memory server is started up during the 

node initialization sequence. This server process maintains a single internal 

representation for its global memory object. The server can choose any representation for 

the data, because this structure is entirely local to the server. The server implements an 

inter-process communication (IPC) interface according to the functional definition of 

global memory. Any protocol that accesses a global memory contacts the corresponding 

server process as a client. Communication between the clients (protocols) and server is 

limited to the IPC interface advertised by the server process. This implementation 

strategy is a direct implementation of the abstract model we propose for a global memory 

object. Unfortunately, the overheads associated with inter-process communication, even 
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within a single node, may be too large for the performance requirements of network 

protocol implementations. 

 

Shared-Memory model: 

In this model, the data to be shared by multiple stacks is stored in shared memory. The 

functional interface containing the set of all functions provided by the global memory 

object is packaged into a dynamic link library (DLL). The protocol stacks, which run as 

individual processes on a node, will link to the dynamic library defined for the global 

memory it uses. 

Accesses to global memory are simply function invocations in the process image. The 

actual implementation of the functional interface is entirely opaque to the clients 

(protocol stacks). The implementation uses operating system calls to access a section of 

shared memory; so each protocol stack (independent processes) references the same 

object stored in shared memory. The implementation is responsible for handling 

synchronization issues, typically using semaphores provided by the operating system in 

its shared memory interface. 

This implementation approach strongly preserves the abstract functional interface we 

want for global memory. Users of global memory have only an opaque view of it through 

the functional interface provided by the DLL. Protocol stack implementations remain 

operating system independent. The implementation of global memory objects, with node 

local resources, may need to be adapted to the details of shared memory access interface 

provided by the operating system. 
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This implementation provides the same abstract view of global memory objects as the 

server process model, but is significantly more efficient. Global memory access is 

accomplished through a local function call instead of an inter-process communication. 

 

Node-OS model: 

For the highest execution performance, an alternative is to embed global memory objects 

directly in the operating system on which the protocol stacks run. With this alternative, 

the operating system (kernel) interface must be expanded to incorporate the functional 

interface, which defines the global memory object(s). The operating system implicitly 

operates as the global memory object server. The protocols using the global memory 

object obtain direct access through the (new) system function calls introduced with the 

global memory object. This approach is worthy of consideration only for a few special 

and widely accessed global memory objects, such as the routing table. The solution is 

vendor/operating system specific. In addition, it requires extensions to the operating 

system interface. For example, the current TCP/IP implementations use a strategy similar 

to this (though not employing a pure functional interface)to provide shared access to the 

routing table. 

 

3.3.3 Initialization 
 

Each global memory is independent of any network protocol, which uses it. From 

the perspective of a protocol running on a node, the global memory is a "service" 

provided by the node. Therefore creation of, and initialization of the global memory is a 

responsibility of the node environment. Dynamic deployment of network services must 
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determine if the global memory object(s) used by the protocols, which form the service, 

are already available on the nodes. 

Figure 4 illustrates different protocols of the multicast service cooperating by means of 

global memory objects. NeighborTable, RoutingTable, SourceTree, PruneTable and 

GroupMemberTable are all global memory objects that provide a set of read/write 

functions through their respective functional interfaces. E.g. The Route Exchange 

component of the multicast routing stack writes into global memory using the write 

interface of the global RoutingTable object and the Multicast Forwarding component of 

the multicast data stack reads using the read interface of the object. Each protocol 

component includes the list of external memory functions it accesses. 

getDownStreamNeighborsForSource(src_addr,group_addr), addNewRoute(route_entry) 

are typical examples of read and write external functions for the Route Exchange 

component. 

3.3.4 Independence 
 
The global memory objects are designed to be mutually independent with each other. E.g. 

in the above example, the Routing Table does not have any dependencies with the 

Spanning Tree global memory object and vice versa. The reason is this. A multicast 

service may need both the global memory objects Routing Table and Spanning Tree, but 

say another service requires only the services of the Routing Table object; its dependency 

on Spanning Tree is by design an undesirable feature. 

Also the global memory objects are designed so that it can be used across several 

services. E.g. the Routing Table object can be used in unicast as well as multicast, with 

possible variations in its set of functional interfaces. 
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4. IMPLEMENTATION 
 

Ensemble, a group communication system developed primarily by Mark Hayden of 

Cornell University was used as a base framework for implementation of our composite 

protocol framework specifications.  Extensions and modifications were made to 

Ensemble to represent each Ensemble layer with the corresponding state machine 

representation of the component. In this section, we first give reasons on why we chose 

Ensemble as our implementation framework, then describe briefly the state machine 

executor built in Ensemble, depict the mapping of our framework functions with 

Ensemble events and then discuss timer implementation. The features and limitations of 

the point-to-multipoint multicast model is then described. This is followed by a detailed 

description of global memory implementation and finally the working of each protocol 

component that make up the multicast service is explained. 

4.1  The Framework 

4.1.1 Reasons for choosing Ensemble  
 

• Ensemble is written in Ocaml[15], a functional programming language, and 

dialect of ML[16]. Use of functional programming languages aid in easy formal 

analysis of code. 

• Ensemble uses linear stacking of protocol layers to form a stack, the same 

composition methodology that our framework demands. 

• Event handlers are atomically executed. 

• Unbounded message queues between any two layers. 
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• Provides an uniform interface through its up and down event handlers, thus 

enabling arbitrary composition of layers to form protocols. 

• Provides support for dynamic linking of components and switching of protocols 

on the fly, enabling users to add or remove components from a stack. 

As Ensemble already provided a good base framework for implementing our 

specification, it was decided to make use of it instead of developing a new framework 

from scratch. Lot of code necessary for the original group communication to work was 

removed; only bare essential code was retained. This resulted in a much smaller 

Ensemble code base. 

 

4.1.2 State Machine Executor in Ensemble 
 
Individual layers that made up an Ensemble stack had no concept of state machines. All 

layer functionality was implemented as part of their event handlers. With the introduction 

of state machine representation for each component in our framework, each Ensemble 

layer was made to internally invoke its corresponding state machine if necessary. A 

common state machine executor was built for this purpose. Its design is shown in Figure 

5. For each component, the pair of state machines TSM and RSM are defined in Ocaml. 

Each state machine consists of list of states and a set of transitions from each state. Each 

transition is a defined as a record containing enumerated next-state, current-state value, 

enumerated event-type, guard function, action function and local-memory update. The 

state machine executor has common functionality to execute any arbitrary state machine 

defined as described above. It starts from an initial state, and moves through a set of 
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states depending on events and guards and executing action and local memory update 

functions. It also supports synchronous states and transitions. 

 

TSM RSM

Ensemble events (ECast, ESend, ELeave…)

FSM events (PktArrival, Timeout…)

TTL

Checksum

Forwarder

Fragmentation
FSM executor

Custom Composite Protocol

 

Figure 5: State Machine Executor 
 

For example, for Ensemble down events ESend(Dn) the FSM executor maps to a 

PktArrival event and invokes the TSM . TSM is then executed as defined. After state 

machine execution, the FSM executor passes the PktArrival event back to the Ensemble 

layer through defined framework functions eg. pkt_send.. Similar mapping of events take 

place for Up Ensemble events, they are directed to the RSM. Certain Ensemble events 

need not be passed to the FSM if not needed by it. The implementation allows by-pass of 

such events, which are of no interest to the state machines. 
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The next-sub section describes the mapping between our framework functions and 

Ensemble up and down event handlers. 

4.1.3 Mapping of framework functions  
 
 The table shows the mapping between few of our framework functions (as listed 

in section 2) and Ensemble UP and DN events 

 

Framework Functions Ensemble Event  

Packet Transfer  

pkt_send(pktmem) DN (EV, ABV, hdr) 

new_pkt_send(pktmem) DNLM (ev, hdr) 

pkt_deliver() UP (EV, ABV) 

new_pkt_deliver(pktpayld) UP (ev, pktpayld) 

Buffer Management  

send_kept_packet(pktpayld) DN (ev, hdr, pktpayld) 

deliver_kept_packet(pktpayld) UP (ev, pktpayld) 

  

 

Table 1: Framework Functions - Corresponding Ensemble Events 
 

Words in small letters refer to component generated fields. E.g. In a new_pkt_deliver() , 

the pktpayld is generated by the component, whereas in pkt_deliver() ABV already exists 

along with the event. 

Note the difference between existing and generated fields: 

EV: Incoming/Outgoing Ensemble event, ev: component generated Ensemble event. 

ABV: Existing packet payload , pktpayld : component generated packet payload 

hdr :  component generated header. 

Timer-related framework functions are described in the next sub-section. 



 30

4.1.4 Timer implementation 
 
 Component specification demands implementation of the following framework 

functions: 

• set_timer (timer_id: int, timeout: time) 

This function requests a TimerEvent with unique-id timer_id from the framework 

after time seconds.  

• cancel_timer(timer_id:int) 

 This function is used to cancel an existing timer with id timer_id 

• reset_timer(timer_id:int , timeout:time) 

This function is used to reset the value of the timer with id timer_id and request another 

timer that expires after time seconds. 

In the Ensemble system, timers are implemented as Control events flowing up and down 

the stack. ETimer the Ensemble heart-beat timer propagates all the way from the layer 

bottom upto the topmost layer and is again reflected down the stack. But this timer did 

not have the notion of a timer-id associated with it, which is needed by our specifications. 

So to cater to this requirement and to interface our timer framework functions with the 

Ensemble timer, a Timer Module was built. 

The Timer Module is defined as a list of timer objects.  Timer object is a record of 

type timer_rec:  
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The Timer module also provides several functions to perform operations on timer objects. 

• create() : creates a empty list of timer objects.  

• length(): returns number of timer objects in list.  

• add(timer_rec, timer_list): adds a new timer object timer_rec  to the existing list 

timer_list. 

• sort(timer_list): sorts the list timer_list based on the increasing timeout value. 

• lookup(timer_list, time, timer_dir): returns list of expired timers from timer_list 

based on values of time and timer_dir. 

• remove_all(timer_list, timeoutid, timer_dir): removes all timer objects from list 

timer_list matching timeoutid and timer_dir. 

The framework creates an empty list of timer objects for each component on startup.  

When the component invokes the set_timer() framework function as described above, a 

new timer object is created with appropriate values for timeoutid, timeout and 

timer_direction. This is added to the existing list of timers and then sorted in an 

increasing order based on the timeout value. When set_timer() is invoked by the TSM the 

timer_direction is set to TimerDn and when invoked by the RSM is set to TimerUp.  A 

type timer_dir_type = 

  | TimerUp    // Up timer events requested by RSM 

  | TimerDn    // Dn timer events requested by TSM 

type timer_rec = { 

  timeoutid : int;    // the unique timeout-id  

  timeout : Time.t;    // time-period for expiry of timer 

  timer_direction: timer_dir_type;  // direction of requested timer 

} 
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component can request for any number of timers provided each is requested with a stack-

wide timer-id value. 

When an ETimer event reaches an Ensemble layer of a component, its time is compared 

with the list of time values in the timer_list to yield a list of expired timers along with 

their timeoutid values. For each expired timer, a new event called TimerEvent(timeoutid) 

is created and then sent to the appropriate state machine ( all UP events are sent to RSM 

and all DN events are sent to TSM.  All expired timers are always removed from the list 

using remove_all().  

This ensures and produces the much-needed Timer Event with the unique timerid for the 

state machine. Cancel_timer(timeoutid) framework function directly removes the 

corresponding timer with id timer-id from the list , even before its expiry.  

 It should be noted that Timeout events shall be generated for the same state 

machine that invoked the set_timer() framework function. 

4.2 The point-to-multipoint multicast model: 
 

The multicast service implemented is for multicast data flow in a point-to-multipoint 

multicast network. Here, we have a multicast sender transmitting data on a dynamically 

established and maintained multicast tree to a group of receivers. Receivers (end-hosts) in 

this model can only join / leave certain multicast groups, they cannot in-turn, multicast to 

other group members. 

This model is well suited and applicable to situations like streaming video/audio from a 

server, file downloads etc. This will not be appropriate for video-conferencing types of 

multicast applications where we need a multipoint-to-multipoint data flow. Note that in 
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our model, we can have N different multicast senders in the network multicasting data on 

their respective trees, but each should be viewed as N separate multicast data flows. 

Receivers in a flow are allowed only to send back unicast data back to the sender e.g. 

ACK packets. 

 

4.3 Global memory using Shared Memory model: 
 

This section describes the implementation of global memory using the Shared Memory 

approach. A brief description of Linux shared memory, the kernel data structures and 

shared memory system calls follows. 

4.3.1 Shared memory: 
 
Shared memory is another method of inter-process communication (IPC) whereby 2 or 

more processes share a single chunk of memory to communicate. Shared memory is 

described as the mapping of an area (segment) of memory that will be mapped and shared 

by more than one process. This is the fastest form of IPC, because there is no 

intermediation (i.e. a pipe, a message queue etc). Instead, information is mapped directly 

from a memory segment, and into the addressing space of the calling process. A segment 

can be created by one process and subsequently written to and read from by any number 

of processes. 
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Kernel shmid_ds structure:  

The Linux kernel maintains a special internal data structure for each shared memory 

segment which exists within its addressing space. This structure is of type shmid_ds, and 

is defined in linux/shm.h as follows:  

 

Shared memory system calls used:  

shmget():  

shmat(): 

shmdt(): 

Accessing a Shared Memory Segment: 

shmget() is used to obtain access to a shared memory segment.  

Prototype : int shmget(key_t key, size_t size, int shmflg); 

The key value is a access value associated with the semaphore ID.  

The size argument is the size in bytes of the requested shared memory  

 

        // One shmid data structure for each shared memory segment in the system.  
        struct shmid_ds { 
                struct ipc_perm shm_perm;  // operation perms  
                int     shm_segsz;                 // size of segment (bytes)  
                time_t  shm_atime;                // last attach time  
                time_t  shm_dtime;                // last detach time  
                time_t  shm_ctime;                // last change time 
                unsigned short  shm_cpid;         // pid of creator 
                unsigned short  shm_lpid;         // pid of last operator  
                short   shm_nattch;               / no. of current attaches  
                                 //the following are private  
                unsigned short   shm_npages;      // size of segment (pages) 
                unsigned long   *shm_pages;       // array of ptrs to frames -> SHMMAX   
        struct vm_area_struct *attaches;  // descriptors for attaches  
        }; 
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The shmflg argument specifies the initial access permissions and creation control flags. 

When the call succeeds, it returns the shared memory segment ID. This call is also used 

to get the ID of an existing shared segment. 

Attaching and Detaching a Shared Memory Segment: 

shmat() and shmdt() are used to attach and detach shared memory segments.  

Their prototypes are as follows: 

void *shmat(int shmid, const void *shmaddr, int shmflg); 

int shmdt(const void *shmaddr); 

shmat() returns a pointer, shmaddr, to the head of the shared segment associated with a 

valid shmid. shmdt() detaches the shared memory segment located at the address 

indicated by shmaddr. 

4.3.2 Creating a global memory object  
 

The steps in creating a global memory object are as follows: 

• Specify read/write functional interface using CamlIDL[15]. 

• Implement the functions using Linux shared memory system calls. 

• Handle synchronization issues for each function by appropriate use of the correct 

semaphore model (multiple readers and single writer) 

• Dynamically link the global object with the stacks at run-time. 

We shall describe each of the above steps in sufficient detail with examples from the 

multicast service objects. 
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4.3.2.1 Specification of read/write functional interface using CamlIDL 
 
CamlIDL: 

Camlidl is a stub code generator and COM binding for Objective Caml. 

CamlIDL comprises of two parts :  

• a stub-code generator that generates the C stub code required for the Caml/C 

interface based on an IDL specification. 

• a library of functions and tools to import COM components in Caml applications 

and export Caml code as COM components. 

In this implementation we make use of only the stub-code generation feature of 

CamlIDL. It automates the most tedious task in interfacing C libraries with Caml 

programs. IDL stands for Interface Description Language , which is a generic term for a 

family of small languages that have been developed to provide type specifications for 

libraries written in C and C++. For more information on CamlIDL refer to [17]. 

The IDL file: 

A typical IDL file describing a set of read/write functional interface would look like this: 

 

 

 

 

 

 

 

struct ntable_entry { 

.... 

}; 

// write functions : 

void write_ntable([in] struct ntable_entry ntable[], [in] int num); 

// read functions : 

int getNeighborForInterface([in] int intf); 

boolean isAddrNeighbor([in] int addr); 

int getInterfaceForNeighbor([in] int nbor); 

void read_ntable([out] struct ntable_entry ntable[20]); 
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The function signature including input/output arguments and return types are completely 

specified. These functions along with the needed data-structures are saved in a .idl file  

Generating the stub-code: 

The camlidl stub code generator is invoked as follows: 

camldil [options] file1.idl file2.idl .... 

for each file f.idl , camlidl generates the following files: 

• A Caml interface file f.mli that defines the Caml view of the IDL file. It contains 

Caml defintions for the types declared in the IDL file, as well as declarations for 

the functions and the interfaces. 

• A Caml implementation file f.ml that implements the f.mli file 

• A C source file f_stubs.c that contains the stub functions for converting between C 

and Caml data representations. 

• If the -header option is given , a C header file f.h containing C declarations for the 

types declared in the IDL file  

Eg:  camlidl -header ntable.idl generates the following files: 

ntable.mli, ntable.ml, ntable_stubs.c,ntable.h  

For the IDL specification as in ntable.idl (above), ntable.ml and ntable.mli would 

contain: 

type ntable_entry = { 

….. 

  } 

external write_ntable : ntable_entry array -> int -> unit = "camlidl_ntable_write_ntable" 

external getNeighborForInterface : int -> int = "camlidl_ntable_getNeighborForInterface" 

external isAddrNeighbor : int -> bool = "camlidl_ntable_isAddrNeighbor" 

external getInterfaceForNeighbor : int -> int  = "camlidl_ntable_getInterfaceForNeighbor" 

external read_ntable : unit -> ntable_entry array = "camlidl_ntable_read_ntable" 
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ntable_stubs.c: 

example stub-function: 

 

 

 

 

 

 

 

The function getNeighborForInterface(intf) has to be implemented by the user in the 

corresponding header file ntable.h  

Once all these files are generated, the header file has to be implemented which is 

described next. 

4.3.2.2 Implement the functional interface using Shared Memory system 
calls 

 

Functions are of two types read/write: 

• Write functions write data into shared memory segments 

• Read functions read data from shared memory segments  

Both write/read functions consists of invoking the following system calls: 

• Creating a segment using the shmget() system call. 

• Attach the process to the segment using the shmat() system call. 

• Perform either write/read of shared data to/from shared memory segment 

• Detach the process from the segment after completion using the shmdt() system call 

value camlidl_ntable_getNeighborForInterface(value _v_intf) 

{ 

  int intf; /*in*/ 

  int _res; 

  value _vres; 

  intf = Int_val(_v_intf); 

  _res = getNeighborForInterface(intf); 

  _vres = Val_int(_res); 

  return _vres; 

} 
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A typical code would look like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eg : WRITE function: 

void write_ntable(struct ntable_entry * ntable, int n) { 

// Initialize variables  

key_t key; 

int shmid,shmsize 

struct ntable_entry *shm, *s;  

// key value  

key = NTABLE_SHMKEY; 

shmsize = sizeof(struct ntable_entry) * n; 

 // Create the segment  

if ((shmid = shmget(key,4096,IPC_CREAT | 0666)) < 0) { 

  perror("shmget"); 

 exit(1); 

  } 

// key is chosen to be a predefined unique value  

// shared memory size is 4096 bytes  

// Attach the segment  

        if ((shm = shmat(shmid, NULL, 0)) == (struct ntable_entry *) -1) { 

                perror("shmat"); 

                exit(1); 

        } 

// Write DATA into SHARED MEMORY  

// Store the array of structures in shared memory  

        s = shm; 

        memcpy(s,ntable,shmsize); 

// Detach the process from the shared memory segment  

        if((ret = shmdt(shm)) < 0)    { 

        perror("shmdt"); 

        exit(1); 

       } 

} 
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All WRITE functions are implemented in a similar manner. READ functions also have 

similar structure except that they READ from shared memory segments. 

4.3.2.3 Handling concurrency issues using semaphores: 
 

Since we have multiple processes modifying the shared memory segment, it is possible 

that certain errors could crop up when updates to the segment occur simultaneously. This 

concurrent access is almost always a problem when you have multiple writers to a shared 

object. Using semaphores to lock the shared memory segment while a process is writing 

to it can solve this problem.  

It should be noted that the implementation allows multiple readers to READ from shared 

Pseudo Code: 

Global variables: 

 mutex,db : semaphore := 1  // mutual exclusion semaphores 

 readcount : integer := 0 

 

READER: 

 p(mutex); 

 readcount++; 

 if (readcount is 1) then p(db); 

 v(mutex); 
 CRITICAL SECTION READ 

 p(mutex); 

 readcount--; 

 if(readcount is 0) then v(db); 

 v(mutex); 

WRITER: 

 p(db); 

 CRITICAL SECTION for WRITE  

 v(db); 
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memory but allows only a single WRITER to write into shared memory at any particular 

time. So multiple READERS are ALLOWED but multiple WRITERS are NOT 

ALLOWED. 

The solution used for the Readers and Writers problem is shown in the above segment 

of pseudo-code. 

In this solution, on semaphore db we have utmost one reader (all other readers will wait 

on mutex). But once a reader gets in, all waiting readers can get in ahead of waiting 

writers. When a writer finishes, if there are waiting readers and writers, either readers or a 

writer will run. 

An example of a Linux semaphore implementation for the above solution to handle 

concurrency control for shared memory access follows: 

Let us consider the use of semaphores for accessing the Neighbor Table write function 

write_ntable(). Only semaphore related code is shown and discussed. 

Explanation of Linux semaphore functions used: 

semget(): used to create the semaphore set or grab the existing semaphore set. 

usage: 

#include <sys/sem.h>  

int semget(key_t key, int nsems, int semflg);  

returns a semaphore identifier associated with the key. 

key is an unique identifier that is used by different processes to identify this semaphore 

set. 

nsems argument is the number of semaphores in this semaphore set 

semflg argument holds the permissions on the new semaphore set .  
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For creating a new set, the access permissions is bit-wise ORed with IPC_CREAT. 

0 is passed for using the existing set. The semaphores are created during the global 

memory initialization phase itself. So read/write functions here just access the existing 

semaphore set. 

semop(): 

prototype :   

int semop(int semid ,struct sembuf *sops, unsigned int nsops);  

All operations that set, get, or test-n-set a semaphore this system call. Its functionality is 

dictated by the structure <struct sembuf> that is passed to it. 

struct sembuf { 

ushort sem_num; 

short sem_op; 

short sem_flg; 

}; 

sem_num is the number of the semaphore in the set that is to be manipulated. 

sem_op is the action to be performed on the semaphore.  

It depends on whether sem_op is positive, negative or zero as given below : 

positive: the value of sem_op is added to the semaphore's value. Used in a V() operation. 

negative : if the absolute value of sem_op is greater than the value of the semaphore, the 

calling process will block until the value of the semaphore reaches that of the absolute 

value of sem_op. Finally, the absolute value of sem_op will be subracted from the 

semaphore 's value. This is used in the P() operation on the db semaphore in the above 

example. 
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zero : the process will wait until the semaphore reaches 0. 

*sops is a pointer to the struct sembuf that is filled with semaphore commands. semid 

argument is the number obtained from a call to semget(). 

READ functions also use these functions in accordance with the algorithm for 

READERS as described previously. 

void write_ntable(struct ntable_entry *ntable, int n) { 

        key_t ntable_db_key; 

        int ntable_db_semid,sem_val; 

        struct ntable_entry *shm, *s; 

        struct sembuf ntable_db_sb = {0, -1, 0}; /* semop value is -1 */ 

          ntable_db_key = NTABLE_DBKEY;        /* key value */ 

       /* Grab the db semaphore */ 

     if((ntable_db_semid = semget(ntable_db_key, 1, 0)) == -1 ) { 

                    perror("semget"); 

                   exit(1); 

        } 

     /* get the current value of db semaphore  

        if((sem_val = semctl(ntable_db_semid,0,GETVAL,0)) == -1)   { 

                perror("semctl"); 

                exit(1); 

        }     
      /* P(db)The P() operation on the semaphore */ 

        if(semop(ntable_db_semid, &ntable_db_sb, 1) == -1) { 

                perror("semop"); 

                exit(1); 

        } 

/* ENTER CRITICAL SECTION */ 

/* LEAVE CRITICAL SECTION */ 

         ntable_db_sb.sem_op = 1; /*free resource */ 

        /* V(db) */ The V() operation on the db semaphore 

        if(semop(ntable_db_semid,&ntable_db_sb,1) == -1) { 

                perror("semop"); 

                exit(1); 

        } 
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4.3.2.4 Dynamically linking shared global objects with the stacks 
 

For each global memory object <obj> we shall have a obj_stubs.c and obj.h file. 

Object file obj_stubs.o is created using the command 

gcc -c -fpic obj_stubs.c  

Shared object dllobj.so is created using the command 

gcc -shared -lc -o dllobj.so obj_stubs.o  

All shared objects (dll_.so files) are dynamically linked with the stacks that need them at 

run-time. 

 

4.3.3 Global Memory Initialization 
 

Both shared memory and semaphores, which are part of global memory, are created and 

stored in the Linux kernel. Global memory initialization on a node has to be done prior to 

running the composite protocol stacks that use them. Initialization comprises of shared 

memory initialization and semaphore initialization. 

Shared Memory Initialization: consists of creating the necessary shared memory 

segments for all the global memory objects. 

Semaphore Initialization: consists of initializing the set of semaphores (3 of them) for 

each global memory object. 

mutex, db, readcount are the three semaphores . mutex and db are initialized to 1 , 

readcount is initialized to 0 . 
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The content of shared memory segment and semaphores on a node can be viewed using  

the Linux command <ipcs> 

 

Sample initialization code from <ntable_shminit.c> 
#include <stdio.h> 
#include <sys/shm.h> 
#include <sys/ipc.h> 
#include "../keys.h" 
 
/* A maximum of 20 neighbor table entries can be stored in shared memory */ 
struct ntable_entry { 
  int intf_addr; 
  int nbor_addr; 
  int lastbit; 
}; 
 
int main () 
{ 
 key_t key; 
 int shmsize,shmid,i,j; 
 struct ntable_entry *s,*shm,init_arr[20]; 
 
 /* Initialize the init_arr */ 
 for(i=0;i<20;i++)        { 
 init_arr[i].intf_addr = 0; 
 init_arr[i].nbor_addr = 0; 
 init_arr[i].lastbit = 0; 
 } 
 /* key value */ 
 key = NTABLE_SHMKEY; 
 
 /* Create the segment */ 
 if ((shmid = shmget(key,4096,IPC_CREAT | 0666)) < 0) { 
 perror("shmget"); 
 exit(1); 
 } 
 
 /* Attach the segment */ 
 if ((shm = shmat(shmid, NULL, 0)) == (struct ntable_entry *) -1)  { 
                perror("shmat"); 
          exit(1); 
        } 
 
/* copy the init_arr to shared memory */ 
s = shm; 
shmsize = sizeof(struct ntable_entry) * 20; 
printf("Initializing NEIGHBOR TABLE \n"); 
memcpy(s,init_arr,shmsize); 
printf("no of bytes written: %d\n",shmsize); 
} 
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Sample semaphore initialization code  
 
#include <stdio.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 
#include "../keys.h" 
 
int main (void) 
{ 
        key_t ntable_mutex_key,ntable_db_key,ntable_rc_key; 
        int ntable_mutex_semid,ntable_db_semid,ntable_rc_semid; 
        union semun arg; 
 
        ntable_mutex_key = NTABLE_MUTEXKEY; 
        ntable_db_key = NTABLE_DBKEY; 
        ntable_rc_key = NTABLE_RCKEY; 
 
        if((ntable_mutex_semid = semget(ntable_mutex_key,1,0666 | IPC_CREAT)) == -1) { 
                perror("semget"); 
                exit(1); 
        } 
        if((ntable_db_semid = semget(ntable_db_key,1,0666 | IPC_CREAT)) == -1) { 
                perror("semget"); 
                exit(1); 
        } 
        if((ntable_rc_semid = semget(ntable_rc_key,1,0666 | IPC_CREAT)) == -1) { 
                perror("semget"); 
                exit(1); 
        } 
        /* initialize mutex and db semaphores to 1 */ 
        arg.val = 1; 
        if(semctl(ntable_mutex_semid,0,SETVAL,arg) == -1) { 
               perror("semctl"); 
       exit(1); 
        } 
 if(semctl(ntable_db_semid,0,SETVAL,arg) == -1) { 
               perror("semctl"); 
       exit(1); 
        } 
 return 0; 
} 
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4.3.4 Multicast Service Objects and their Functional Interface 
 
 
The global memory objects used by the multicast service are  

• Neighbor Table 

• Routing Table 

• Source Tree 

• Group Table 

• Prune Table  

For each global memory object, the ML data structure types and the list of functional 

interfaces they provide is listed in this sub-section. Since shared memory is always 

available as a contiguous chunk of memory, global memory data structures cannot be 

stored in the form of linked-lists or hash-tables. All objects are stored as an array of 

structures (contiguous memory) in its own allocated and initialized shared memory space.  

 

4.3.4.1 Neighbor Table  
 

The neighbor table stores multiple 1-1 mappings between an interface and the 

corresponding neighbor detected on that interface. Its functional interface allows creation 

and update of these mappings through its Write functions and provides functions to 

retrieve an element of a map given the other. In general, this object can be used by any 

protocol to store interface-neighbor mappings. For example, it could be used by OSPF’s 

hello-protocol. In this multicast service, the Write interface is used by Neighbor 

Discovery and the Read interface is primarily used by the Multicast Forwarding 

component. The table below lists some of the core functions. 
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WRITE  void write_ntable([in] struct ntable_entry ntable[], [in] int num); 

  invoked by Neighbor Discovery when new neighbor is discovered or  

  when existing neighbor is found dead 

READ  [int32] int getNeighborForInterface([in,int32] int intf); 

    returns the neighbor's IP address given the interface IP address 

  boolean isAddrNeighbor([in,int32] int addr); 

  returns true if the input IP address is a neighbor and false if not 

  [int32] int getInterfaceForNeighbor([in,int32] int nbor); 

        returns the interface's IP address given the neighbor's IP address 

  void read_ntable([out] struct ntable_entry ntable[]); 

  returns the entire content of the Neighbor Table. 

 

Table 2: Neighbor Table- Functional Interface 
struct ntable_entry { 

int32 intf_addr; // interface IP address 

int32 nbor_addr; // neighbor IP address 

boolean lastbit; //flag  

}; 

4.3.4.2 Routing Table 
 
The routing table is a repository for unicast-routes. The metric and next-hop information 

for each route prefix is stored in this object. In general, any protocol that needs to create 

and store routes can use this e.g. RIP can also use this. Here the Route Exchange 

component interacts with this object to store its routes. Multicast Forwarding primarily 

uses its Read interface during RPF checks and Unicast Forwarding uses it during 

forwarding unicast packets. The table lists the core functional interfaces for the object. 
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WRITE  void write_rtable([in] struct rtable_entry rtable[], [in] int num); 

  invoked by Route Exchange when new routes are found 

READ  [int32] int getNextHopForDest([in,int32] int dest_addr); 

  returns the next-hop IP address for a given destination IP address. 

 
Table 3: Routing Table – Functional Interface 

 

struct rtable_entry{ 

int32 rt_netaddr;  // network address 

int32 rt_netmask;// network mask 

int metric; // hop-count 

int32 nexthop;// next-hop address 

boolean rt_lastbit; //flag } 

4.3.4.3 Source Tree 
 
The source tree object maintains spanning trees for each multicast source in the network. 

A spanning tree for each source network contains information on the dependent 

downstream neighbors for that source. Here, the Spanning Tree component interacts with 

this object when its creates/updates spanning tree information. The Multicast Forwarding 

component uses its Read interface during the forwarding process. The table lists the core 

functional interfaces offered by this object. 

WRITE  void write_source_tree([in] struct tree_entry tree[], [in] int num); 

  invoked by Poison Reverse component when a Poison packet is received 

READ  void getDnStreamNeighborsForSrc([in,int32] int src_addr, [out] t0 nbor_list[]); 

  returns downstream dependent neighbors for a particular  source address 

  void read_source_tree([out] struct tree_entry tree[]); 

  returns the entire contents of the Source Tree  

Table 4: Source Tree – Functional Interface 
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struct tree_entry{ 

int32 tree_netaddr; // network address 

int32 tree_netmask;     // network mask 

int32 nbor_list[];      // downstream dependent neighbors 

boolean tree_lastbit;  

}; 

4.3.4.4 Prune Table 
 
The prune table stores interface prune state information for each source-group pair in the 

network. Interfaces can be in any of the three states: un-pruned, pruned or grafted. This 

object provides functions to prune/graft specific interfaces for specific source-group 

pairs. Its Read interface provides functions to retrieve interface state for a specific source-

group pair which is used by Multicast Forwarding. The Write functions are used by the 

Pruning, Grafting and the Join/Leave components. This object is not accessed / used 

when pruning feature is disabled. The table below lists the core functional interfaces: 

 

WRITE  void pruneIGMPIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int intf_ipaddr);

  Add/update prune table entry for (src_addr,grp_addr) pruning igmp interface intf_ipaddr 

  void pruneIGMPIntfforGrp([in,int64] int grp_addr, [in] int intf_ipaddr); 

  Add/update prune table entry for (all src_addr's,grp_addr) pruning igmp interface intf_ipaddr 

  void pruneCoreIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int intf_ipaddr); 

  Add/update prune table entry for (src_addr,grp_addr) pruning core interface intf_ipaddr 

  void graftCoreIntfforSrcGrp([in,int32] int src_addr, [in,int32] int grp_addr, [in,int32] int intf_ipaddr); 

  Add/update  prune table entry for (src_addr,grp_addr) grafting core interface intf_ipaddr 

  void graftIGMPIntfforGrp([in,int32] int grp_addr, [in,int32] int intf_ipaddr); 

  Add/update prune table entry for (src_addr,grp_addr) grafting the igmp interface intf_ipaddr 
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READ int get_no_of_entries(); 

  returns the number of entries present in the Prune Table.  

  struct prunetable_entry getentry([in] int n); 

  returns the nth entry from the Prune Table 

  struct prunetable_entry getentryForSrcGrp([in,int32] int src, [in,int32] int grp_addr); 

  returns the Prune Table entry corresponding to the (source,group) pair (src,grp_addr) 

 

Table 5: Prune Table – Functional Interface 
 

struct intf_entry{ 

int32 ipaddr  // Interface IP address; 

int intf_state; // either un-pruned, pruned or grafted 

}; 

struct prunetable_entry { 

int32 src_addr;  // source address  

int32 grp_addr;  // multicast group address 

struct intf_entry igmp_intf[]; // list of igmp interfaces 

struct intf_entry core_intf[]; // list of core interfaces 

}; 

4.3.4.5 Group Table  
 
The group table stores group membership information for each interface. It allows 

dynamic addition of new entries and updating existing entries when members on attached 

interfaces join and leave multicast groups. It also provides an interface to check if a 

particular group member is present on an interface. The Join Leave component accesses 

the Write interface and Multicast Forwarding uses the Read interface. The following 

table lists the functional interfaces: 
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WRITE  void write_grptable([in] struct grptable_entry grptable[], [in] int num); 

  invoked by the Join-Leave component on the leaf router periodically  

READ  boolean checkGrpAddrForIntf([in,int32] int gaddr, [in,int32] int intf_addr); 

  checks if the group address gaddr is present on the interface intf_addr, returns true if present. 

  void read_grptable([out] struct grptable_entry grptable[10]); 

  returns entire contents of the Group Table 

 

Table 6: Group Table – Functional Interface 
 

struct grptable_entry{ 

int32 intf;    

int32 grpmem_addr[10]; 

boolean grp_lastbit; 

}; 

4.3.5 Protocol Interactions Through Global Memory 
 
In this sub-section we present a brief operational overview of how the protocol stacks 

interact with each other using global memory. Global memory is accessed before data 

transfer, during transfer, when members join and leave groups and also during 

pruning/grafting of the tree branches. 

Before data transfer: 

At startup, the global memory objects on all nodes are initialized. Before any transfer of 

data can take place, the multicast routing and the group management stacks are started. 

The routing stack components work independently of each other generating and sending 

packets to their corresponding peers. Neighbor Discovery dynamically updates the 

Neighbor Table, Route Exchange updates the Routing Table and Spanning Tree creates 

and maintains the Source Tree global object. Route Exchange makes use of Neighbor 



 53

Table and Spanning Tree makes use of Routing Table and Source Tree global objects for 

its operation. The pruning and grafting components during this place are not active and 

thus the global memory Prune Table remains un-accessed and empty. 

Spanning trees are now fully set-up for data transfer to take place. If members join 

groups in this phase, the Join Leave component updates the Group Table at 

corresponding nodes. They will just remain listening for data, as data transfer has not yet 

started. 

Data Transfer: 

Multicast Forwarding in the data stack is the core component, which accesses all the 

global memory objects. It accesses Neighbor Table for interface-neighbor mappings, 

reads Routing Table during its Reverse Path Forwarding [6] check, reads SourceTree to 

get the list of dependent downstream neighbors, reads GroupTable to find if there are any 

group members on its leaf interfaces. If there are no group members on a leaf interface, 

its prunes the leaf interface and writes into Prune Table. It finally reads from PruneTable 

to get the list of un-pruned/grafted interfaces before forwarding the packet.  

Meanwhile, as soon as PruneTable entries get created at the leaf nodes, the Pruning 

component becomes active and prunes are sent upward. It should be noted that all the 

other components of the routing stack Neighbor Discovery, Route Exchange, Source Tree 

still remain active during this phase dynamically maintaining their respective global 

objects. 

Member join/leave: 

The Group Table is updated whenever member joins/leaves a group both at leaf router 

and at end-hosts. In addition to this, when a member joins a group all previously pruned 
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interfaces corresponding to that group are grafted and this information is written into the 

Prune Table. Thus the Join/Leave component writes into both Prune Table and Group 

Member Table as shown above. 

 

Pruning and Grafting: At the core the Pruning component writes into Prune Table on 

receiving a prune and Grafting writes into the Prune Table on receiving a graft. 

Thus the stacks work in tandem, interacting with each other using the shared information 

in the global memory to provide multicast of data through the branches of the multicast 

tree. 

Note: When reliable multicast is used Unicast Forwarding uses Routing Table to forward 

unicast NACKs and re-transmissions. 
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4.4 COMPONENT IMPLEMENTATION 
 

In this section, we shall describe the working of all protocol components used in the 

multicast service. For each component, we discuss the following features: 

• The sender TSM and receiver RSM functionality.  

• Memory: Local memory structure, SLPM requirements/usage, packet-memory (bits-

on-the-wire) and global memory access.  

• Events: how the component responds to data, control and timer events.  

• Component- reusability  

• Stack placement (position in the stack) 

4.4.1 MULTICAST DATA STACK components: 
 

4.4.1.1 Multicast forwarding  
 

This component is the core component in the multicast data stack. It is present on all the 

nodes i.e. at senders, core and leaf routers as well as end-host receivers. It is responsible 

for the transmission of multicast data packets on the un-pruned/grafted branches of the 

multicast tree. Initially when the branches of the tree are not pruned, packets follow the 

source broadcast tree. But when pruning comes into operation and builds the source-

group multicast trees, packets are multicast on the un-pruned branches of the multicast 

tree.  

The TSM is operational only on nodes, which act as Multicast senders. On all other 

nodes, which either forward multicast data  (core and leaf routers) or deliver it to the 
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application (end-hosts multicast receivers) the TSM remains inactive and only the RSM 

is operational.  

The TSM sends the packet on all un-pruned/grafted interfaces having downstream 

dependent neighbors for the corresponding (src,grp) pair. The packet is dropped if no 

downstream neighbors are present for the (src,grp) pair. 

Note: In order to prevent sending multiple Esend events (one for each downstream 

interface) down the stack, this component only generates a single Esend and sends it 

down with the list of downstream neighbors attached in stack local packet memory 

(SLPM). The packet will be then handled by the Replicator component down below the 

stack, which actually is responsible for replicating the packet and sending it to the list of 

downstream interfaces as read from SLPM. 

At the router: The RSM contains most of the functionality. It first performs the RPF 

(Reverse Path Forwarding) check on the packet. This checks if the packet is received on 

the correct upstream interface, one that is used to reach the source of the multicast packet. 

If the RPF check fails the packet is dropped. If it is successful, each leaf interface is 

checked, if any, for group members. If a group member is present on the interface, the 

packet is multicast on the leaf interface, otherwise the leaf interface is pruned for this 

(src,grp) pair. The packet is then multicast on all un-pruned/grafted branches of the tree 

to all dependent downstream neighbors. At the destination (end host multicast receiver) 

The multicast packet is delivered to the host.  
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Local memory: 

 

 

 

 

 

 

 

 

Packet Memory (header): 

 

 

 

 

 

 

 

 

McastForwHdr is used for all packets sent from the multicast sender or forwarded 

at core/leaf multicast routers.  

 

SLPM: 

setSrcAddr() , setNextHopAddrList() SLPM functions used. 

• setSrcAddr() sets source address of packet in SLPM. TTL component requires this. 

• setNextHopAddrList() used to set list of next-hop addresses ( dependent downstream 

neighbors) ,  Replicator component requires this. 

 

 

 

 

(from /component/dvmrp/mcast_forward_sm.ml): 

type state = { 

        node_addr : Addr.set;  // host address 

        group_addr : string;   // multicast packet’s group address 

        mutable noIntf : int; 

        totalIntf       : int; 

        source_addr : Hsys.inet; 

} 

type hdr_t ={ 

  src_addr : int32;  // multicast packet’s source address 

  grp_addr : int32   // multicast packet’s group address 

} 

type header = NoHdr    | MCastForwHdr of hdr_t    

 int32 type used to impove performance 
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Global Memory access: 

Neighbor Table: getNeighborForInterface(), getInterfaceForNeighbor(), 

isAddrNeighbor() 

Routing Table: getNextHopForDest() 

Source Tree: getDnStreamNeighborsForSrc() 

Group Table: checkGrpAddrForIntf() 

Prune Table: pruneIGMPIntfforSrcGrp() , getentryForSrcGrp() 

This component accesses all the global memory objects. 

Events: 

Data: 

• TSM sends all multicast data using pkt_send() with McastForwHdr if necessary or 

drops it using drop_pkt(). For unicast packets, this component just attaches a dummy 

NoHdr. Note: multicast /unicast packets are identified using a SLPM field "pktType" 

which is set to "multicast" or "unicast" respectively. 

• RSM (at core-routers) forward all packets using pkt_send() , at leaf-routers attach a 

MCastLeafHdr and forward using pkt_send() and at end-host receivers , deliver using 

pkt_deliver(). All unicast packets with NoHdr attached are just passed up without any 

processing. 

Control: does not make use of control events 

Timers: does not request any timers. 
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4.4.1.2 Replicator  
 

 This component is actually used by the multicast forwarder to replicate the packet 

N times and send the packet on N different interfaces. Without this component, the 

multicast forwarder had to send N separate ESend events down the stack to send the 

packet on N interfaces. This caused lot of overhead and extra processing for the 

intermediate components in the stack like Fragment, Checksum etc. To prevent this extra 

overhead the multicast forwarder runs over the replicator (placed bottommost in the 

stack), and sends only a single ESend event with list of next-hop attached in SLPM. The 

replicator reads from SLPM, gets the list of N next-hop addresses and sends the same 

packet on N different interfaces. The core-functionality is embedded in the TSM, which 

reads from SLPM and replicates the packet and sends it. The RSM is almost dummy, it 

only delivers the packet after setting appropriate SLPM fields like IncomingInterface() 

and McastSrc() 

Note: This component acts only on "multicast" packets. All "unicast" packets are passed 

with a NoHdr attached. 

Local memory: 

 

(from /component/mcast/replicator_sm.ml): 

type state = { 

  mutable mcastsrc : Hsys.inet  ; // multicast source address of packet 

  node_type     : node;   // node-identifier , sender, router or receiver 

} 
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Packet Memory (header): 

 

 

A NoHdr is attached for all unicast packets. Address header attached for all multicast 

packets. 

The reason the multicast source address is part of the header is that some components 

(eg: RMTP discussed later) below the multicast forward may need to know the original 

source address of the multicast packet. So the source address carried as part of header is 

then set in SLPM at the destination for other components to read. Also, the dest_addr is 

used to set the SLPM field IncomingInterface at the destination stack. 

 

SLPM: The TSM reads the list of next-hop addresses from SLPM using the 

getNextHopAddrList() SLPM read function and sets the next-hop destination address 

using the setDestAddr(). The RSM sets the SLPM fields using setIncomingInterface() and 

setMCastSrc(). 

 

Global Memory: 

Does not make use of any global memory objects. 

Events: 

Data: Acts only on "multicast" packets, replicates and attaches header Address. All 

"unicast" packets are passed with header NoHdr. 

type hdr_t ={ 

mcastsrc_addr : Hsys.inet; // multicast source address of packet 

dest_addr : Hsys.inet;                      // the intermediate next-hop address  

} 

type header = NoHdr | Address of hdr_t 
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Control: Does not make use of control events 

Timers: Does not make use of any timers. 

Stack Placement:  

Has to be placed below the multicast forwarding component and as below/bottom in the 

stack as possible for reducing the overhead incurred for other intermediate components in 

the stack. The remaining components described in this sub-section are all property-

oriented optional components in the multicast-data stack. 

 

4.4.1.3 Multicast in-order component  
 

This component provides in-order delivery of all packets flowing in a point-to-multipoint 

multicast network (i.e. from a single sender to multiple receivers). The TSM is fairly 

simple, each packet is sent after tagging it with a sequence number. The sequence number 

is incremented monotonically after sending each packet. The core in-order functionality 

lies in the RSM. The component maintains a separate receive window buffer for each 

unique sender in the network. 

All in-order packets are directly delivered to the application. Out-of order packets are 

buffered in the receive window. They are actually inserted at the tail of the buffer and 

then sorted based on increasing sequence numbers. Timers are associated with each 

buffered packet to prevent it from remaining forever in the buffer. Buffered packets are 

delivered when their corresponding timers expire. 

Limitations: cases when this component does not deliver packets in-order: 
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• When the buffer is full and an out-of-order packet arrives, the first packet in the 

buffer is delivered. So the in-order property is limited by the degree of in-orderness, 

which should not exceed the window size. 

• A buffered packet's timer expires (usually set to a large value). 

Local Memory 

 

 

Packet Memory (header): 

type header = NoHdr  | DataPkt of int 

Header carries just the in-order sequence number. 

(from /components/mcast/mcast_inorder_sm.ml) 

type 'abv seq_rec ={  // buffer contents 

sq_num : int;   // sequence number of buffered packet 

payload : 'abv pktpayld; // payload of the buffered packet 

} 

type 'abv recv_window ={ // receiver window parameters 

mutable exp_seq : int;  // next expected sequence number 

mutable last_seq_num : int; // the last sequence number delivered to the application 

mutable count : int;  // count of no of packets buffered 

mutable j : int; 

buffer : 'abv seq_rec array; // packet buffer 

max_size : int;             // size of the receiver window 

} 

type 'abv state = { 

buffer_sweep : Time.t   // maximum time a packet can be buffered at the receiver  

mutable send_next : int;        // The next sequence number to be generated at the sender  

recv_buffer : (Hsys.inet * ('abv recv_window)) list ref;  // unique buffer for each sender   

mutable window : 'abv recv_window   // window for the current source  

} 
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SLPM: not used  

Global Memory: not used  

Events: 

Data: TSM sends all "multicast" packets with header DataPkt using pkt_send(). 

RSM delivers all in-order packets using pkt_deliver(), and buffered packets sent using 

deliver_kept_packet(). 

Control: does make use of any control event. 

Timers: buffer timer used to deliver packets buffered for too long. 

Stack Placement: to be placed above the multicast forwarding component to provide the 

desired end-to-end point-to-multipoint in-order delivery. 

4.4.1.4 End-to-End Reliable (without NACK implosion prevention) 
 

This component provides end-to-end reliable and in-order delivery of packets in a point-

to-multipoint network (i.e. from a single sender to multiple receivers). The working of 

this component is based on RMTP, but this does not implement the NACK-implosion 

prevention mechanism. (NACKs are sent all the way up the tree to the original multicast 

sender). This component is operational only at the multicast sender and at all end-host 

multicast receivers. 

The multicast sender handles:  

(a). Transmission of multicast packets, (b) buffering of un-ACKed data in send buffer (c) 

NACK processing (d) Re-transmission of data using either multicast or unicast.  

The receiver is responsible for:  
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(a). periodic transmission of a NACK packet (reporting packets that are not yet received) 

back to the sender. (b) buffering out-of-order packets in receive buffer. (c) delivering in-

order data to the application. 

Timers used are dally_timer (Tdally) , retrans_timer(Tretrans) and nack_timer(Tnack). 

Transmission/buffering of multicast packets: (handled by TSM at multicast sender) 

 Each multicast packet is tagged with a sequence number. (starts from 0 and is  

monotonically increased for every packet). All packets sent are buffered in send_buffer 

for later re-transmission if needed. The retrans_timer is also started after sending the first 

packet. 

It should be noted that in this type of multicast network, the sender does not explicitly 

know who the receivers are. Receivers can dynamically join/leave a particular multicast 

session. The goal is to provide reliable delivery to the current members of the session. So 

the creation and termination of sessions is timer based. dally_timer is used for this 

purpose. After sending the last packet in the session, the dally_timer is started. Tdally is 

defined as atleast twice the lifetime of the packet in the network. Receivers send back 

their REQ packets only if they have lost packets. The dally_timer is reset on receiving a 

REQ from any of the receivers. Also, time interval between sending two consecutive 

REQs is much smaller than Tdally. So, expiry of the dally_timer implies that either (a). 

all current receivers have correctly received all packets (b). something exceptional like a 

permanent link breakdown has occurred. This ensures termination of the session and all 

connection state (e.g. send buffer contents) are deleted. 

Negative Acknowledgement packets (NACKs) 
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NACK packets are used to periodically (Tnack) report the contents of the receiver 

window to the sender. They contain the next expected sequence number at the receiver 

and a sequence list of packets that have not received. When all packets are correctly 

received and in-order, the receiver window is empty and thus no NACK packets are sent.  

Receiving NACKs  (handled by RSM at multicast sender) 

The sender buffers all NACK packets in nack_buffer received during every period 

Tretrans. These NACK packets from different receivers in the network will be later 

processed when the retrans_timer expires. 

NACK processing and retransmissions  (handled by TSM at sender): 

When the retrans_timer expires , the nack_buffer is processed and a retrans_list is 

created. Each element in the list contains the packet sequence number and list of 

receivers that has requested this packet. to be transmitted. For each retransmission, if the 

number of receivers requesting packet exceeds a threshold Mcast_Threshold , the packet 

is re-transmitted using multicast, if not is it unicast back to the particular receiver. 
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Local Memory  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Packet Memory (header) 

 

 

 

 

 

 

 

 

 

 

(from /components/mcast/mcast_reliable_sm.ml) 

type 'abv state = { 

node_addr : Addr.set;    // host address 

dally_sweep : Time.t;     // The dally timer interval  

retrans_sweep : Time.t;    // The re-transmit timer interval  

ack_sweep : Time.t;     // The ACK timer interval  

buffer_sweep : Time.t  //  maximum time a packet can be buffered at the receiver  

mutable send_next : int;    //The next sequence number to be generated at the sender  

mutable send_left : int;             // Send window left edge  

mutable send_count : int;                               // no of packets in the send buffer  

send_buffer : 'abv seq_rec array; // store all un-ACKed packets at the sender  

ack_buffer : (Hsys.inet * ack_buf) list ref;    // store all ACK packets  

send_max : int;     //  send window size  

// store all out-of-order packets at the receiver, a buffer for each unique sender   

recv_buffer : (Hsys.inet * ('abv recv_window)) list ref;  

mutable window : 'abv recv_window ; // window for the current source  

threshold : int ;    // re-transmission unicast/multicast threshold  

mutable pktseqno : int;   // a loop count  

} 

recv_window and seq_rec are same as that used in mcast_inorder component. 
 

// buffer to store contents of ACK 

type ack_buf ={ 

buf_left_edge : int; 

buf_bitvector : bool array; 

} 

type ack_header ={ 

src : Hsys.inet;  // The source address of the ACK   

left_edge:int; // the sequence number corresponding to the left-edge 

bitvector: bool array;   // the bit vector , 0 for lost/un-received pkts 1 for received pkts 

} 

type header = NoHdr     | DataPkt of int   | Ack of ack_header 
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Two types of packets: data sent using header DataPkt, ACKs sent using header Ack. 

SLPM: 

getMCastSrc() used to get the source address of the multicast packet. This should be set 

by the multicast forwarding component down below. 

Global Memory: 

Does not make use of any global memory objects  

Events: 

Data: 

• Initial transmission of multicast data by TSM using pkt_send () with header DataPkt. 

• Unicast re-transmission by TSM using send_kept_packet () with "unicast" tag in 

SLPM.  

• Multicast re-transmission by TSM using send_kept_packet () with "multicast" tag in 

SLPM. 

• Deliver in-order received packets using pkt_deliver ()  

• Deliver buffered packets using deliver_kept_packet () 

• ACKs sent by RSM using new_pkt_send () with header ACK 

Control: does not make use of any control events  

Timers:  

dally_timer( timer-id: 1001) and retransmit_timer(timer-id:1002) both used by TSM 

ack_timer(timer-id: 1003) used by RSM 

Stack Placement: must be placed above the multicast forwarding component to provide 

end-to-end reliable delivery. 
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4.4.1.5 Reliable with NACK- implosion prevention  
 
The component described in the previous section does not prevent the NACK-implosion 

problem. NACK implosion refers to the undesirable situation when an upstream link gets 

congested due to excessive number of NACK packets flowing through it resulting from 

the flow of several individual NACKs from downstream receivers.  

The RMTP approach to solve the NACK-implosion problem is as follows: 

RMTP is based on a hierarchical structure where the receivers are grouped into local 

regions or domains and in each domain there is a special receiver called designated 

receiver DR which is responsible for sending NACKs periodically to the sender, for 

processing NACKs from receivers in it domain and for re-transmitting lost packets to 

receivers in its domain. Since lost packets are recovered by local retransmissions as 

opposed to retransmissions from original sender, the end-to-end latency is considerably 

reduced and the overall throughput is improved as well. Since only DRs send NACKs 

back to the sender, instead of all receivers sending their NACKs to the sender, only one 

NACK is generated per local region and thus NACK implosion is prevented. Receivers 

now send their NACKs periodically to the DR in their local region. 

We now describe only the modifications and enhancements made to the previous end-to-

end reliable component to yield this RMTP-like component. 

The following modifications had to be made: 

(a). Change in stack position: Earlier, the end-to-end reliable component was placed 

above the mcast_forward component. But here we need the DRs (which are actually 

core/leaf routers in the network) to act on data packets, send NACKs etc. As on routers, 

data packets are always only forwarded by the mcast_forward component and are never 
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delivered above, packets would never reach this component if it were placed above the 

mcast_forward component. So this component has to be placed below mcast_forward. 

(b). Node Types: The end-to-end reliable component is operational only at the original 

sender (S) and at the end-host receivers (Rs). Here we define two more node types DRs 

and NDRs (non-designated receivers). 

(c). Sender: same functionality except that re-transmissions cannot be multicast; they can 

only be unicast back to the sender. This is because mcast_forward is above this 

component. 

(d). Non-designated receivers (NDRs): This does not act on data packets, it only passes 

them around. The RSM reads the sequence number from the packet and sets the SLPM 

field RelSeqNo , which is then read by the TSM ( after packet turn around by 

mcast_forward) and placed back onto the header.  

(e). Designated receivers (DRs):  are responsible for sending NACKs periodically back to 

the original sender, storing out-of-order packets in receive buffers, deliver in-order 

packets to the component above and also store them in send_buffer for later 

retransmission to receivers (Rs), process NACKs from receivers in their region. 

(f) Normal receivers (Rs): same functionality except that the NACKs are now sent to the 

corresponding configured DR.  

Local Memory and Packet Memory: same as in previous component. 

SLPM access: 

SetRelSeqNo and getRelSeqNo() are used to set/get the sequence number to/from SLPM 

on NDRs. 
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getMcastSrc() used to find out original source address of multicast packet. This SLPM 

value should be set down below by either the Replicator (for multicast pkts) or by the 

Forward (for unicast pkts). 

Global Memory: does not make use of global memory objects. 

Events: All data events are handled in a similar way . No control events are used. Make 

use of the timers dally_timer, retrans_timer and ack_timer as before. 

Note: the choice of configuring a node as a DR is done manually at configuration time.  

Stack Placement : As discussed earlier placed below the mcast_forward. 

 

Other components:  Unicast_Forward, TTL , Fragment , Checksum  are a few of the 

other components that can/are used in the multicast data stack. 

Unicast_Forward : used by the stack to send unicast packets eg : ACKs / retransmissions 

 

 

4.4.2 MULTICAST ROUTING STACK components: 

4.4.2.1 Neighbor Discovery  
 
The main functionality of this component is to dynamically discover neighbors (multicast 

routers) on all its interfaces.  

The TSM periodically broadcasts probe packets (hello packets) on all multicast-enabled 

interfaces. Each probe packet sent on a particular interface contains a list of neighbors for 

which neighbor probe messages have been received on that interface. 

Packets from other components above, if any, are passed with a dummy header NoHdr 

attached.  
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The RSM first checks if the neighbor probe packet is received on one of its locally 

defined interfaces and if yes, updates in its local memory: the neighbor address and the 

interface on which it is received. It then checks for 2-way adjacency i.e. if the local 

interface address is present in the neighbor list of the probe packet. If present, then a 2-

way adjacency is established and neighbor is discovered on that interface. This 

information is written into and maintained in the global memory data structure Neighbor 

Table.  

Packets with header NoHdr are not processed and are delivered to the component above. 

The RSM also provides a keep-alive function in order to quickly detect neighbor loss. 

When a neighbor is discovered for the first time, the timer neighbor_expiry is set. If no 

probe packet is received within the time neighbor_expiry_sweep the timer is cancelled 

and this neighbor entry is removed from the global memory Neighbor Table. On 

receiving probe packets, this timer value is reset.   

Local memory: 

 

(from /components/dvmrp/neighbor_discovery_sm.ml) 

type state = { 

probe_sweep : Time.t;    // probe timer interval timer-id: 20000 

neighbor_expiry_sweep : Time.t;        // neighbor-expiry timer interval  

ntable     : (Hsys.inet * Hsys.inet) list ref;      // an association for the local neighbor table  

ipaddr    : Hsys.inet ref;    // the incoming IP interface address 

} 
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Packet Memory (header): 

 

This component does not depend on any other component for addressing. So address 

information is carried as header in this component itself. All probe packets are sent with 

header Probe and all packets from component above are sent with NoHdr. 

SLPM:  

 setSrcAddr() and setDestAddr() SLPM functions are used. The TTL component 

that runs below this component expects the SrcAddr field in SLPM (the source address of 

the packet). The DestAddr field in SLPM carries the next-hop address and is used by a 

component below bottom to forward the packet to the next-hop. 

Global Memory access: 

Writes into global memory Neighbor Table using the external function write_ntable()  

Events: 

Data:  

• TSM passes all ESend events with NoHdr attached using pkt_send() and RSM 

delivers all packets with NoHdr using pkt_deliver(). 

• Probe packets sent with header Probe using new_pkt_send(). 

Control: does not need control events. 

Timers:  

type hdr_t = { 

src_addr : Hsys.inet;     // source IP address 

dest_addr : Hsys.inet;   // probe broadcast address  

neighboraddr_list : Hsys.inet list;  // list of neighbor IP addresses 

} 

type header = NoHdr  | Probe of hdr_t 
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• probe_timer with timer-id 20000 for periodically sending probe packets. 

• neighbor_expiry_timer for detecting dead neighbors. Timer-id is chosen as the integer 

value of the neighbor’s IP address. 

Component-reuse: This component can be used in other protocols where there is a need 

for neighbor discovery e.g. in unicast routing protocols like RIP and OSPF. 

Stack-placement: This component being a control oriented peer-to-peer component can 

be placed anywhere among the DVMRP components in the stack. For performance 

reasons it is recommended that this component be placed lowest among the other 

multicast routing components as this sends peer-to-peer messages most frequently. 

 

4.4.2.2 Route Exchange  
 

  The main functionality of this component is to dynamically create and maintain 

the routing tables at the multicast routers through periodic exchange of route exchange 

packets with neighbors. This is a RIP-like protocol component, with metric based on hop-

counts.  

The TSM periodically sends route exchange packets to all its neighbors. The list 

of neighbors is read from the global memory Neighbor Table. Each route exchange 

packet contains a list of routes with each route comprised of a network prefix, mask and 

metric. All packets from any component above are passed with a dummy header NoHdr 

attached. 

The RSM, for each route exchange packet received, first checks with its local 

route cache if the received route is a new route or not. If new then the route is stored in 

the local route cache. If not, then the received metric for the route is compared with the 
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existing metric after adding the cost of the incoming interface to the received metric. If 

the resultant metric is better than the existing one, then the local route cache is updated. 

After all the received routes are processed, the contents of the local route cache are 

written to a global data structure Routing Table in global memory. The Routing Table 

contains entries of the form prefix, mask, metric, next-hop.  

All packets with a NoHdr attached are just passed up to the component above. 

Local memory: 

 

Packet Memory (header): 

 

This component does not depend on any other component for addressing. So address 

information is carried as header in this component itself. All route exchange packets are 

 (from /components/dvmrp/route_exchange_sm.ml) 

type state = { 

sweep : Time.t;    //route_exchange timer interval  

node_addr  : Addr.set; // host’s address 

rt_list : ((Hsys.inet * Hsys.inet) * (int * Hsys.inet)) list ref;  // local routing table 

mutable noRoutes : int;  

mutable noRoutesChecked :int; 

} 

type route = { 

net_addr : Hsys.inet;   // network IP address 

netmask  : Hsys.inet;   // network mask 

metric   : int;    // route metric/ hop-count 

} 

type hdr_t ={ 

src_addr : Hsys.inet;   // source of the Route_Exchange packet 

dest_addr : Hsys.inet;   // Route_Exchange destination address 
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sent with header RouteExchange and all packets from component above are sent with the 

dummy header NoHdr. 

 

SLPM:  

setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in 

Neighbor Discovery. 

Global Memory access: 

• Reads from the Neighbor Table using the external function 

getNeighborForInterface() 

• Writes into the Routing Table using the external function write_rtable() 

Events: 

Data:  

• TSM passes all ESend events from above with NoHdr attached using pkt_send() and 

RSM delivers all packets with NoHdr using pkt_deliver(). 

• Route Exchange packets are sent with header RouteExchange using new_pkt_send(). 

Control: does not need control events. 

Timers:  

Route_exchange_timer with timer-id 30000 for periodically sending route_exchange 

packets. 

Component-reuse: This component can be re-used in other distance vector-based unicast 

routing protocols like RIP. 

Stack-placement: This component being a control oriented peer-to-peer component can 

be placed anywhere among the DVMRP components in the stack. However, it needs to 

be placed over TTL for sending route exchange packets with a TTL of 1. 
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4.4.2.3 Spanning Tree  
 

In DVMRP, the poison reverse functionality and creation of spanning trees is embedded 

as part of the route exchange process itself. Here the functionality is built into a separate 

component. This component enables each upstream router to form a list of dependent 

downstream routers for a particular multicast source. Each downstream router informs its 

upstream router that it depends on it to receive multicast packets from a particular source. 

This is done through periodic exchange of Poison Reverse packets.  

The TSM needs access to the global memory Neighbor Table and Routing Table. The 

entries in the Routing Table are grouped based on next-hop information. All prefixes 

having the same next-hop are grouped together in different lists called poison reverse 

lists. Each of these lists is sent in the form of poison reverse packets to their 

corresponding next-hops (which are actually upstream neighbors for the source networks 

in the list). All packets from any component above are passed with a dummy header 

NoHdr attached. 

The RSM on the upstream neighbor uses all the poison reverse lists it receives to form a 

spanning tree for each source. Thus, this component builds a list of downstream 

dependent neighbors for each source network. The tree is stored in global memory as 

Source Tree. 

All packets with a NoHdr attached are just passed up to the component above. 
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Local memory: 

 

 

Packet Memory (header): 

 

 

 

 

 

 

 

 

 

This component does not depend on any other component for addressing. So address 

information is carried as header in this component itself. All poison reverse packets are 

sent with header PoisonReverse and all packets from component above are sent with the 

dummy header NoHdr. 

SLPM:  

 setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in 

Neighbor Discovery. 

 

 (from /components/dvmrp/poison_reverse_sm.ml) 

type prefix ={ 

net_addr : Hsys.inet;    // Network address 

netmask  : Hsys.inet;    // Network mask 

} 

type state = { 

poison_reverse_sweep : Time.t;   // poison_reverse timer interval  

node_addr  : Addr.set;   // hosts unique address 

type hdr_t ={ 

src_addr : Hsys.inet;  //  source IP address (downstream router) 

dest_addr : Hsys.inet;  // destination IP address (upstream router) 

src_nw_list : prefix list;  // poison reverse list 

} 

type header = NoHdr   | PoisonReverse of hdr_t 
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Global Memory access: 

• Neighbor Table READ using external function getInterfaceForNeighbor() 

• Routing Table READ using read_rtable(). 

• Source Tree WRITE using write_source_tree() 

Events: 

Data:  

• TSM passes all ESend events from above with NoHdr attached using pkt_send() and 

RSM delivers all packets with NoHdr using pkt_deliver(). 

• Poison Reverse packets are sent with header PoisonReverse using new_pkt_send(). 

Control: does not need control events. 

Timers:  

Poison_Reverse_timer with timer-id 50000 for periodically sending the PoisonReverse 

packets. 

Stack-placement: This component being a control oriented peer-to-peer component can 

be placed anywhere among the DVMRP components in the stack. However, it needs to 

be placed over TTL for sending the poison reverse packets with a TTL of 1. 

 

4.4.2.4 Pruning  
 

The primary purpose of this component is to create and maintain the global data structure 

Prune Table on each node that stores the list of pruned downstream interfaces for each 

source/group pair. This along with the Spanning Tree component constructs per source-

group multicast trees at each node. (Note: the Spanning Tree component by itself 

constructs a per-source broadcast tree at each node).  
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The TSM is responsible for sending prune packets for a particular source-group pair 

addressed to the corresponding upstream neighbor under the following conditions: 

(a). If all its downstream dependent neighbors have sent prunes and all its IGMP 

interfaces are also pruned. 

(b). If all its downstream dependent neighbors have sent prunes and there are no IGMP 

interfaces (at multicast core routers). 

(c). If there are no downstream dependent neighbors and all IGMP interfaces are pruned 

(at multicast leaf routers).  

For this, the TSM reads all the entries of the Prune Table periodically using a prune timer 

and if needed sends a prune packet for the (source, group) upstream towards the source. 

All packets from any component above are passed with a dummy header NoHdr attached. 

The RSM is mainly responsible for updating the global memory Prune Table. When a 

prune packet for (src,grp) is received on an interface intf , it adds an core interface prune 

entry in the Prune Table containing source src, group grp and incoming core interface intf 

(interface to be pruned). All packets with a NoHdr attached are just passed up to the 

component above. Note that the TSM reads from the Prune Table and the RSM writes to 

the Prune Table.  

Local memory: 

 (from /components/dvmrp/pruning_sm.ml) 

type state = { 

prune_sweep : Time.t;   // timer for periodically checking Prune Table entries  

node_addr  : Addr.set;  // host address 

mutable noEntriesChecked : int;   

mutable total_prunes : int; 

mutable prune_entry : prunetable_entry; // a prune table entry 

} 
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Packet Memory (header): 

 

A NoHdr header is attached for all messages from above.  For messages generated from 

this component a Prune header is attached. 

SLPM:  

 setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in 

Neighbor Discovery. 

Global Memory access: 

• Neighbor Table: getInterfaceForNeighbor() and getNeighborForInterface() 

• Routing Table: getNextHopForDest()  

• Source Tree: getDnStreamNeighborsForSrc() 

• Prune Table: getEntry() , get_no_of_entries() and pruneCoreIntfforSrcGrp() 

Events: 

Data:  

• TSM passes all ESend events from above with NoHdr attached using pkt_send() and 

RSM delivers all packets with NoHdr using pkt_deliver(). 

• Prune packets are sent with header Prune using new_pkt_send(). 

Control: does not need control events. 

type hdr_t = { 

saddr : Hsys.inet;           // address of router sending prune  

dest_addr : Hsys.inet;               // address of router receiving the prune  

pr_src_addr : Hsys.inet ;     // multicast source address   

group_addr : string;       // group address  

} 
type header = NoHdr      | Prune of hdr_t 
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Timers:  

Prune_timer with timer-id 70000 for periodically sending the Prune packets. 

Stack-placement: This component being a control oriented peer-to-peer component can 

be placed anywhere among the DVMRP components in the stack. However, it needs to 

be placed over TTL for sending the prune packets with a TTL of 1. 

4.4.2.5  Grafting 
 
This component is responsible for removing the appropriate pruned branches of the 

multicast tree when a host rejoins a multicast group. When a group join occurs for a 

group that the router has previously sent a prune, the global Prune Table is updated by 

the Join Leave component to un-prune the local IGMP interface for that particular group.  

The TSM periodically reads from the global Prune Table, and sends a separate graft 

packet for a particular (src,grp) to appropriate upstream routers for each source network 

under the following conditions: 

(a) On leaf-routers if the interface attached to all hosts is un-pruned. 

(b) On core routers if a graft packet is received on any of the previously pruned 

downstream interfaces. 

All packets from any component above are passed with a dummy header NoHdr attached. 

The RSM on receiving a graft packet writes to the global Prune Table to update the list 

of grafted core interfaces per source-group. Thus, this component along with the Pruning 

component maintains the global Prune Table by dynamically updating the list of 

pruned/grafted downstream interfaces for each source-group pair. All packets with a 

NoHdr attached are just passed up to the component above. 
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This component assumes a Reliable component underneath it for reliability of its Graft 

packets. This obviates the need for this component to handle Graft ACK packets as in 

traditional DVMRP. 

Local memory: 

  

 

 

 

 

 

 

 

Packet Memory (header) 

 

 

 

 

 

 

 

 

A NoHdr header is attached for all messages from components above. Packets generated 

from this component attach a Graft header. 

type header = NoHdr   | Graft of hdr_t 

SLPM:  

 setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in 

Neighbor Discovery. 

 

(from /components/dvmrp/grafting_sm.ml) 

type state = { 

graft_sweep : Time.t;   // timer for periodically checking PruneTable  

node_addr  : Addr.set; // host address 

mutable noGraftCheckedt : int; 

mutable total_grafts : int; 

mutable prune_entry : prunetable_entry; // an entry of Prune Table 

} 

type hdr_t ={ 

sr_addr : Hsys.inet;       // address of router sending graf) 

dest_addr : Hsys.inet;     // address of router receiving the graft) 

graft_src_addr : Hsys.inet ;     // multicast source address  

graft_group_addr : string;        // group address  

} 
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Global Memory access: 

• Neighbor Table: getInterfaceForNeighbor() 

• Routing Table: getNextHopForDest()  

• Prune Table: getEntry() , get_no_of_entries() and graftCoreIntfforSrcGrp() 

Events: 

Data:  

• TSM passes all ESend events from above with NoHdr attached using pkt_send() and 

RSM delivers all packets with NoHdr using pkt_deliver(). 

• Graft packets are sent with header Graft using new_pkt_send(). 

Control: does not need control events. 

Timers:  

Graft_timer with timer-id 80000 for periodically sending the graft packets. 

Stack-placement: This component being a control oriented peer-to-peer component can 

be placed anywhere among the DVMRP components in the stack. However, it needs to 

be placed over TTL for sending the graft packets with a TTL of 1. 

 

4.4.3 GROUP MEMBERSHIP STACK components: 

4.4.3.1 Join/Leave component with its control interface 
 

Initially, the IGMP protocol was decomposed into two separate components: Join_Leave 

and Query_Report. The Join_Leave component to handle user join and leave to a 

multicast group and the Query_Report component to handle group membership updates 

from end-hosts to leaf-routers. But the Join_Leave component did not fully satisfy our 

definition of a protocol component. Its TSM did not send packets on the wire and it had 
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no RSM functionality. So, finally these were merged into a single component called 

Join_Leave. Another interesting feature about this component is that it is asymmetric in 

nature. The TSM and RSM functionality differs depending on where the component is 

deployed at the end-host or at the leaf multicast router. So, in order to make the state 

machines symmetric both the state machines contain exclusive transitions for end-hosts 

and routers.  

 We describe the TSM and RSM functionality separately at the end-hosts and at 

the leaf-router. 

At the end-host: 

The TSM responds to control event EControl of type JoinGroup and LeaveGroup. (These 

events are generated by the application when the host wants to join or leave a particular 

multicast group). The local group cache is updated when these events occur to always 

store the current list of group addresses to which this host belongs.  The RSM responds to 

the Query packets from the leaf-router by sending back a separate Report packet for each 

group of which it is a member. 

At the multicast-leaf router: 

The TSM periodically performs the following tasks on expiry of the query timer: 

multicasts query packets on the local network to the "all-hosts-group". 

computes the list of newly joined as well as the list of newly left group addresses on each 

attached interface over the last timer interval. For each newly joined group address on a 

particular interface the global memory Prune Table is updated by grafting the interface 

for that group address. 

writes the contents of the local router_group_cache into global memory Group Table.  
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The RSM processes the Report packets received from its attached hosts and updates the 

local router_group cache. Note that the local router_group cache maintains information 

on list of group members on each attached interface. It should be noted that the 

component at the end-host is initialized "actively" and that at the router "passively " 

through EActiveInit and EPassiveInit events respectively. 

Local memory: 

 

 

 

Packet Memory (header): 

 

Note: For Query packets, src_addr is the address of the leaf router's interface. For Report 

packets src_addr is the address of the host sending the report and dest_addr is the 

address of the multicast leaf router. group_address in Report packets refers to the group 

address being reported.  

(from /components/igmp/join_leave_sm.ml) 

type state = { 

query_sweep : Time.t;  // timer interval for query timer      

group_list  : (string list) ref; //  list of group address of which this host is a member  

router_group_list : ((Hsys.inet * string list) list) ref;  // group address list at router 

prev_router_group_list : ((Hsys.inet * string list) list) ref;  // value in previous time-interval 

node_addr : Addr.set;      // host address 

} 

type hdr_t ={ 

src_addr : Hsys.inet;    

dest_addr : Hsys.inet; 

group_address : string;  

} 

type header = NoHdr  | Query of hdr_t  | Report of hdr_t 
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SLPM:  

 setSrcAddr() and setDestAddr() SLPM functions are used in a similar way as in 

Neighbor Discovery. 

Global Memory access: 

• Group Table: write_grptable() 

• Prune Table: graftIGMPIntfforGrp() 

Events: 

Data: Query and Report packets are sent with header Query and Report using 

new_pkt_send(). 

Control: Responds to EControl event of type JoinGroup and LeaveGroup. 

Timers: Query timer with timer-id 40000 for periodically sending query packets. 
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5. Testing and Performance 
 This section describes the nature and results of various tests and experiments that 

were performed to verify correct operation of the composite multicast service running on 

a reasonably sized 12-node multicast network. The tests can be divided into two major 

categories, functionality testing and performance testing. In functionality testing, the 

primary objective is to verify the correct operation of all protocol components and the 

service as a whole. In performance testing, we conduct test experiments to measure 

various network parameters like end-to-end throughout, one-way latency, join/leave 

latencies and also study and observe their variance and effect for different stack 

combinations, message sizes, error rates etc. Section 5.1 describes the functionality test 

and section 5.2 describes the various performance measurement tests that were performed 

using composite protocol stacks. 

5.1 Functionality Testing 
 

The following figure shows the test network set-up that was used.  

Figure 6: Test Network 
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The test network consists of 8 routers (R1 to R8) and 7 hosts (H1 to H7). All links are 

point-to-point 100 Mbps Ethernet.  

Addressing scheme: All core links i.e. links connecting routers, have network address of 

the form 10.10.xy.0/24. where x < y. eg: the link connecting R1 and R2 is named as 

10.10.12.0/24 and the interface at R1s end has always a lower IP address 10.10.12.1 and 

R2 has a higher IP address 10.10.12.2. All leaf interfaces have addresses of the form 

10.n.1.0/24, where n is the router-no they connect to, e.g: The link between R5 and H1 is 

addressed as 10.5.1.1 at the router end and as 10.5.1.2 at the host-end. Knowing this 

addressing scheme will help in better understanding of the test results later on in the 

section. 

Stacks: The multicast data stack is run on all nodes (sender, routers and receivers). 

The multicast routing stack is run only on the routers from R1 to R8. The group 

membership stack is run on all leaf routers (R2 to R7) and hosts (H1 to H7). 

Global Memory Initialization: This has to be done prior to running the stacks on each 

node. So on each node the script /ensemble/global_memory/shminit is run that allocates 

and initializes the various global memory objects to be used by the stack. The script 

/ensemble/global_memory/sem_initall is then run to initialize all semaphore values used. 

Note: the Linux ipcs command can be used to view shared-memory and semaphore 

related information. 

Configuration files: node.itable and node.igmptable are 2 configuration files that are 

needed by the stack to initialize their interface addressing information. Node.itable 

consists of total list of interfaces and node.igmptable consists of list of leaf interfaces. 

Running the Multicast Routing stack:  
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The following command-line shows how to run the Multicast Routing stack on router R1: 

../demo/dvmrp_appl -remove_prop forward -add_prop neighbor_discovery -add_prop 

route_exchange -add_prop poison_reverse -add_prop grafting -add_prop pruning -pstr 

interface_table=bn1.itable -pstr igmp_interface_table=bn1.igmptable -port 9500  

The stack ordering from top to bottom is pruning, grafting, poison_reverse, route 

exchange, neighbor_discovery over the default checksum component. The component 

that generates packets most frequently is kept at the bottom-most. So neighbor_discovery 

was placed at the bottom and grafting was placed at the topmost. We expect to have a 

better performance improvement if this ordered is maintained. There is no need to make 

use of TTL as multicast routing stack packets are not sent farther than a hop. Also the 

default forward component is removed as there is no need of forwarding. The interface 

information is read from the two input files .itable and .igmptable.  
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The stack is run over UDP on port no 9500. Similar commands are executed on all 

routers (from R1 to R8).We now show the global memory output at 3 routers, R1, R3 and 

R5. Output at other routers are similar. The output corresponds to when the full tree is 

active and no pruning has started. The global memory output is self-explanatory. From 

the above output it can be noted that all core and leaf interfaces are advertised by the  
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route exchange component. The spanning tree at R1 is empty as downstream neighbors 

do not exist for any source in the network. The group table is empty, as there are no 

attached leaf interfaces. Prune Table also does have any entries has pruning has not 

started. 

The spanning tree displays the list of downstream dependent neighbors for each source 

network/mask pair in the network. The Group Table indicates that a member of the group 

225.0.0.5 is present on the interface 10.3.1.1. This is a result of the host H7 joining the 

group 225.0.0.5. 
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The group table entry is the result of host H1 joining the group 225.0.0.5. As output from 

other routers are remarkably similar we do not show the output. This output verifies the 

correct operation of three Multicast Routing stack components: Neighbor Discovery, 

Route Exchange and Spanning Tree as the Neighbor Table, Routing Table and Source 

Tree entries are all correctly created and maintained. 

To test functionality of the Pruning and Grafting components the following sequence of 

events were made to occur. 

Initial State: We have an un-pruned tree rooted at the source R1 as shown in the figure 

6. All the hosts have joined the group 225.0.0.5 and have started receiving data from the 

source. 

Event A: H1 leaves group 225.0.0.5. 

Observation: We observe changes in global memory at routers R5 and R3. We show 

group table and prune table contents only, as contents of other tables are not expected to 

change due to group joins and leaves. At router R5, the leaf interface 10.5.1.1 connecting  

H5 and H1 gets pruned for the (source, group) pair of (10.10.12.1,225.0.0.5) after H1 

leaves. The group member table also deletes the membership entry. 

At router R3, the core interface 10.10.35.1(interface connecting R3 and R5) gets pruned. 
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This is the result of the downstream router R5 sending a prune for the (source, group) 

pair of (10.10.12.1,225.0.0.5) upwards to R3. 

Event B: H2 leaves group 225.0.0.5 

Observation: we observe changes in group table and prune table entries at R6 and R3. 

At router R6, the leaf interface 10.6.1.1 gets pruned, and the group member table deletes 

the entry for the group 225.0.0.5. At router R3, both the core interfaces 10.10.35.1 and 

10.10.36.1 get pruned. 

Event C: H7 also leaves the group 225.0.0.5. 

Observation: We observe the effect of this leave on routers R3 and R2. 

 

At router R3, the leaf interface 10.3.1.1 gets pruned as a result of which R3 sends a prune 

upstream towards R2. The group member table is also updated deleting the membership 
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entry. At router R2, the core interface 10.10.23.1 gets pruned as a result of receiving a 

prune on that interface from downstream router R3. At this stage, the whole left-side of 

the tree is pruned. We now observed the effect of group leaves on pruning of trees and 

global memory contents. Events D and E are group re-joins. We shall observe its effect 

on grafting of trees next. 

Event D: H1 re-joins the group 225.0.0.5 

Observation: We observe the effect of this join at R3 and R2. The corresponding 

branches of the tree are grafted back. 

 

At R3 and R2, we find that the core interfaces 10.10.35.1 and 10.10.23.1 are grafted 

respectively. 

Event E: H2 re-joins the group 225.0.0.5 

Observation: We observe the effect of join on routers R6 and R3. 
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At R6, the leaf interface gets grafted back again. At upstream router R3, both the core 

interfaces are now grafted. At this stage multicast traffic starts flowing to both H1 and 

H2. We have thus observed the effect of joins on the working of grafting component. 

Testing the Group Membership stack for functionality is fairly simple. Just check if the 

leaf router's group table is updated for every host's join or leave event. The functionality 

of the data stack was verified using per-component log messages and monitoring traffic 

on the links using network sniffers like tcpdump. The very fact that data was delivered 

successfully from end-to-end proved most of the functionality. The multicast data stack is 

rigorously tested with various network metrics like throughput and latency. This is 

described in the next section. 

5.2 Performance Testing 
 

Functionality testing only proves that the components work as intended, but gives 

no indication on how fast or slow the stacks are. The multicast data stack is tested for 

performance based on network measurement metrics like end-to-end latency and 

throughput. Several performance measurements were made using our composite protocol 

stacks. The list of performance tests that were conducted is as follows. Each test 

experiment is explained in detail later with the results analyzed. 

Test 1: Measurement of stack latencies at sender, router and receivers for the basic 

multicast data stack for varying message sizes. The results are tabulated and plotted. 

Test 2: Measurement of per-component transmit and receive state machine latencies for 

all components of the basic multicast data stack for varying message sizes. The results 

are tabulated. 
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Test 3: Measurement of end-to-end one-way latency for the basic multicast stack. NTP 

was used to synchronize the machines. We plot the variation of one way latency with 

message size and number of hops. 

Test 4: Measurement of end-to-end throughput for the basic multicast stack for varying 

message size. 

Test 5: Measurement of end-to-end throughput for the reliable multicast stack for 

different link error probabilities. The results are tabulated as well as plotted. 

Test 6: Measurement of join latency and leave latency. Join latency measurements were 

made for varying prune depth values. 

The basic multicast stack consists of the components MCAST_FORWARD, FRAGMENT, 

CHECKSUM and REPLICATOR. The reliable multicast stack consists of the components 

MCAST_RELIABLE, MCAST_FORWARD, UCAST_FORWARD, FRAGMENT, 

CHECKSUM, REPLICATOR and RANDOM DROP. RANDOM_DROP is a component 

that simulates link error and drops packets with a user defined error probability of p. 

Several factors were considered and changes made to make the components from merely 

functional to relatively high-speed, low delay units. 

Some of them are listed below: 

• Choice of Ocaml compiler: Using Ocaml high-performance native-code compiler 

ocamlopt instead of byte-code compiler ocamlc. The native-code compiler produces 

code that runs faster than the byte-code version at the cost of increased compilation 

time and executable code size. However, compatibility with the byte-code compiler is 

extremely high, the same source code should run identically when compiled with 

ocamlc and ocamlopt.  
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• Reducing the number of global memory lookups. On an average each global memory 

function lookup access time was measured to be about 20µs. A typical packet trace in 

the multicast forwarding component at a router made about 6-8 global memory 

function lookups. This induces lot of per-packet delay. To avoid such a high per-

packet delay, it was decided to use fast-lookup caches inside the multicast forwarding 

component. These caches were part of the component’s local memory. Global 

memory lookups are now not made for each and every packet, they are made only 

once in N packets, where N is called the global memory lookup frequency. 

Considering a packet flow of 1000 packets and a N value of 100, 990 packets would 

use values from the cache and only 10 packets would use actual global memory 

values. Caches are always refreshed once in N packets. For a highly stable network 

where there are not many route changes or group joins or leaves one would want to 

have a high value of N and for a highly dynamic network with lot of route changes 

and group joins/leaves, a low value of N has to be chosen. The uses of caches 

significantly improved forwarding delays at a router. 

• Order of guards:  The order in which the guards are executed at a particular state can 

also affect performance. It should be taken care that the most frequently occurring 

guard condition is executed first. This is because guards are evaluated only till the 

first true match is found. 

• Removing costly memory and file operations:  File operations are very costly and 

should be always removed if possible. Several costly memory operations were 

modified for better performance. 
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The individual tests are now explained in detail. 

5.2.1 Test 1: Measurement of stack latencies  
 
The stack latencies are measured at sender, router and receivers for the basic multicast 

data stack for varying message sizes. At the sender, the stack latency is defined as the 

time taken for an application packet, to traverse through the transmit state machines of 

the sender stack till its written onto the UDP/ETH socket. At the router, it refers to the 

total time spent in the Ensemble stack to forward a packet and at the receiver it refers to 

time elapsed between the reception of the packet from an ETH/UDP socket and delivery 

to the application. 
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Figure 7: Variation Of Stack Latency With Message Size 
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The above plot shows how the stack latencies at the sender vary with message size. All 

values are computed after averaging over 1000 packets and 5 runs each. Message size is 

varied from 1 byte to 1300 bytes. From the graph, we find that on the whole, latencies 

increase with increase in message size. This fact is mainly attributed to the checksum 

component that is the only component in the stack whose performance depends on 

message size. At the sender, this result is not that evident. But at the routers we find a 

significant increase in latency from 113µs for 1 byte message to 143µs for a 1300-byte 

message. At the receiver it increases from 27.8µs to 43.5µs. The global memory lookup 

frequency was set to 100. 

The results are also tabulated as under: 

 Stack Latency 
Msg Size Sender Router Receiver 
(bytes) (in micro-seconds) 

1 70.53 113 27.72 
10 69.33 116 27.94 
50 70.45 115 28.79 

100 69.18 117 29.72 
200 71.57 119 30.06 
300 72.23 123 31.31 
400 73.3 121 32.40 
500 74.68 121 33.53 
600 75.97 124 34.64 
700 76.01 130 36.20 
800 72.61 131 37.13 
900 72.11 132 38.15 

1000 73.11 140 39.42 
1100 72 139 41.62 
1200 72.62 140 42.40 
1300 74.27 143 43.46 

 
Table 7: Variation Of Stack Latency With Message Size 
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5.2.2 Test 2: Measurement of Component Transmit and Receive Latencies 
 
 In this test, we measure the transmit and receive latencies of individual 

components in the multicast stack for different message sizes.  

Msg Component Latency (SENDER) 
Size (in microseconds) 

(in bytes) MCAST FRAG CHK REPL 
1 29.57 7.98 8.01 6.28 
10 32.83 8.35 8.06 6.03 
50 36.15 8.18 8.44 6.31 

100 34.96 7.96 8.86 6.49 
200 35.86 8.15 9.89 6.63 
300 30.62 12.60 10.85 6.47 
400 30.73 9.84 14.94 6.45 
500 27.78 12.24 16.01 7.03 
600 26.86 8.78 20.89 7.90 
700 26.34 9.18 17.08 11.34 
800 26.56 9.22 16.62 8.65 
900 26.26 8.52 18.44 7.70 

1000 26.09 8.23 20.49 7.61 
1100 26.12 8.30 20.23 7.94 
1200 25.96 7.98 19.94 7.03 
1300 27.15 8.49 20.93 7.57 
Table 8: Component Latencies At Sender 

 
Msg Component Latency (RECEIVER) 
Size (in microseconds) 

(in bytes) MCAST FRAG CHK REPL 
1 3.06 3.193 9.693 4.568 

10 3.06 3.21 10.23 5.58 
50 3.06 3.21 10.32 5.59 
100 3.06 3.26 10.52 4.58 
200 3.06 3.17 11.68 4.61 
300 3.23 3.33 12.38 4.75 
400 3.13 3.19 13.39 4.68 
500 3.21 3.30 14.46 4.79 
600 3.29 3.31 15.40 4.79 
700 3.16 3.28 16.23 4.90 
800 3.31 3.27 17.70 4.86 
900 3.33 3.28 18.35 5.15 

1000 3.26 3.37 19.41 5.04 
1100 3.84 3.42 21.22 5.18 
1200 3.30 3.26 21.70 5.12 
1300 3.31 3.38 22.70 5.22 

 
Table 9: Component Latencies At Receiver 



 101

 
From the results, we find that the checksum component’s latency increases significantly 

with message size, both at the sender and at the receiver. Other components do not show 

significant increase. 

Test 3: Measurement of one-way latency 

 One-way latency is defined as the total time taken by the packet from the sender 

application to the receiver application. Before taking timing measurements, all machines 

have to be synchronized, so that the results reflect the correct values. NTP[18] was used 

to synchronize the machines. For each measurement the receiver and sender NTP offsets 

are also noted and are used while computing the net end-to-end one way latency. One-

way latencies measurements were made for different message sizes and also by changing 

the number of hops. The following test set-up was used to measure one-way latencies 

upto 6 network hops. 

Figure 8: 6-Hop Test Network 
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One-Way Latency vs Msg Size
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host H3.  

 

Figure 9: Variation Of One-Way Latency With Message Size 
 

The plot shows how one-way latency varies with message size and number of hops. 

As expected the end-to-end latency values increase with increase in message size and 

increase in number of hops. The values are tabulated as under. 
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Msg End-to-End Latency  
Size (in microseconds)  

(in bytes) 2-hop 4-hop 6-hop 
20 506 650 895 
30 603 837 943 
70 634 847 1020 
100 682 876 1044 
200 725 894 1141 
300 748 889 1147 
400 759 875 1189 
500 811 942 1278 
600 777 978 1312 
700 824 1023 1336 
800 836 1089 1389 
900 850 1137 1454 

1000 896 1147 1690 
1100 915 1254 1748 
1200 1093 1372 1765 
1300 1170 1460 1815 
1400 1439 1622 1876 
1500 1467 1626 1889 
1600 1489 1708 1945 

 
Table 10: Variation Of End-To-End Latency With Hops 

 
The message sent from the sender consists of a 20-byte timestamp followed by a variable 

length message field. So the minimum message size is 20-bytes. 

5.2.3 Test 4: Measurement of end-to-end throughput  
 
 End-to-end throughput refers to receiver throughput, which is defined as follows: 

Throughput in bits/sec = (No of bytes received * 8) / (Tlast - Tfirst) secs, where, Tlast is the 

time when the last packet is received and Tfirst is the time when the first packet is 

received. End-to-end throughput values were measured for 2 stack combinations, a stack 

with only MCAST_FORWARD and REPLICATOR and for the basic multicast stack. 

 The throughput values were measured at 4 receivers H1, H2, H3 and H4 each 4 

hops away from the multicast source R1, values obtained are averaged. As we do not 
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have a flow control component the sender needs to be slowed down if the receiver is not 

able to sustain the sender rate. A sender slow-down factor of 70 was used for all the 

measurements. 

Throughput vs Msg Size
Averaged over 4 receivers, each 4 hops from multicast source

for 1000 packets and 5 runs 
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Figure 10: Variation Of Throughput With Message Size 
 
We find that for both curves the throughput increases with increase in message size from 

1 byte to 1300 bytes. Stack A does not have our FRAGMENT component, so IP 

fragmentation comes into effect after 1300 bytes. Stack B has the FRAGMENT 

component in it. We find a steeper drop in Stack B curve compared to Stack A curve after 

1300 bytes. This is due to the difference in performance of our fragment component and 

IP fragmentation. We find that addition of Checksum and Fragment in Stack B has 

resulted in a decrease in throughput. We achieve the highest throughput of 43.17 Mbps 
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for 1300-byte sized message for Stack A and a highest throughput of 33.9 Mbps at 1300 

bytes for Stack B. The increase in throughput for both the curves is also very consistent. 

The individual values are tabulated as under: 

 

Msg Throughput  
size (in Mbps) 

(in bytes) Stack A Stack B
1 0.035 0.033 
10 0.347 0.306 
50 1.7 1.539 

100 3.433 3.087 
200 6.93 6.298 
300 10.357 9.041 
400 13.789 11.938 
500 17.241 14.716 
600 20.437 17.74 
700 23.861 20.151 
800 26.579 23.017 
900 30.003 25.157 
1000 33.484 27.568 
1100 36.546 29.622 
1200 39.678 32.343 
1300 43.172 33.935 
1400 39.051 13.748 
1500 39.237 13.242 
1600 42.596 15.349 

 
Table 11: Variation Of Throughput With Message Size 

5.2.4 Test 5: Measurement of throughput for reliable multicast  
 
The reliable multicast stack consists of 7 components viz. Mcast_Reliable, 

Mcast_Forward, Ucast_Forward, Fragment, Checksum, Replicator and Random Drop. 

Throughput for the reliable multicast stack was measured by varying link error rates 

using the Random Drop component. The values were measured at receivers H1, H2, H3 

and H4 which are 4-hops from the multicast source. 1000 packets were transmitted from 

source each with packet size of 1000 bytes. A 1% error probability implies that out of 

1000 packets, 990 packets are reliably transmitted and 10 are re-transmitted from the 
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source. NACK status packets if any, are sent from all receivers every 10ms. Re-

transmissions at the sender also take place every 10ms. A dally timer interval of 30s is 

used. The multicast re-transmission threshold was set at 2 i.e. if 2 or more receivers 

request a packet to be re-transmitted it will be multicast on the network, else re-

transmissions are separately unicast back to each receiver. 

  

Reliable Multicast Throughput 

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12

% Error Rate

Th
ro

ug
hp

ut
 in

 M
bp

s 

Average Throughput

Averaged over 4 receivers , each 4 hops from multicast source
for 1000 packets , packet size 1000 bytes

Rel_Mcast
Mcast_Fwd
Ucast_Fwd
Frag
Checksum
Rnd_Drop
Replicator

STACK

 

Figure 11: Variation Of Reliable Multicast Throughput With Error Rate 
For a 0% link-error probability (e), a throughput of 17.18 Mbps is achieved. For 

1000 bytes the basic multicast stack gave a throughput of 27.57 Mbps (previous test 

result). This reduction can be attributed to the addition of 3 more components in the stack 

and buffering operations at the reliable component’s sender. No reverse ACK flow occurs 

here and there are no-retransmission too. The throughput only decreases gradually from 

17.18 Mbps to 13.82 Mbps at an error probability of 6%. A 6% error probablity in the 
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link leads to about 60 retransmissions from source. There is a much steeper decrease 

from 6% to 10% and the throughput drops to 6.18Mbps. On the whole, the throughput 

values are good even for high error rates. The individual values are tabulated as under: 

 

Error Throughput 
% (Mbps) 
0 17.17 

0.2 16.84 
0.4 16.47 
0.6 16.23 
0.8 16.15 
1 15.9 

1.2 15.62 
1.4 15.35 
1.6 15.46 
1.8 15.33 
2 15.26 
3 15.2 
4 14.8 
5 14.01 
6 13.83 
7 12.17 
8 8.69 
9 6.78 

10 6.18 
 

Table 12: Variation Of Reliable Multicast Throughput With Error Rate 
 

5.2.5 Test 6: Measurement of join and leave latency 
 
 Join Latency is defined as the time taken for a receiver host to start receiving data 

from the source after it has joined the corresponding group. Join Latency can be 

controlled by adjusting the values of the query timer and the graft timer and it is also 

dependent on prune depth (how far the tree is pruned).  

The following sequence of operations occur after a host joins a group: 



 108

• The local group cache is first updated, a report packet is sent to the leaf router on 

receiving a query and the global memory group table gets updated at the leaf router. 

Let the time taken for this sequence be T1. 

• On expiry of the graft timer, the grafting component sends a graft message upstream, 

which then grafts all interfaces till either an un-pruned branch is reached or till the 

source is reached. Let this time be T2. 

• Then, data has to flow from that node back to the receiver. Let this time be T3. 

The join latency is the sum T1 + T2 + T3 approximately. 

Join latency was measured for 3 cases, for prune depth of 1, 2 and 3. 

 The prune timer, graft timer and the query timer were all set to 100ms. The sender 

date rate was set to 10 packets/sec. The following figure shows all the 3 cases: 

Figure 12: Prune Depth Of A Multicast Tree 
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The join latency test results are tabulated as under: 

Prune  Average Join Latency
Depth  (in milli-seconds) 

1 405 
2 458 
3 535 

 
Table 13: Variation Of Join Latency With Prune-Depth 

 
As expected we find that join latency increases with increase in prune depth. However, it 

should be noted that join latency is very controllable and can be affected due to change in 

any of the above timer values. Making the timers expire more frequently will definitely 

improve join latency but will also increase the amount of traffic in the links because more 

number of query, prune and graft messages will be sent. 

Leave latency is defined as the time taken for the receiver to stop receiving data after it 

has left the corresponding group. Leave latency just depends on the query timer interval. 

For a query timer interval of 100ms, a leave latency of 146ms was obtained.  

Leave latency can also be improved by increasing the query timer frequency at the cost of 

more link traffic. Both leave and join latency valued reported above are averaged over 5 

runs. 

 We have thus described the functionality tests and performance tests that were 

performed on the multicast composite protocols.  

5.3 Comparison with Linux IP Multicast 

 
The throughput values attained by the composite protocol implementation are compared 

with those using Linux IP multicast. Mrouted[19], the Linux IP multicast implementation 

for DVMRP was used on the same test network. Mrouted was installed on all router (R1 

to R8). Iperf [20] was used to measure the end-to-end multicast throughput. 

Timer (seconds) 
Query  0.1 
Graft  0.1 
Prune  0.1 
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Throughput measurements were made for varying packet sizes ranging from 10 to 2000 

bytes. The sender is made to send at a maximum possible data rate, so that there is no 

receiver loss. 1000 packets are sent in each throughput measurement test. The throughput 

increases from 2.81 Mbps for a 10-byte packet to 95.8 Mbps for 1400 byte packet. There 

is a sheer drop of throughput at around 1500 bytes due to IP fragmentation.  Figure x 

illustrates the end-to-end throughput performance of Linux IP multicast and the basic 

Composite Protocols multicast data stack. 

Mrouted vs Composite Multicast Throughput
Averaged over 4 receivers each 4 hops away from multicast source

for 1000 packets and 5 runs
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Figure 13: Comparison With Linux IP Multicast Throughput 

The composite multicast achieves a highest throughput of 34 Mbps compared to its Linux 

counterpart, which achieves about 95 Mbps for packet sizes of 1300 bytes. The fact that 

the composite protocol implementation is about 2-3 times slower is not surprising. 
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Msg Throughput  
size (in Mbps) 

(in bytes)
Linux IP 
Multicast 

Composite 
Protocols 

10 2.81 0.306 
50 13.7 1.539 
100 24 3.087 
200 58.2 6.298 
300 66.1 9.041 
400 74.3 11.938 
500 80.5 14.716 
600 87.5 17.74 
700 89.4 20.151 
800 92.2 23.017 
900 93.2 25.157 

1000 94.1 27.568 
1100 94.6 29.622 
1200 95.2 32.343 
1300 95.6 33.935 
1400 95.8 13.748 
1500 55.1 13.242 
1600 55.7 15.349 

 
Table 14: Comparison With Linux IP Multicast 

 
Given the constraints imposed by the specification methodology and limitations of the 

current implementation, this is a reasonable performance penalty to pay. A few reasons 

are: 

• Executing a component's state machine incurs a non-trivial amount of overhead, 

which the in-kernel implementation in Linux does not. 

• There are no well-defined boundaries between layers in the Linux implementation 

with respect to memory access and all layers operate on a common instance of a 

socket buffer. Linux protocol software can afford to perform pointer arithmetic on 

socket buffers and minimize memory copies. The strict layering enforced by the 

composite protocol framework makes it impossible to access the local memory of 

another component. 
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• Moreover, Ensemble is a user-level program and hence incurs further overhead in 

sending and receiving messages compared to the Linux in-kernel implementation.  

• Finally, the Linux implementation has matured over many years of use and 

improvement, whereas only limited time could be spent so far in optimizing the 

current implementation of composite protocols. 
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6. Summary and Future Work  
 

This report presents a novel approach of building network services from composite 

protocols consisting of single-function protocol components. It demonstrates the 

applicability of the composite protocol approach to wider-range of network protocols and 

services, both data-oriented/data plane and control-oriented/control plane protocols can 

be built and composed into stacks using this approach. This report addresses one of the 

main challenges in building network services,  inter-stack and cross-protocol 

communication that is addressed through use of global memory objects.  

As a case study, a reliable multicast service is built using three composite protocol stacks 

and 5 global memory objects. A multicast data stack for reliable replication of data in the 

network, a multicast routing stack for dynamically creating and maintaining neighbor 

tables, routing tables, spanning trees in the network and a group-membership stack for 

members to join/leave multicast groups in an ad-hoc fashion. The global memory objects 

are implemented as part of shared memory  which link to the stacks at run-time. They 

provide a functional interface and simultaneous access to them is controlled using 

semaphores. 

The reliable multicast service is also tested for both functionalilty and performance on a 

medium sized 12-mode test network. The functionality tests confirm the expected 

behaviour of the stacks , including dynamic pruning and grafting of stacks. Performance 

tests measured end-to-end throughput, one-way latency, reliable-multicast throughput and 

individual per-component send and receive latencies. The performance of composite 

reliable multicast is also compared to Linux IP multicast. 
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6.1 Future Work 

This section suggest possible improvements and enhancements, and identifies scope of 

future work in this area. 

• The multicast service designed and implemented here supports only point-to-

multipoint data transfer used in applications like file-transfer and audio streaming. 

This can be extended to support multi-point to multi-point multicast which can be 

used in applications like video-conferencing. 

• Complex multicast protocols like MOSPF  and PIM can be implemented using 

this approach. 

• More composable services can be built , security protocols ,network management 

protocols can be built to test the feasibilty, demonstrate component re-use and 

expand the library of components. 

• The main focus of this work was to focus on demonstrate the feasibility of the 

composite protocol approach to design and implement network services, 

performance was not the major focus. A lot of work can be done to improve and 

optimize the performance of these composite protocol stacks and make them 

come into speed with IP based implementations. 

• Deployment of composable services on an active network is another big 

challenge. 

• Automating the process of verifying specification of components, tools to 

automatically transalate from specification to implementation, a Property-In 

Protocol Out conversion tool are also possible areas of improvement. 
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