The University of Kansas/

. Information and
' Telecommunication
Technology Center

Technical Report

Capturing Network/Host State in MAGIC-1I

-

Yulia Wijata
Douglas Niehaus

ITTC-FY98-TR-12161-04
February 1999

Project Sponsor:
Information Technology Office
of the
Defense Advanced Research Projects Agency

Copyright @ 1999:

The University of Kansas Center for Research, Inc.
2291 Irving Hill Road, Lawrence, KS 66045-2969
All rights reserved.

Capturing Network/Host State in MAGIC-II

Yulia Wijata

MAGIC-II Project

Table of Contents

. Overview

1.1 Motivation

1.2 Objectives

. Design Criteria

. Approach

3.1 Using Netspec to Monitor a Wide Area Network
3.2 JATLite Package

. Functional Overview

5. Implementation of NSAgent

5.1 NSAgent Architecture

5.2 Knowledge Representation
5.2.1 Resources
5.2.2 Database

5.3 Monitoring Task

5.4 KQML Messages

. Implementation of VisAgent

6.1 GenMap Package

6.2 Visualization Layers

6.3 Visual Element Mapping
6.4 KQML Messages

. Demonstration Overview

7.1 NSAgent Configuration

7.1.1 Monitoring Link Quality Between DPSS Client and Servers

7.1.2 Monitoring Connectivity in the Network

Page #

O W 00 3 O & B W W NN N =

O S e s T e e e e
BHORA W W NN =R = O O

7.1.3 Monitoring Transfer Capacity of the Network
7.1.4 Monitoring Network element Status
7.2 VisAgent Configuration

8. Conclusion and Future Work

Appendix A. KQML messages Implemented by NSAgent
Appendix B. KQML Messages Implemented by VisAgent
Appendix C. Mapping Configuraiton File

References

15
15
15
20

23
26
28
29

1 Overview

This technical report will describe the software architecture and implementation of the
monitoring agents developed for the MAGIC-II project [1]. The design and capabilities
of the agents will be discussed. This report also documents the configuration of the
monitoring agents demonstrated at the MAGIC-II quarterly meeting at University of
Kansas on July 14, 1998.

1.1 Motivation

Recent development in the area of high speed networking stimulates the development of
large-scale distributed applications. Currently, these applications rely on the best-effort
service offered by the network and sometimes suffer low performance when the
underlying network behaves unexpectedly because most applications are generally
oblivious to variation in network conditions. A network-aware application attempts to
alleviate this problem by capturing the state of the network and using this information to
adapt to the changing conditions of the network.

To support such adaptation, a network-aware application needs to maintain a view of the
network state which is generally dynamic, transient and sometimes tightly coupled with
the semantics of the application. An application’s view of the network may comprise its
topology, availability of resources, and quality or performance of the network elements.

Numerous efforts have been devoted to monitor and probe the network for the purpose of
network management or performance evaluation. However, very few are targeted to help
applications to make intelligent decisions about utilizing the resources in the network
given the extra knowledge about the network. There is yet a need for a support layer
between the application and the underlying network through which an application can
express its requirements on the characteristics of the network and maintain its view of the
network state.

Keeping track of the relevant aspect of the network state is a very challenging task
because it deals with a vast amount of information from a large number of network

elements which may span multiple administrative boundaries. Each piece of information
needs to be collected using an appropriate measurement methodology and should be

organized systematically to ensure timely retrieval and meaningful interpretation. To

address these issues, we approach this problem by deploying a collection of software
agents to provide integrated control of monitoring elements and collected information.

In the context of this report, an agent is defined as an autonomous entity whose
responsibility is to automate one or more of the following tasks:

Continuous monitoring of application components and network characteristics
Creation and control of network testing and measurement

Collection and storage of performance data

Correlation and presentation of performance data to application and/or user

In particular, we use KQML![2] based agents which allows one to “wrap” legacy tools —
in this case, network monitoring and measurement tools — with software and enable them
to communicate via a common agent protocol such as KQML. With this approach, the
complex task of monitoring a large, distributed system can be decomposed structurally
into some domain-specific tasks while maintaining the common goals.

In the MAGIC-II context, the agent-based monitoring system can be used to dynamically
configure the Distributed Parallel Storage System (DPSS) [2] and at the same time,
monitor the health of the MAGIC-II network. In order to understand the interaction
between the distributed application and the underlying network, we also need a tool
which can provide graphical representation of the state of the distributed system. In a
sense, the visualization tool can provide a front end interface to the information collected
and maintained by the agents.

1.2 Objectives
The objectives of the work described in this report is twofold:

e To develop a monitoring agent which collects and maintains data about network state
by doing testing and measurement on network elements

e To develop a tool that provides geographical display of application and network
components and measurement data in a wide-are distributed application and network.

2 Design Criteria
The following design guidelines have been adopted to achieve the design objectives:

e Modularity:
The software agent framework must promote modular design which clearly separate
policy from the mechanism in measurement.

e Portability:
Since a distributed system most likely comprises heterogeneous components and
systems, the agents should be easily portable to different architectures.

¢ Distributed:
The system must be capable of monitoring network elements in more than one
administrative domain.

e Extensibility:
The capabilities of the agents in the system should be easily extended to support new
types of measurement or testing.

3 Approach

This section describes the two major tools used in the development of the monitoring
system: NetSpec, a distributed network performance evaluation tool from University of
Kansas, and JATLite, a Java Agent Toolkit package from Stanford University.

! Knowledge and Query Manipulation Language

3.1 Using NetSpec to Monitor a Wide Area Network

NetSpec[3] will be used as the main control entity of network testing and measurement
because of its capabilities to perform distributed network testing in an integrated and
extensible manner. This allows the system to be distributed and extensible at the same
time. Moreover, since NetSpec has been ported to several major platforms, portability is
not an issue. Basically, NetSpec framework permits two types of daemons/probes to
collect data from the network elements:

e Test daemon generates traffics with different types of characteristics and measures
the achievable throughput.

e Custom measurement daemon performs specific measurement on the network
element.

Figure 1 shows the general architecture of the NetSpec framework. NetSpec controller
distributes measurement tasks to several points inside the network based on the testing
topology described in the script. In response, the measurement daemons perform the
testing or data collection and produce performance reports.

script report

N\

Figure 1 NetSpec Architecture

The role of the Java agent is to create and schedule NetSpec experiments. This can easily
be done by specifying the test parameters in the NetSpec script and passing it to the
NetSpec interface. The Java agent also needs to collect and organize the performance
data reports generated by the test/measurement daemons.

3.2 JATLite Package

JATLite (Java Agent Template, Lite) [4] is package of programs written in the Java [5]
language that allows users to quickly create new software agents that communicate
robustly over the Internet. JATLite provides abasic infrastructure for agents’
communication based upon TCP/IP and KQML messages. The use of Java language
allows the agents to be run on heterogeneous platforms and thus, ensures portability. Its
modular construction consists of a hierarchy of increasingly specialized layers which may

be customized to fit the specific requirements of a given system. Figure 2 shows how the
. hierarchy of layers are organized in JATLite.

User Access

YV

ProtocolLaye

Basel ayer

AbstractLayer

Figure 2 JATLite Layers

The Abstract Layer provides the collection of abstract classes necessary for JATLite

implementation. The Base Layer is built on top of the abstract layer and provides basic

communication based on TCP/IP. The KQML Layer provides storage and parsing

routines for KQML messages. The Router Layer provides name registration and message

routing and queuing for agents. Finally, the Protocol Layer supports diverse standard
. internet services such as SMPT, FTP or HTTP.

One important concept in JATLite framework is the Agent Message Router (AMR) (also
referred to as a router). It provides name registration and message routing or queuing for
agents. In this scheme, agents can operate in disconnected mode and still receive the
messages addressed for them. Another advantage is that the existence of an agent is
transparent to the other agents in the system. An agent can send a message to another
agent in the system by indicating the registered name of that agent in the destination field
of the message and then sending the message to the router. The router then will forward
the message to its intended recipient as long as it has registered itself with the router.

4 Functional Overview

This section provides the high level architecture of the monitoring system developed in
MAGIC-II testbed. In particular, it will define the different types of monitoring agents
exist in the system and how they relate to each other. The two main organizations
involved in developing the distributed monitoring system are KU and LBNL. KU’s
contribution mainly involves monitoring at the network level while LBNL is particularly
interested in monitoring at the application level. Both efforts are aimed at dynamic
reconfiguration of the DPSS and also performance tuning and optimization of the
. distributed application.

Figure 3 shows the functional overview of the components existing in the system. The
. MAGIC-II testbed cloud represents the wide-area ATM network and also the distributed
application being monitored by the agents.

JATLite
Router

am QML KQML
VisAgent 5 NSAgent (K_) 33:%; <> M':‘r:?tgr

monitor! | monitor! ! monitor! !

MAGIC-Il Testbed

[X7 I Hw] nwwUo

mwwIvo nmnUvo

= J

Figure 3 Functional Overview

There are four types of agents that we can identify from the picture:

NSAgent is a JATLite agent which creates and schedules NetSpec experiments and
organizes the performance reports. The type and parameters of the experiment can be
loaded dynamically. NSAgent collects the information about the DPSS system from
the ServerMonitor. This is developed by KU and will be described in more detail in

this report.

VisAgent is a JATLite agent with a front-end applet which visualizes the state of the
network and distributed application and the agents configuration. The information is
collected from the NSAgent and ServerMonitor. This is also developed by KU.

ServerMonitor is a JATLite agent which monitors the status and configuration of a
DPSS syste 2, This agent is developed by the LBNL.

HostMonitor is also a JATLite agent which keeps track of the status of the currently
connected DPSS clients.

Each of these agents registers itself with the router when it starts up. It exchanges KQML
messages with other agents in the system via the router.

2 A DPSS system consists of a DPSS master and one or more DPSS server.

5 Implementation of NSAgent

The main responsibility of the NSAgent is to capture the state of some of the network
characteristics. It does that by performing the appropriate test and measurement in the
network. The result of monitoring and measuring the network characteristics can be used
for different purposes. In the MAGIC-II testbed, the main objective is to use the
knowledge about the current condition in the network to dynamically select the best
server in DPSS system. The characteristics of particular interest are the load of the
network which can be represented by the available link bandwidth and round trip time.
The NSAgent is also used to perform general network monitoring such as connectivity or
throughput test..

Thus, the main focus of the NSAgent implementation is to design a extensible framework
which can accommodate future types of network measurement or testing. Although the
main objective in this project is to support the dynamic reconfiguration of the DPSS
system, NSAgent should fulfill the ultimate goal of capturing the network state.

5.1 NSAgent Architecture

NSAgent 8
B
E
Resources | |8 | Kam oo
NetSpec scripts 8| agents
NetSpec reports g
<) NetSpec experiments g
8

Filesystem +

S, : \ 4
result > I B control

© / Netw ork Monitor -

DB
— NetSpec experiment

Figure 4 NSAgent Architecture and External Components

Figure 4 shows the architecture of the NSAgent. The JATLite’s RouterClient-
Action class provides the basic communication interface based on TCP/IP socket via
the router for receiving and sending KQML messages. The NSAgent has a collection of
templates for NetSpec scripts and reports and for creating NetSpec experiments. It
usually receives a monitoring task from other agents and creates the appropriate network
monitor. The results of the NetSpec experiments can be stored in a database or the
filesystem.

The actions for the NSAgent is defined in the NSAgentAction class which isa

subclass of the JATLite RouterClientAction class. Figure 5 shows the complete
class hierarchy. If we refer back to the definition of these layers in section 3.2, we can see
clearly that the NSAgent can handle KQML messages and can use the services of the
router such as naming service and message routing.

java.lang.object

I—P java.lang.Thread

l—-) Abstract. AgentAction

I-—) Basel.ayer.BAgentAction
|) ayer. gentAction

L‘P RouterLayer.AgentClient.RouterClientAction

NSAgent.NSAgentAction

Figure 6 NSAgentAction Class Hierarchy

The message handling of a RouterClientAction agent is quite simple. When a KQML
message destined for an agent arrives at the router, it stores the message in the incoming
message box for that agent and then it will notify the agent. The agent is responsible of
retrieving its own message and deleting them afterward. Figure 6 shows the pseudo-code
of the Act () method in the NSAgentAction class.

class NSAgentAction extends RouterClientAction {
public boolean Act (Object o) {
//create KQOMLmail
KOMLmail mail = new KQMLmail ((String)o, 0);

//extract KQMLmessage
KQOMLmessage kqgqml = mail.getKQMLmessage () ;

// parse and interpret message

// delete message
addToDeleteBuffer(0);

Figure 5 Pseudo-code for the Act() method in NSAgentAction

5.2 Knowledge Representation

One of the main components in a software agent is its knowledge base (KB). It provides
the context of agent execution and the knowledge about its environment. The
representation of knowledge can vary according to its purpose. NSAgent has two types of

knowledge representation. The procedural representation uses program functions or
methods to represent the data and the operation associated with an object. This type of
representation is particularly useful in defining the capabilities of an agent. The second
type of knowledge representation used in NSAgent is a relational data base. It usuall
serves as a back-end storage of static or run-time data. Relational data base provides a
convenient and structured access and manipulation of data.

In NSAgent, the procedural representation is also called a resource. Section 5.2.1 will
explain the types of resources which have been defined in NSAgent. Section 5.2.2 will
describe the structure and configuration of the database.

5.2.1 Resources

NSAgent mainly uses resources to store the knowledge needed for running network
experiments. Figure 7 shows the conceptual process of creating a network experiment.
Given atask to monitor a specific network characteristic, NSAgent will create the

appropriate network monitor object. The monitor object will create the NetSpec script
that will invoke the proper NetSpec measurement daemon for the task. Then it will need
to parse the performance report generated by the NetSpec daemon and interpret the

result.
Raw :>
Report monitored
entities
NetSpec
NetSpec Experiment
Script
monitoring
fask Network
Monitor
NSAgent

Figure 7 Network Monitoring Process

NSAgent defines the following resource abstractions:

e Network Monitor:

It represents the object that controls NetSpec experiment. Every network monitor
object encodes the type and fopology of NetSpec experiment. The type is associated
with the kind of NetSpec measurement daemon which needs to be executed. The
topology defines the execution construct and the participants of the experiment. A
monitoring task must specify the type of monitor object to create. It can also specify
the duration of the experiment and storage method.

For example, we can define a monitor object which performs a full mesh throughput
experiment among N nodes. In this case, the type of the experiment (i.e. throughput)
indicates that we have to use NetSpec Test Daemons. The full mesh topology will
creates a script of N? pair of end to end experiment between each two nodes in the set

of N given nodes.
Table 1 summaries the types of network monitors that have been implemented so far.

Name Topology Daemon type
FullMeshThroughput N-to-N (full mesh) nstestd
PointToMultiPointThroughput 1-to-N (star) nstestd
EndToEndThroughput 1-to-1 nstestd
FullMeshDelay N-to-N nspingd
PointToMultiPointDelay 1-to-N nspingd
EndToEndDelay 1-to-1 nspingd
HostMonitor 1-to-N nssnmpd

e NetSpec Script:
A NetSpec script object contains the parameters and options of a NetSpec daemon
and the methods to generate the script. A class must be defined for each NetSpec
daemon since each NetSpec daemon has different parameters and format.
For example, a NetSpec script class of the NetSpec Test Daemon defines the test
parameters such as type of traffic, protocol and end-nodes. It also needs to implement
the method that generates a block structure describing a this test.
At the writing of this report, three types of NetSpec script classes have been defined:
NSTestd, NSPingd, and NSSnmpd.

e NetSpec Report:
Since there is no standard report format defined in NetSpec, each daemon generates
varying types of report which makes parsing and interpretation of the report
particularly difficult. To handle this problem, NSAgent defines a NetSpec report class
for each type of daemon. Each class provides methods to parse and store the result.

5.2.2 Database

For this project, we have decided to use the msql (mini SQL) [6], a light-weight relational
database based on SQL as the back-end storage. The NSAgent uses the database to store
static configuration of the network (such as names and addresses of end hosts or
switches) and the configuration of the distributed application being monitored, in this
case, the DPSS. The results of network experiments can also be optionally stored in the
database for further retrieval by other agents. Since the goal is to capture the state of the
network, only the most recent result is kept in the database. Historical result can
optionally be cached in the filesystem.

5.3 Monitoring Task

NSAgent’s main capability is to accept monitoring task and perform the monitoring
action. Monitoring task is encapsulated in a KQML message and can be submitted by
other agents in the system. NSAgent also provides a convenient way of loading tasks
from a file during the agent start up. Routine monitoring tasks can be loaded from this
initialization file.

A monitoring task must identify the following attributes:

e The type of network monitor.
e The frequency of the experiment.
e The storage method (to database or filesystem)

e The parameters of the experiment (specific to the type of network monitor)

5.4 KQML Messages

This section will describes the KQML messages implemented in the NSAgent. The types
of messages can be broadly categorized into three domains according to the audience of
the messages:

e DPSS
Messages in this domain deal with the configuration of the DPSS and the queries
about the network status from the DPSS.

e NetSpec
These messages provide interface to create or terminate NetSpec experiment,
including the loading of monitoring task.

e Visualization
The NSAgent also serves as the information provider for a visualization agent

Appendix A contains the detail description for the KQML messages.

6 Implementation of VisAgent

VisAgent is a front-end interface to the monitoring systems described in this report. It
aims at providing geographical display of the state of a distributed application and its
underlying wide-area network. The logical approach is to make the visualization tool
itself an agent that communicates with the monitoring agents and hence, the name
VisAgent.

VisAgent is implemented as a Java applet which can be loaded from a web browser or
launched as a Java application. This approach provides the convenient access for a thin
client to access the visualization tool from various location or environment. JATLite’s
router mechanism plays an important role especially for this type of agent because the
only information needed by the VisAgent to communicate with the rest of the system is
the address of the router. It also solves the security problem imposed by web browser on
Java applet which only permits applet to create sockets to the same host where the web
server resides. As long as the JATLite’s router and the web server are configured to run
on the same hosts, the applet can be loaded from anywhere.

VisAgent uses both polling and event-driven mechanism in updating the display. Polling
is mainly used to collect information which are supplied by other agents, while event
driven is used to collect information from the database. This strategy is used to achieve
the reactiveness of the visualization tool. Query to an agent usually takes significantly
more time than query to a database. Therefore, user’s action usually only triggers query
to a database and updated view.

10

6.1 GenMap Package

The main goal of VisAgent is to display information based on their geographical
position. Therefore, we need a user interface with a map overlaid with visual symbols to
represent state of the system. The GenMap package [7] provides a very nice starting point
to achieve this goal. The package consists of a set of Java classes which provides the
basic functionality for geographical network visualization. It implements the classes to
draw the background map, nodes and lines and methods to zoom in and out the map.

Considerable amount of time has been devoted to adapt the GenMap package for this
project. GenMap is really specific as to the format and size of background map used. The
original package uses a flat map of the whole world which then can be zoomed in to a
particular continent. If the resolution of the base map is not good enough, the zoomed
version of a continent will be of very poor quality. Since this project is particularly
interested in providing visualization for the United States region, we want to start with a
US map as the base map. The solution is to modify the ImageProducer class which
supplies the pixels to be drawn on the screen so that we can start with a map of a
particular region bounded by a rectangle of the given latitude-longitude pairs.

Another addition to the GenMap package is the thumbnail map which shows a rectangle
bounding the current display on the base map. This feature is particularly useful if the
base map does not have details such as state lines or city names. Users can always refer to
the thumbnail image to figure out which part of the map they are looking at.

6.2 Visualization Layers

The VisAgent collects information from various sources and tries to aggregate them to
form a unified view of a distributed application and its underlying wide-area network.
The best way to organize the data is to group them by the source of information. Visually
we can provide the display as viewed from a specific layer. By separating the information
in layers, we can potentially display many characteristics of the application and the
network in one convenient visualization tool.

VisAgent provides three layers of visualization. The first layer is for the distributed
application, the second for the network and the third is for the monitoring agents. The
next few paragraphs will describe each layer in detail and shows the screen shot.

Application layer shows the location of the components of the distributed application and
the status of each component. In the MAGIC-II context, each node represents either one
of the DPSS master, server or client. The lines represent the active connection from a
client to the server(s). This layer provides the information about the number of servers,
the location and configuration of each and identifies the location and status of the client.

Network layer shows the configuration of the network and the results of the measurement
done on the network. Each node represents a site in the testbed. Lines represent the
physical connection or the network characteristics. The width of the lines usually reflects
the value of the network characteristics they represent. This layer also provides the detail
configuration of network elements (e.g. switch) and end-hosts in each site.

Agent layer shows the configuration of the monitoring system, i.e. the geographical
location and the address of the agents. It also shows the topology and status of the active

11

network experiments. This layer can provide useful information to understand the
components and interaction between elements in the monitoring system.

6.3 Visual Element Mapping

For each visualization layer, each node and line can represent different entity and value.
A node can be varied in terms of shape, size and color. Line can only vary in size and
color. The mapping of the attributes of the nodes and lines can either be hard coded in the
program or dynamically reconfigurable at run time. To make our tool as general and
flexible as possible, we choose the second approach.

For each layer we define a set of mapping for the nodes and lines and provide an efficient
API for the programmer. The GenMap’s base class for node and line have been modified
so that the attribute binding is done as late as possible, for example just before the node
and line are displayed on the screen. The mapping can be defined in a configuration file
which is loaded initially. The attributes of a node or a line are assigned by consulting the
rules defined in the configuration. The configuration is also used to create legend for each
visualization layer that is updated every time the view changes to another layer.

For each layer, two lines describing the node and line’s attributes, respectively, must be
specified in the configuration file. Table 2 summarizes the attributes for the node and line
and acceptable values for each attribute.

Element Attribute Value Syntax Description
LABEL Name The type of entity this node/line represent
UNI Name The ux}it for the value represented by this
node/line
FIX (color) The hex value of the color for all nodes/lines
The color of this node/line can vary according to

. COLOR RANGE (min, max) the value which lies between min and max
Node/line

LIST ((labell,colorl),

(label2, color?) ...) Node/line with labell is colored colorl, and so on

FIX (size) All nodes/lines have the same size
. The size of nodes/lines vary according to the
SIZE RANGE (min, max) value which lies between min and max
LIST ((la?ael], sizel), Node/line with labell is of size sizel, and so on
(label2, size2) ...)
FIX (shape) All nodes have the same shape
Node SHAPE LIST ((labell, shapel),

(label2, shape?) ...) Node with labell is of shape shapel, and so on

6.4 KQML Messages

The KQML messages implemented by VisAgent mainly deal with messages that
encapsulate the queries to other agents or database. Some KQML messages contains
update notification from other agents. For example, NSAgent can send a KQML message
to tell the VisAgent that a NetSpec experiment with certain topology and involving some
nodes has just started.

Appendix B describes all the KQML messages implemented by VisAgent.

12

7 Demonstration Overvie

This section will describe the configuration and capabilities demonstrated during the
MAGIC-II quarterly meeting on July 14, 1998 at the University of Kansas.

S

LBNL. Berkelev. CA

=

SRi. Menlo Park. CA

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S

EDC. Sioux Falls. SD

TIOC. Kansas Citv. KS

SHEEH

Visualization TerraVision ServerMonitor NetSpec

Tool

= I

Agent Agent
University of Kansas, Lawrence, KS

Figure 8 Demonstration Configuration

Figure 8 shows the configuration of the demonstration. We had 8 DPSS servers

distributed across the MAGIC sites. The agents, the JATLite router, and the database
server and the web server are running on faraday (a Sun Ultra Sparc running Solaris 2.6)
at KU. NetSpec is installed at all DPSS hosts and at least one machine at each site.

7.1 NSAgent Configuration

For the demonstration, NSAgent was configured to schedule and run a number of
network experiments by using NetSpec. Each network measurement was encapsulated in
a monitoring task presented to the NSAgent during its initialization. By default, NSAgent
loads a series of KQML messages from an initialization file which defines the agent’s
initial behavior. Appendix A describes the KQML messages implemented by the

NSAgent.

The following subsections will describe each monitoring task and its significance as well
as some example results obtained from the measurement when appropriate.

13

7.1.1 Monitoring Link Quality between DPSS Client and Servers

The objective of this activity is to determine the link quality between a DPSS client and
the servers configured in the system in orderto select the server with the best
connectivity to the client. The link quality is defined in term of round trip delay and
transfer capacity of the link.

When a new DPSS client comes up in the system, the NSAgent must be notified about its
existence. The entity that must register the client to the NSAgent can be the client itself
or a DPSS monitor agent which continually keeps track of the emergence of a new client.
Since neither of these approaches had been implemented by the demonstration date, a
static configuration was used instead. The following KQML message was included in the
initialization file to register a DPSS client named tv-client with only one network
interface, terravision.ukans.magic.net, which will potentially talk to one of the eight
DPSS servers.

(evaluate :sender NSAgent :receiver NSAgent
:content (tell-resource :type client :name tv-client
:pos (38.963 —95.233)
:interface (terravision.ukans.magic.net 198.207.143.157)
:server (Ibl-server4 sri-serverl tioc-serverl tioc-server2
Ibl-server3 ku-serverl edc-serverl edc-server2)))

Upon receiving this message, the NSAgent instantiates two types of network monitors

(see Table 1):

1. A PointToMultiPointThroughput monitor measures the transfer capacity
(throughput) of the links between the client and the servers. If either the client or the
server has more than one network interface, each interface needs to be tested. This
experiment is done once every 30 minutes. The results of the experiment is stored in
the database.

2. A PointToMultiPointDelay monitor measures the round trip time between the client
and the servers. Since this type of experiments does not produce a significant
disturbance to the network, it can be done more frequently (once every 15 minutes)
without consuming too much network resources.

7.1.2 Monitoring Connectivity in the Network

The objective of this task is to monitor the connectivity in the network. Sometimes it is
difficult to identify the cause of the problem when an “Unreachable destination” message
is received because the network has many potential points of failure. This is especially
true in an experimental testbed such as MAGIC-II where the configuration of the network
may change frequently. By observing the MAGIC’s ping-pages in various sites, man
time we found that the reachable machines/sites varied greatly from one machine to the
next in the network.

The objective of the measurement activity described in this section is to provide a better
understanding about how the sites in the network are connected to each other and what
kind of connectivity exists currently. Every 15 minutes, NSAgent schedules a

FullMeshDelay experiment among the major hosts in each site in the network. Since

14

FullMeshDelaynetwork monitor uses the ICMP_ECHO mechanism to measure the round
trip time, it can be utilized to test the connectivity from one point in the network to
several other points.

7.1.3 Monitoring Transfer Capacity of the Network

Besides monitoring the connectivity, another important metrics in assessing the general
health of a network is to test the transfer capacity (throughput) of the links in the
network. Variation in throughput is generally affected by the amount of traffic and the
presence of bottleneck links in the network. For this purpose, NSAgent creates a
FullMeshThroughput experiment among the major hosts in each site. Since this type of
experiment introduces a large amount of test traffic to network, it should not be done too
frequently. However it is important to note that to study the variation in throughput
during the course of a day, it should be done at different times during the day. In the
demonstration, NSAgent schedules this experiment once every 3 hours.

7.1.4 Monitoring Network Element Status

While the measurement activity described in Section 7.1.2 is aimed at providing
information about connectivity between sites in the network, it does not provide detail
information about each machine or other network element within a site. This type of
monitoring can be achieved by doing a PointToMultiPointDelay experiment between a
host in a site to the remaining hosts and switches in each site. The database contains the
static information about the configuration in each site. NSAgent uses this information to
create experiment that sends ICMP_ECHO message every 15 minutes from a designated
host to the rest of the network element and hosts in its site.

7.2 VisAgent Configuration

In the demonstration, the VisAgent is started by loading the Java applet for the
visualization from a Java capable browser. VisAgent collects the performance data and
static configuration from three sources: the NSAgent, the database server and the
ServerMonitor agent. KQLM messages are used in communicating with the agates, while
standard SQL messages are used to interact with the database server. Appendix B
describes the KQML messages which are used by the VisAgent to interact with the other
agents in the system. As described in Section 6.2, VisAgent provides three layered views:

e Application Layer
Color-coded nodes represent the location of DPSS master, server and clients. The
placement of the nodes indicates the geographical location of the corresponding
DPSS components. Lines represent the active connection between a client and some
DPSS servers. Figure 9 shows the screen capture of the visualization tool displaying
the status of the DPSS. In this figure, a DPSS client, ku_clientl, is accessing data set

15

8661 LOJ £5398:40 10 (0 any sday giz*1 00B*|q) "pss!
8661 LOJ ZZ:c@Ib@ L0 IN anl sday @68°SE yauro1beurq|
8651 103 ZZSEB B L0 1N an) sdqy 9z6°se 3au~2168W 1us * JUN-T-SS5|
8661 10D ZZ:c@:b@ L@ IN" oni sday 9.8°8@1 32U D168 3013 1UN-2U0LSHOE | q
303 [PUS! DTN wouy yndySnouy)
(66°GZT"LEZ 6ZT) NP3 ~suBNN D)1 “ArpRURy]
(8Z1°EHT°LBZ 861> 3au*D166u -sueKn ‘Hepedey
ISavEJUdU]
321 (] SSdT 1adAL

M
.
M
M
|
m
|
H

13Ut 127Ny
US| a
TAINIIE-NY
J42)56}] a
Z4BN.Id5-Dp3
142nJ25-0p3
TUBNUBS. 1 US
Z43Ias-2013
Eanuss—|q|
PRS- q|
143AU3S-D013}

T —

. P .
ssearjaddysiyjusbysip damap 1ajddy b

Figure 9 Screenshot of VisAgent at the Application Layer. Nodes represent DPSS maste

r

servers and clients. Lines revresent active connection between a DPSS client and servers.
16

from two DPSS servers as shown by the lines connecting the client and the servers. The
data panel at the bottom left corner shows the detail information about ku_client1, such

as its network interfaces and the results of the throughput measurements. The panel on
the right side displays the names of the DPSS master(s), server(s) and client(s) that are

currently registered with the monitoring system.

Actions on this layers include >

e Clicking on a DPSS master or server’s node will send a GetHostInformation
query about that node to the ServerMonitor.

e Clicking on a client’s node will send a LinkInformation query to the NSAgent
about the latest throughput and delay numbers from that client to the servers. The
following example shows the information displayed about a client:

Name: ku_clientl
Interfaces:
faraday.ukans.magic.net (198.207.143.128)
faraday.ittc.ukans.edu (129.237.125.99)
Throughput from ku_client! to:
blackstone-uni.tioc.magic.net 108.876 Mbps Tue Jul 07 04:03:22 CDT 1998

iss-1-uni.sri.magic.net 35.920 Mbps Tue Jul 07 04:03:22 CDT 1998
iss-4-uni.lbl.magic.net 35.090 Mbps Tue Jul 07 04:03:22 CDT 1998
iss4.lbl.gov 1.275Mbps Tue Jul 07 04:06:53 CDT 1998

e VisAgent periodically polls the ServerMonitor to collect the information about the
currently connected client by sending GetMasterInformation. The information
typically includes the user name, the program name and the data sets accessed by
the client. When a new user is detected, the view is updated with lines
representing connection from the user to the corresponding DPSS servers.

e Network Layer

Each node at the network layer represent a site in the MAGIC-II testbed. The network
layer is further divided into 3 sublayers.

e The topology sublayer shows the physical configuration of the testbed. The width
of the lines represent the physical link’s capacity (i.e. DS-3, OC-3, OC-12).
Clicking on a node will bring up another window which shows the detail
configuration and status of the network elements in each site. Elements which are
down are colored differently from elements which are up. Figure 10 shows the
screenshot of the VisAgent displaying the topology sublayer. The smaller
windows shows the detail configuration at KU site. The panel on the right
displays the names of the network elemtns and hosts at each site. Green color is
used for network elements and blue color is used for hosts. Any element or host
which is not responding to a PING message is indicated by red color.

e The connectivity sublayer shows the result of the connectivity test from a point of
view of a site. The color of the lines coming out from a site to another site
represents the round-trip-time in millisecond. Unreachable site will not be
connected by aline. Figure 11 shows the screenshot of the VisAgent displaying
the connectivity as seen from EDC site. The color of the lines represent the round

? Please refer to Appendices A and B for detail information about each KQML queries

17

P_UDIbeWw’ |1qY —SS|
PudifeWw qf €
ey ;
MY
HRRUN g
wbewr gy 1810}
N
Pudbeursoniahh
wuabewrson desu
Puibeurioy
wubews don IUIPA]S
~w=.u_mmE.uo_,~.w5uwxum_m
WBUWIDRUI 200 BS
IBU b o HZ1BY
JRuUDbRIIoN £ 2By
1RoU D BRUWIION 2 Z19 Y
Wi sifeusron {7usy
updg -
JoudBewr suedn-iaddoy
! PU bW sURITAjYdNELW
18U DiBewr suedn-Aepeley
- Jourdibewrsuedn A |m
YU IBew suen fuosisue
Bubeursuerods
ml-
U sfeur e uodeq
1LV~
SW
1w oibeur us pbHoj
PuDfew ps-aadAzerd
pubewr us 1 —ss|
e Brur S SN
Ids ~
PubewlIpa |sBSOpo
U Dbewr Py ¢—Ss5|
JouHibeuripa —ss|
PBUDIBeW 3P £S5
JouDiBewW PR 2SS
18U DBewr 3pa” | —SS|
U DRI DY LD

sdqwWzzs

0 Yipimpueg

NS @

ssejaalddysiajuativsia tdamain

Youddu g

gure 10 Screenshot of VisAgent at the Network Topology Sublayer. Nodes represent sites

(organizations). Lines represent the bandwidth of the phvsical connection between sites.

Fi

18

Pubeur|q
JouniBewr|q
Busbeur g
Gy gaas]
I 2a0)

wrsifelr
@by
Jau|bBeurjqr 1910}
ml_ a
1BuDIfewrion 18
1Pud|Bewrdopn-desu
wuibeuwrion iupnoy
joud1beW DO |UIPAIS
19U 3| Heurdo) s uoISHOR|
BUDBRUI 0N PS
PuwDIbeW 0] IR Y
wuifew o £ zusy
1BuDibewr d0f 2 21Uy
BUHERUYIOR | ZUBY
juudg «
wubewr suedniaddoy
wUudbeW sued N Ajydnew
PudbBewr suedn-Aepeley
BusBewr suedn Asm

s

I
—‘
,
L
!

U dibewr sued i buossule

s siBews suey unds
ml =~

W oBeil e uooeq
11V ~

_z
uo:.u_mmE._hw.»u u
1PuHifewr usaRdAZeld
PBUIBRULL US [~SS]
U BRI US SRUD
S ~
Pudbew apo |sbsope
RUMNBEUIIPY (—SS)
joudfewropa F—Sssi
Joudibewrdpa £—ssi
BUdBewr dpa 2 —Ss)
Pud)bewrdpa | -SS|
PUDIBeI FpY B

(swignuudg,
(swoZ RIS
(sws8)MI|
(SWLZLINTT
DA Woly 3[q|SIA Sl

tes
rip

gure 11 Screenshot of VisAgent at the Network Connectivity Sublayer. Nodes represent si

(oreganizations). Lines represent existing connectivitv and their color revresent the round t

Fi

19

trip time values as indicated by the color spectrum in the legend window. The
numerical values of the round trip time are also displayed in the data panel.

e The maximum bandwidth sublayer shows the result of the throughput test from a

point of view of a site. The color of the lines represents the achievable throughput
in Mbps.

e Agent Layer
Each node represents either a JATLite agent or a NetSpec daemon. The color of the
node indicates the types of agent or NetSpec daemon. Lines connecting NetSpec
daemon’s nodes indicate the topology of the experiment. The view of the agent
display is automatically updated when new experiment begins and terminates. For
example, Figure 13 shows the visualization at the agent layer when a full mesh delay
experiment is taking place. The blue nodes represent the NetSpec Ping Daemons
involved in the experiment. The lines between the nodes represent the topology of the
experiment.

The script used to configure the visual element mapping is given in Appendix C.

8 Conclusion and Future Work

This report has described the design and implementation of NSAgent and VisAgent
which are two of the agents in the MAGIC-II monitoring system. Both of the agents are
implemented in Java, use the JATLite framework and communicate using KQML.

NSAgent’s main objective is to perform measurement and test on the network in order to
capture some characteristics of the network. NSAgent relies on NetSpec to perform the
distributed network experiment. The result of the experiment is either stored in the
database or in the filesystem.

VisAgent aggregates and correlates the information from various agents to provide a
unified visualization of the distributed application and the network. VisAgent is
implemented as a Java applet that can be loaded from any web browser.

During the implementation of the system and experimentation, several areas of
improvement can be identified:

e As mentioned in section 7.1, the list of candidate clients must be maintained and
updated dynamically because NSAgent requires this information to determine which
experiment needs to be run. Another possibility which may require more serious
research is to identify the type of measurement that can determine the best server in
less amount of time.

e The current implementation of NSAgent has some method and messages specific to
the DPSS domain which may not be applicable to other areas of application.

e The ease of implementation of network monitors can be greatly improved if the
topology information is separated from daemon-specific parameters/information.
Since the topology of experiment is usually applicable to different type of NetSpec
daemons, most of the topological abstraction can be reused.

20

g

IR BYSIA
1WLDOYSN

BU|dTSN 1501 e @WUSTSN 3531

dwus~sN sjuaby 15817SN sjusby g

pEEAREE [13 —"

1LY sjusby @

e h sl
npa°suesn-onl Aepesej [1SOH

.m.mm.u.&_ Ew.SJ:m-&m.b Lm:.,mc.i ~

Figure 12 Screenshot of VisAgent at the Agent Layer. Nodes represent JATLite agents or
NetSpec daemons. Lines connecting NetSpec daemon nodes represent NetSpec experiment

's

21

e NSAgent should be made more general by creating an abstraction of a domain that
‘ consists of an interpreter, domain-specific data structure and configuration and tasks.
Domain can be implemented as a Java class which can be loaded dynamically.

e A monitoring system is not complete without allowing continuous and real-time
monitoring. For example, a user can specify some points in the network for on-the-fly
data collection.

e The organization of configuration and historical data should be more standardized.

e The VisAgent currently does not provide an interface to browse the historical data.

Several of these issues will be explored and implemented in [10]; particularly, the issue
of making the framework more general and the provision of continuous monitoring.

22

APPENDIX A. KQML Messages Implemented by NSAgent

(evaluate :sender xxx :receiver NSAgent
:content (tell-resource :type client :name clientName
:pos (lat long)
:interface (ifacel ipaddrl iface2 ipaddr2 ...)
:server (serverl server2 ...)))

Register a new DPSS client. NSAgent will monitor the links connecting to the given
set of servers for each network interfaces and store the information in the database.

(evaluate :sender xxx :receiver NSAgent
:content (invalidate-resource :type client :name clientName))

Unregister DPSS client. NSAgent will stop monitoring the links connected to this
client and remove information from the database.

(ask-one :sender xxx :receiver NSAgent
:content (GetLinkInformation ClientName client ServerName server))

Get the throughput and delay values for the link(s) between client and server.

(reply :sender NSAgent :receiver xxx
:content (LinkInformation ClientName client ServerName server
(Interface ifacel Throughput ¢t/ Delay d1)
(Interface iface2 Throughput 12 Delay d2) ...))

Reply for the GetLinkInformation query. Throughput and delay values for ever
network interface are returned.

(ask-one :sender xxx :receiver NSAgent
:content (GetKnownDPSS

Get the names of all DPSS servers and clients known to NSAgent.

(reply :sender NSAgent :receiver xxx
:content (KnownDPSS ClientNames clientl client2 ...
ServerNames serverl server2...))

Return the names of DPSS clients and servers known to NSAgent.

(ask-one :sender xxx :receiver NSAgent
:content (GetKnownClients)

Get the names and addresses of all DPSS clients known to NSAgent.

(reply :sender NSAgent :receiver xxx
:content (KnownClients (ClientNam client! Interfaces ifacel ...)
(ClientName client2 Interfaces ifacel ...)

Returns the names and addresses of all DPSS clients known.

23

(ask-about :sender VisAgent :receiver NSAgent
:content (dpss-clients))

Get the information about the DPSS clients registered with NSAgent: name, position,
Sservers.

(reply :sender NSAgent :receiver xxx
:content (dpss-clients :value ‘(name lat long (serverl server2 ...))
‘(name lat long (serverl server2 ..))))

Returns the information about registered clients.

(ask-about :sender VisAgent :receiver NSAgent
:content (netspec-experiments))

Get the information about active NetSpec experiments.

(netspec-experiments :sender NSAgent :receiver xxx
:content ((NetMonName NetmonType NumHosts hostl host2 ...)
(NetMonName NetmonType NumHosts hostl host2 ...) ...)

Returns the information about active NetSpec experiments.

(ask-about :sender VisAgent :receiver NSAgent
:content (network-monitors))

Get the information about the status of network monitors created by NSAgent.

(netspec-experiments :sender NSAgent :receiver VisAgent
:content ((NetmonName status)
(NetmonName status) ...)

Returns the names and status (idle or running) of network monitors.

(register-visagent :sender VisAgent :receiver NSAgent
:name VisAgentNam)

Register a VisAgent with NSAgent. A registered VisAgent will get updates about
experiment results and status.

(unregister-visagent :sender VisAgent :receiver NSAgent
:name VisAgentName)

Unregister a VisAgent.

(create-experiment :sender xxx :receiver NSAgent
:type NetMonType :param (NetMonName :keyl valuel :key2 :value2 ...)
:period timelnSec :saveData boolean)

Create a network monitor with the given type, parameters, frequency and storage
options.

(delete-experiment :sender NSAgent :receiver xxx
:name NetMonName)

Delete a network monitor named NetMonName

(terminate-agent :sender xxx :receiver NSAgent)

24

Terminate NSAgent. It will stop all network monitors and send an acknowledgement
message to the sender.

(agent-terminated :sender NSAgent :receiver xxx)
Notify sender that NSAgent has terminated.

(new-netspec-experiments :sender NSAgent :receiver VisAgent
:content (NetMonName NetMonType NumHosts hostl host2 ...))

Notify VisAgent that a new NetSpec experiment is just started.

(remove-netspec-experiments :sender NSAgent :receiver VisAgent
:content (NetMonName)

Notify VisAgent that a NetSpec experiment has terminated.

25

6 Appendix B. KQML Messages Implemented by VisAgent

e (new-client :sender xxx :receiver VisAgent
:name ClientName :pos (lat long) :servers (serverl server2 ...))

Tell VisAgent that a new DPSS client is connected. VisAgent will update the view by
adding the client node and connections to the specified servers.

(remove-client :sender xxx :receiver VisAgent
:name ClientName)
Remove a DPSS client from the view.

e (registered-agents :sender router :receiver VisAgent
:content ((AgentName host port status)
(AgentName host port status) ...)

Tell VisAgent about the names and status of all agents registered with the router.

* (new-netspec-experiments :sender NSAgent :receiver VisAgent
:content (NetMonName NetMonType NumHosts hostl host2 ...))

Notify VisAgent that a new NetSpec experiment is just started.

(remove-netspec-experiments :sender NSAgent :receiver VisAgent
:content (NetMonName)

c Notify VisAgent that a NetSpec experiment has terminated.

In addition, VisAgent also sends KQML messages to the ServerMonitor [8] to collect
information about a DPSS host and the whole DPSS systems.

o (ask-one :sender xxx :receiver ServerMonitor
:content (GetMasterInformation SystemName systemName))

Get information about the DPSS master and servers in a system.

(reply :sender ServerMonitor: receiver xxx
:content (MasterInformation SystemName systemName isUp

NumberOfUsers numUser NumberOfDataSets numDataSet

TotalMemory totalMem TotalMemoryUsed totalMemUsed

(ServerName serverl TotalMemory serverMem TotalMemoryUsed

serverMemUsed)...

(UserName userName ProgramName progName
IP_Address ipAddr HostName host SessionlID session
DataSetl dataSetID DataSetNam dataSetName
NumberOfServersUsed numServer
NamesOfServersUsed serverl ...)...))

Information about the DPSS hosts in the system. VisAgent uses the information about
the users/clients to keep an updated view.

. s (ask-one :sender xxx :receiver ServerMonitor
:content (GetHostInformation SystemNam systemName NodeName nodeName))

26

Appendix C. Mapping Configuration File

The following mapping configuration file was used to configure the visual element
mapping in the VisAgent.

#Mapping Configuration for VisAgent

#AppLayer

LABEL = DPSS; COLOR = LIST((MASTER, ff0000), (SERVER, 00ff00), (CLIENT, ffff00), (END));
SIZE = FIX(3); SHAPE = FIX(1);

LABEL = Connection; COLOR = RANGE(0,4) ; SIZE = FIX(2);

#NetTopLayer

LABEL = Site; COLOR = FIX(ff00) ; SIZE = FIX(3); SHAPE = FIX(1);

LABEL = Bandwidth; UNIT = Mbps; COLOR = RANGE(0,622) ; SIZE = FIX(2);

#NetConnLayer

LABEL = Site; COLOR = FIX(ff00) ; SIZE = FIX(3); SHAPE = FIX(1);

LABEL = RTT; UNIT = ms; COLOR = RANGE(0,300) ; SIZE = FIX(2);

#NetBwl.ayer

LABEL = Site; COLOR = FIX(ff00) ; SIZE = FIX(3); SHAPE = FIX(1);

LABEL = Throughput; UNIT = Mbps; COLOR = RANGE(10,155) ; SIZE = FIX(2);

#AgentLayer

LABEL = Agents; COLOR = LIST((JATLite, ff0000), (NS_Test, 00ff00), (NS_Snmp, ffff00),
(NS_Ping, 0000ff), (END)); SIZE = FIX(3); SHAPE = FIX(1);

LABEL = Test; COLOR = LIST((NS_Test, 00ff00), (NS_Snmp, ffff00), (NS_Ping, 0000ff), (END));
SIZE = FIX(2);

28

References

1. The MAGIC-1I Project, http://www.magic.net
. T. Finin et. al., DRAFT Specification of the KOML Agent Communication Language,

unpublished draft, 1993, http://www.cs.umbc.edu/kqml

. B. Tierney, et al. An Overview of the Distributed Parallel Storage System (DPSS) ,

http://www-didc.1bl.gov/DPSS/Overview/DPSS.handout.fm.html

. R. Jonkman, D. Niehaus, J. Evans, V. Frost. NetSpec: A Network Performance

Evaluation Tool, submitted to SIGCOMM’96, February 1996.

. Center for Design Research University of Stanford, JATLite: The Java Agent

Template, http://java.stanford.edu

. J. Gosling, H. McGilton. The Java Language Environment: A White Paper , Sun

Microsystems, 1995.

. D. Hughes. Mini SQL: A Lightweight Database Server , Bond University, Australia,

http://www.hughes.com.auw/library/msql1/manual/

. The Cooperative Association for Internet Data Analysis (CAIDA). The Genmap

Package. http://www.caida.org/Tools/Genmap/

9. B. Crowley, KOML Messagesinthe DPSS Agent Monitoring System ,

http://www-itg.1bl.gov/~crowley/kqml.html

10. Y. Wijata, Implementation of A Scalable Agent-based Network Measurement

Infrastructure to Improve the Performance of Distributed Application, Master Thesis,
University of Kansas, November 1998

29

