
Intelligent Matchmaking for Polar Ice Sheet Data
Collection and Delivery

Costas Tsatsoulis, Sudha Sivashanmugam and Steven Perry
Department of Electrical Engineering and Computer Science

Information and Telecommunication Technology Center
The University of Kansas

1520 West 15th St., Room 2001, Lawrence, KS 66045, USA

Abstract— The PRISM (Polar Radar for Ice Sheet Measurement)
project is developing mobile, autonomous sensors for the
measurement and study of the mass balance of the polar ice
sheets. These sensors consist of intelligent radars integrated into
robotic vehicles. They autonomously decide where and how to
measure by examining a variety of information including
onboard sensor data and collections of a priori knowledge.
These data include the health and status of the rover, health and
status of the sensors themselves, the state of the environment as
measured by the sensors, satellite measurements of the area
indicating expected ice sheet motion, and so on. All of this
information is used to direct the data collection process by
allowing for the dynamic configuration of sensors and the motion
of the rovers that carry them. The PRISM intelligent sensor and
rover control system is built upon a multiagent collaborative
architecture that involves a number of distinct data collection
and data dissemination agents functioning continuously and
autonomously in a distributed computing framework. A critical
component of this system is an agent service called the
Matchmaker. The Matchmaker coordinates requests for
information and services within the agent community and allows
decision-making agents to locate and communicate with the data
source-agents that can fulfill these requests.

Keywords- intelligent agents; matchmaking; polar ice sheet
measurements; autonomous radar and rover control;

I. INTRODUCTION
The PRISM (Polar Radar for Ice Sheet Measurement)

project is developing mobile, autonomous sensors for the
measurement and study of the mass balance of the polar ice
sheets. The primary sensors include a Synthetic Aperture
Radar (SAR) sensor and a dual-mode wideband radar sensor.
The SAR sensor can operate in monostatic and bistatic mode at
60, 150 and 350 MHz. Its main purpose is to generate
reflectivity maps of the bed which are used in the
determination of basal ice sheet conditions, specifically the
presence and distribution of basal water. The wideband dual-
mode sensor features a radar depth sounder which is used to
map deep layers and an accumulation radar to map near-
surface layers.

These sensors are integrated into two vehicles; an
autonomous robotic vehicle and a base vehicle. The base
vehicle incorporates one dual-mode radar, the SAR transmitter,
and monostatic SAR receiver. The robotic vehicle operates
another dual-mode radar as well as the bistatic SAR receiver.

These two vehicles are linked by a wireless network and an
information system that allows them to share sensor data. The
base vehicle features an additional communication system that
can relay data back to a central location for further processing
and long-term storage.

One important piece of this system is the ability of sensors
to autonomously decide where and how to measure. These
decisions are guided by a variety of information including
onboard sensor data and collections of a priori knowledge.
These data include the health and status of the rover insofar as
it affects mobility of the sensors (e.g. power remaining, fuel
level, status of motor, etc.), health and status of the sensors
themselves, the state of the environment as measured by the
sensors (e.g. snow cover depth, thickness of the ice sheet,
condition of the basal level, i.e. roughness and presence of
water, etc.), satellite measurements of the area indicating
expected ice sheet motion, and so on. All of this information is
essential in determining the operating range, mode and
frequency of the sensors, as well as the motion of the rovers
that carry them.

The PRISM intelligent sensor and rover control system is
built upon a multiagent collaborative architecture that involves
a number of distinct software agents functioning continuously
and autonomously in a distributed computing framework. This
community of agents is comprised of agents that represent data
sources (source agents), and consumers of data, i.e. agents that
require data to make decisions about the sensors and rovers
(decision-making agents). A source agent’s primary
responsibility is to make data from a particular sensor or a
priori information source available to the other agents in the
community. A decision-making agent is responsible for
controlling a particular parameter of the mobile radar system.
These parameters include the radar frequency and mode as well
as the speed and scan-path of the rover (a series of waypoints).

A decision-making agent reasons about the operation of the
component it controls based on information obtained from
source agents. In order to acquire this information, the
decision-agents must know what types of data are required to
make a decision and which agents can provide these data.
Furthermore, a decision-making agent may need different kinds
of data at different rates, depending upon the state of the
mobile radar. For instance, when the SAR sensor is in
monostatic mode, the rover should travel in a relatively straight
line, thus the decision-making agent that controls the rover’s

This work was supported in part by the National Science Foundation (Grant
#OPP-0122520), the National Aeronautics and Space Administration (grants
#NAG5-12659 and NAG5-12980), the Kansas Technology Enterprise
Corporation, and the University of Kansas.

path does not need to know the direction in which the rover is
heading, only the waypoint at the end of the path. However,
when the SAR sensor is in bistatic mode, the rover must make
repeat passes across the swath being measured, so the decision-
making agent that directs the rover’s path must continually
monitor the rover’s heading at each point along that path.

A central feature of the multiagent architecture is a service
called the Matchmaker. The Matchmaker coordinates requests
for information and services within the agent community and
allows decision-making agents to locate and communicate with
the source-agents that can fulfill their requests. The
Matchmaker must know about all the agents in the virtual
multiagent environment, what types of data they can provide,
and how often they can provide it.

When a sensor is turned on, the source agents associated
with it awaken. For example, when the rover is started, the
temperature, fuel level, power, speed, GPS, etc. source agents
are started. The first thing a source agent must do upon
awakening is to register with the Matchmaker. During
registration, a source agent announces its existence and tells the
Matchmaker about the data it can provide and the frequency by
which it can provide the data. Decision-making agents are
awakened in response to the activation of the system
components they control. For example, when the radar is
started the decision-making agent that controls it is also started.
Decision-making agents also register with the Matchmaker.
When a decision-making agent is started it notifies the
Matchmaker of its existence, then tells the Matchmaker about
each type of data it requires and how frequently it requires that
data. The Matchmaker then brings together the source agent
that produces the data and the decision-making agent that
requires it.

When a decision-making agent requires a new type of data,
or requires data at a different rate, it again queries the
Matchmaker. The Matchmaker analyzes the new needs of the
decision-making agent and attempts to match those needs to
the source agents that can fulfill them. If no source agent is
available to fulfill a need, the Matchmaker informs the
decision-making agent so it can modify its behavior
accordingly.

The Matchmaker allows for matching between agents that
require data and other agents that can provide that data. It
builds flexibility into the agent community because it allows
for agents to dynamically issue and retract statements about
their capabilities and needs. Without the Matchmaker, each
agent would have to know specific information about every
other agent that it communicates with. A Matchmaking
multiagent architecture can provide direct, timely, and
intelligent data collection.

II. MATCHMAKING
Multiagent systems are distributed systems composed of

many intelligent, autonomous agents that work together to
accomplish common goals. Each agent has a limited viewpoint
or provides a certain set of capabilities to the community of
agents. In multiagent systems where different agents provide
different capabilities, agents must communicate with each
other in order to work towards the common goal.

Multiagent systems that feature communication between
agents all face the problem of connecting information providers
to information consumers. Kuokka and Harada proposed
matchmaking as a solution to this problem. They describe
matchmaking as a cooperative partnership between information
providers and consumers assisted by an intelligent facilitator
[1]. The PRISM Matchmaker is an example of such a
facilitator.

Matchmaking attempts to dynamically match capabilities
and needs and notifies information providing agents and
information consuming agents about potential match-ups.
Since matchmaking is a type of automated reasoning, it
requires that capabilities and needs be represented in a
machine-readable, formal knowledge-sharing language. In
multiagent systems, these are often message and content
languages. Some researchers have experimented with specific
languages for expressing agent capabilities, such as Gil and
Ramachandran’s EXPECT language [2].

There are several different patterns for implementing a
matchmaker service. In one pattern, the consumer notifies the
matchmaker of its need and requests that the matchmaker
suggest one or more providers that can fulfill the need. Under
this model consumers are responsible for selecting the
preferred provider if more than one is suggested by the
Matchmaker. After selecting a provider from the list of
matches returned by the matchmaker, the consumer initiates
communication with it. In other matchmaking systems, the
consumer notifies the matchmaker of a need and stipulates that
the matchmaker forward the request directly to the provider
with the understanding that future interactions between the
provider and the consumer will bypass the matchmaker. The
major difference between this approach and the previous one is
that instead of merely making a recommendation, the
matchmaker selects the best match and initiates communication
between the consumer and the provider. Finally, in brokered
matchmaking, all interactions between the provider and the
consumer are facilitated by the matchmaker. Each of these
different approaches to matchmaking has a different impact on
communication efficiency and bandwidth utilization.

The PRISM multiagent framework allows for multiple
source agents to provide the same capability. This is especially
useful because it means we can add redundant sensors at a
future date. As in other multiagent systems, agents
communicate by passing messages to each other. Agents also

Figure 1. Agent interactions with the Matchmaker

Request /
Inform

Query /
Response

Registration

Matchmaker
Source
Agent

Decision
Making
Agent

communicate with the Matchmaker through messages. These
messages are FIPA (Foundation for Intelligent Physical
Agents) compliant ACL (Agent Communication Language)
messages in XML (eXtensible Markup Language) format. In
the PRISM system, different agents can reside on different
physical computers, so message passing occasionally involves
communication over a rover’s wireless network. Because
several source agents can provide the same type of data, and
because the network bandwidth between the rovers is limited,
the PRISM Matchmaker takes the first approach to
matchmaking: in response to a request for service from a
consumer agent, the Matchmaker returns a list of matching
source agents that can fulfill the request. The decision-making
agent then selects the appropriate source agent from this list of
suggested matches and initiates communication with it. This
approach allows for matching a single consumer request to
multiple providers, and also minimizes bandwidth usage.

III. REPRESENTING AND MATCHING CAPABILITIES
In the PRISM multiagent system, different source agents

provide different capabilities. Most of these capabilities are
quite simple to represent. For example, the temperature agent
can provide the internal temperature of the rover as a floating
point number. Other capabilities are slightly more advanced in
that they require some kind of input from a requesting agent in
order to provide data. For instance, the scientific interest agent,
given a location’s GPS coordinates, can provide a pre-
determined estimate of the scientific interest in that location by
examining an onboard knowledge base. Despite the large
number of capabilities provided by source agents, most of these
capabilities consist of the simple data types returned from
sensors or well-defined a priori data sets. For this reason the
PRISM multiagent system does not require a full-fledged
ontology.

In their basic form, capabilities are represented in the
PRISM multiagent system by a simple string name and an
identifier of the data type they return. For instance, the
temperature agent returns the internal temperature of the rover
as a floating point number. If a source agent defines a
capability, then it must be able to fulfill one-time requests to
provide that capability. In a one-time request, the decision-
making agent sends a request message to the source agent. The
source agent examines the message, and if it is understood, the
source agent will send an inform message back to the sender
that contains the current value of the data source represented by
the requested capability.

In addition to simply being able to respond to a one-time
request, many source agents can provide regular updates about
the recent data obtained from their data source. In the PRISM
content language, this is called a subscription. Once the
Matchmaker has suggested a source agent that can be
subscribed to, the decision-making agent sends special type of
request message to the source agent. The source agent will
respond with one or more inform messages over time until the
subscription expires or is cancelled.

The PRISM framework allows for three different types of
subscriptions. An always-update subscription request has a
single parameter: the capability to subscribe to. Always-update

subscriptions allow the source agent to control the message
frequency (the time interval between subsequent inform
messages). Most agents respond to an always-update
subscription request by sending a response as frequently as
possible. The always-update subscription request uses the
FIPA request-whenever communicative act. A periodic
subscription allows the decision-making agent to attempt to set
frequency of inform messages and can have an optional
expiration time. For example, a decision-making agent would
use a periodic subscription to ask a source agent to send data
every 100 milliseconds for the next two minutes. Periodic
subscriptions also use the request-whenever performative and
have three parameters: the name of the requested capability, the
desired interval between inform messages, and an optional
expiration time for the subscription. Finally, the PRISM
framework allows for event based subscription. Event based
subscriptions use the request-when performative and request
that the source agent sends an inform message to the decision-
making agent whenever some statement about the data source
wrapped by the source agent is true. An event-based
subscription has two parameters, the requested capability and a
conditional statement with which to evaluate the current value
of the data source. All subscription requests are expressed in
the PRISM content language which is an extension of the FIPA
RDF (Resource Description Framework) standard. A basic
library of conditionals is defined in the RDF content query
language and includes functions such as equals, greater-than,
less-than, among others. These conditionals can be combined
with basic Boolean expressions. A decision-making agent
would use an event-based subscription to ask a source agent to
send it data every time the value of that data is greater than
some threshold.

Since all subscriptions start with a single request from the
decision-making agent to the source agent, and are followed by
multiple inform messages sent from the source agent to the
decision-agent, not all capabilities can be subscribed to. For
example, the scientific interest capability cannot be subscribed
to because it requires additional input in order to fulfill a
request for information.

When a source agent is started, it immediately connects to
the Matchmaker in order to register itself. During registration
an agent announces its existence and the capabilities it can
provide to the agent community. These capabilities include not
only one-time access to specific data sources, but also
subscriptions to constantly-changing data sources. For each
capability it provides, a source agent must notify the
Matchmaker of the capability’s name, any input parameters it
might take, as well as its return type (String, integer, floating
point, etc.). Additionally, the source agent notifies the
Matchmaker of the different types of subscriptions that are
offered for the capability. Minimum limits for subscription
parameters such as the periodic interval subscription are
specified as well. All of this information is encoded in an
advertise message. The advertise performative is a PRISM-
specific extension to the FIPA Communicative Acts library.

When a decision-making agent needs a new type of data or
needs to change its subscription frequency in response to some
change in the environment, it must query the matchmaker. It is
during this query process that the Matchmaker matches an

agent’s need to the capabilities provided by other source agents
in the community. In the PRISM multiagent framework,
matching is a relatively simple process.

Before matching, the decision-making agent first
formulates a query message which will be sent to the
Matchmaker. The query message contains a special PRISM
content language statement that specifies the requested
capability name as well as the request type (simple request,
always-update subscription, periodic subscription, or event-
based subscription). If the request type requires the
specification of additional parameter values (such as the period
and timeout values for a periodic subscription), then the values
of these parameters must also be included in the query
message.

When this query message is sent to the Matchmaker, it
examines the message and searches the capabilities list to first
find out which, if any, agents provide this capability. This
consists of a string match on the name of the capability. If the
Matchmaker finds potential matches, it next examines the
specifics of the request type. If the query refers to a simple
request, the Matchmaker immediately returns the identities of
all matching source agents to the decision-making agent.
However, if the request is for a subscription type, the
Matchmaker checks each match to make sure that it allows
subscriptions of this type to this capability. If any source agent
matches on capability, but not on subscription type, it is
removed from the list of possible matches. Finally, the
matchmaker sorts the remaining possible matches based on
how close the values of their subscription parameters match the
specific minimum parameters. For example, assume that a
decision agent requires a periodic subscription to the GPS
position capability that will inform it of the rover’s position
once a second. If two agents can provide periodic
subscriptions, and one of the two can only provide this
information once every ten seconds, while the other can
provide this information every two seconds, the Matchmaker
will prioritize the list so that the source agent that can send at
two second intervals is preferred.

This flexible matchmaking system does not try to provide
an exact match, merely the best possible match. It was
designed with the idea that decision-making agents would
rather receive infrequent updates than no updates at all.

IV. IMPLEMENTATION
The PRISM multiagent framework, which includes the

Matchmaker, and all source and decision-making agents, was
developed in the Java programming language. Each agent is
designed as a thread and contains its own message interpreter,
scheduler, and message-to-Java binding system. The
Matchmaker was designed as a special type of agent that
implements the Mediator agent design pattern. All other agents
implement the Collaborator agent design pattern. Agents
communicate over the network by Java Remote Method
Invocation (RMI). Messages are encoded in XML and sent as
Strings between agents using a remote interface.

When a source agent is started, it first looks up the
Matchmaker in the RMI registry. After getting a remote

interface to the Matchmaker, the agent can announce itself and
advertise its capabilities by sending a single message. When a
decision-making agent queries the matchmaker for source
agents that can fulfill a need, the decision-making agent again
talks to the Matchmaker via XML messages over RMI. After
matching the request to one or more source agents that can
fulfill it, the Matchmaker returns a list of remote interfaces for
the matching agents. The decision-making agent can then
initiate communication with the source agents directly. RMI is
also used for normal inter-agent communication.

RMI allows the option of running different agents on
different Java virtual machines. Because the rovers are linked
with an 802.ll wireless network, different agents can run on
different machines on different rovers and all form a single
virtual community.

V. RESULTS AND CONCLUSIONS
The PRISM multiagent system and Matchmaker have been

implemented and tested on a single autonomous vehicle with
several sensors. Work is ongoing and the custom radar sensors
are still in development as of the writing of this paper.
However, we have constructed the agents that will wrap these
data sources and have tested them with simulated data sources
in a large agent community that mixes agents wrapping both
simulated and actual sensors.

We have shown that the PRISM Matchmaker and
multiagent system perform well in the near real-time setting of
field experiments. Though decision agents made decisions
based in part on simulated radar data, all agents initialized and
registered, capability advertisements and matchmaking worked
properly, and agents fulfilled a variety of requests and
subscriptions. Computing and network utilization were all
within acceptable limits. Finally, we examined the flexibility
provided by the Matchmaker architecture in tests where some
agents were forced to drop out of the agent community and
then later were restarted. This tested the behavior of the
system when the Matchmaker failed to match a request to a
source agent. The decision making agents that made the
request were properly notified by the Matchmaker of a failure
to match and adjusted their decisions accordingly.

In future the PRISM system will be extended and simulated
data sources will be replaced by actual radar sensors.

REFERENCES
[1] Kuokka D. and Harada, L. "Supporting Information Retrieval via

Matchmaking," Working Notes of the AAAI Spring Symposium Series,
pp. 111-11, Stanford University, March 27-29, 1995.

[2] Gil Y. and Ramachandran, S. “PHOSPHORUS: A Task-Based Agent
Matchmaker,” Proceedings of the Fifth International Conference on
Autonomous Agents, pp. 110-11, Montreal, Canada, May 2001.

[3] Kendall E. A, Murali Krishna, P.V., Pathak, C.V. and Suresh, C.V.
“Patterns of Intelligent and Mobile Agents,” Proceedings of the Second
International Conference on Autonomous Agents, pp. 92-9,
Minneapolis, Minnesota, USA, May 1998.

[4] Cruickshank D, Moreau, L., and De Roure, D. “Architectural Design of
a Multi-Agent System for Handling Metadata Streams,” Proceedings of
the Fifth International Conferent on Autonomous Agents, pp. 505-12 ,
Montreal, Canada. 2001

