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Abstract 
The Distributed Ontology Gathering Group Integration 
Environment (DOGGIE) is a multiagent system that 
demonstrates how agents with diverse ontologies can locate 
and translate semantic concepts distributed among them.  
These agents lack a commitment to a common, pre-defined 
ontology but share a distributed, collective memory of 
semantic concepts.  In particular, our research addresses the 
essential ontological diversity of artificial intelligence 
(Genesereth and Nilsson 1987) which states that any agent 
can create a conceptualization, or ontology, based on its 
utility for the task at hand.  When agents have diverse 
ontologies, agent knowledge sharing and communication is 
made more difficult because of the distributed concept 
locations, different vocabularies, and disparate references to 
the same concepts.  We present how we address these issues 
using multiagent learning algorithms and evaluate their 
feasibility and effectiveness through experimentation using 
ontologies constructed from Web page bookmark 
hierarchies. 
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Introduction and Related Work  

Much research has been done on agent knowledge sharing 
through the use of common, pre-defined ontologies.  The 
DARPA Knowledge Sharing Effort (KSE) (Finin, Labrou, 
and Mayfield 1997) recognized that different knowledge-
based systems could not share knowledge between them 
since they were based on different ontologies.  Researchers 
associated with this effort sought to be able to re-use 
knowledge bases by creating common ontologies in order 
to facilitate sharing knowledge.  Gruber and Olsen (1994) 
defined the ontology as the ontological commitments 
among agents to use a shared vocabulary in a consistent 
and coherent manner.  Although we recognize that sharing 
and communicating knowledge between agents based on 
common ontologies facilitates communication, in the real 
world, agents often have diverse ontologies.  Some 
domains, such as the World Wide Web, may necessitate 
intelligent agents selfishly inventing ontologies based on 
their utility for the task at hand.  Genesereth and Nilsson 
(1987) described this situation as the essential ontological 
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diversity of artificial intelligence: any conceptualization of 
the world is accommodated and is invented by an agent 
based on its utility.  Therefore, there is not always an a 
priori agreement to use the same ontology when agents 
communicate.  Ontolingua’s purpose was to provide a 
common set of ontology description primitives for 
constructing shared ontologies.  However, Mineau (1992) 
pointed out that this approach of using global ontologies 
has problems due to the multiple and diverse needs of 
agents and the evolving nature of ontologies.  Gruber 
(1991) also points out the problem of agreeing on a 
common ontology when he raises the question on how 
group consensus can be reached on “what to represent” 
given that agents have commitments to different tasks, 
representation tools, and domains. 
 Research is being conducted in agent communication 
with differentiated ontologies, or concepts that are not 
shared, but inherit structure from concepts that are shared 
(Weinstein and Birmingham 1997).  Their approach uses 
rough mapping to identify syntactic and semantic 
similarity between graphs of concepts with description 
logic.  Unlike most approaches, they allow agents to 
communicate directly rather than translating to a central, 
shared language.  However, they assume that the unshared 
terms inherit from terms in shared ontologies while we do 
not assume our agents use shared ontologies.  In general, 
the ontology problem, or how agents can share meaning, is 
still considered open (Jennings, Sycara, and Wooldridge 
1998). 
 For a group of agents, the vocabularies for their 
ontologies may consist of word labels assigned to different 
semantic concepts.  These semantic concepts are classes of 
instances of the semantic concept described by words in 
that agent’s vocabulary.  Thus, the agent’s ontology 
consists of the agent’s known semantic concepts, or 
objects, classes of objects, interrelationships between 
objects in the world, and the learning and reasoning 
mechanisms required to learn and share its ontological 
knowledge. 

Approach 

Our approach addresses these current weaknesses of agent 
knowledge sharing by introducing a theory of learning 
ontologies in a multiagent system with a distributed 
collective memory.  That is, individual agents start off by 



learning their own ontologies.  Then the agents begin to 
interact with each other to “teach” each other what they 
know from their own point of view.  This is done by first 
sending out concept-based queries consisting of the 
concept label and addresses in the collective memory that 
point to examples of the concept to acquaintance agents.  
The responding agent acquaintances use their own 
ontologies to interpret the examples to determine whether 
they know, may know, or do not know the querying 
agent’s concept.  Then the responding agent can send back 
the query to the original querying agent which can then 
verify whether or not its acquaintance knows about the 
same concept.  We will describe how this exchange can 
lead to the querying agent learning agent model knowledge 
or concept translation knowledge.  We describe how our 
agents in DOGGIE deal with locating distributed concepts, 
different vocabularies, and disparate references to the same 
concept. 

Distributed Collective Memory 
Agents can share a centralized memory, a distributed 
memory, or a hybrid memory (Garland and Alterman 
1996).  We define a distributed collective memory (DCM) 
as a set of base memory objects in the world that can be 
globally accessed but are selectively stored and 
conceptualized by agents in the multiagent system.  These 
agents may share this distributed collective memory but 
create their own individualized ontologies when selectively 
conceptualizing objects in it.  We assume that this 
distributed collective memory is so large that no single 
agent has conceptualized every object within it.  Since 
these agents do not share a common, pre-defined ontology 
there is difficulty when these agents wish to share 
knowledge. 
 We observe this phenomenon of a distributed collective 
memory with agents who possess diverse ontologies in the 
World Wide Web domain.  Agents, representing human 
users of Web browsers, may seek to locate information on 
the Web related to their own interests and needs.   An 
individual user can store the addresses of Web pages of 
interest in a hierarchical bookmark list.  The categories of 
similar Web pages represent semantic concepts that can be 
learned by the agent representing the human user.  The 
addresses, or URLs, for the Web pages represent the 
addresses in the distributed collective memory, or the 
World Wide Web.  The instances of the semantic concepts 
are the Web pages pointed to by their corresponding URLs 
and describe the semantic concept, or Web page category, 
individually named by the human user.  This hierarchical 
bookmark list created by the user becomes a type of 
ontology, or concept taxonomy, based on their own view 
of the world, or conceptualization.  A Web ontology such 
as Yahoo! or Magellan may consist of thousands of 
semantic concepts.  If a human user were to interpret Web 
pages to belong to these pre-defined ontologies, it would 
necessitate having to memorize all of them.  This would 
make this process impractical to most users.  Therefore, 
humans tend to create their own Web ontologies based on 

their own interests and point of view.  This is why a 
method for learning diverse ontologies in a multiagent 
system is necessary. 

Ontology Learning 
Each agent in DOGGIE uses supervised inductive learning 
to determine a rule-based representation of its ontology.  
The semantic concepts, or Web page categories, from its 
ontology, or bookmark hierarchy, are used as the known 
classes of concepts.  The Web pages pointed to by the 
URL’s are examples of the semantic concept instances 
known by each agent.  DOGGIE uses C4.5 (Quinlan 1993) 
with these concept names and their corresponding 
examples to determine the semantic concept descriptions 
(SCD).  Some example initial ontology rules, or SCD’s,  
learned by a DOGGIE agent are: 
 

(defrule Rule_33 (methods 1) (not (ink 1)) => 
(assert (CONCEPT Comp_CS_Res_Resources)))  
; 33 [70.0%] 

 
(defrule Rule_27 (breeders 1) => (assert 
(CONCEPT Life_Anim_Pets_Dogs))) 
; 47 [75.8%] 
 

These semantic concept descriptions resulted from learning 
an ontology consisting of the Life:Animals:Pets:Dogs and 
Computer:CS:Research:Resource concepts from the 
Magellan (1998, 1999) ontology.  The rule pre-conditions 
contain semantic descriptors for each concept that 
correspond to discriminating Web page tokens, or boolean 
features, in the concept examples for an agent.  The 
percentage stored on the line after the rule is the degree of 
accuracy, or certainty, that the rule will properly interpret 
unseen examples.  The Web pages used for the ontologies 
are preprocessed to remove stop words and HTML tags 
prior to the application of the machine learning algorithm. 

Discovering Semantic Concepts 
Agents in DOGGIE search for similar semantic concepts 
known in the group by sending concept-based queries to 
their acquaintances.  A concept-based query (CBQ) 
consists of the agent’s concept name, X, along with a set of 
addresses in the distributed collective memory that point to 
instances that describe the concept.  The concept-based 
query is the mechanism DOGGIE uses to search for the 
best ontologically near examples (BONEs).  The querying 
agent, Q, sends a KQML message containing the CBQ to 
some or all of its acquaintances who are asked to respond 
to the query.  The responding agent collects the examples 
from the DCM, or the Web, tokenizes them, and then seeks 
to interpret them.  The tokens, or semantic descriptors, 
found at the addresses submitted with the CBQ will trigger 
some of the rules the responding agent has to describe its 
own ontology (discussed in the previous section as 
“semantic concept descriptions”.) After all the examples 
have been interpreted, the responding DOGGIE agent 



determines whether it knows (K), may know (M), or does 
not know (D) the concept.  To determine this, it uses the 
percentage accuracy value calculated during the initial 
ontology learning process to determine the positive 
interpretation threshold.  After all the examples have been 
interpreted, the interpretation value is compared with the 
positive interpretation threshold.  If the interpretation value 
is greater than the positive interpretation value, then the 
agent knows the concept. If the interpretation value is less 
than the negative interpretation threshold, then the agent 
does not know the concept.  If the interpretation value is in 
between these values, then the agent may know the 
concept.  When it determines that an example belongs to a 
particular concept, it keeps track of the frequency and 
calculates an interpretation value using the following 
equation: 
 
 
 
 
 

 
 
, where kc(x) is equal to one if the interpretation for 
instance x is true for the concept c and zero if the 
interpretation for instance x is false for the concept c and N 
is the total number of examples.  

Disparate References 
In a multiagent system, agents with diverse ontologies may 
refer to the same object with disparate concept names 
(Bond and Gasser 1988) or they may use the same concept 
name to mean different things (Huhns and Singh 1998).  
For example, a teenager may refer to a popular song as 
“cool”, “hip”, or “da bomb”.  In these types of situations, 
agents with diverse ontologies must be able to learn that 
they are referring to the same semantic concept even 
though they have disparate names.  For one person, the 
word “bomb” may refer to a destructive device but in the 
case of the teenager it refers to how enjoyable, popular, or 
innovative something is.  We have developed a method for 
the agents with diverse Web ontologies to learn this 
concept translation. 
 To illustrate how DOGGIE handles this type of situation 
we use our example Rule_27.  The querying agent Q, sends 
a CBQ for its concept “Man’s Best Friend”.  Its 
acquaintance, R1, receives the query and begins to 
interpret the examples using its rules, which includes 
Rule_27.  As it finds the token, breeders, in the example 
Web pages, it calculates the interpretation value according 
to equation 1.  If the R1 agent’s interpretation value is 
greater than its positive interpretation value for its concept 
Life:Animals:Pets:Dogs then it determines that the Q 
agent’s concept, “Man’s Best Friend”, is the same as its 
concept, Life:Animals:Pets:Dogs.  The Q agent can then 
verify whether or not R1 knows its concept but by a 
different name.  If the Q agent determines that these 
concepts are the same, it can learn concept translation 

knowledge.  In this example, agent Q learns that agent R1 
knows its concept Life:Animals:Pets:Dogs as”Man’s Best 
Friend”.  This concept translation knowledge is used to 
direct future CBQ’s in order to improve the 
communication and the quality of concepts discovered. 

Different Vocabularies 
Another challenge of diverse ontologies is having agents 
that possess different vocabularies.  Even if agents share 
the same base language, such as English, they may not all 
understand or use the same vocabulary.  This may cause 
ambiguity when agents are attempting to interpret 
examples of a concept from each other.  We address this 
problem by introducing recursive semantic concept rule 
learning (RSCRL).  This algorithm uses an agent’s existing 
ontology to recursively create new concepts from existing 
ones in order to learn semantic context rules from semantic 
concept description descriptors. 
 When two or more agents wish to share knowledge, they 
must be able to understand each other in spite of not 
having exactly the same vocabulary.  Although agents may 
have overlapping vocabularies that are contained in their 
examples of concepts (e.g. Web page), an agent may be 
missing a token that may be critical in the interpretation 
process.  From our example Rule_33, 

(defrule Rule_33 (methods 1) (not (ink 1)) => 
(assert (CONCEPT Comp_CS_Res_Resources)))  

  ; 33 [70.0%] 
we note that one descriptor is the token methods.  If a 
responding agent, R,  uses this rule to interpret a new 
concept from a querying agent, Q, that does not have the 
token methods, this can create a problem.  Using RSCRL, 
we can create a pseudo-concept for the token methods, 
learn a semantic context rule for it, and try to re-interpret 
the CBQ.  This creates a new rule for methods which can 
assert the fact that methods exists even though the actual 
token methods does not exist.  The algorithm for RSCRL 
can be described as follows: 

1. Determine the names of the concepts in the 
ontology. 

2. Create meta-rules for and from the semantic concept 
descriptions: 
a. Use the meta-rules and the interpreter to find 

which tokens to learn semantic context rules 
for, or RSCRL tokens. 

b. Transform the ontology by creating new 
concepts for these RSCRL tokens. 

3. Re-learn the ontology rules. 
4. Create the semantic context rules from the semantic 

concept description rules. 
5. Re-interpret the CBQ using the new semantic 

context rules and the original semantic concept 
descriptions. 

6. Determine whether the concept was verified with 
the new semantic context rules: 
a. If the concept is verified, learn the applicable 

agent model or concept translation rules. 
b. If the concept is not verified, recursively learn 

Equation 1 Interpretation Value 

N
xk

I
c
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the next level of semantic context rules by 
repeating the above steps if the user-defined 
maximum recursion depth limit is not reached. 

 This RSCRL algorithm becomes a type of rule search 
for rules describing missing descriptor(s) in a semantic 
concept description.  The meta-rules are automatically 
generated following the following form (for rules with two 
and three preconditions): 

1) If A ∧  B ⇒ Concept X 
a) If ~A ∧  B ⇒ Learn semantic context rule for A 
b) If A ∧  ~B ⇒ Learn semantic context rule for B 

2) If A ∧  B ∧  C  ⇒ Concept X 
a) If ~A ∧  B ∧  C ⇒ Learn semantic context rule for 

A 
b) If A ∧  ~B ∧  C ⇒ Learn semantic context rule for 

B 
c) If A ∧  B ∧  ~C ⇒ Learn semantic context rule for 

C 
Therefore, using our example Rule_33, 

(defrule Rule_33 (methods 1) (not (ink 1)) => 
(assert (CONCEPT Comp_CS_Res_Resources)))  

  ; 33 [70.0%] 
the following meta-rule is automatically generated for it 
during the RSCRL process: 

(defrule Rule_45 (not (methods 1)) (not (ink 1)) => 
(assert (RSCRL methods)))  

This meta-rule will flag the agent that the CBQ’s example 
semantic objects do not contain the descriptors methods 
and ink and that the agent needs to transform its ontology 
to learn a pseudo-concept for this descriptor methods.  This 
will enable the agent to learn additional ontology rules for 
this descriptor.  Once these RSCRL tokens are determined, 
the agent searches each ontology concept directory for that 
token.  If the token exists in a concept instance, it is 
removed from the current semantic object and placed in a 
concept holder named after the token.  This builds up these 
pseudo-concepts with semantic objects, i.e. Web pages, 
which contain these tokens.  Then using our supervised 
inductive learning algorithm, we are able to generate 
additional ontology rules. 
 The semantic context rule generated for the descriptor 
method is: 

(defrule Rule_29 (not (methods 1)) (this 1) 
(management 1) => (assert (methods 1)))  

This rule states that for the current CBQ, if the methods 
token does not exist but the tokens this and 
management do exist, then we can assert the fact that 
the methods token does exist within the context of the 
current ontology.  This is a novel method for 
determining whether a descriptor’s “meaning” exists 
given the current vocabulary even though the exact 
token is not used in the current concept category. 

Evaluation and Results 

The data used to test and measure DOGGIE consisted of 
random concept categories taken from the Magellan 
ontology (1998, 1999).  The Magellan ontology consisted 

of approximately 4,385 nodes, or concept categories.  Each 
of the concepts we used had 20 Web pages in them.  Each 
DOGGIE agent was assigned 5 to 12 concepts for their 
individual ontologies.  We used the Magellan ontology to 
insure that we could make an objective evaluation of 
whether or not two concepts were similar.  We used 10 
instances per concept for our supervised inductive learning 
and 10 different instances for testing.  The agent model 
rule learning, concept translation learning, and recursive 
semantic context rule learning (RSCRL) experiments were 
run in 4-, 8-, and 16-agent configurations. Examples of 
Magellan ontology concepts used included: 

•  Arts/Architecture/Resources_and_Professional_Org
anizations 

•  Business/Companies/Chemicals_Petrochemicals_an
d_Pharmaceuticals 

•  Computing/Internet/For_Net_Novices 
We used the JESS inference engine (Friedman-Hill) to 
implement our CBQ interpreter.  When testing our 
multiagent concept translation algorithm, we gave each 
concept name a unique name yet still maintained their 
semantic content by not changing the concept instances 
assigned to it. 

Performance Measurements 
Our measure of the group’s search performance 
measurements included the average concept precision and 
concept recall Concept precision is the ratio of the number 
of relevant concepts retrieved to the total number of 
concepts retrieved: 
 Concept Precision = # of relevant concept retrieved / # 
of concepts retrieved.   
Concept precision differs slightly from traditional 
information retrieval (IR) precision since DOGGIE is 
actually seeking a particular concept name rather than a 
particular document.  A relevant concept is determined if 
the querying agent verifies that the responding agent’s 
concept falls into the K region when interpreting its 
response.   
 Concept recall is the ratio of the number of relevant 
concepts retrieved to the total number of relevant concepts 
in the distributed knowledge base: 
 Concept Recall = # of relevant concepts retrieved / total 
# of relevant concepts 
The total number of relevant concepts is the total number 
located among all the agents in the entire group.  The total 
number of agent model rules, concept translation rules, or 
concept relation rules learned are used as measurements of 
group learning. 
 We ran experiments on DOGGIE to determine the 
feasibility of multiagent learning of ontologies among a 
group of agents with diverse ontologies and to determine 
whether they could improve their group performance for 
relevant semantic concepts through their collective 
experience. The agents randomly selected concepts to 
query and then after sending each of their known concepts 
once, they sent another iteration of their concepts in 
random order.   



 We ran three different types of experiments related to 
the research issues we identified for learning diverse 
ontologies: agent model learning, concept translation, and 
recursive semantic context rule learning. We ran our 
experiments on up to two Sun workstations running the 
2.5.1 and 2.6 versions of Unix.  A CORBA name server 
was run on one of the hosts to enable the agents to locate 
and communicate with one another. 

Results  and Discussion 
We measured the concept precision and concept recall 
values for the group averaged over two iterations: the 
learning phase and the post-learning phase.  During the 
initial learning phase of the experiment, the group sent out 
queries to all of its neighbors for each concept and learned 
the location of relevant knowledge in the group. On 
subsequent queries for a concept, the agents used their 
group knowledge (e.g. agent model knowledge) to direct 
the queries.  We also calculated the concept precision and 
concept recall using the following equations: 

Equation 2  Calculated Concept Recall 

ected

actual
calculated

M
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where the calculated recall value, rcalculated, is equal the actual 
number of group knowledge rules (i.e. agent model rules or 
concept translation rules) learned, Mactual, divided by the 
number of group model rules, Mexpected, given perfect 
learning and interpretation. 
 The calculated precision values were calculated using 
the following equation: 

Equation 3 Calculated Concept Precision 

actual

error
calculated

M
Mp −=1  

where the calculated precision, pcalculated, is equal to one 
minus the error.  The error is the number of group 
knowledge rules (i.e. agent model rules or concept 
translation rules) that should not have been learned, Merror, 
divided by the actual number of group knowledge rules 
learned, Mactual. 
 To test our concept translation learning algorithm, we 
ran our DOGGIE multiagent system with agents that had 
different ontologies with unique concept names.  These 
experiments were run in the same fashion as the agent 
model learning experiments in 4-, 8-, and 16-agent 
configurations. These concept translation experiments had 
slightly better results.  We found that the concept precision 
decrease slightly for the 16-agent experiment.  When the 
agents were unable to process the CBQ’s and learn concept 
translation knowledge in time to send the next iteration of 
queries, this decreased the performance of the group. 
 The calculated concept recall and concept precision for 
the concept translation experiments are in Table 1 below.  
We see that the calculated precision decreases in the post-
learning phases as the number of agents increase but it still 

remains above 50% which is an observable improvement 
for the concept precision for the two iterations. 

Table 1 Calculated Recall and Precision for Concept Translation 
Learning 

# Agents Calculated Recall 
(Learning Phase) 

Calculated Precision 
(Post-Learning 
Phase) 

4 0.057 1.0 
8 0.201 0.634 
16 0.202 0.56 

 
The calculated concept precision and recall for the RSCRL 
experiments are given in Table 2 below: 

Table 2 Calculated Recall and Precision for RSCRL 

# Agents Calculated Recall 
(Learning Phase) 

Calculated 
Precision (Post-
Learning Phase) 

4 0.057 1.0 
8 0.629 0.818 
16 0.148 0.944 

The calculated concept recall and concept precision show 
an observable improvement over the methods not using 
RSCRL.  We also see how the concept precision for both 
iterations of concept-based queries improves for RSCRL 
over the agent modeling and concept translation 
experiments in Figure 1 below: 

Figure 1  Concept Precision 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also we see that the concept recall improves when RSCRL 
is used for both the agent model learning and concept 
translation experiments in Figure 2 below: 

Figure 2  Concept Recall 
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Conclusions and Future Work 

Our results support the idea that it is feasible to use diverse 
Web ontologies among agents to learn concept locations 
and translations among the group.  They also show that this 
learned ontological knowledge can help the group improve 
its performance in searching for semantic concepts using 
ontologies constructed from Web page bookmark 
hierarchies.  We found in general that there is a trend 
towards performance improvement in DOGGIE’s concept 
precision and recall (i.e. the group search performance) as 
the number of agents increase.  Using the recursive 
semantic context rule learning algorithm improved the 
average concept over our baseline agent model 
experiments. 
 DOGGIE does not specifically address ontology 
granularity or circularity.  However, it does show the 
feasibility of agents learning how to discover and translate 
between concepts using an approach that combines agent 
communication and machine learning.  DOGGIE’s concept 
recall and precision performance might be improved in the 
future by adding more traditional information retrieval 
techniques such as term frequency and inverse document 
frequency measures.  We also want to see how DOGGIE’s 
performance is affected by having not only diverse 
ontologies but also diverse learning styles. 
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