
IEEE Communications Magazine • September 2000174

A Scalable Agent-Based
Network Measurement Infrastructure

0163-6804/00/$10.00 © 2000 IEEE

ABSTRACT

The rapid growth of computer networks has
made the process of understanding the interaction
among network components more challenging
than ever. The increase in the size of networks is
accompanied by the more demanding use of net-
works by distributed applications that critically rely
on the system to function well. Consequently,
monitoring the health and stability of networks
has become crucial. Tools and probes to measure
the performance of networks for the purpose of
management, fault diagnosis, or performance eval-
uation have been developed by several research
groups. There is not yet, however, a measurement
infrastructure which offers systematic control and
management of measurement efforts and perfor-
mance data focused on supporting distributed net-
work-aware applications. This work addresses the
implementation of a scalable and extensible net-
work measurement infrastructure used to capture
network state to improve the performance of a
distributed application.

INTRODUCTION
Recent developments in the area of high-speed
networking stimulate the implementation of
large-scale distributed applications. Currently,
these applications rely on the best-effort service
offered by the network and sometimes suffer low
performance when the underlying network
behaves unexpectedly. Most current applications
are generally oblivious to variation in network
conditions. Evolving network-aware distributed
applications attempt to alleviate this problem by
capturing the state of the network and using this
information to adapt to the changing conditions
of the network.

To support such adaptation, a network-aware
application needs to maintain a view of the net-
work state that is generally dynamic, transient,
and sometimes tightly coupled with the seman-
tics of the application. An application’s view of
the network includes knowledge of the topology,
availability of resources, and the available quali-
ty of service (QoS).

Numerous efforts have been devoted to mon-
itoring and probing the network for the purposes
of fault diagnosis, network management, and
performance evaluation. Very few, however, are
targeted to helping distributed applications make

intelligent decisions about how to utilize
resources. An application needs an additional
support layer through which it can express its
network requirements, and at the same time
maintain its view of the network state.

Keeping track of the relevant aspects of net-
work state is a challenging task because it deals
with vast amounts of information from a large
number of network elements that span multiple
administrative boundaries. Each piece of infor-
mation needs to be collected using an appropri-
ate measurement methodology and should be
organized systematically to ensure timely
retrieval and meaningful interpretation. We
approach this problem by deploying a collection
of software agents to provide integrated control
of monitoring network elements and collected
performance information.

In the context of this article, a network moni-
toring agent is defined as an autonomous entity
whose responsibility is to automate one or more
of the following tasks:
• Continuous monitoring of application com-

ponents and network characteristics
• Creation and control of network testing and

measurement daemons
• Collection and storage of performance data
• Correlation and presentation of perfor-

mance data to applications and/or users
In particular, knowledge and query manipula-

tion language (KQML) [1] based agents are used
to wrap existing tools — in this case, network
monitoring and measurement tools — with soft-
ware, thus enabling them to communicate via a
common agent protocol. With this approach, the
complex task of monitoring a large distributed sys-
tem can be decomposed structurally into domain-
specific tasks while maintaining a common goal.

A number of systems have been developed for
gathering performance measurements on large
networks. For example, the National Internet
Measurement Infrastructure (NIMI) [2] is aimed
at using active measurements for fault diagnosis
in very large networks such as the Internet. The
Surveyor effort [3] is an infrastructure that mea-
sures end-to-end unidirectional delay, packet loss,
and route information along Internet paths, glob-
ally deployed at about 50 higher education and
research sites. The Surveyor system relies on the
use of dedicated computers and hardware to
obtain accurate measurements, including synchro-
nized clocks for timestamps. The infrastructure

Yulia Indrayani Wijata, Douglas Niehaus, and Victor S. Frost, University of Kansas

NETWORK MANAGEMENT

This research is partially
funded by the Defense
Advanced Research Agen-
cy (DARPA) under con-
tract F19628-95-C-0215.

Editorial liaison: T. Chen

IEEE Communications Magazine • September 2000 175

described here has several common elements
with existing measurement systems, for example,
scheduling and execution of active performance
monitoring sessions, and collection and storage
of performance data. There are several impor-
tant differences, however; the methodology pro-
posed here is aimed at the correlation and
presentation of performance data to be used by
network-aware distributed applications. Here a
specific distributed application drives the mea-
surement process and uses the results of the
measurements at both the application and net-
work layers to improve its performance. Thus,
the specific monitoring/instrumentation configu-
rations used to obtain the performance informa-
tion are tailored to the needs of a specific
distributed application. The capabilities of the
proposed measurement infrastructure were pro-
totyped and demonstrated using the MAGIC-II
[1] Distributed Parallel Storage System (DPSS)
[4]. Another novel feature of the proposed infra-
structure is the use of KQML-based agents to
leverage and reuse existing tools. Note that this
feature could be used to take advantage of the
capabilities of NIMI within the context of a net-
work-aware distributed application.

DESIGN CRITERIA
The following design guidelines have been adopt-
ed to achieve the design objectives:
• Modularity: The software agent framework

must promote modular design, which clear-
ly separates policy from mechanism in mea-
surement.

• Portability: Since a distributed system most
likely comprises heterogeneous components
and systems, the agents should be easily
portable to different architectures.

• Distributed: The system must be capable of
monitoring network elements in more than
one administrative domain.

• Extensibility: The capabilities of the agents in
the system should be easily extended to sup-
port new types of measurement or testing.

THE APPROACH
This section describes the two major software
tools used as components of the monitoring sys-
tem: NetSpec, a distributed network perfor-
mance evaluation tool from the University of
Kansas [5], and JATLite, a Java Agent Toolkit
package from Stanford University [6].

USING NETSPEC TO MONITOR A
WIDE AREA NETWORK

NetSpec [5] was used as the main control entity
of network testing and measurement because of
its capabilities to perform distributed network
testing in an integrated and extensible manner.
NetSpec provides support for the experimental
evaluation of network performance. It was con-
ceived as a general-purpose tool for conducting
a wide range of reproducible wide area network
experiments. The NetSpec framework permits
two types of daemons/probes to collect data
from distributed network elements:
• Test daemons generate traffic with different

types of characteristics and measure the
achievable throughput.

• Measurement daemons perform specific
measurements on network elements.
Figure 1 shows the general architecture of the

NetSpec framework. The NetSpec controller dis-
tributes measurement tasks to several network
elements based on the testing topology described
in a script. In response, the measurement dae-
mons perform the testing or data collection and
produce performance reports (similar to the
daemons in NIMI [2]). A NetSpec script identi-
fies the nodes involved in an experiment, the
roles assumed by each node, the parameters for
each measurement or test daemon, and the rela-
tionship among daemons.

NetSpec uses a text-based protocol to control
the execution of nodes involved in an experi-
ment. The protocol imposes some sequence of
phases undergone by each daemon during the
execution (Fig. 2). These phases mimic the phas-
es of a typical network connection. In addition,
the protocol also supports some administrative
commands for control purposes. Table 1 summa-
rizes the commands supported by NetSpec pro-
tocol and a description of actions taken when
the command is invoked.

JATLITE PACKAGE
JATLite (Java Agent Template, Lite) [6] is a
package of programs written in the Java [7] lan-
guage that allows users to quickly create new
software agents that communicate robustly over
the Internet. JATLite provides a basic infra-
structure for agents’ communication based on

■ Figure 1. NetSpec high-level architecture.

|
|

|

Cluster | serial | parallel |
<daemon><address> |

<test options>

<daemon><address> |
<test options>

Control Control

Service
multiplexer

Fork

Report

User
interface

Script Report
summary

Control
daemon

Service
multiplexer

Fork

Service
multiplexer

ForkSummary

Test/
measurement

daemon

Test/
management

daemon

IEEE Communications Magazine • September 2000176

TCP/IP and KQML messages. The use of Java
allows the agents to run on heterogeneous plat-
forms and thus increase portability. Its modular
construction consists of a hierarchy of increasingly
specialized layers which may be customized to fit
the specific requirements of a given system. One
important concept in the JATLite framework is
the agent message router (AMR), also referred to
as the router. It provides name registration and
message routing or queuing for agents. In this
scheme, agents can operate in disconnected mode
and still receive the messages addressed to them.
Another advantage is that the existence of an
agent is transparent to the other agents in the sys-
tem. An agent can send a message to another
agent in the system by indicating the registered
name of that agent in the destination field of the
message and then sending the message to the
router. The router then will forward the message
to its intended recipient as long as it has regis-
tered itself with the router.

The JATLite package provides a convenient
mechanism to wrap network performance measure-

ment tools, such as NetSpec, with software which
provides a standard protocol for communication.

AN AGENT-BASED INFRASTRUCTURE
We approach the problem of creating the mea-
surement infrastructure by defining a collection
of software agents to provide integrated control
of monitoring and monitored entities as well as
the collected information. With this approach,
the complex task of monitoring a large distribut-
ed system can be decomposed structurally into
some domain-specific tasks while maintaining
the common goals.

Several types of agents may exist in the sys-
tem:
• An application agent possesses the domain

knowledge specific to a network-aware dis-
tributed application and performs monitor-
ing at the application level.

• A measurement agent creates and controls
network experiments on an application
agent’s demand and manages data collec-
tion. The important role of agents of this
type is to translate the request from an appli-
cation agent into test parameters, and to
select a network experiment that can fulfill
the application monitoring requirements.

• A presentation agent correlates and applies
application semantics to the collected data
for visualization purposes.
Figure 3 shows an example of how these agents

interact in the network. A network-aware dis-
tributed application has a monitoring demand, for
example, to select a closest server which is deter-
mined by the shortest round-trip time to a client.
Its application agent formulates a request to the
measurement agent to perform delay measure-
ment between a client and the servers. The mea-
surement agent will then create a network
experiment with the requested topology, in this
case point-to-multipoint, to measure the round-
trip time between the specified network nodes. At
a later time, a presentation agent may retrieve the
collected data for real-time capture of the net-
work quality perceived by the application.

■ Figure 2. Distribution of the control protocol.

Controller

Test parameter

Test parameter

ACK

ACK

Setup

ACK

Run

ACK

Finish

ACK

Report

Report

Setup

ACK

Run

ACK

Finish

ACK

Report

ACK

Daemon A Daemon B

■ Table 1. NetSpec protocol command and exe-
cution phases of a NetSpec daemon.

Command Action

Setup Allocate resources

Open Establish connection

Run Start data transfer or measurement

Finish Finish data transfer or measurement

Close Close connection

Tear down Free up resources

Report Send report summary

Reset Reset to initial state

Kill Stop execution

Parameters Accept test parameters

Config Return configuration information

IEEE Communications Magazine • September 2000 177

A FUNCTIONAL OVERVIEW

This section provides the high-level architecture
of an example monitoring system developed in
the MAGIC-II network [1]. As implied by the
previous section, monitoring is done at two dif-
ferent levels: the network and application levels.
Currently the routers and/or switches in the net-
work are not involved in the measurement pro-
cess; only end systems participate in the
collection of performance information. The
focus of this article is on the network level, while
both components have been used to support
dynamic reconfiguration (i.e., performance tun-
ing and optimization of the distributed applica-
tion), here the DPSS in the MAGIC-II testbed.
A discussion of DPSS performance tuning and
optimization can be found in [8].

Figure 4 shows the functional overview of the
components in this system. The MAGIC-II
testbed cloud represents the wide-area asyn-
chronous transfer mode (ATM) network. The
DPSS represents the distributed application
being monitored by the agents.

There are four types of agents:
• NSAgent is a JATLite measurement agent

that performs network-level monitoring. It
creates and schedules NetSpec experiments
and organizes the performance reports. The
type and parameters of the experiment can
be loaded dynamically. NSAgent collects
the information about the DPSS system
from the ServerMonitor. The NSAgent will
be described in more detail later.

• VisAgent is a JATLite presentation agent
with a front-end applet, which visualizes the
state of the network, the distributed appli-
cation, and the agents’ configuration. The
information is collected from the NSAgent
and ServerMonitor.

• ServerMonitor is a JATLite application
agent, which monitors the status and con-
figuration of the application, in this case, a

DPSS system.1 This agent was developed by
Lawrence Berkeley National Laboratory;
this agent is discussed in [8].

• HostMonitor is also a JATLite application
agent, which keeps track of the status of the
currently connected DPSS clients.
Each of these agents registers itself with the

JATLite router when it starts up. The agents
exchange KQML messages with other agents in
the system via the router.

IMPLEMENTATION OF NSAGENT
The main responsibility of the NSAgent is to cap-
ture the state of the network. It does this by per-
forming the appropriate tests and measurements
in the network. The results of monitoring and

1 A DPSS system consists
of a DPSS master and one
or more DPSS server(s).

■ Figure 3. Relationships among agents in the monitoring system.

Presentation
agent

Application
agent

Monitoring
request

Create
and

control
Monitor

Distributed application
WAN

Measurement
agent

DB

■ Figure 4. A functional overview.

D
P
S
S

MAGIC-II testbed

KQML

Monitor

JATLite
router

VisAgent NSAgent
KQML

Monitor

Server
monitor

KQML

Monitor

Host
monitor

D
P
S
S

D
P
S
S

D
P
S
S

IEEE Communications Magazine • September 2000178

measuring the network characteristics can be used
for different purposes. In the MAGIC-II testbed,
the main objective is to use the knowledge about
current conditions in the network to dynamically
select the best server in the DPSS system. The
best server has the highest available link band-
width and the lowest round-trip time. The
NSAgent is also used to perform general network
monitoring tasks such as connectivity or through-
put tests to measure the health of the network.

A major consideration in NSAgent imple-
mentation is to design an extensible framework
which can accommodate future types of network
measurements. Although the main objective in
this effort was to support the dynamic reconfigu-
ration of the DPSS system, NSAgent should ful-
fill the ultimate goal of capturing the network
state for a wide variety of network-aware dis-
tributed applications.

NSAGENT ARCHITECTURE
Figure 5 shows the architecture of the NSAgent.
JATLite provides the basic communication inter-
face based on a TCP/IP socket via the router for
receiving and sending KQML messages. The
NSAgent has a collection of templates for Net-
Spec scripts which represent network experi-
ments and reports. It receives a monitoring task
from application agents and creates the appro-
priate network monitor script/experiment. The
results of the NetSpec experiments are stored in
the database or file system for future retrieval.

The message handling of the agent is quite
simple. When a KQML message destined for an

agent arrives at the router, it stores the message
in the incoming message box for that agent and
then notifies the agent. The agent is responsible
for retrieving its own messages and deleting
them afterward.

KNOWLEDGE REPRESENTATION
A main component of a software agent is its
knowledge base (KB). It provides the context of
agent execution and knowledge about its envi-
ronment. The representation of knowledge can
vary according to its purpose. NSAgent has two
types of knowledge representation. Procedural
representation uses program functions or meth-
ods to represent the data and operation associat-
ed with an object. This type of representation is
particularly useful in defining the capabilities of
an agent. The second type of knowledge repre-
sentation in NSAgent is a relational database. It
serves as a back-end store of static or runtime
data, and provides convenient and structured
access and manipulation of data.

In NSAgent, the procedural representation is
also called a resource. The following sections
explain the types of resources defined in
NSAgent, and describe the structure and config-
uration of the database.

Resources — NSAgent uses resources to store
the knowledge needed to conduct network experi-
ments. Figure 6 shows the conceptual process of
creating a network experiment using the agent
framework developed here. Given the task of
monitoring a specific network characteristic,
NSAgent will create the appropriate network mon-
itor object. The monitor object will create the Net-
Spec script, which will invoke the proper NetSpec
measurement daemon(s) for the task. Then it will
need to parse the performance report generated by
the NetSpec daemon and interpret the result.

NSAgent defines the following resource
abstractions:
• Network monitor: This represents the object

that controls a NetSpec experiment. Every
network monitor object encodes the type
and topology of a NetSpec experiment. The
type is associated with the kind of NetSpec
measurement daemon(s) that need be exe-
cuted. The topology defines the execution

■ Figure 5. NSAgent architecture and external components.

Network monitor

Result

KQML Other
agents

NSAgent

Resources

NetSpec scripts
NetSpec reports

NetSpec experiments

Control

NetSpec experimentC
om

m
un

ic
at

io
n

in
te

rf
ac

e

Filesystem

DB

■ Figure 6. The network monitoring process.

NetSpec
experiment

Network
monitor

Parsing
Monitored

entities

Monitoring
task

NSAgent

NetSpec
script

Raw
report

IEEE Communications Magazine • September 2000 179

construct and participants of the experi-
ment. A monitoring task must specify the
type of monitor object to create. It can also
specify the duration of the experiment and
storage method. For example, we can define
a monitor object that performs a full mesh
throughput experiment among N nodes. In
this case, the type of experiment (through-
put) indicates that we have to use NetSpec
test daemons. The full mesh topology will
automatically create a script of N2 end-to-
end experiments between each pair of
nodes in the set of N specific nodes.
Table 2 summarizes the types of network

monitors implemented. Nstestd is a NetSpec test
daemon that can generate different types of net-
work traffic and measure the achievable through-
put. Nspingd is a NetSpec measurement daemon
that measures round-trip time by sending the
ICMP_ECHO message to network nodes. Nssn-
mpd can collect a variety of SNMP data from a
network element or host.
• NetSpec Script: A NetSpec script object

contains the parameters and options of a
NetSpec daemon and the methods to gen-
erate the script. A class must be defined for
each NetSpec daemon since each test or
measurement daemon has different test
parameters. For example, a NetSpec script
class for the NetSpec test daemon defines
the test parameters such as type of traffic,
protocol, and end nodes. It also needs to
implement the method that generates the
topology of the experiment.

• NetSpec report: Since there is no standard
report format defined in NetSpec, each dae-
mon generates varying types of report, mak-
ing parsing and interpretation of the report
particularly difficult. To handle this problem,
NSAgent defines a NetSpec report class for
each type of daemon. Each class provides
methods to parse and store the results.

Database — The NSAgent uses the database to
store static configuration information about the
network (e.g., names and addresses of end hosts
or switches) and the configuration of the dis-
tributed application. The results of network
experiments can also optionally be stored in the
database for further retrieval by other agents.
Since the goal is to capture the state of the net-
work, only the most recent result is kept in the
database. Historical results can optionally be
cached in the file system. In our implementation,
we have decided to use msql (mini standard
query language) [9], a lightweight relational
database based on SQL for storage.

THE MONITORING TASK
NSAgent’s main capability is to accept a moni-
toring task and perform the corresponding moni-
toring action. A monitoring task is encapsulated
in a KQML message and can be submitted by
other agents in the system. NSAgent also pro-
vides a convenient way to load tasks from a file
during agent startup. Routine monitoring tasks
can be loaded from this initialization file.

A monitoring task must identify the following
attributes:
• The type of network monitor

• The frequency of the experiment
• The storage method (to database or file sys-

tem)
• The parameters of the experiment (specific

to the type of network monitor)

KQML MESSAGES
This section describes the KQML messages

implemented in the NSAgent. The types of mes-
sages can be broadly categorized into three domains
according to the audience of the messages:
• DPSS (application): Messages in this

domain deal with the configuration of the
DPSS and queries about network status
from the DPSS.

• NetSpec: These messages provided an inter-
face to create or terminate NetSpec experi-
ments, including the loading of a
monitoring task.

• Visualization/presentation: The NSAgent
also serves as the information provider for
a visualization agent.
See [10] for a detailed description of the

KQML messages.

AN EXAMPLE
CONFIGURATION IN THE

MAGIC-II TESTBED

This section describes the configuration and
capabilities of the monitoring system described
above. Figure 7 shows the configuration of the
demonstration. We had eight DPSS servers dis-
tributed over the national-scale high-speed ATM
MAGIC-II network deployed from California to
Kansas and South Dakota. The agents, JATLite
router, database server, and Web server were
running on a workstation (a Sun Ultra Sparc
running Solaris 2.6) at the University of Kansas,
Lawrence. NetSpec was installed on all DPSS
hosts and on at least one machine at each site.

NSAGENT CONFIGURATION
For the demonstration, the NSAgent was config-
ured to schedule and run a number of network
experiments using NetSpec. Each network mea-
surement was encapsulated in a monitoring task
presented to the NSAgent during its initialization.
By default, NSAgent loads a series of KQML
messages from an initialization file that defines
the agent’s initial behavior. The following subsec-

■ Table 2. Implemented network monitors.

Name Topology Daemon type

FullMeshThroughput N-to-N (full mesh) nstestd

PointToMultiPointThroughput 1-to-N (star) nstestd

EndToEndThroughput 1-to-1 nstestd

FullMeshDelay N-to-N nspingd

PointToMultiPointDelay 1-to-N nspingd

EndToEndDelay 1-to-1 nspingd

HostMonitor 1-to-N nssnmpd

IEEE Communications Magazine • September 2000180

tions describe each monitoring task and its sig-
nificance as well as some example results
obtained from the measurement experiments.

Monitoring Link Quality between DPSS
Client and Servers — The objective of this
activity was to determine the link quality
between a DPSS client and the servers config-
ured in the system in order to select the server
with the best connectivity to the client. The link
quality is defined in terms of round-trip delay
and throughput of the link.

When a new DPSS client joins the system,
the NSAgent must be notified about its exis-
tence. The entity that must register the client to
the NSAgent can be the client itself or a DPSS
monitor agent which continually keeps track of
the emergence of a new client. However, for
these experiments a static configuration was
used. The following KQML message was includ-
ed in the initialization file to register a DPSS
client named tv-client with only one network
interface, terravision.ukans.magic.net, which com-
municates with one of the eight DPSS servers.
(evaluate :sender NSAgent :receiver NSAgent

:content (tell-resource :type client :name tv-client
:pos (38.963 -95.233)
:interface (terravision.ukans.magic.net 198.207.143.157)
:server (lbl-server4 sri-server1 tioc-server1 tioc-server2

lbl-server3 ku-server1 edc-server1 edc-server2)))
Upon receiving this message, the NSAgent

instantiated two types of network monitors
(Table 1):
• A PointToMultiPointThroughput monitor

measures the transfer capacity (throughput)
of the links between the client and the
servers. If either the client or the server has
more than one network interface, each inter-
face will be tested. This experiment was con-
ducted once every 30 min. The results of the
experiment are stored in the database.

• A PointToMultiPointDelay monitor measures
the round-trip time between the client and
the servers. Since this type of experiment
produces significantly less disturbance to
the network, it can be done more frequent-
ly (once every 15 min).

Monitoring Connectivity in the Network —
The objective here is to monitor the connectivity
in the network. Often it is difficult to identify the
cause of the problem when an “Unreachable des-
tination” message is received because the network
has many potential points of failure. This is espe-
cially true in an experimental testbed such as
MAGIC-II where the configuration of the net-
work may change frequently. We found that the
set of reachable machines/sites varied greatly
from one machine to the next in the network.

The objective of the measurement activity was
to provide better understanding of how the sites
in the network are connected to each other and
what kind of connectivity exists at a specific point
in time. Here, every 15 min NSAgent schedules a
FullMeshDelay experiment among the major hosts
in each site in the network. Since the FullMeshDe-
lay network monitor uses the ICMP_ECHO
mechanism to measure round-trip time, it was uti-
lized to test the connectivity from one point in the
network to several other points.

Monitoring Transfer Capacity of the Net-
work — Besides monitoring connectivity, another
important metric in assessing the general health
of a network from the perspective of the target
distributed application is accomplished by mea-
suring link throughput. Variation in throughput is
generally affected by the amount of traffic and
presence of bottleneck links in the network. For
this purpose, NSAgent creates a
FullMeshThroughput experiment among the major
hosts in each site. Since this type of experiment

■ Figure 7. The demonstration configuration.

University of Kansas, Lawrence, KS

ViaAgent

LBNL, Berkeley, CA

SRI, Menlo Park, CA

EDC: EROS Data Center
LBNL: Lawrence Berkeley
 National Laboratory
ATL: Sprint's Advanced
 Technology Laboratory
TIOC: Sprint's Technology
 Integration and
 Operations Center

D
F
S
S

D
F
S
S

D
F
S
S

EDC, Sioux Falls, SD

TIOC, Overland Park, KS

D
F
S
S

D
F
S
S

D
F
S
S

D
F
S
S

D
F
S
S

TerraVision ServiceMonitor
agent

ServiceMonitor
agent

DB

California

North Dakota Minnesota

South Dakota

Iowa

EDC

Missouri

Nebraska

Kansas
TICC

UKans

LBNL
ATL

SRI

IEEE Communications Magazine • September 2000 181

introduces a large amount of test traffic to the
network, it should not be done frequently. It is
important, however, to note that the study of vari-
ation in throughput during the course of the day
should be done at different times during the day.

Monitoring Network Element Status —
While the measurement activity described above
is aimed at providing information about connec-
tivity between sites in the network, it does not
provide detailed information about each
machine or other network elements within a
site. This type of monitoring can be achieved by
doing a PointToMultiPointDelay experiment
between a host and the remaining hosts and
switches in each site. The database contains the
static information about the configuration of
each site. NSAgent uses this information to cre-
ate an experiment that sends an ICMP_ECHO
message every 15 min from a designated host to
the rest of the network elements and hosts at its
site.

VISAGENT CONFIGURATION
To visualize the state of the network from the
perspective of the network-aware distributed
application, the VisAgent is used from a Java-
capable browser. VisAgent collects the perfor-
mance data and static configuration from three
sources: the NSAgent, database server, and
ServerMonitor agent. KQML messages are used
to communicate with the agents, while standard
SQL messages are used to interact with the

database server. VisAgent provides layered views
at the application and network layers:
• Application layer: Color-coded nodes repre-

sent the location of DPSS master, server,
and client nodes. The placement of the
nodes indicates the geographical location of
the corresponding DPSS components. Lines
represent the active connection between a
client and some DPSS servers. Figure 8
shows the screen capture of the visualiza-
tion tool displaying the status of the DPSS.
In this figure a DPSS client, ku_client1, is
accessing data sets from two DPSS servers,
as shown by the lines connecting the client
and the servers. The data panel at the bot-
tom left corner shows detailed information
about ku_client1, such as its network inter-
faces and the results of the throughput
measurements. The panel on the right dis-
plays the names of the DPSS master(s),
server(s), and client(s) that are currently
registered with the monitoring system.

• Network layer : Each node at the network
layer represents a site in the MAGIC-II
testbed. The network layer is further divid-
ed into three sublayers:
–The topology sublayer shows the physical
configuration of the testbed. The width of
the lines represents the physical link ’s
capacity (i.e., DS-3, OC-3, OC-12).
–The connectivity sublayer shows the results
of the connectivity test from a particular site
point of view. The color of the lines coming

■ Figure 8. A screenshot of VisAgent and the application layer. Nodes represent DPSS master, servers and clients. Lines represent active
connection between a DPSS client and servers.

IEEE Communications Magazine • September 2000182

out from a site to another site represents the
round-trip time in milliseconds. Unreachable
sites will not be connected by a line. Figure 9
shows a screenshot of the VisAgent display-
ing the connectivity as seen from the EDC
site. The colors of the lines represent the
round-trip time values as indicated by the
color spectrum in the legend window. The
numerical values of round-trip time are also
displayed in the data panel.
–The maximum bandwidth sublayer shows
the result of the throughput test from the
point of view of a particular site. The color
of the lines represents the achievable
throughput in megabits per second.

LESSONS LEARNED
The complexity, large scale, and accelerating
growth of today’s computer networks require sys-
tematic and automated management of perfor-
mance measurement for at least three reasons.
First, the size of the network and resulting data
sets exceeds the capacity of current practice’s ad
hoc methods. Second, more sophisticated data
collection, analysis, and use of results will be
required to understand the increasingly complex

behaviors of emerging networks that affect the
performance of distributed applications. Third,
the performance requirements and constraints of
emerging distributed applications will also
require richer performance data to provide bet-
ter service through awareness and adaptation to
dynamic network conditions. Our experience has
shown that the design principles adopted by the
system, as described earlier, are vital to success.
Modularity that clearly separates policy from
mechanism is required to ensure that methods
can be conveniently improved, and used as mod-
els for extension. Portability is vital because the
execution platforms change as quickly as the net-
work to which they are connected. Distribution
is necessary because as the target system increas-
es in size, centralized methods are unlikely to
remain adequate. Extensibility is required
because of the continuous development of new
types of tests and data needed to support new
types of network behaviors and behavioral analy-
sis. The essential message is that the framework
supporting performance measurement must be
as capable of dynamic change as the network it
measures. Another important lesson distilled
from this experience is that it is vital that the
instrumentation and other measurement support

■ Figure 9. A screenshot of VisAgent at the network connectivity sublayer. Nodes represent sites (organizations). Lines represent existing
connectivity, and their colors represent the round-trip time.

IEEE Communications Magazine • September 2000 183

be first class design criteria, rather than a some-
times grudging afterthought. Standards for Sim-
ple Network Management Protocol (SNMP)
based management and data collection fulfill this
requirement to a degree, but are not adequate
for all types of information gathering. The expe-
rience and software described here should guide
the design of future network components to help
increase the accuracy and decrease the cost of
gathering the performance data required to sup-
port advance distributed applications.

CONCLUSION AND FUTURE WORK
This article describes the design and implementa-
tion of a scalable agent-based network measure-
ment infrastructure tailored to support
network-aware distributed applications. The
agents are implemented in Java, use the JATLite
framework, and communicate using KQML.
NSAgent’s main objective is to perform measure-
ments and tests on the network in order to cap-
ture important performance characteristics of the
network from the perspective of a distributed
application. NSAgent relies on NetSpec to per-
form the distributed network experiment. The
result of the experiment is stored in either the
database or the file system. This work describes
the implementation of a monitoring agent system
as an approach to creating a network measure-
ment infrastructure. The role of the agents in the
system is to automate the process of:
• Continuous monitoring of application com-

ponents and network characteristics
• Creation and control of network testing and

measurement
• Collection and storage of performance data
• Correlation and presentation of perfor-

mance data to the application and/or net-
work manager
In the MAGIC-II testbed where this monitor-

ing system was tested, the main purpose was to
capture characteristics of the network state to
support dynamic reconfiguration of the DPSS, a
network-aware distributed application. In addi-
tion, the monitoring system was also used to
monitor the general health of the MAGIC-II
network by measuring some vital metrics of the
network, such as connectivity, latency, and
throughput. The monitoring system also includes
a visualization tool that serves as an interface to
the performance data and, more important, pro-
vides an integrated view of the distributed appli-
cation and the underlying network.

REFERENCES
[1] The MAGIC-II Project, http://www.magic.net
[2] V. Paxon et al., “An Architecture for Large-Scale Inter-

net Measurement,” IEEE Commun. Mag., Aug. 1998.
[3] S. Kalidindi and M. J. Zekauskas, “Surveyor: An Infra-

structure for Internet Performance Measurements,”
INET ’99, San Jose, CA, June 1999.

[4] T. Finin et al., “Draft Specification of the KQML Agent
Communication Language,” unpublished, 1993; http://
www.cs.umbc.edu/kqml

[5] L. Dasilva et al., “ATM WAN Performance Tools, Experi-
ments, and Results,” IEEE Commun. Mag., vol. 35, no.
8, Aug. 1997, pp. 118–25.

[6] Ctr. for Design Res., Stanford Univ., “JATLite: The Java
Agent Template,” http://java.stanford.edu

[7] J. Gosling and H. McGilton, “The Java Language Envi-
ronment: A White Paper,” Sun Microsystems, 1995.

[8] B. Tierney and B. Crowley, “Java Agents for Monitoring
and Management (JAMM) Home Page,” Lawrence
Berkeley Nat’l. Lab, http://www.didc.lbl.gov/JAMM

[9] D. Hughes, “Mini SQL: A Lightweight Database Server,”
Bond Univ., Australia, http://www.hughes.com.au/
library/msq11/manual/

[10] Y. Wijata, “Implementation of a Scalable Agent-Based
Network Measurement Infrastructure to Improve the
Performance of Distributed Application,” Master’s the-
sis, Univ. of KS, Nov. 1998.

ADDITIONAL READING
[1] B. Tierney et al., “An Overview of the Distributed Paral-

lel Storage System (DPSS),” http://wwwdidc.lbl.gov/
DPSS/Overview/DPSS.handout.fm.html

[2] CAIDA, The Genmap Package, http://www.caida.org/
Tools/Genmap/

[3] B. Crowley, “KQML Messages in the DPSS Agent Monitor-
ing System,” http://www-itg.lbl.gov/~crowley/kqml.html

BIOGRAPHIES
YULIA I. WIJATA received her B.Sc. and M.Sc. in computer
engineering from the University of Kansas in 1996 and
1998, respectively. In October 1998 she joined Sprint Cor-
poration, Kansas City, as a software engineer in the Service
Establishment and Technology Solutions group. She is a
member of Eta Kappa Nu and Tau Beta Pi.

DOUGLAS NIEHAUS is currently an associate professor in the
EECS Department at the University of Kansas. He has been
on the faculty of the university since 1993. His interests
include real-time and distributed systems, operating sys-
tems, high-performance network implementation and sim-
ulation, system and network performance evaluation, and
tools for programming environments. Current projects
include high-performance simulations of ATM networks on
both the signaling and data planes, real-time ORB imple-
mentation and performance evaluation, and system sup-
port for teams of reflective agents engaged in negotiation
about resource allocation. He received his Ph.D. in com-
puter science from the University of Massachusetts at
Amherst in 1993, where his thesis addressed the design
and implementation of real-time systems. He was a senior
software engineer porting UNIX to new platforms at Con-
vergent Technologies in 1986 and 1987, and a member of
technical staff doing system, network, and development
environment tool programming at Bell Laboratories and
AT&T Information Systems from 1981 to 1986. He received
his M.S. in computer, information, and control engineer-
ing from the University of Michigan in 1981 and his B.S.
in computer science from Northwestern University in
1980.

VICTOR S. FROST [F] (frost@eecs.ukans.edu) is currently the
Dan F. Servey Distinguished Professor of Electrical Engi-
neering and Computer Science and director of the Telecom-
munication and Information Technology Center at the
University of Kansas. He received a Presidential Young
Investigator Award from the National Science Foundation
in 1984. His current research interests are in the areas of
integrated broadband communication networks, communi-
cations system analysis, and traffic and network simulation.
He has been involved in research on several national-scale
high-speed wide-area testbeds. For example, he was princi-
pal investigator on the University of Kansas MAGIC research
effort and ACTS ATM Internetwork (AAI). Some of his
recent publications have focused on reporting the mea-
sured performance of these wide-area broadband net-
works. His research has been sponsored by government
agencies, including NSF, DARPA, Rome Labs, and NASA. He
has been involved in research for numerous corporations,
including Sprint, NCR, BNR, Telesat Canada, AT&T, McDon-
nel Douglas, DEC, and COMDISCO Systems. From 1987 to
1996 he was director of the Telecommunications and Infor-
mation Sciences Laboratory. He has published over 100
journal articles and conference papers, and made several
presentations to committees of the Kansas Legislature on
telecommunications and the future. He is a member of Eta
Kappa Nu and Tau Beta Pi. He served as Chairman of the
Kansas City section of the IEEE Communications Society
from June 1991 to Dec. 1992. He received his B.S., M.S.,
and Ph.D. degrees from the University of Kansas, Lawrence
in 1977, 1978, and 1982, respectively. In 1982 he joined
the faculty of the University of Kansas.

The experience

and software

described here

should guide the

design of future

network

components to

help increase the

accuracy and

decrease the cost

of gathering

performance data

that will be

required to

support advance

distributed

applications.

