Using Genetic Algorithms to Discover Selection

Criteria for Contradictory Solutions Retrieved
by CBR

Costas Tsatsoulis and Brent Stephens

Information and Telecommunication Technology Center
Department of Electrical Engineering and Computer Science
The University of Kansas
tsatsoul@ittc.ku.edu

Abstract. In certain domains a case base may contain contradictory
but correct cases. The contradictory solutions are due to known domain
and problem characteristics which are not part of the case description,
and which cannot be formally or explicitly described. In such situations
it is important to develop methods that will use these criteria to select
among the competing solutions of the matching cases Our domain of ap-
plication was the assignment of billing numbers to the shipment of goods,
and the case base contained numerous cases of similar or even identical
problems that had different solutions (billing numbers). Such contradic-
tory solutions were correct and an outcome of domain constraints and
characteristics that were not part of the cases and were also not formally
known and defined. It was assumed that the frequency with which a so-
lution appeared among the retrieved cases and the recency of the time
the solution had been applied were important for selecting among com-
peting solutions, but there was no explicit way for doing so. In this paper
we show how we used genetic algorithms to discover methods to com-
bine and operationalize vague selection criteria such as "recency” and
?frequency.” GAs helped us discover selection criteria for the contradic-
tory solutions retrieved by CBR retrieval and significantly improved the
accuracy and performance of the CBR system.

1 Introduction

When selecting case-based reasoning (CBR) for use in a particular domain, it is
assumed that similar problems lead to similar solutions, so previous experience
can be reused in the formulation of a new solution. Additionally, CBR systems
assume that the case base used to describe the previous experiences is consistent
and correct and that knowledge represented by it remains accurate. The ability
of CBR systems to reason accurately is lost if these assumptions do not hold.
Recent work in CBR is looking into developing techniques to resolve some of
the problems associated with incorrect, conflicting and noisy cases by performing
maintenance on a case base (among many: [8], [17], and [20]). The motivation for
doing maintenance is to reduce the size of the database, maintain consistency,

and maximize domain coverage. This is done by strategically eliminating or
combining cases to get rid of redundancy or inconsistency.

There are domains, though, where traditional case base maintenance tech-
niques are not appropriate, and may lead to loss of important knowledge and
information. Our work focuses on domains where the case base is large (hun-
dreds of thousands of cases), very redundant, and contains contradictory cases.
The redundancy needs to be preserved since it is a proxy of "best practices.”
In other words, the frequency by which an action was taken in a certain situa-
tion is an important indicator of whether this action should be chosen in future
situations. The contradictory cases can be due to data input errors, but, often,
they represent cycles in best practices. If the actions taken in a certain situa-
tion depend on business or other cycles, then two contradicting cases may each
be correct at appropriate times. If the attribute that distinguishes between the
cases is inaccessible, then both cases will be retrieved, but there is no way to
select between them.

In such domains, a CBR system would retrieve a large number of cases
proposing different solutions or actions, and a simple pruning based on simi-
larity is not an appropriate selector of the best case. One possible solution to
this problem is to let a user decide between the cases retrieved. This has several
limitations: first, since too many cases are retrieved, the user has to analyze
all of them; second, the accuracy of the case selection process is limited by the
ability of the user, so an expert user may be needed; lastly, the overall workload
on a user may actually increase when using the system, because of the need to
perform manual case selection.

In the work presented in this paper we used the characteristics of the case base
(redundancy and cyclic nature of actions) to develop an automated way to select
the best case. We experimentally examined a variety of equations that combine
the frequency, recency, and similarity of a case to identify the best possible way to
combine these characteristics to improve retrieval. We used genetic algorithms
(GAs) to find the parameters of these equations, and experimented with two
different fitness metrics for the GA.

GAs have been used in previous CBR systems either as loosely coupled pre-
processors (e.g. to find the weights of similarity functions) or as tightly coupled
CBR components (e.g. to perform case adaptation). Conversely, CBR has been
used to seed GAs to reduce the amount of search and the number of generations.
Much of this work is discussed in Section 6, ”Previous Research.”

We applied our system to a large case base of billing records for shipments
to clients. The shipment characteristics were used by the CBR system to iden-
tify similar cases and to assign the appropriate billing code. In situations where
simple CBR retrieval resulted in conflicting billing codes, the application of the
GA-derived selection equations resulted in selecting the correct solution out of
the competing cases in 80-90% of the time. In the best case, simple CBR re-
trieval found a unique billing code in approximately 45% of the problems and
the GA-derived selection criteria found the correct code in approximately 30%
of the problems, resulting in a combined 75% accuracy; the remaining 25% of

the problems remained unsolved. Our experiments showed that the integration
of standard CBR retrieval with retrieval using the GA-generated case selec-
tion criteria consistently and dramatically increased the accuracy of the selected
billing codes (e.g., from 45% to 75%). This, in turn, indicated that: first, in case
bases which contain redundant and contradictory information that is due to case
characteristics that are not part of the case (in other words, the contradictory
information is not incorrect), the frequency, recency and similarity of a case can
be combined to improve retrieval; and, second, GAs are an appropriate method
to identify the parameters used in combining these values in an efficient manner.

2 Domain of Application

The actual problem our research addressed was to use CBR to identify the
billing code for shipments by the Burlington Northern and Santa Fe Railway
Company (BNSF) . The billing code in turn identifies the exact division of a
particular company that should be billed for a shipment. The billing is done
by BNSF employees except in cases where, for a variety of reasons, they are
not sure which billing code to apply. Also, in some cases, the employees enter
the incorrect code, the bill is rejected by the client, and returns to the BNSF
accounting system for correction. Our system would assign the correct billing
code to shipments that either had no code or were returned because they had
the wrong code. According to BNSF there are approximately 5000 such billing
statements per month.

Each shipping record consists of a very large number of attributes describing
originating location, destination, transit points, type of cargo, type of car used,
and other domain-specific information totaling over 700 attributes. BNSF main-
tains a multi-terabyte database of paid bills that keeps growing at approximately
600,000 billing records per month.

The database of paid bills is mostly correct, but there are records in it that
contain incorrectly entered information and billing codes. Since the database is
maintained over a long period of time, certain billing codes have changed, and
these changes lead to billing codes that are no longer accurate and should not
be used. Finally, during certain periods of the year it is possible that the billing
codes will change, so that billing numbers may no longer be correct.

The high-level goal of our CBR system was fairly simple: given a new ship-
ment, select the appropriate billing code by matching it against the database of
previous billing cases (i.e. paid bills). The difficulty was that in so doing our sys-
tem would retrieve many billing codes from cases that were either old, incorrect,
or not valid for the current cycle of operations. When discussing the problem
with the BNSF billing experts they indicated that there were two major selection
criteria they would use to resolve any conflicts: the volume or frequency and the
recency of a billing number. In other words, how many times a billing number
had been used in the past coupled with how recently the number had been used.

! BNSF operates a railroad network with 33,000 route miles in North America

The combination of these two parameters is not straightforward, though.
Cyclic billing means that some recent billing records would be correct, but have
much less frequency than older ones that were generated over a long period of
time. On the opposite end, a recent record may be simply incorrectly entered
by BNSF personnel and should not necessarily override voluminous but older
records.

Traditional case base maintenance techniques were of no help, since the con-
flicting cases were, in most situations, correct for different billing cycles and
conditions, and such cycles and conditions were not consistent across all cus-
tomers, nor were they always dependent on available information (for example,
a customer moved temporarily to a new address, requiring a new number, and
then moved back to their original offices, requiring the old number, but this hap-
pened in no predictable fashion). The case base did not have obsolete information
that could be simply pruned; it contained current, sometimes conflicting, billing
cases. To capture all rules and information regarding the definition of billing
cycles and changes would be a very expensive and error-prone exercise.

3 CBR System

The basic CBR system for retrieval of the most similar cases used a simple,
weighted nearest-neighbor matching of 20 features of the shipping record that
required a billing number and the cases in the billing record case base. Weights
were determined by BNSF experts of the domain, who also determined the at-
tributes that were used in the matching process. The threshold over which a case
was considered similar was varied experimentally between 1 and 0.9 in increments
of 0.02 to identify any trends in retrieval. In this particular application varying
the similarity threshold led to trivial and expected results: a lower threshold
retrieved a larger set of similar cases and had fewer inputs that retrieved no
similar cases.

Once the initial matching is complete, a billing code is assigned only if all
retrieved cases above the cut-off threshold have the same billing code (something
that happens in approximately 45% of the problems submitted to the CBR sys-
tem). Otherwise the cases are analyzed by additional processing which uses the
GA-created selection criteria, as described next. Billing problems that retrieve
no similar cases are left for users to determine the appropriate billing code.

4 Generating Weighted Solution Selection Criteria

When CBR retrieved different billing codes, leading to conflicts as to the solution
the system should select, our system needs to decide which of the billing codes to
pick. As mentioned, the selection of the most appropriate case should be based
on a combination of the recency of the billing case, its frequency (how often it
has been used), and its similarity to the current billing problem. At issue was
how to combine these parameters in a way that led to the selection of the correct

billing case. We experimented with different equations and weighted parameters
using genetic algorithms (GAs).

Before we describe the equations we used, we need to define two parameters:
frequency and recency. Frequency is simply the relative frequency of a billing
number in the cases retrieved. So, for example, if we retrieve 100 cases that
are over the matching threshold, and 60 of them have the same billing number
12345, then the frequency of 12345 is 0.6. To compute the recency of a billing
number we first need to define the cut-off distance, in other words the number of
days after which a billing number is considered outdated. Each day between the
current date and cutoff date is assigned a number between 0 and 1, computed
linearly over the time interval. So, for example, if the cutoff date is 5 days in
the past, the current date has value 1.0, yesterday has value 0.8, two days ago
is 0.6, etc. The recency of a billing number is the normalized sum of the recency
value of each case retrieved that has this number.

We defined six different weighted solution selection metrics:

. A linearly weighted frequency: a x frequency — 3
. An exponentially weighted frequency: a x e~ (B(1—Frequency)) |

. A step function for frequency: [%1 x B

. A linearly weighted recency: a x recency — 3
. An exponentially weighted recency: a x e~ (B(1—recency)) 4 ~

S U W N

. A step function for recency: {”f;#-l x

We also defined two simple retrieval methods to be used as comparisons:

1. Most recent: Select the billing number that is in the most recent case
2. Most frequent: Select the billing number that appears most often in the
whole set of retrieved cases

Next we used GAs to find the parameters of the six equations described
above. We ran nine different experiments, one each for a different maximum
similarity threshold (1, 0.98, 0.96, 0.94, 0.92, and 0.90). We repeated our experi-
ments using two different fitness functions, to investigate the effect of the fitness
function on the selection of the appropriate solution. The first fitness function
was based only on the percentage of the problems that were solved correctly (i.e.
were assigned the correct billing number). The second fitness function combined
the percentage of the problems solved correctly with the difference between the
matching value of the highest-ranked case that had the correct solution and
the matching value of the highest-ranked case that had an incorrect solution;
the goal was to have high accuracy but also to punish incorrect solutions that
matched highly. Figure 1 shows the overall solution accuracy for the two fitness
functions; since the fitness function that takes only percent correctness into ac-
count performed significantly worse, we will only discuss our results using the
second fitness function.

The genetic algorithm was run for 1000 generations per experiment. Each
generation population consisted of 200 individuals. The likelihood for crossover

Comparison of Fitness Functions

2 \
& 061 \
c A
L A
So54 - N — — — Fitness Function 1
o A
“’3 \ Fitness Function 2
2 A\
E04T -————————=————— - R i
3 \
A ~
\ N -
[e W O m e~ - et
s N -
\ -, ~_-"
\ s ~
024+ —————————————— —— R A
\ 7
4
0.1+
0 T T
1 0.98 0.96 0.94 0.92 0.9

Threshold Case Similarity

Fig. 1. Comparison of the overall results of the two fitness functions. ” Fitness Function
1” uses only the percentage of correct solutions and performs significantly worse as the
matching threshold for case selection is lowered.

was 99 percent, and the likelihood for mutation was 1 percent. The parameters
we wanted to determine where encoded as bit strings. For example, for the
exponentially weighted frequency equation, the GA tried to find the parameters
a, B, an ~; for the linearly weighted recency equation, the GA tried to find
the parameters «, 3, and the cutoff date distance; etc. We used a case base of
500 cases for training and another one of 500 cases for testing. The training
cases were again divided into five sub-sets of 100 cases each. The GA switched
between training sub-sets for each generation, in an effort to avoid overfitting
the solution.

The numbers generated were floating point with resolution of 0.001. For the
exponential formulas we used 19 bits to encode the a parameter, 17 bits to
encode the g parameter, and 20 bits to encode the v parameter. For the linear
formulas we used 17 bits to encode the a parameter and 10 bits to encode the
B parameter. There are integer parameters, too, for example the date length
is encoded in 9 bits (the date length is the number of days in the past when
recency is set to zero), and the step number and step height each are encoded in
10 bits. The parameters for each equation are stored in a single chromosome of
maximum length 90 bits. As already mentioned, the fitness function combined
the percentage of the problems solved correctly with the difference between the
matching value of the highest-ranked case that had the correct solution and the
matching value of the highest-ranked case that had an incorrect solution.

For example, the GA found the following parameter values for the exponen-
tially weighted recency equation when the similarity threshold was set to 0.90:
cutoff date distance= 17 days; equation: 0.089 x e~ (0-053(1—recency)) 4 (085

Next, we used the same GA process to discover the parameters of a combina-
tion formula, Zf w; X f; where w; are the parameters and f; are the outputs of
the six formulas and the two simple solution selection methods (?most recent”
and "most frequent”). The weight for each formula was encoded as a 10-bit string
in the GA.

5 Results

After running the GAs, for each similarity threshold we had three formulas that
weighted recency, three that weighted frequency, and one formula that combined
the previous six and the two simple selection criteria of ”most recent” and ”most
frequent.” These nine selection criteria were tested on the 500 problems of our
test set, and the results are shown on Figures 2 and 3 (note that three criteria,
most frequent solution, and step and exponential weighted frequency, had iden-
tical results). We ran three different experiments with the same test set and all
resulted in similar equations and the results were within one percentage point.
While more experiments may be needed, our initial results indicate that the
formulas generated by the GAs are stable and produce almost identical results.
The results we are showing in the following graphs are from a single experiment.

Figure 2 shows the percentage of correct solutions (billing codes) that were
identified by the nine different selection criteria as a function of the similarity
threshold used. The combination formula does the best, and is the most consis-
tent across changing threshold values. Note that the ratio of correct solutions is
computed as a percentage of the solutions that the system found, and does not
include situations where no solution could be found. Because of this, the graphs
of Figure 2 are slightly misleading, since they could lead to the naive conclu-
sion that the best performance can be achieved using a similarity threshold of
1.0, or, in other words, by demanding a perfect match. Figure 3 shows a better
comparison of the nine selection criteria.

Figure 3 uses as an evaluation criterion the ”contribution to the overall solu-
tion.” This metric indicates how many correct solutions were found, versus (1)
incorrect solutions, plus (2) cases where there were no competing solutions (i.e.
all retrieved cases had the same billing number?), plus (3) problems where no
solution was identified since no case matched at or above the matching thresh-
old. So, this rate is the percentage of problems for which competing cases where
retrieved times the percentage of them that were solved correctly. We believe
that this is a better criterion of the overall performance of the selection metrics,
since it indicates the contribution that the selection metrics make to the overall

2 As mentioned, when cases are found and retrieved, in approximately 45% of the
problems there are no competing solutions. So, the solution selection criteria are
used in the remaining 55% or of the problems

Comparison of Solution Selection Criteria - Chart 1

0.9 A
0.8 1

0.7 A

—e——Most Recent

—¥k—Most Frequent
—>¢—Linear Frequency

—¥— Step & Exponential Frequency
——Linear Recency

—e—Step Recency
—a——Exponential Recency
|=——_=——Combination

0.6 4

0.5

0.4 1

0.3 A1

0.2 1

0.1 4

1 0.98 0.96 0.94 0.92 0.9
Threshold Case Similarity

Fig. 2. Comparison of the nine solution selection criteria as a function of the percent
of problems they solve correctly versus the similarity threshold used for case selection.

quality of the solution. Figure 2, on the other hand, shows the accuracy of the
selected solution in cases where the system can find a solution.

For example, for a matching threshold of 1.0, CBR retrieval returned 24
cases without conflicting billing numbers, and 25 cases with conflicting billing
numbers. Of the latter, we used the GA-generated combination formula to select
the correct number and did so successfully in 22 instances (approximately 88%).
So, at matching threshold of 1.0, the success of the simple CBR retrieval is 24 out
of 500 (5%), while the combined system is 46 out of 500, or approximately 9%.
The success of the GA-generated combination formula for the same threshold
was 22 out of 476 (that is, 500 test cases minus the 24 that had no conflicting
billing numbers), or approximately 4.6%. This 4.6% is the contribution of the
GA-based selection criteria to the overall solution quality.

The combination method gave the best overall results, contributing 31%
points to the overall solution quality. There seem to be no obvious trends for the
other criteria. Interestingly, the ”simple” solutions of selecting either the most
frequent or the most recent solution do diametrically different, with frequency
giving much better results than recency. On the other hand, the recency of a
solution is important, as shown by the success of the ”step recency” formula.
Currently we have no insights as to the reasons the graphs look as they do, and,
as discussed in Section 7, ” Conclusions,” we are performing more experiments to
help gain a better understanding of the behavior of the GA-generated selection
criteria. Since the current experiment dealt only with small variations in the

matching threshold, it is possible that the behaviors shown by the individual
plots are small permutations that will not seem important as we extend our
experiments to smaller matching threshold, say down to 0.6.

Despite the performance of the individual selection criteria, though, it is clear
that the combination method performs substantially better than the others, and
especially against the simple selection methods of "most recent” and ”more
frequent.”

Comparison of Solution Selection Criteria - Chart 2

0.85 mmmmm e e e e eeeeeee e e e
03

0.25 A

—— Most Recent

—¥— Most Frequent

—>— Linear Frequency

—¥— Step & Exponential Frequency
—&— Linear Recency

——e— Step Recency

—a—— Exponential Recency

=—— =——Combination

0.2 1

0.15 A

0.1

0.05 A

1 0.98 0.96 0.94 0.92 0.9
Threshold Case Similarity

Fig. 3. Comparison of the nine solution selection criteria as a function of the contri-
bution they make to the overall solution quality (expressed as percentage added to the
combined CBR+GA system’s accuracy) versus the similarity threshold used for case
selection.

6 Previous Research

There has been a substantial volume of research that integrated CBR with ge-
netic algorithms (GAs). Some of the previous work used CBR to seed GAs, so
that they would not start from a random configuration of chromosomes, but,
instead, start from a generation that —based on experience— was ”close” to the
required solution. For example, Ramsey and Grefenstette [14] presented a GA
that was initialized by cases that contained descriptions of past GA runs (e.g.
task environment and parameter values), and where CBR aimed to focus the
GA to the current environment and situation. Liu [9] injected 5-15% of cases

into a GA system for the design of gate-level circuits. Similarly, Perez et al.[12]
used a case base of designs to seed a GA that also evolved circuits at the gate
level. The work by Job et al. [4] is also very similar, in that it uses cases to seed
an FPGA design program that uses GAs.

Other research used GAs to adapt solutions retrieved by CBR. This work is
very similar to the one where CBR is used to seed GAs (the retrieved solutions
can be seen as the GA seeds), but the focus is more on CBR than GAs. For
example, structural design cases were adapted using GAs in the work described
in [3]: CBR was used to retrieve up to four cases from a case base, that were
then used as the initial population for a GA that evolved them to generate the
most appropriate solution. A GA was also used to adapt designs that conform
to feng shui rules and that were retrieved by CBR [1]. As in previous such
work, the cases were used as ”seeds” for the GA that then adapted them using
standard GA techniques. The authors concluded that the combined CBR and
GA system solved the same percentage of problems as a GA system alone, but
that it generated designs of better quality and in faster times. A slightly different
approach was taken in the work by Purvis and Athalye [13], where the generation
of a solution from multiple retrieved cases was seen as a CSP problem that was
solved by a CA.

The work in the CIGAR system [10] integrates GA seeding by a case base with
the adaptation by a GA of the solutions generated by CBR. CIGAR uses a case
base to inject part (10-15%) of a population at every GA step when attempting
to solve a new problem in an evolutionary manner; as the GA proceeds, the
solutions offered by the original cases are evolved by crossover and mutation to
adapt to the new problem; new solutions are then learned by getting stored in
the case base.

A large body of research has focused on determining the weights of features
used in case matching using a GA. Early work [5] used GAs to find feature
weights for a k nearest neighbor algorithm. Skalak [16] demonstrated how GAs
can be used to perform feature selection and showed how this can be of great
help in reducing computational costs without sacrificing accuracy in pattern
recognition problems. Oatley et al. [11] used a GA to optimize the values of the
weights of features used to compute similarity. Similar work is described in Shin
and Han [15], where GAs are used to decide on the best indexing features for a
CBR system for stock market prediction. In Kool et al. [7], the weight, selection,
and ordering of features is performed using a GA and a case-based approach,
and the two techniques are compared in the domain of memory-based language
processing.

A very preliminary study of using GAs for CBR maintenance was discussed in
[2]. In this work a set of representative cases were selected, and then their feature
weights were modified by a GA to allow the cases to ”move” in the problem space.
Communication between case-controlling agents would eventually guide the GA
to position all cases in a way that would provide the minimal representative case
base.

Soh et al. [18] and Soh and Tsatsoulis [19] have examined using GAs to create
a case base. In their work they define a set of domain-specific evaluation criteria
for the quality of cases, but no actual case base exists initially. GAs are then
used to generate populations of cases that fit the evaluation criteria and that
are then used by a standard CBR system for problem solving.

Our work is not really similar to most previous work that combined CBR
and GAs. Closest to our approach is the research that learns feature weights,
since it attempts to improve retrieval, which is what our system also tries to do.
Our work, though, applies GAs to cases where traditional CBR matching and
retrieval has failed, and assumes that information that is not part of the feature
set of the case (and, consequently, not known or not knowable) is what would
improve retrieval.

Finally, early work on the CBR system PARADYME [6] used the recency
with which a particular source case was last used as preference heuristic between
retrieved cases that had the same similarity value. PARADYME’s main goal was
to show how different goals should lead to weighting case features differently, and
the psychologically inspired factor of recency was just a simple post-retrieval
criterion. While the goals of our system are similar to PARADYME’s use of
recency (select between competing cases), as mentioned in our discussion of the
domain, cyclic billing means that some recent billing records would be correct,
but have much less frequency than older ones; on the other, a recent record may
be simply incorrectly entered by personnel and should not necessarily override
voluminous but older records. Because of these complexities, it was necessary
to learn/evolve the formulas that combine similarity, frequency and recency for
case selection. Note also that in our work ”recency” does not reflect when a case
was used last (i.e. by the CBR system), but when the action described by a case
was last performed.

7 Conclusions

In certain domains a case base may contain contradictory but correct cases. The
contradictory solutions are due to known domain and problem characteristics
which are not part of the case description, and which cannot be formally or
explicitly described. In such cases, it is important to develop methods that will
use these criteria to select among the competing solutions of the matching cases.
We showed how one can use genetic algorithms to discover methods to combine
and operationalize vague selection criteria such as ”recency” and ”frequency.” In
our domain it was assumed that these criteria were important for selecting among
competing solutions, but there was no explicit way for doing so. GAs helped
us develop simple equations that combined the solution selection criteria, and
significantly improve the correctness of the system. In the best case experiment,
the GA-developed selection criteria added approximately 31% correct solutions
to the CBR system as compared to using simple weighted matching and retrieval.
For our application this translates to over 1500 bills per month that would be

send to the correct payee and would not be contested, resulting in substantial
savings and in uninterrupted payments for shipments.

We observed that formulas combining all selection criteria performed better
than ones considering a single criterion. We also discovered that the selection of
the fitness function for genetic learning had a significant impact on the solution,
and different fitness functions should be experimented with before committing to
one. In our, albeit only three, experiments we noticed that the selection criteria
generated by the GAs were very similar and led to almost identical results.

We intend to continue our experiments with decreasing similarity thresholds
in an effort to see if contributions to the overall solution quality offered by the
GA-generated selection criteria can be improved beyond the current 31%, and
to find the point where —as we expect— performance will start declining.

More generally, CBR retrieval has —in most cases— resulted in the selection
of the best matching case (or a small number of top matching cases), from
which a solution is then adapted. Most work has concentrated on finding the
best features, or the best weights, or has used the user to guide the ultimate
selection, as done in Conversational CBR. The assumption has been in most cases
that the similarity assessment process was sufficient to guide the problem solver
to the best case from which to start adaptation. Our work in an, admittedly,
uncommon domain of application, has led us to believe that in cases where there
is no guarantee that the feature set describing a case adequately represents the
problem instance, or that it would lead to correct case retrieval, the use of case
selection criteria used after the similarity assessment phase can greatly improve
performance.

Many case bases start as company data bases or textual documents, and their
contents were never designed to be cases or be useful in establishing similarity
between them. In such environments, the developers of the CBR system must
try to elicit from experts further selection criteria and rules. Another possibility,
as we have shown, is to have the experts identify which characteristics that are
not part of the case description they use in selecting between cases, and then
use these characteristics to learn the actual selection equations. In our work, the
expert-defined characteristics were frequency and recency; in other domains they
may be different. Our experiments showed that GAs are a good way of generating
these selection criteria equations, and significantly improved the performance of
the CBR system. While more experimentation will be necessary, it seems that
the selection functions are stable and might be modeling inherent properties of
the domain and of the expert case selection process. It would be interesting to
attempt a similar experiment in a more ”traditional” CBR application, and to
study whether GA-generated selection criteria would do a better job selecting
the best case from a subset of matching cases as compared to selecting the best
matching case.

8 Acknowledgments

This work was supported in part by the Burlington Northern and Santa Fe Rail-
way Company. The comments by the anonymous reviewers helped us improve
the exposition of our work.

References

1. de Silva Garza, A.G. and M.L. Maher: ” An Evolutionary Approach to Case Adap-
tation,” in Proceedings of 3rd Int. Conf. on CBR (ICCBR-99),K.-D. Althoff, R.
Bergmann and L.K. Branting (Eds.), Berling: Springer-Verlag, (1999) 162-172.

2. Huang, Y.: ”An Evolutionary Agent Model of Case-Based Classification,” in Pro-
ceedings of 3rd European CBR Workshop (EWCBR-96), I. Smith and B. Faltings
(Eds.), Berling: Springer-Verlag, (1996) 193-203.

3. Hunt, J.: ”Evolutionary Case Based Design,” in Progress in Case-Based Reasoning:
1st UK Workshop, I.D. Watson (Ed.), Berlin: Springer-Verlag, (1995) 17-31.

4. Job, D., Miller, J. and Shankararaman, V.: ”Combining CBR abd GA for Design-
ing FPGAs,” in Proceedings of 3rd Int. Cnf. on Computational Intelligence and
Multimedia Applications, (1999) 133-137.

5. Kelly, J.D. and Davis, L.: ” A Hybrid Genetic Algorithm for Classification,” in Pro-
ceedings of 12th Int. Conf. on AI (IJCAI-91), (1991) 645—650.

6. Kolodner, J: ”Selecting the Best Case for a Case-Based Reasoner,” in Proceedings
of 11th Ann. Conf. of the Cognitive Science Society, Hillsdale, NJ: Larence Erlbaum
Associates, (1989) 155-162.

7. Kool, K., Daelemans, W. and Zavrel, J.: ” Genetic Algorithms for Feature Relevance
Assignment in Memory-Based Language Processing,” in Proceedings of 4th Conf.
on Computational Natural Language Learning and of the 2nd Learning Language in
Logic Workshop, Lisbon, Somerset, NJ: Association for Computational Linguistics,
(2000) 103-106.

8. Leake, D. B. and Wilson, D. C: ”Case-Base Maintenance: Dimensions and Direc-
tions,” in Proceedings of European Workshop on Case-Based Reasoning. Springer-
Verlag, Berlin Heidelberg New York (1998) 196-207.

9. Liu, X.: ?Combining Genetic Algorithms and Case-based Reasoning for Structure
Design,” M.S. Computer Science Thesis, University of Nevada at Reno (1996).

10. Louis, S.J. and Johnson, J.: Robustness of Case-Initialized Genetic Algorithms,”
in Proceedings of 12th Int. Florida AI Research Society (FLAIRS-99), (1999) 129-
133.

11. Oatley, G., Tait, J. and Mclntyre, J.: ” A Case-based Reasoning Tool for Vibration
Analysis,” in Applications and Innovations in Expert Systems VI: Proceedings of
the BCS Expert Systems Conference, R. Milne, A. Macintosh and M. Bramer (eds.),
Berlin: Springer-Verlag (1998).

12. Perez E.I., Coello, C.A. and Aguirre, A.H.: ” Extracting and Re-Using Design Pat-
terns from Genetic Algorithms using Case-Based Reasoning,” in Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO-2002, Langdon, W.B.
et al. (Eds.), San Francisco, CA: Morgan Kaufmann Publishers, (2002).

13. Purvis, L. and Athalye, S.: ” Towards Improving Case Adaptability with a Genetic
Algorithm,” in 2nd Int. Conf. on CBR (ICCBR-97), Leake, D.B. and E. Plaza (Eds.),
Berlin: Springer-Verlag, (1997) 403—412.

14. Ramsey, C.L. and Grefenstette, J.J.: ” Case-Based Initialization of Genetic Algo-
rithms,” in Proceedings of 5th Int. Conf. on Genetic Algorithms, (1993) 84-91.

15. Shin, K. and Han, I: ” Case-based Reasoning Supported by Genetic Algorithms
for Corporate Bond Rating,” J. of Expert Systems with Applications 16(2), (1999)
85-95.

16. Skalak, D.B: ”Prototype and Feature Selection by Sampling and Random Mutation
Hill Climbing Algorithms,” in Proceedings of 11th Int. Conf. on Machine Learning,
(1994) 293-301.

17. Smyth, B. and McKenna, E.: "Modeling the Competence of Case-Bases,” in Pro-
ceedings of 4th European Workshop on Case-Based Reasoning, EWCBR-98, Lecture
Notes in Artificial Intelligence 1488, Smyth, B. and Cunningham, P. (Eds.), Berlin:
Springer Verlag, (1998) 208-220.

18. Soh, L-K., Tsatsoulis, C., Jones, M. and Agah, A: ”Evolving Cases for Case-Based
Reasoning Multiagent Negotiations,” in Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO-2001, Spector, L. et al (Eds.), San Francisco,
CA: Morgan Kaufmann Publishers, 909 (2001).

19. Soh, L-K. and Tsatsoulis, C.: ”Combining Genetic Algorithms and Case-Based
Reasoning for Genetic Learning of a Casebase: A Conceptual Framework,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO-2001,
Spector, L. et al (Eds.), San Francisco, CA: Morgan Kaufmann Publishers, (2001)
376-383.

20. Zhu, J and Yang, Q.: "Remembering to Add: Competence-Preserving Case-
Addition Policies for Case Base Maintenance,” in Proceedings of the Fifteenth Int.
J. Conf. on Artificial Intelligence. Morgan Kaufman (1999) 234-239.

