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Electromagnetic sensors are often implemented to estimate the angle-of-
arrival (AOA) of a scattered or emitted signal. An estimation algorithm uses
the response from an antenna array to provide AOA estimates. Much research
has been performed in developing estimators that minimize AOA estimate error.
However, AOA estimate error can likewise be decreased by designing arrays that
provide the maximum possible information to the estimation processor.

A concept is presented for using Fisher’s Information to design conformal
arrays that can provide an optimal response for estimating signal AOA. It will be
shown that the resulting designs maximize the upper bound on AOA estimation
accuracy, thus presenting an optimal array response to an arbitrary estimator.
This concept accounts for measurement uncertainties including thermal noise,

receiver channel imbalance, and incident wave polarization.
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Chapter 1

Introduction

141 Background

Over the the past thirty years, estimation techniques to find the direction-
of-arrival (DOA) of an incident plane wave upon an array of sensors has received
considerable attention in the literature [9]. The publishings address all facets of
direction finding, but one core issue appears again and again. Given data taken
from an array of sensors measuring incident electromagnetic (EM) radiation, how
should one process this data to compute the best possible estimate of the direction
of the incident waveform(s)?

Functionally, direction finding systems can be divided into two parts: the
DOA estimator (also called the DOA processor) and the antenna. Much of the
hype has centered on improving the DOA processor. Great leaps have been made
in computer processing power in the last two decades. This additional processing
power has spawned new interest in classical estimation theory. Consequently,
estimation algorithms that were considered impossible twenty or thirty years ago

have now become feasable.



111 The Estimator

Estimators can be categorized into two principle groups: parametric and
spectral-based methods. Consideration of these two types will be in regard to
estimating DOA. Spectal-based methods of estimation generate a spectrum-type
function of the parameter of interest (in this case a DOA angle) versus another
parameter such as incoming signal power. For instance, if one incident waveform
were present and the function were plotted, the peak in the plot would be tagged
as the DOA of the incident wave. Parametric methods of estimation frequently
require simultaneous solution of all unknown parameters as opposed to isolation of
just one parameter. This means that besides needing to estimate the DOA angles
¢ and 6, additional unknown parameters such as the incident wave polarization
angles x and 1 may also require inclusion into the estimator.

Some of the popular spectral-based approaches to estimation are the classical
beamformer (also known as Bartlett’s beamformer) and MUSIC (MUltiple SIgnal
Classification) methods. In classical beamforming, the array beam is steered in
one direction and a measurement of the array output is taken. After all the desired
directions are scanned and measured, the direction(s) with the maximum array
signal power is(are) deemed the DOA estimate(s). For additional information on
beamformers, see reference [19].

MUSIC methods are generally superior to beamformers for direction find-
ing. Basic MUSIC estimators operate on the eigenvectors of the cross correlation
matrix of the measurements taken from the array. The eigenvectors are used in
the generation of a spectrum function. The angle for which the spectrum function
is maximized becomes the DOA estimate. The MUSIC algorithms are consid-

ered statistically consistent because the DOA estimates they provide will ideally
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converge to the actual DOA value when the number of data samples approxi-
mates infinity. Details on the MUSIC algorithm can be found in two works by the
originator, Ralph Schmidt [12, 13].

Parametric estimators are the other category of estimators. They use sta-
tistical signal processing methods to make estimates and can be classified into
two main types, Bayesian and classical (non-Bayesian). Classical and Bayesian
estimators both utilize probability density functions (PDF) in calculating an es-
timate. However, the Bayesian approach starts with an a priori PDF from which
an a posteriori PDF is obtained by applying Bayes rule. In classical estimation,
no a priori PDF exists or none is designated. Consequently, an a posteriori PDF
cannot be defined. Instead, one has the PDF of the measurements conditioned
on the parameter to estimate. This is called a likelihood function, upon which
the maximum likelihood (ML) estimator is based. An ML estimate is the value
of the parameter which maximizes the likelihood function. On the other hand,
a maximum a posteriori (MAP) estimator bases its estimates on an a posteriori
PDF. An MAP estimate is the value of the parameter which maximizes the a
posteriori PDF. The classic work in the field of parametric estimators is by Harry
Van Trees [18]. A more recent work was authored by Steven Kay 8].

One goal central to all DOA estimators is to make the most accurate di-
rection finding estimates possible. To accomplish this goal, the estimator must
make maximum use of the array data presented to it. Stated differently, the esti-
mator must extract the maximum information about direction of arrival from the
total information given. The total information will include undesired information
such as noise or jamming interference as well as the desired information (that

information which is relevant to locating the emitter/scatterer).



1.1.2 The Antenna

The second part of a direction finding system is the antenna. In many
instances, the antenna consists of multiple sensors or elements collectively called
an array. Arrays are utilized for many reasons, but two key reasons are gain and
steering. Arrays provide elevated gain compared with single element antennas.
Arrays also permit custom formation and steering of beam patterns.

Because arrays can be very difficult to design, substantial effort has been
focused at improving synthesis methods which can be programmed and executed
by computer. In 1946, long before the advent of computing power as we know
it today, C. L. Dolph published one of the first works on linear array synthesis
[4]. Dolph’s work used the Chebyshev polynomial to formulate a beam pattern
with sidelobes of equal height. The element spacing in Dolph’s array was one-half
wavelength. Because equal height sidelobes gather unwanted clutter and other
interference, they are disadvantageous. Recognizing that sidelobes that taper off
from the mainlobe would reduce clutter, T. T. Taylor published a synthesis method
(which came to be known as the Taylor one-parameter design [14]) for beam
patterns with a sidelobe envelope that approximates the envelope of a sinc function
%2. The sinc function envelope tapers off at the rate % The disadvantage of the
Taylor one-parameter pattern is inefficiency. Developed as a compromise between
the Dolph-Chebyshev and Taylor one-parameter synthesis methods, the Taylor 7
distribution obtains the higher efficiency of Dolph-Chebyshev while retaining the
advantages of a tapered distribution like the Taylor one-parameter [15].

A more recent technique by Bayliss [3] applies the principles of the Taylor 7
distribution to a difference pattern. This work has come to be known as Bayliss

pattern synthesis and sees use in linear as well as planar array design.
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Planar array pattern synthesis borrows much from linear array pattern syn-
thesis. Typically, the product of two linearly synthesized patterns are used to
create the planar array pattern [5]. For a planar array with waveguide elements,
a Taylor n distribution is applied along the waveguide slots, and another Taylor
n distribution is applied across the slots, and the two are multiplied together to

synthesize the complete pattern.
1.2 Motivation

As seen by the literature, most array synthesis techniques currently focus on
forming a specific beam pattern by phasing and/or placing the individual sensors
in some calculated manner. These techniques are frequently applied to linear and
planar array development and, over the years, have proven to produce working
designs. However, conformal array development using these techniques is much
more challenging. Therefore many array designers avoid the use of the conformal
array where possible. Unfortunately, some array designers cannot avoid the use
of a conformal array, because the application requires an array which conforms to
a surface, such as the wing of an aircraft or the nose cone of a missile. Because
most synthesis techniques are aimed at linear and planar array design, designers
are often left with nothing but their own resourcefulness when designing conformal
arrays.

There are a number of reasons that conformal array design is an arduous
task [7]. First, many synthesis techniques rely on a principle known as the array
multiplication principle. This principle states that the beam pattern of an array
is the product of the beam pattern of an array of isotropic elements and the
beam pattern of an individual element. This does not apply to conformal arrays

because one cannot factor out an individual element pattern out of the total
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radiation pattern. Second, mutual coupling can be severe and difficult to analyze
because of the extreme asymmetry of structures like cones and because of multiple
coupling paths between array elements (as in the case of a cylinder, where coupling
paths can be clockwise and counterclockwise). Third, cross polarization effects
arise because of the different pointing directions for elements on curved surfaces.
Other reasons also exist, but this is merely a sampling.

Additionally, while present synthesis techniques can provide maximum array
gain in a specified direction, those same techniques may not synthesize an array
that gathers maximum direction finding information. Hence, a DOA processor
may not make the best estimate of the DOA.

Because of these motivations, a new technique for synthesizing direction
finding arrays is proposed. This technique will use principles from estimation
theory to determine the best locations for the individual sensors in a direction
finding array. The method will also indicate which sensor locations supply the
maximum amount of information for direction finding. Should these locations be
used in an array design, the resulting array will be ”tuned” in a direction finding
sense, and, therefore will provide the DOA estimator with the most information

possible to make DOA estimates.

13 Research Objectives and Scope

The primary objective which forms the basis for this research is:

To find an information oriented metric for use as a parameter in the design of

direction finding arrays.

In addition to the primary objective, there are several secondary ob jectives

we hope to accomplish.



T

(1) Evaluate the new information measure in the design of a conformal array

on a complex body

(2) Account for three important measurement uncertainties - thermal noise,

receiver channel imbalance, and incident wave polarization

(3) Ascertain the performance of the information measure for designing di-

rection finding arrays

The purpose of objective 1 is to test the new information metric on a model
that is as realistic as possible. While a linear or planar array could be used as a
model for this work, choosing a conformal array integrated with a more complex
structure will confer additional credibility to the final results. This is due to the
difficulty in designing conformal arrays with traditional array synthesis techniques.

It is desired that the model will include three important measurement un-
certainties - thermal (additive) noise, receiver channel imbalance (multiplicative
noise), and incident wave polarization. This is the intent of objective 2. Ad-
ditive noise is often included in the models of most direction finding estimation
problems. However, multiplicative noise, which appears in the form of channel
imbalance at the receiver, is rarely taken into account. This is one possible reason
some estimation algorithms do not achieve their theoretical performance level.

Many arrays are designed with identically polarized sensors. On one hand,
this simplifies the estimation problem. On the other, it hurts the accuracy of the
entire direction finding system because polarization is an additional characteristic
which can be used to help make estimates of all types of target parameters. It has
been shown by Weiss [20] that diversely polarized arrays in direction finding sys-
tems permit better DOA estimates than systems with uniformly polarized arrays.

Therefore, the array model used in this research will need to account for incident



wave polarization to obtain maximum accuracy.

The worth of an array designed with the new technique must be judged by
some criteria. A quantitative criteria is preferable, but in this case a qualitative
criteria was used because of schedule constraints. The criteria used is as follows: If
the sensor locations determined by the technique are not obvious and predictable,
then the technique holds promise. On the contrary, if the sensor locations deter-
mined by the technique are obvious and predictable, then the technique may be
useless.

The key to understanding the criteria is to understand the phrase ”obvi-
ous and predictable.” By ”obvious and predictable,” an array design is something
the designer could have easily determined without the use of the new technique.
Examples of "obvious and predictable” include arrays with elements placed for
maximum separation or arrays with evenly spaced elements. Arrays with a sy-
metrical look could also be classified as such.

Therefore, if the new design technique indicates element locations which are
unusual or not obvious and predictable, it could mean that the so called obvious
and predictable arrays are sub-optimum in terms of DOA determination. On the
other hand, if the new design technique yields arrays which are obvious and pre-

dictable, then the new technique achieves no advantages and can be disregarded.

1.3.1 The Approach to be Taken

The list below summarizes the steps which will be taken in chapters to

follow.

(1) Choose an array element model. This choice is made in Chapter 2.

(2) Apply Mie’s electromagnetic scattering solution to the conducting sphere




array model. This is done in Chapter 3.

(3) Derive an observation model from probability theory. This is shown in

Chapter 4.

(4) Obtain the Fisher’s Information Matrix from the Mie scattering solution.

This step happens in Chapter 5.

(5) Design an array based on Fisher’s Information. This will be illustrated in

Chapter 6.

(6) Examine the resulting element locations for the array designed with Fisher’s

Information. This occurs in Chapter 7.

Let us begin by choosing a physical model for an array design.







Chapter 2

The Conformal Array Model

2.1 The Structural Model

A physical structure to carry the array sensors will be need to be chosen.

While many structures may suffice, the selected structure must fulfill several cri-

teria.

(1) The structure must demonstrate a realistic electromagnetic scattering re-

sponse.

(2) The response of the antenna elements placed on the structure must depend

upon the shape of the conformal structure.

(3) The structure must have a simple scattering solution.

The simple scattering solution of criteria 3 need not be a closed form so-
lution. However, for the purpose of a model, a closed form solution without
numerical integration is desirable because it will require far less computer time to
generate solutions.

The first and third criteria are contradictory in that many times simple
electromagnetic problems are not realistic and, just as often, realistic electromag-

netic problems are not simple. Some examples of conformal shapes that would
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make realistic models include the nose cone of a missile or the wing of a airplane.
Both of these shapes are commonly found in practice. However, closed form elec-
tromagnetic scattering solutions do not exist for these complex shapes. Since a
conformal shape with a simple mathematical description is desired, a compromise
will be necessary. The conducting cylinder and the conducting sphere meet all
our requirements. Both shapes are conformal and both have closed form scatter-
ing solutions. Either structure would work, but the conducting sphere offers two
dimensions of curvature, and therefore was selected as the physical structure for
the conformal array design to come.

The conducting sphere has two features which make it a suitable structure
for the array model. First, a closed form scattering solution exists and is known
as the Mie scattering solution. It can be found in several textbooks including
Harrington [6] and Balanis [1]. Second, it is a simple shape with an equally

simple description in the spherical coordinate system.
2.2 The Sensor Model

In the previous section, a physical structure for the array was selected. This
physical structure will carry the individual sensor elements which comprise the
array. The conducting sphere was chosen in part because of its known, existing
scattering solution. Any sensors added to the conducting sphere will obviously
change the electric field such that the scattering solution defined in Balanis [1] is
no longer valid. But if very small monopole elements are added to the sphere, the
scattering solution for the electric field will not change significantly. Consequently,
the Mie scattering solution is still considered a good approximation to the electric
field. This type of solution for the electric field is called a perturbation solution.

By using electrically small monopoles and a perturbation solution, the closed form



12

Mie solution still applies.

2.3 The Application Model

While there are many possible uses for a direction finding array, the primary
application targeted by this research is airborne direction finding. It is important
that the model relates to a real world situation. With this in mind, the following
scenario will serve as an application model.

Figure 2.1 depicts the model. The conducting sphere will serve as an air-
borne vehicle or aircraft. It is flying along at an elevation h above the ground.
Assume the aircraft (sphere) is looking for emitters on the ground in an oval
shaped viewing area. This oval shaped area represents the a priori knowledge we
hold about the location of the emitter. We can assume the emitter is located
within the oval viewing area and not somewhere else. This assumption will rule
out any ridiculous calculations made by the DOA processor that may indicate the
emitter is located somewhere outside of the oval (while this in fact could be true
due to circumstances such as multipath, in the interest of simplicity, we will limit
the problem to the case where the emitter is located in the general direction we
are looking).

The radii of the elliptical oval are a and b where ¢ = 2b. The sphere is
not positioned directly above the center of the ellipse but rather is offset along
the z axis by precisely z,; from the center. Note that the +z axis faces left and
the +z axis faces down in this model. This arrangement is intentional and will
help to shorten later calculations. The center of the (z,y, z) coordinate system is
located in the center of the sphere. The center of the (z', 1/, ') coordinate system

is located in the center of the ellipse.



x
|....2,’0ff....|
:
........... g b :
b
-
Y 7

Figure 2.1: Application Model.
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Chapter 3

The Mie Scattering Solution for a Conducting Sphere

3.1 Scattering Solution

As stated in Chapter 2, the electromagnetic scattering solution for a con-
ducting sphere is known and can be readily found in Harrington [6] or Balanis [1].
The derivation below closely follows that in Balanis [1].

A uniform plane wave is incident upon a conducting sphere. The plane
wave is propagating in the +z direction and is polarized in the +z direction as
shown in Figure 3.1. The total electric field at a given point outside the sphere is
the sum of the incident and scattered fields. In the spherical coordinate system,
the total electric field can be broken down into range, azimuth, and elevation
components. Since the azimuth and elevation components of the electric field at
the surface of the sphere do not couple into the elements, they may be considered
zero. Therefore, the total electric field consists of the radial component only.

The radial component of the total electric field may be found with Equation

3.1 below:

t 1 82 [ 2 At
E! = — AL pEA (3.1)
" jwue \ Or?

where:

J 1s the imaginary number /—1.



Figure 3.1: Uniform plane wave incident on a conducting sphere.

w is the angular velocity in rad/s.

i s the permeability of free space equal to 47 x 10~7 H/m.

¢ is the permittivity of free space equal to 8.854 x 1072 F/m.
B is the wavenumber defined by “ with units of rad/m.

7 is the distance from the center of the sphere.

Al is the total magnetic vector potential.

The total magnetic vector potential AL can be found by:

coSs ¢

Af_ :EO

i[anjn(ﬁr) + b, H®(6r)| P (cos §)

w
n=1

Here:

Ej is the scalar amplitude of the incident waveform.

15

(3.2)
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7 is the range associated with position.
¢ is the azimuth angle associated with position.
0 is the elevation angle associated with position.
w is again the angular velocity in rad/s.

g (Br) is the spherical Bessel function of the first kind defined by:

In(Br) = || 5 1y (6) ()

Jn(Br) is referred to as the Bessel function of the first kind of order n.

ﬁn(ﬁr) is the spherical Hankel function of the second kind defined by:

HO(Br) = WT&H,E?%(&) (3.4)
where:
HP(Br) = Ju(Br) — jY,(6r) (3.5)

is the Hankel function of the second kind. Again, n denotes the order.
P, is the associated Legendre function of the first kind. Associated Legendre

functions of the first kind are defined as:

(1 i 552)% dm+n($2 - l)n

e ise dgmn (8
n is known as the order of the associated Legendre function.
m is called the type of the associated Legendre function.
The coefficients a,, and b, are:
1
o, = i 2n + (3.7)

n(n+1)
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atgm { ()}
a_(?a_r) {I;’,(f)(ﬁa)}

bn = —Qp

(3.8)

3.2 Transformed Scattering Solution

The equations in Section 3.1 find the total electric field at a specified lo-
cation for a specified incident wave with a specified polarization. The location
is a predetermined spherical coordinate (7,6, ¢); the incident wave is propagat-
ing in the +z direction with +z polarization. However, the incident waveform
can approach the sphere from any direction with any polarization. Therefore, a
more general solution that allows for arbitrary incident waveform direction and
polarization is necessary.

The sphere is a symmetric object. When a sphere is viewed from differ-
ent directions, no matter which view is taken, it still looks like a sphere. This
symmetry permits some simplification. The original problem of finding a general
solution for the total electric field for an arbitrary incident wave simplifies to one
of finding a coordinate transformation which transforms the arbitrary direction
of the incident waveform into an incident waveform traveling in the +z direction
with 4z polarization.

Because electromagnetic fields obey the law of superposition, it is convenient
to find the horizontal and vertical components of electric field and later add them

together to get the total electric field.

3.2.1 Vertical Component of Electric Field

The total vertical component of the electric field will be comprised of a

scattered field component and an incident field component. The scattered com-
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ponent for the case of a conducting sphere can be found with the Mie scattering
solution just presented. The incident field component can be found utilizing wave

polarization techniques. Let us find the scattered component first.

3.2.1.1 Vertical Component of the Scattered Electric Field

To find the vertical scattered component of the electric field, the original
location angles must be transformed into new location angles (0., ¢.) which fit the
sphere scattering model. In other words, after rotating the incident wave from
its original location to the location defined by the sphere scattering model (4z
propagating, +z polarized), the original point in space has now taken a different
position. This newly tranformed point in space is the location where the electric

field is to be calculated.

Figure 3.2: Application Model.

Mathematically speaking, define two coordinate systems - one primed (@0
and one unprimed (%, g, 2). Figure 2.1 from Chapter 2 is reproduced again here as

Figure 3.2 for easy reference. Let the primed coordinate system represent the Mie
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scattering solution coordinate system; call this the Mie space. Let the unprimed
coordinate system represent the coordinate system where any incident waveform
direction and polarization are possible; call this global space. Within these two

coordinate systems, define the following:

7; = the waveform incidence vector in the global coordinate system.

h; = the horizontal polarization component of the electric field.

v; = the vertical polarization component of the electric field.

Te = the element position in global space.

7, = the element position in Mie space.

¢e = the azimuth angle of the element position.

e = the elevation angle of the element position.

¢; = the azimuth angle of the DOA of the incident wave.

0; = the elevation angle of the DOA of the incident wave.
Refer to Figure 3.3 for element position and DOA angle definitions.
Now that all parameters have been defined, let us derive the coordinate

transformation.

i = cos ¢; sin 6, + sin ¢; sin 6,9 + cos 6,2 (3.9)
ii;i = —sin gbifc + Cos (,IS.LQ (310)
¥; = cos ¢; cos 8;Z + sin ¢; cos 0; — sin 6,2 (3.11)

e = COS @ sin 0,2 + sin ¢, sin 0,9 + cos 6,2 (3.12)
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Figure 3.3: Angle Definitions.

7o = o8 ¢, sin 0.% + sin ¢/, sin 0.7 + cos 02 (3.13)

Because the incident waveform must propagate in the +z direction with +z

polarization, set

’l)i = .’f?’ (315)
hi = ¢ (3.16)

Because the element positions in the primed and unprimed coordinate Sys-

tems must be equal, set

e (3.17)




Take the dot product of both sides with 3’

Substituting for #; with 3.9 and simplifying both sides

cos 0, = cos(¢. — ;) sin O, sin 6; + cos 6, cos 6

21

(3.18)

(3.19)

(3.20)

Wherever 6 appears in Equation 3.2, it appears as cosf. The result of

Equation 3.20 can be directly inserted into Equation 3.2 without further solving

to find ..

At this point, it is important to make a change in the notation of Equation

3.20. The notation cos @, in equation 3.20 will be replaced with cos 07 where the

v stands for vertical. This is done solely to aid in keeping track of horizontal and

vertical variables. The equation will now appear as

cos 0, = cos(¢p. — ¢;) sin §, sin §; + cos 0, cos 6;

(3.21)

Now let us find cos ¢¥. Begin by dotting both sides of Equation 3.17 with

y" and z' respectively.

(3.22)
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g (3.23)

Carrying out the dot product on the left and substituting on the right for

%' and §' with Equation 3.15 and Equation 3.16 respectively

cos ¢, sin 0, = 7, - o; (3.24)
sin g, sin @, = 7, - h; (3.25)
Dividing Equation 3.25 by Equation 3.24
A~ . r\’
e1b (3.26)

tan ¢, = Y
€

=1y

However, we set out to find cos ¢, not tan ¢. From the definition of cosine:

oS = —o (3.27)
V2 + y?

where z is now the denominator of Equation 3.26 and y is the numerator.

fe S ?;"
cos ¢, = 3.28
S ) e e
Substituting and simplifying yields:
: cos(¢e — ¢;) sin 0, cos f; — cos 0, sin 6; (3.29)
— ¢;sin’ 0, + (cos(¢e — ¢;) sin b, cos 6; — cos 0, sin 8;)? '

Once again, it is important to make a change of notation. In Equation 3.29,

cos ¢, will be replaced with cos ¢? where the v stands for vertical. This is done
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solely to aid in keeping track of horizontal and vertical variables. The equation

will now appear as

con g i co.s(zbe — ¢1) sin @, cos 6; — cos @, sin 6; (3.30)
\/sin? ¢, — @; sin28, + (cos(@e — ¢;) sin B, cos 6; — cos b, sin 6;)2

When cos ¢y and cosf? are inserted into Equation 3.2 and the result of
Equation 3.2 is inserted into Equation 3.1, the resulting output is the vertical

component of the sphere scattered electric field, denoted EY.

3.2.1.2 Vertical Component of the Incident Electric Field

To find the vertical component of the total electric field, one must include not
only the vertical component of the scattered wave, but also the vertical component
of the incident wave. To find the vertical field component of the incident wave,
we will rely on mathematics from the concept of polarization in plane waves.

It is commonly known that waves in the far field of a radiator approximate
plane waves. The electric field vector lies in the plane of the wave and is orthogonal
to the direction of wave propagation. For a fixed point in space and as a function
of time, the electric field vector will rotate in either a clockwise or counterclockwise
manner and the tip of the electric field vector will trace out one of three possible
shapes: a line, a circle, or an ellipse. These three shapes result in three types
of polarization respectively: linear, circular, and elliptical. Linear and circular
polarizations are special cases of the more general elliptical polarization.

As defined by Ulaby [16, 17], the electric field vector of a wave propagating
in the +z direction lies in the z — y plane and can be represented by horizontal

and vertical components (see Figure 3.4).
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Figure 3.4: Electric field vector for a plane wave propagating in the +z direction

E(2) = E,(2)% + E,(2)§ (3.31)

where

E,(z) = A, exp™* (3.32)

= a, exp—zJI expzkz

Ey(z) = A exp™* (2:33)

L —10. ikz
= 0y €Xp Viexp
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Here, A, and A, are the complex amplitudes of E, (2) and E,(z). Both A4,

and A, consist of a magnitude a, or ay and a phase angle 6, or , respectively.

The corresponding instantaneous field is then

E(z,t) = Re [E(z) exp™™] (3.34)
= Re [E,(2) exp ™' % + E, (z) exp~t 5]
= Re [E,(2) exp™™' %] + Re [B, (2) exp~™* ¥
= a; cos(kz — wt — 6,)X + ay cos(kz — wt — by)¥

Two quantities are of interest when examining the instantaneous electric

field: intensity and direction. Intensity is found by the modulus |E(z, )]

E(2,8)| = [E2(2,1) + B2(z, 1)) F (3.35)

B

= (a2 cos®(kz — wt — §;) + ay cos®(kz — wt — §,)]

while direction is given by the inclination angle 1

¥(z,t) = arctan (gig:g) (3.36)

Elliptical polarization can be characterized by defining a few angles. In
Figure 3.5, the angle between the major axis (£) of the ellipse and the z axis is

called the rotation angle ). It is related to wave parameters a,, ay, and ¢ by

tan 21) = (tan 2a/) cos § (3.37)

The angle defined by Equation 3.38 is called the ellipticity angle and is
represented by the letter y.
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tan x = :i:a— =+— (3.38)

Ellipticity x is related to wave parameters Gz, Gy, 0 by

sin 2y = (sin 2a) sin § (3.39)

R is called the axial ratio. It is sometimes used as an alternative to the

ellipticity angle and is defined as R = 2.
n

y

Figure 3.5: Polarization ellipse in the z — y plane. The wave is traveling in the z
direction (out of page).

For many antenna problems, it is more convenient to adopt a spherical

coordinate system much like the one defined previously in chapter 2. In Figure
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3.6, the electric field of the incident wave can still be represented by horizontal

and vertical polarization components.

Figure 3.6: Plane wave propagating in direction k with E-vector components E,
and Ej, defined as h = (k x z)/|k x z| and v =h x k.

The electric field vector E may be defined as in [17] where the coordinate
system (R, v, ﬁ) corresponds with (, 9, gg) of a standard spherical coordinate sys-

tem.

E = (E,¥ + E,h) exp™k~ (3.40)

where
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X % x k 2l 5
h=—— = —gin¢% + cos 99 (3.41)
|z x k|
and
¥ =h x k = cosf cos PX + cos O sin ¢y — sin Hz (3.42)

Adopting a matrix form and suppressing the phase factor from Equation

3.40, E becomes

E,
E= (3.43)
Eh

In this case, E, and Ej are similar to the Cartesian case except all the z
subscripts are changed to v subscripts and the y subscripts are replaced with h

subscripts. This leaves

E, = a,expT. (3.44)
Ej, = aj exp ¥, (3.45)
§ = & — 4y, (3.46)
tana = - (3.47)
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Figure 3.7: Polarization ellipse in the v — h plane. The wave is traveling in the k
direction (out of page).

and the polarization angles x and 9 remain the same as Equation 3.39 and
3.37. The polarization ellipse for the v — k plane is shown in Figure 3.7.
Now that we have an understanding of polarization we can find the vertical

polarization component of the incident wave. We represent it here as:

E! = g,etis (3.48)

where

by = \/%(1 + cos 29 cos 2x) (3.49)

! [sin 2)1
= arcsin

3.50
2avah ( )
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By multiplying E! from Equation 3.48 with El, the vertical component of
the total electric field is obtained.
3.2.2 Horizontal Component of the Electric Field

By following a process similar to the vertical case, the horizontal component

of the radial electric field may be found. The new position angles cos 0" and cos Pt

are

cos O = cos(¢e — ;) sin 0, sin 6; + cos 6, cos 6; (3.51)

o — sin(¢. — @) sin 6,
: \/sin? ¢, — ¢;sin 0, + (cos(¢e — ;) sin b, cos f; — cos B, sin 6;)2

(3.52)

It is noteworthy to recognize that Equation 3.21 and Equation 3.51 are
exactly equal. Similar to the vertical case, inserting the results of Equations 3.51
and 3.52 into Equation 3.2 and the result from Equation 3.2 into Equation 3.1
yields the horizontal component of the sphere scattering solution E".

But to arrive at the horizontal component of the electric field, one must
account for the magnitude and phase of the original incident wave. The horizontal

polarization component of the incident wave is
E. = ape™3 (3.53)

where:

T \/%(1 — cos 29p cos 2x) (3.54)

sin2x] a5

= arcsin
2% ap
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By multiplying Ej from Equation 3.48 with E”, the horizontal component

component of the total electric field is obtained.

3.2:3 Total Electric Field

The total electric field is found by multiplying and adding the different

components found previously as follows:

E,=EFE' +EE! (3.56)




Chapter 4

The Observation Model and PDF

4.1 Some Background in Modeling and Estimation Theory

The fundamental 3D direction finding problem involves estimating the ele-
vation and azimuth angles (6, ¢) of an incident waveform from data provided by
an array of E.M. sensors. One common way to model such an array is with a

function of random variables.
R= g(A‘) where A= {¢i3 9i: X w} (41)

Here, the function g( ) takes state vector A as an input and gives vector R as a
result. The azimuth angle of the incident wave is represented by ¢;, the elevation
angle of the incident wave is represented by 6;, the ellipticity angle associated
with incident waveform polarization is represented by y, and the rotation angle
associated with incident waveform polarization is represented by ).

Equation 4.1 says that given a state vector A as input, the output from the
array should be R. However, this situation is exactly opposite of the direction
finding problem. In the direction finding problem, the output R from the array
is given, and the goal is to find A. Stated more rigorously, given a measurement

from the array R, find an estimate of A, denoted A. An estimate A can be found
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by taking the inverse of the function g( ).
A=g"'(R) (4.2)

Equation 4.2 often provides accurate estimates of A if model g( ) is linear.
However, if g( ) is nonlinear, then estimates for A can be grossly inaccurate.
Along with the inaccuracy, multiple solutions to the inversion could exist. Or
worse, no solutions to the inversion may exist. It is easy to see that model inversion
works quite well for well-posed deterministic linear systems. For random nonlinear
systems, a better suited technique would be statistical in nature.

Most statistical based methods are grounded in estimation theory. One
method of estimation is the maximum likelihood (ML) estimate. With the maxi-

mum likelihood estimate, one seeks to find A, a vector of random variables,

o
e
A = (4.3)
X
N
which maximizes the likelihood function defined as:
A £ p(R|A) (4.4)

where p(R|A) is the PDF of the measurements conditioned on the parameters
to estimate [2, 18]. When no prior knowledge exists about the parameters in
state vector A, the maximum likelihood (ML) estimate is a good choice for an
estimator. However, if a priori knowledge about the parameters in A exists, the
ML estimate will not take advantage of it.

For instance, assume for the moment that the conducting sphere discussed in

Chapter 2 is an aircraft. As it flys along it is searching for an emitter on the ground
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(its antenna array is pointed to a spot on the ground in front of the aircraft). This
implies that there is a priori knowledge about any and all incident waves striking
the antenna array. This a priori knowledge is simply that the emitter is located
within some spot on the ground which is the size of the beamwidth of the array.

If ML estimation is applied in the situation above, the ML estimator will
make no a priori assumptions about the location of the emitter. Consequently, the
estimator will assume that every possible direction in 3D space is equally likely
to be the correct DOA estimate. Therefore, the ML estimator may decide the
DOA of the incoming wave is somewhere outside of the spot given by a priori
information. That sort of estimate can be grossly inaccurate. What is needed
is an estimator which utilizes the a priori information to help in making DOA
estimates. Estimators such as this exist and a common one is called the maximum
a posteriori (MAP) estimator.

The MAP estimator utilizes an a posteriori PDF

p(R|A)p(A)

p(AIR) = P(R)

(4.5)

The object is to find the value of A which maximizes the a posteriori PDF [18].
Taking the logarithm of Equation 4.5 eases the computation of the maximum in

cases where exponentials are involved (e.g. Gaussian).
Inp(A|R) =Inp(R|A) + Inp(A) — Inp(R) (4.6)

Because the last term in Equation 4.6, p(R), is not a function of A, it can be

considered a constant which can be ignored when maximizing. This leaves:
[(A) =Inp(R|A) +1Inp(A) (4.7

By taking partial derivatives with respect to each A; in A, equating to zero, and
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solving

aé(;:) _ alng;?lA) M Blrgi(iA) (48)
the maximum for each parameter 4; can be found. It will be seen in Chapter 5
how closely this relates to Fisher’s information. Until then, remember that MAP
estimators utilize a priori information. Because the type of array we have chosen

to design will be pointed in a specific direction (a priori information is available),

the MAP estimator is a logical choice for the work to be done.

4.2 The Observation Model

Given a set of observations, the goal of array signal processing is to es-
timate some parameter or parameters from the information contained in those
observations. An observation model is typically selected to help demonstrate sys-
tem behavior. Ideally, the chosen model will explain how the observations are
obtained from the system input.

While the goal of this research is not to design a better processor, an observa-
tion model is nonetheless useful in explaining system behavior. The observations

from each element in our array can be modeled as follows:
R, = Sn(A)(l + Np) + W, (4'9)

where:

n refers to antenna element n

A is the state vector A = {®,0, X, ¥}

Sy 1s the model’s prediction of the EM field

Ny, is multiplicative noise for modeling channel imbalances

W, is additive noise for modeling thermal noise
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R, is the observation or measurement of the EM field at element n

It is important to note that R,, , s, , N, , W, are complex values with both

a real and imaginary part (N = N, + jN;). N,, N;, W,, W; are independent,
zero-mean white-gaussian random variables. Therefore:

R = (s; + js;)(1+ Nr + jNi) + W, + W; (4.10)

= 8y + 8Ny + 75, N; + j8; + js;N; — 5;N; + W, + W, (4.11)

Separating real and imaginary components

R, = s, + s;N, — s;N; + W, (4.12)
R; = s;+ s;N, + s, N; + W; (413)

In matrix form,
R =m+sN (4.14)

where R=[R, R|",m=[s, s|/,N=[N, N; W, W7, and

Sy =Sy 1 0
Si= (4.15)
8; Sy 0 1

4.3 The Noise PDF

In Section 4.2, the noise in the observation model was separated into its real
and imaginary components. Given that information and that each component is

zero-mean white-gaussian noise, the PDF of the noise vector N is

1 1
Npe e bl el dgmsr o 416
PN) = o aetmnt exp[ 2 ] i
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Here:
g |0 '0 @
0 log N0 0
EN = (4.17)
G |10 e D
B 0 e el
where:
oi = E [n?] (4.18)
o3 = E [n?] (4.19)
o3 = E [w}] (4.20)
o} = E [w]] (4.21)

and |2,| is the determinant of ¥,. To make a simplication, the real and imaginary

parts of the additive white noise variance are assumed equal (07 = 02). This leaves

67 |0 0,0
0 a% 0 D
Y= (4.22)
0 (O a§ 0
g | 0e e

4.4 The Conditional PDF

Because the noise PDF’s are gaussian, the conditional PDF p(RP,RP) is
likewise Gaussian. Recall that the PDF of a multivariate Gaussian distribution is

[11, 8]

i I
plx) = —————eHj —5(?{ = VO =) (4.23)
2 |C,?
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The conditional PDF for a single antenna element n is then

S 7 :—1——)( g -m)EZZH(R-m
PR R = e | R - mTR-m)] (429

where

Yr = SEgST

0
Sr —Si il 0 0 O'% 0 0 —Sz' Sr
Se S 0.1}l 0 o2 0

0 0 0 2|0 1

i S?o? + S?o? + 01S,S;0? — S,S;02 (4.25)
SrSio? — 8,8,025%02 + S202 + o2

m and S are functions of A. Because the array consists of N total elements, the

conditional PDF for the array is

N
p(R|A) = [[ p(R.|A) (4.26)
n=1
defining R as
R={R.,R},R},R.,..,RY R} (4.27)
Therefore
p(RIA) =
. exp —li(R -m,) 2 (R, —m,)| (4.28)
1 n n o (7 (7 >
(QW)N Hrz:rzl Iz?ilz 2 n=1

4.5 The Apriori PDF

By comparison to the conditional PDF, the PDF for the a priori information

is relatively easy to find. Recognizing that the ellipticity and rotation angles x
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and ¢ are statistically independent of each other and of the incidence angles ¢;

and 6;, the PDF of A is just:

p(A) = p(¢i, 0:)p(x)p(¥) (4.29)

where the PDF of the location angles p(¢;,#;), the PDF of the ellipticity angle

p(x), and the PDF of the rotation angle p(t) are found below.

4.5.1 The PDF p(¢;, 6;)

Finding the PDF p(¢;,6;) is a two step procedure. First, we will find the
PDF of the antenna illumination area in the (y',2') plane. This PDF will be
denoted by p(y', 2'). Next, we will transform the PDF p(y/, z') from terms of y/’, 2/
to terms (¢, 6;). This transformed PDF is p(¢;, 6;).

Why do we bother to find the PDF in terms of (y/,2')? It is much easier
to describe the probability of emitter/scatterer location in the (3, 2') plane. For
instance, we can both conceptually visualize and mathematically describe a uni-
form emitter/scatterer location probability in the (y/,2) plane. Then a simple
random variable transformation will permit rewriting p(v/, 2') as p(¢;, 6;).

Originally, it was assumed that all locations within the beam width of the
antenna pattern would be equally likely to be the location of an emitter or scat-
terer. The locations are uniformly distributed across the beam pattern. The beam
pattern itself would be assumed elliptical. Figure 4.5.1 is a plot of the uniformly
distribution over the beam pattern. Any location within the distribution has an
equal probability of occurrence. Any location outside the limits formed by the
beam pattern would have no chance of occurring.

The uniform PDF was chosen primarily because of its simple mathematical

description. It wasn’t until later that we found the uniform distribution to be




Figure 4.1: Apriori PDF p(y/, 2')

40
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a poor choice for the PDF p(y',2'). We could not perform the differentiation
of a uniform PDF required in later calculations. The uniform PDF has sharp
discontinuities much like a step function and is therefore nondifferentiable. As a
result, a different distribution had to be selected.

One distribution which does not display any discontinuities is the Gaussian
distribution. It can be argued that the Gaussian PDF is also an appropriate
choice for the emitter/scatterer location because antennae can be built with a
beam pattern that is most sensitive in the center of the pattern and tapering off
as the distance from center increases. Figure 4.5.1 shows the Gaussian a priori
PDF p(v/, ).

The application model from Figure 2.1 will help to derive p(y/, 2'). From

the figure, the vector 7 is
T=—hi—y'j— (2 — z57)2 (4.30)

The unit vector 7 is simply

F=— (4.31)
7|
where
F = /12 + W) + (2 — 20py)? (4.32)
By the definition of ¢; and 0;
7 = cos ¢; sin 6;% + sin ¢; sin ;5 + cos 0,3 (4.33)
Equating like terms
, —h
cos ¢;sinf; = — (4.34)

7|
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Figure 4.2:

Apriori PDF p(v/, 2')
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Lakdy
sin ¢; sin f; = !Tﬁ’ (4.35)
— Y =
cosb; = —w—(lez"ff) (4.36)
Solving Equation 4.36 for 6;
0; = arccos :(z—tzi’f_f) (4.37)
|7

This result will be useful later. Dividing Equation 4.34 by Equation 4.35 yields

tan g = — (4.38)

Solving for ¢;

¢; = arctan (—_g;:) (4.39)

where the negative signs are kept to determine the proper quadrant. y' may be

written in terms of ¢; and 6;. Solving Equation 4.34 for || and Equation 4.35 for

’

Y
6] = @% (4.40)
y' = — |F|sin ¢; sin 6; (4.41)
Substituting for ||
y' = htan ¢; (4.42)

' may also be written in terms of ¢; and 6;. Solving Equation 4.36 for 2’

2= — |7 cos b + zo5¢ (4.43)
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and again substituting for |7|

; h

O R .44
cos ¢; tan 6; oy (i)

The gaussian PDF for emitter/scatterer location can be directly written as

r 2 ']
e [ (£) -4 (2)]

2moy oy

p(y,2) = (4.45)

Because the PDF in Equation 4.45 is in terms of (y',2') and the desired PDF
p(0i, ¢;) must be in terms of (6;, #;), a linear transformation is needed to transform
the PDF from one set of random variables into another. This transformation

makes use of a Jacobian matrix where

p(aia ¢"z) o p(y,} Z’) |J| (446)
where
st 2
Jl = i 2l St e s I 447
171 82 9z sin? 6; cos3 o; ( )
00;  O¢;
At last
jh tan (f)i)z (cus ¢I-htan 9; +z°ff) ;
B2 o i e 207,
= y z
;. 9:) = — 4.48
P(6:; ) sin® 6; cos? ¢; 2mOy 0y (4.48)

Because it will be necessary to integrate over the PDF just found, the integration
limits must be determined. The area over which to integrate is an elliptical pattern
similar to that of the beam pattern. If the ellipse is defined with a radius of a in
the z-direction and a radius of b in the y direction, the area of integration will

appear as Figure 4.5.1 shows. First, define the range of integration over ¢; as

%< gy < gt (4.49)
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¢?' and #%? are determined by

¢! = 7 — arctan % (4.50)

¢ = 1 + arctan % (4.51)
The limits of integration for ; can also be bounded with two angles
o < 6, < o (4.52)
The bounding angles in this case are functions of ¢;. Recalling Equation 4.37

— ’ f—
6; = arccos (M) (4.53)

7]
Zofs and T are known. It is necessary to find 2} in terms of ¢; and the other

knowns. Starting with the equation for the ellipse

() | (w)°
& [

2 = :l:\/aQ (1 L (é’—é)) (4.55)

remembering that y; is Equation 4.42

=1 (4.54)

Solving for z|

Yp = htan ¢; (4.56)

Substituting for y; in z; Equation 4.55 yields

2 2 4.
7= :i:\/a? (1 x h“;‘—fqﬁ) (4.57)

Using the positive case for #7' and the negative case for 62

Zofr + \/G,2 (1 — —~—‘f’—”'2t2‘2‘2 i)

8% = arccos

(4.58)

h? + h? tan? d; + [Zoff e \/az (1 LB hzt;ﬁm)J
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Zoff — x/az (1 — _.hztzngﬁe)
\/h? + h?tan? ¢; + [zoff L \/az (1 _ h2t§§2¢i)|

we arrive at the limits for 6;.

0%% = arccos

(4.59)

4.5.2 PDF of x and 9

The symbols x and 1 represent the polarization of the incident waveform.
The PDF of the incident waveform polarization is assumed to be uniform. All
polarization states are equally likely to occur.

To derive the PDF’s for x and 1, start by letting # and ¢ be spherical
coordinates describing the location on the surface of a sphere of radius 1. By the
definition of the PDF, the probability of the location being within some region
defined by

el—%<9<91+% (4.60)
o-L<pcp+ 8l (4.61)

is approximately
p(br, $1)AOAS (4.62)

if A@ and A¢ are very small.

If the PDF describing this location results in a uniform distribution across
the surface of the sphere, then the probability of the location being within the
region defined by Equations 4.60 and 4.61 is found by dividing the area of the
region by the area of the sphere

area of region  sin; AGA¢

— 4.63
area of sphere 4T ( )




And by equating 4.62 and 4.63

sin 91
47

P(91,¢51) =

or, in general, since #; and ¢; are arbitrary

sin f

p(0,¢) = s

47

(4.64)

(4.65)

Because the coordinates of the Poincare sphere are not given in terms of # and ¢,

the PDF of Equation 4.65 must be transformed into a PDF with terms of x and

1. By definition of the Poincare sphere

= s sl
¢ =29 ¢ 5 ~ X
rearranging
_¢ ar ¥
V=3 T4 8
where
e D e
L KNy 2 2
p(0, ¢) can be transformed to p(x, ) by the Jacobian
p(8, ¢)
p(x,¥) =
(X %) 7]
where
a @
191 = w el |0 3|_1
o O 1L g
36 94 2

Substituting the knowns into Equation 4.69

p(0, P) gt _ sinf

4

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)
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replacing 6 with 7 — 2y

shei= 2GR0 covly (4.72)

T ™

Because x and ¢ are independent, separation into marginal PDF’s leaves

p(x) = cos(2x) (4.73)

p(¥) = % (4.74)

Recalling Equation 4.29, the general formula for the a priori PDF is

p(A) = p(éi, 0:)p(x)p(¥) (4.75)

Now, performing the substitutions, the a priori PDF becomes

2
h
—(htan ¢,:}2 Jone (cosqﬁ‘- tanf; +z0ff)
h2 20;, 205,

cos 2x

p(A) = (4.76)

7 sin?6; cos? ¢; 2MOy Oy







Chapter 5

Deriving Fisher’s Information for the Conducting Sphere

5.1 The Theory

When choosing an estimator for a particular application, one generally tries
to satisfy one or more criteria. Estimator performance is one such criteria. The
performance of an estimator is best evaluated by the use of a metric. The error
variance of the estimator is often used as a measure of performance. An estimator
with small error variance over multiple estimates is said to perform better than an
estimator with large error variance. In other words, the lower the error variance,
the better the estimator.

While the error variance provides a metric for comparing estimators, it
would be even more convenient if a bound existed which shows the best per-
formance possible. This bound would be a lower bound and would predict the
smallest error variance one could hope to acheive. As it turns out, many such
variance bounds exist, but the Cramer Rao lower bound (CRLB) is one of the
simplest to find [8].

Given an a posteriori PDF p(f|R) where the object is to estimate 0, the
PDF must first satisfy

E {M] =0 (5.1)

a0
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for all 6. If so, then the variance of an estimator § must satisfy

g [82:1-11;0{9 R)]

862

VAR(9) > (5.2)

This is the CRLB for the PDF p(6|R) when estimating one parameter. It is also
known as the CRLB for the scalar case. It is important to note that the denomi-
nator in Equation 5.2 is named the Fisher’s Information and is often designated
by 1(6).

If estimating more than one parameter, then the CRLB for the vector case
applies. Given an a posteriori PDF p(A|R), the object now is to estimate the

parameters in the state vector A. As given in Equation 4.3, A is

A=¢ 6 x 9" (5.3)
The CRLB now becomes

VAR(4) > [17(A)], (5.4

where I(A) is the p x p Fisher’s Information Matrix defined as

*Inp(AR)

[I(A)]U = =8 [ BAzaAJ

] far =19t p=1,8 .0 (5.5)

or, rewritten as

(A)); = E {Blnp(A|R) 81np(A|R)}

0A; 0A;
for u=1,2,.:9p 4=12,..,p0 (5.6)

or, rewritten again as

1(A) = B{(Va [np(AR)]) (V4 [mnp(A[R)])"} (5.7)
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Continuing with the form in Equation 5.6, recall that Bayes’ Rule allows one to

write the aposterior PDF p(A|R) as

p(R[A)p(A)

p(AIR) = (R

(5.8)

Due to the exponentials involved with Gaussian PDF’s, it is helpful to take the

natural logarithm of Equation 5.8 and rewrite it as
Inp(A|R) = Inp(R|A) + Inp(A) — Inp(R) (5.9)

MAP estimation requires finding A; which maximizes the a posteriori PDF
P(A[R). Since the last term in Equation 5.9 is not a function of A, it can be
ignored when maximizing. This will simplify the maximization process by elim-
inating the need to find the PDF p(R). The real bonus when applying this
simplification is that it doesn’t change the estimate for A. The estimate is identi-
cal whether p(R) is included or left out when maximizing. With this knowledge,

Equation 5.6 can be rewritten by substituting p(R|A)p(A) for the a posteriori
PDF p(A|R).

P |5 (n GRIAAN) 5 tnGmRIABAN)] 610
By rearranging and simplying

dlnp(R|A) dlnp(R|A) Jlnp(A)dlnp(A)
E[ A, 94, ]*E[ BA, aAj]

(5.11)

we see that the total Fisher’s Information is just the Fisher’s Information of the
observed data plus the Fisher’s Information of the a priori model. While the
expected values in Equation 5.11 appear to be the same, the expected value in
the Fisher’s Information of the observed data is the expected value over both R
and A because of the conditional probability function. The expected value in the

Fisher’s Information of the a priori model is simply the expectation over A.
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5.2 Fisher’s Information of the Observed Data

Having defined Fisher’s Information in the previous section, we are left with
the nontrivial task of finding the Fisher’s Information Matrix for the conducting
sphere problem. We start by finding the Fisher’s Information of the the observed
data p(R|A). Our guiding equation is the first part of Equation 5.11.

P dlnp(R|A) dlnp(R|A)
0A; 0A;

It is obvious when looking at Equation 5.12 that the first task to is to find the

(5.12)

conditional probability p(R|A). This was done in Chapter 4 and is reproduced

below for convenience.

1
(QW)N HnNzl |ERn | *

N
1
exp [~z (R —m,)" Sz (R —my) | (5.13)

n=1

P(R|A) =

According to Equation 5.12, the next step is to take the natural logarithm.

N
1
Inp(R|A) = —NIn(27) — 5 Y In|Tg,|
n=1

1N

2 (R-n mn) ERi (Rn_mn) (5-14)

=

After completing the natural logarithm, the partial derivative -2- A with respect to
each element in the vector A must be determined. A; can be any of the elements

in the vector A - either q5, 8, x, or .

2:1 35, 04 5 Al

(R[A) =

0A,;

s,
0A;

— s TSR, — mn)]

Mll-—l

35, [
ZN: a‘; [(Rn —m,)" Tz} (R, - mn)] g—i (5.15)
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Here S, and S; represent the real and imaginary parts of E,.. Note that there
are six different partial derivatives which need to be found. We will start by
finding the partial derivatives of E, with respect to each element in the vector A.

Once the partial derivatives are found, they can be easily split into their real and

imaginary parts

o Bk O 5.16
0A;  0A; 04, (5.16)

5.2.1 Partial Derivative of E, with Respect to ¢,

E, represents the electric field found by the Mie Scattering Solution in Chap-
ter 2. The partial derivative of E, with respect to ¢; can be found by multiple
applications of the chain rule. Recall from Equation 3.56, the total electric field

at a given point on the surface of a conducting sphere is
E.,=EE’+E.E" (5.17)

To begin, we will apply the chain rule to Equation 5.17. E! and E} are not

functions of ¢;. They become multiplication constants.

8E. @8 ... A
=— B E'+EE
aéi a¢i { o + h™r }
.OEY . OE"
=1 P —T 0.18
KA S 318

Remember E! from Equation 3.1. Its derivative is

OEY 0 1 [8 5 ]}
s — |55 4Y + [2AY
Op; do; {jw,ue [87‘2 P

1 0 02 0
] LAty Sy AN 5.19
jwufc‘?@{a?"? ’}”36@-{ J 1)
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A? is known from Equation 3.2 as the vertical component of the magnetic vector

potential. Taking its derivative with respect to ¢;, we have

Bqﬁz {47}

2 y 8 ¥ ]
=50 {EO COiqbe Z [aan(ﬁr) T anffJ(ﬂr)] P, (cos 6;’)}

{cosqﬁ”}i[an (8r) + b AP (Br)| Pl(cos6y)

=1

oo

4 %Ecos 6 Z [ ndn(B7) + b TP (Br) ] % {P,(cos6?)} (5.20)

=1

The derivative of the term g—;A;’ with respect to ¢; is

8 f[a
e oy
. 2 : 2 1,
o % {Ec%«ﬁz [an%{Jn(gf)}m%{ﬂé“’)(m)}] P;(coses)}
L n=1

_E o

0% {cos ¢¥} zoo; { {jn ﬂT)} ;2 {H(Q)(ﬁr)}} Pl(cos8?)
+ Ecosqﬁv nz [ ;922 { (6?)} b % {I;T’gz)(ﬁr)}] (,%E {P)(cos6?)}

Equations 5.20 and 5.21 both require the derivatives of cos ¢? and P! (cos 6?) with
respect to ¢;. These derivatives are found by substituting for cos ¢! and cos 02,

Recall cos ¢} from Equation 3.30 and cos6? from Equation 3.21.

cos ¢, =
cos(¢e — ¢t) sin §, cos §; — cos 0, sin 6;
v/sin® ¢, — ¢;sin? 8, + (cos(d, — ¢;) sin 8, cos 6; — cos f, sin 6;)?

(5.22)

cos 8, = cos(¢. — ¢;) sin b, sin 6; + cos b, cos b; (5.23)
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Substituting, the derivatives are

aqﬁz {cos ¢!} (5.24)
0 cos(¢. — ¢;) sin b, cos §; — cos 6, sin b;

~ ¢ { V/[sin(¢e — ¢;) sin 8.]2 + [cos(¢. — @;) sin 8, cos f; — cos O, sin 6;]2 }
sin® 8, [cos 6; sin 8, — cos(¢. — ¢;) cos b, sin 6;] sin(¢pe — ;)

([cos(@e — ;) sin B, cos 6; — cos b, sin 6;]2 + sin @, sin% (¢, — 3

(S

3¢z {Py(cosd?)}

3¢ {P}cos(p. — ¢;) sin b, sin 0; + cos 0, cos 6;] }

1

=S Il [(n+ 1) cos 62 P2 (cos 8%) — nPL, , (cos )]

[sin(¢e — ¢;) sin b sin6;] (5.25)

As can be seen by the previous derivation, the chain rule permits symbolic calcu-
lation of the partial derivative of E? with respect to ¢;. In a similar manner, the
partial derivative of the horizontal component of the electric field E" with respect

to ¢; can be determined.

OB & [ 1 [& 3
3¢z‘_3¢i{jw#f[3r2 +6A]}

— 1 a 62 h 2 8 h
" jwuedg; {ﬁAr} o {47} (5.26)
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The derivative of the horizontal component of the magnetic vector potential Ab
is
%)
a3, 1}
= % { COS¢ Z [an (Br) + b H(2)(ﬁr)} L (cos 9")}

{cos oh} Z [an (8r) + b, H® (,Br)] P} (cos A")

o

+ %” cos 6" ; [anjn(ﬁr) + b, H® (m)] a% {Pl(cos ™)} (5.27)
Likewise
0
a5 {4 i
8 | Eycosgh & 8% (. 52 :
:Bqﬁi{ OwS RZ[ 62{J ﬁ’r}+b {H@ (ﬁr)}} Pn(cosﬁfj)}

quh {cos¢l} Z [an {j ﬁ"‘)} + b, % {H(z)(ﬂﬂv‘)}] P (cos 8™

+E—cos¢h2[ 522 {j,,,(ﬁr)} + by aa_ {H(2>(ﬁ }] "£5_- { P(cos0")}

Again, the derivatives of A" and 2, A" are functions of the derivatives of cos ¢! and

P, cos 6. Remember cos ¢! and cos §* from Equations 3.52 and 3.51 respectively.

cos ¢ =

— sin(¢, — ¢1) sin b,
\/sin? ¢, — ; sin? 0, + (cos(¢e — ¢;) sin b, cos 6; — cos b, sin 6;)2

(5.29)

cos B = cos(¢e — ¢;) sin O, sin 0; + cos B, cos 6; (5.30)
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Substituting
o {eosdt) 5
J 8 — sin(¢, — ¢;) siné,
9¢i | \/[sin(¢. — ¢;)sin b, + [cos(de — ¢5) sin B, cos §; — cos b, sin ;]2
=gind, -

{ cos(¢p. — ¢;) cos? §; sin® @, + cos(¢, — ¢;) cos? b, sin? 6,
([cos(@e — ¢;) cos b; sin 8, — cos 8, sin §;]2 + sin?(de — ¢;) sin® 0, :

2 (3 + cos[2(¢. — #;)]) cos 0; sin 26, sin §; }
([cos(¢e — ¢;) cosb; sin B, — cos 6, sin 6;]2 + sin?(p. — ¢;) sin? fe) :

1 h
8(;5; {P cos0%)}

8<;b {P}[cos(¢. — ¢;) sin B, sin §; + cos b, cos 0:)}

= m [(n+ 1) cos 02 P, (cos 07)] [sin(p. — ¢;) sin b sin6;]  (5.32)

5.2.2 Partial Derivative of E, with Respect to 6;

In the previous section, the partial derivative of E, with respect to ¢; was
symbolically calculated. The partial derivative of E, with respect to 6; can be

found by an analogous method. Without further narration, this derivative is

presented.

OE,

i

-2 -{E\EY + BE!)

aEv dE"
B = (5.33)

=5, a0

OE! 8 Ll 5 e
00; _B_&{jwue [87‘2 ﬁA]}

1 8 (& "
A ted s

o) (5.34)
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0

a0, (4%}
= % {E St i [ona(8r) + b H (Br)] P (cos 9:)}
{cosgﬁ”}i |na(8r) + b, HP(8r)]| P (cos?)
+%cos€§’il [an Jn(Br) + b HE (ﬁr)] -1 Palcostl)} (5.35)
a%{aa_ v}} (5.36)
a@ {EOCOS¢ Z {j ﬁ?«)}+b,,,§—; {ﬂ’f)(ﬁr)” P;(coseg)}

o s qsv}Z [ 7 {n0n) )+ by {8250} Picos )

oo 32 n 52 A
& .}%q cos ¢b HZ:I Iianﬁ {Jn(ﬁ’r)} + bnﬁ {H.,(,,z) (/8?“)}} ;;Z

1 (cos62) }

g, {cos o} (5.37)

0

cos(pe — ¢;) sin 6, cos 0; — cos 0, sin b;
{ \/[sm (¢ — ¢5) sin B]? + [cos(d. — ;) sin B, cos §; — cos b, sin 6;)? }
sin 0, [cos 6, cos 6; — cos(¢, — ¢;) sin B, sin 0] sin? (¢, — ;)
([cos(@e — @) sin B, cos 6; — cos , sin ;]2 + sin? 6, sin®(¢e — ¢;))

3
2

2 (cos62) }

9 1 : ,
TS0 {Py[cos(¢e — ;) sin b, sin 6; + cos b, cos 0;]}
— 1 —cos2 B° [(n + 1) cos 02 P, (cos 62) — nP, ., (cos 93)] .

[cos(¢e — ¢;) sin . cos B; — cos O, sin 6;] (5.38)

where

cos 6, = cos(¢. — ¢;) sin b, sin 6; + cos 0, cos 6; (5.39)
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Now, the horizontal case

OE" 0, i 1 @2 + grab
00; 00; | jwpue or2 s

1 a8 [ &4
= jwﬂea—&{aﬂ r} 482 9 {Ah} (540)
r)
h ©0

3% {E{) coz)‘?ﬁe ; [ Jn(Br) + b, HZ (ﬂr)] Pl(cos 6’2)}

{cos or} Z [an (Br)+b H(z)(ﬁ’r)] Pl (cos 6™
+ % cos 0" ;:1 [anjn(ﬁr) + b, H? (6?)] c‘% {P,(cost?)} (5.41)

d: [ &

56, | 52 h}} (5.42)

9-{EUCOS¢ Z[ 82{"?”(5”}” %{H(Q)(ﬁr)}} (cosah)}
aag (00801} - [on s {200

)} + b {2601} | Picostt
+£cos¢5hz—:[ ;22{ (67‘)} g—{H@)(ﬂ?’ }J %{Pj(cos@?)}

% {cos ¢!} (5.43)

0 — sin(¢, — ¢;) sin G,

ab; V[sin(¢, — &;) sin 6,2 + [cos(pe — @;) sin B, cos O; — cos G, sin 6;]2

= —sin . sin(¢. — &;) -

[cos(¢e — ¢;) cos b; sin 6, — cos b, sin ;] [cos 6, cos 6; + cos(¢pe — ¢;) sin B, sin 6;]
([cos(pe — &;) cos 0; sin 6, — cos f, sin 6;]2 + sin®(¢, — ¢;) sin? 98)%
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589—_ {Pé (cos 92)}

- [cos(de — ¢;) sin @, sin 6; + cos 8, cos 6'1]}
R [(n+ 1) cos 6} P, (cos 6%)]

[cos(¢e — ¢i) sin B, cos 8; — cos b, sin 6;] (5.44)

where
cos 0% = cos(@. — ;) sin 0, sin 6; + cos 0, cos b; (5.45)

5.2.3 Partial Derivative of E, with Respect to v

The partial derivative of E, with respect to v is much simpler to calculate

than for ¢; or 6;. Begin with the chain rule applied to E,

O, _ 1v0B, | 11.0E;

% " 50 " 50 (5.46)

This time EY and E are multiplication constants and the derivatives are taken
of the vertical and horizontal components of the incident waveform E! and Ei.

Substitute for E! with Equation 3.48 and take the derivative,

oE! B )
oy o {“”e"p (92)}
= exp ( 6) 6‘?; +av 9 {exp (jg)} (5.47)

which leaves us to determine the partial derivative of the magnitude of the vertical

component of the incident waveform a,,

Bay O
3?/) =% {\/ (1+c0527,b0032x)}

_ —cos2xsin2y
/2 + 2cos 2x cos 2

(5.48)
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and the partial derivative of the phase of the vertical component of the incident

waveform. ¢ is defined by Equation 3.50.
d o} )
3 %P V2

. exp |2 7 arcsin on 2%
T /1 — cos? 2¢) cos? 2y

sin 2y o
exp [ arcsin ( Tt o w) :| cos 21) sin 2y cos 2
=—7

1 — cos? 2x cos? 29

(5.49)

The partial derivative of E? with respect to 9 is

OB 0 5
% ~ 9% {“"exp( 35)}
= exp ( 5) 66:;: + ap, ézb {exp (—jg)} (5.50)

where the partial derivative of the magnitude of the horizontal component of the

-4

cos 2 sin 21

incident waveform is

— 5.51
V2 — 2 cos 2y cos 21 (5:61)
and the partial derivative of the phase is
O Jemp 42
ap 177\ 2
d 2 —j B gl t sin 2y
X resi
I /1 — cos? 24) cos? 2
sin 2y :
‘o [ 5> arcsin ( 05 2«#)} cos 21 sin 2y cos 2

1 — cos? 2x cos? 29
5.2.4 Partial Derivative of E, with Respect to y

The partial derivative of E, with respect to x can be found much like the

previous derivative with respect to . It is presented below with no further nar-



62

ration.

OE, OE! OE:
= ade R
X " aX i aX

ebfoen ()
()% enle() o

da, @ 1

_ —cos2ysin 2y
"~ /2 + 2cos2x cos 2

(5.53)

(5.55)

bo| S,

10 (13)}

a J ) sin 2X
= — 4 eXp | = arcsin
dx 9 \/ 1 — cos? 21 cos? 2x

i . sin 2y 1
= 1 — cos? 2 cos? 29) -

0B, _ o f [ .6
aX _aX ap exp JZ

)

i _a)%+ 1a) J A (5.57
3ah A 0 \/1
it { 2(1 cos 21 cos 2x)}

cos 29) sin 2y (5.58)

i V2 — 2 cos 2 cos 21)

9 , j e sin 2y
= — XP | = jatl
Ax 2 /1 — cos? 29 cos? 2y
exp [_l arcsin ( By )] sin 2¢

\/l—cos2 2x cos? 2
1 — cos? 2y cos? 29

iy (5.59)
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5.2.5 Partial Derivative of In|Yg, | with respect to S, and S;
Recall, the covariance matrix £y  from Equation 4.25 is

S202 + S202 4 029,802 — 8,8;02
ERH D, 1 12 JErea ] 2 (560)
S, S0} — 8,8,02520% + S%0% + of

The determinant of X is
|Bg,| = Solo; + 252520202 + Stoto? + S2olo?
+ SZojol + Stosos + StoZot +af (5.61)

The partial derivative of In |Zg, | with respect to S, is

lIl IZRnI

a5,

v Vg
=285, 5.62
[(Sf‘ + S2)v; + vs i (S2 + 52)vy + 'U3:| (5.62)

and likewise, the partial derivative of In|Sg, | with respect to S; is

lIl |ER,1|
0S;

e . (1 Vg
= 25; {(53 + S2)v; + v3 ik (S? + 82)u, + UJ (5.63)

5.2.6 Partial Derivative of (R, — m,)"Sg! (R, — m,) with respect to
Sy and S;

In some texts, the quantity
(B ~ m0,)TSI5E (R, — m,) (5.64)

1s known as the Mahalanobis Distance. The partial derivative of the Mahalanobis
Distance with respect to S, was determined using M athematica® and is pre-

sented below. As can be seen, it is quite lengthy.

aisr {(Rn = mn)TEﬁi (Rn = mn)}

=R+ a3 R? + a3R.R; + asR, + asR; + ag (5.65)
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where

g =—28. - (5.66)
Sio3(20% — 0202 + 03(S202 + 03)? + 5?2 (2520102 + (ot + 20i03 — 04)o2)
2
[(S? + 52)0% + 03]° [(S? + S2)03 + 03]
ag = 28,- ] (567)
Siot(of — 203)03 — 93(S20} + 03)® — S? (25202 + 04 + (=0t + 20202 + 02)02)
3 3
[(S7 + S2)of + a3 [(S? + S2)of + 03]

a3 = —25;(0? — 02) - (5.68)
(87 — 3S2)(S? + S7)otas + (Si — S,)(Si + ;) (63 + 03)0% + o}
(S + S2)a + a3]" [(S? + 52)03 + 03]’
—2[(S; — 5,)(Si + Sy)o? + 03]

@il= 5.69
S (7= g R
45}6102
= 2 2 21 212 (5.70)
[(S'i i Sr)gl o= 03]
2 2
e 503 (5.71)

[(S? + S2)o} + "
Later in this chapter, the expected value (over R) of the derivative of the Maha-

lanobis Distance (with respect to S,) will be needed for a formula substitution.

This expected value is found as follows:

E

0 =
= E [ R2 + aaR; + a3 R, R; + a4 R, + asR; + ag]
= wE [R?] + ayE [R?] + a3E [R.R)) + a4E [R,] + asE [Ri] + ag (5.72)
The moments of R are found by applying what is sometimes called the moment
theorem [10].

ey L L e
B} = FmEn oty

[U(t1,ta)] (5.73)
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Here, ¥ is the joint characteristic function

U(ty, ts)
= exp [j,uﬂt - %tTERt}
= exp [Srtl + Sity — %tl [t2(SiSro? — S:iS,a3) + 11 (5202 + S202 + 02))]
—%tg [t1(S:Sr0? — S;S,03) + t2(S20? + S202 + a§)]] (5.74)

Application of the moment theorem yields the expected values.

_1&

2 ——
E[R} il jzat%

™

{\Il(tlﬁh)}

= SZ(1+0}) + Sio2 + o2 (5.75)
1 82
E [Rf] == 3—2‘5{%" {\If(tl,tg)}
= S{(1 + o) + 5202 + o2 (5.76)

BIRE] = 1T tap,))
[ T ]_‘]—Qatlatz{ 1, 2)

= SiSp(1 + 0% — 03) (5.77)

10
E|R,| = =-—{T(t1,22)} = S; 5.78
[E-] JBtl{(l 2)} =8 (5.78)
10
E[R] = 766 {T(t1,82)} = S (5.79)
Substituting and simplifying, the expected value (over R) of the derivative of the

Mahalanobis Distance (with respect to S,) is

0 1
55 {(Rn — mn) g, (R — mn)}

> 28,07 28 (5.80)
T (SP+ 8520402 (82 + 52)02 + o2 '

E
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The partial derivative of Mahalanobis Distance with respect to S; was also deter-

mined by use of M athematz’ca®. It, too, is rather lengthy.

5%; {(Rn (n mn)TEﬁi (R — mn)}

= by R2 + 02R? + bsR.R; + byR, + bsR; + bs  (5.81)

where:

B = 5, (5.82)
Siotos + 25%0203(5%0% + 02) + (S203 + 02) (—S%0%(0? — 202) + o202)
[(S? + 52)0% + o3]” [(S? + S2)03 + 03]

by = (5.83)
_ 28%aios + 4830}03(SEo? + 02) + 25:(S%0? + 03) [S2(202 — 02)02 + 0202
[(S? + 82} + 03] [(S? + S2)o2 + 03]’
by = 28(0% —a2) - (5.84)

350103 — (SPof + 03)(Sto3 + 0f) + S7 (2570303 + (0} + 03)a?)

[(S2 + S2)0? + 03] [(S? + S2)02 + 02]
45,502

o} 5.85
LS+ 8902 + a3 B
2.9 2
_ 28} 2(S20? + 023) (5.56)
[(S? + SP)ot + 03]
9
e 20 (5.87)

(87 + SD)ot + o3’
In a short while, the expected value (over R) of the derivative of the Mahalanobis
Distance (with respect to S;) will also be needed for a formula substitution. This

expected value is similar to the previous.

£ 385, {(Rn — m,)"Sg (R —m,)} (5.88)
= E [b1R} + byR} + bsR,R; + by R, + bsR; + bg] (5.89)

=0,E [RZ] + bE [R?] + b3E [R,Ri] + by E [R,] + bs B [R;] + be (5.90)
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The moments of R are the same as those found previously. Substituting and

simplifying, the expected value (over R) of the derivative of the Mahalanobis

Distance (with respect to S;) is

a5, { (R~ o) TR (R — m,))|

(87 +SHoi+o02 (S?+8SPo2+02

At this point, we are ready to multiply the two multiplicands of Equation
9.12 and find the expected value. Because p(R|A) is a conditional probability,
the expectation is over both R and A. The expectation over R will be performed

first because it can be done symbolically. Recall Equation 5.12,

Olnp(R|A) dlnp(R|A)
9.92
o [ 0A4; 0A; .98
substituting for the partial derivatives
J 7

_% Zl( [ai’r (Rn — m,))"Tg! (R, — m,)} e {ln IERRI}]

+ | (R — )55 (R~ ma)) + {1n|znn|}] 7 )]

05;
_%mg([ {(Rn - m,) S5 (R, — m,,) as IERJ}]
[3 —m,) S5 (R, — m,)} + {1n|z:R |}
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= iZZE{ (5.94)

n=1 m=1

([%{(Rn — m, "S5 (R, —m, JAe 88 {In |Zg, l}] BA

+ | R = ma) 5 (Rn—mn)}+—{1niznn|}] gj)

([ai {Rn — m,))"Sg5! (R, - m, }+ {lnlERn|}}

+[a‘;{( —ma) SR, (Re — ) } + i{ln|ERn|}}a—4)}

"

5 { [air {(R. — m,)"E5L (R, - m,) S |}} asz
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Continuing the simplification process
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After finding the expected value over R, Jg with Equation 5.104, it is time to
find the expected value over A. Unfortunately, it cannot be found symbolically.

It must be determined numerically.

J_dg.ta i [alnp(R|A) 8lnp(R|A)]
£Y)

0A 0A;

ff/f p(R|A)dpdxdb;de; (5.105)
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Of course, the limits of integration need to be specified. Because the PDF’s
are known to be Gaussian, computational time can be reduced by limiting the
Gaussian in the (y/, 2) plane to £3.250 where o is the standard deviation in the
y' and 2’ directions. Of course, narrowing the limits of integration will affect
the accuracy of the answer, so caution must be exercised when applying this
timesaving technique. The author arrived at +3.25¢ with a little intuition and a

lot of trial-and-error. With limits of integration applied, the preceding expectation
looks like

¢‘b2 s
Jiata f f 6, ) f
¢ 9

where ¢!" is from Equation 4.50, ¢*? is from Equation 4.51, 62 is from Equation

962 s

p(x) / * p() TRy db,des (5.106)

u:-|=1
ol

4.58, and 072 is from Equation 4.59. It is difficult to see where the 3.25¢ is utilized.
In ¢ and @2, 3.250 is substituted for b. In 6% and 62, 3.250 is substituted for
both a and b. With these limits, the numerical integration gives the Fisher’s

Information for one element in the Fisher’s Information matrix.

5.3 Apriori Fisher’s Information

The Fisher’s Information Matrix for the a priori model can be extracted

from Equation 5.11

jori dlnp(A)dlnp(A)
FI.PTZDTE = .107
Iy - [ 0A; 0A; Ere
Remember the a priori PDF from Equation 4.76
h vy 2
2 h2 exp [_(h;:;]"pz)z - (cosqﬁi tazn:él+ ff) ]
y z
p(A) = 288K (5.108)

7 sin®#; cos? ¢; 2M 0,0y
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Take the natural logarithm of Equation 5.108
Inp(A)=jmr —In2+2Inh—2In7 —Ingy — Ino,
+ In(cos 2x) — 21In(sin6;) — 31In(cos ¢;)

h
hz tan qbz (zoff i tan @; cos ¢;

)2
5.109
QO'yf 20'y.~ ( )

With Inp(A) found, the partial derivative with respect to each element in state
vector A must be determined. Beginning with the partial derivative with respect

to qﬁia

OBOIR) oty — 0B htan g (2011 + g ) (5.110)
= I : — .
0o, Y cos? gﬁ,;crﬁ, tan 6; cos ¢;02
and then the partial derivative with respect to 6;.
31np(A) - 2 i h (zaff + tan 6; cos¢,) (5 111)
90; tané; sin® 6; cos ¢;02, ;

The partial derivatives with respect to the ellipticity and rotation angles x and 1

are

dlnp(A)

T —2tan 2y (5.112)

dlnp(A)
0y

Up to this point, all algebraic operations were accomplished symbolically. Unfor-

=0 (5.113)

tunately, the expectation over A cannot be found symbolically due to the required

integrations. Therefore, numerical techniques must be employed. The expected

value in Equation 5.107 is simply

B Olnp(A)dlnp(A)
dA; 0A,

f// alnp 61325 ) p(A)dypdxdide; (5.114)
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Again, the limits of integration need to be specified. Because the PDF’s are

Gaussian, valuable computer calculation time can be saved by narrowing the limits
of integration and splitting the PDF p(A)

0A

(5.115)
/Wf:bz (6i, ¢4) f4p(x)-

2 0 A)ol
[ o) BRI OB 1y g,
-z i 7

J_apm'ori = [61HP(A) 31Hp(A):|
v}

(5.116)

where ¢?' is from Equation 4.50, ¢?2 is from Equation 4.51, 6% is from Equation
4.58, and 0?2 is from Equation 4.59.

To arrive at total Fisher’s Information, add the Fisher’s Information of the

a priori data to the Fisher’s Information of the observations

N, W (5.117)

where Equation 5.106 and Equation 5.115 represent the elements in J p and Jp
respectively.

Equation 5.117 is the total Fisher’s Information at one point on the sphere

In order to make decisions concerning optimum element placement for array de-

sign, we will need to compute the total Fisher’s Information around the entire

surface of the sphere. We will gather this data in the Chapter 6






Chapter 6

Results

6.1 Computing Fisher’s Information

With the equations derived to compute Fisher’s Information for the con-
ducting sphere, the next step is to run the computer simulations and collect the
Fisher’s Information at selected intervals around the sphere.

Originally, the author assumed that the Fisher’s Information determined
with one monopole placed on the sphere would not be related to the case with two
monopoles placed on the sphere. As it turns out, finding the Fisher’s Information
of two elements at the same time is the same as finding the Fisher’s Information of
each element separately and adding their respective Fisher’s Information together.
As a result of this observation, the Fisher’s Information at every location on the
sphere can be calculated once and only once. When additional elements are added
to the array design, the Fisher’s Information at each monopole location will simply
be added together and inverted to find the variance.

The problem of finding Fisher’s Information for the spherical antenna ar-
ray requires the initial specification of several unknown quantities. The first of
these quantities is a set of noise variances. Recall the noise covariance matrix
from Equation 4.17. Because the multiplicative and additive noises are statisti-

cally independent, only the diagonals of the noise covariance matrix need to be
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defined. The off diagonal elements are set to zero. The first diagonal element
in that matrix, element (1,1), is defined as the variance of the real part of the
multiplicative noise n,. Recall it is designated o7. Element (2,2) is the variance of
the imaginary part of the multiplicative noise n;. It is denoted o3. Element (3,3)
is the variance of the real part of the additive noise w, and it is denoted by a§.
Lastly, element (4,4) is the variance of the imaginary part of the additive noise
wj. It is designated in similar fashion as 07. Because the noise variances will be
changed for different test cases, they will be defined in the next section.

In addition to the noise variances, several geometrical dimensions must be
specified. The first of these dimensions is the radius of the sphere. This dimension
is represented by the variable a from Figure 3.1. Because we wish to calculate
the field at the surface of the sphere, the radius a and the distance r are equal.
In the equations from chapter 2, both 8 and a and 3 and r appear together, one
multiplying the other. Known as the electrical length, 8r and Ba have units of
radians. If we arbitrarily assign 3 as 27 and r (and a since they are equal) as
some number over 27, then the 27’s will cancel and we're left with a quantity in
radians. It will be easier to speak in terms of the electrical length in the test cases
which follow.

In addition to defining parameters associated with the sphere, some param-
eters associated with the a priori beamspot require definition. These parameters,
02, 02, h, and z,gy, are unique because the units attached to them are insignifi-
cant. The ratios between them are important but the units are not. Therefore,
the units will be called units.

Because we have modeled the probability that an emitter is found at a
given point within the beamspot as a bivariate Gaussian distribution, defining

the beamspot requires both choosing the two variances of the bivariate and se-
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lecting some limits for numerical integration. In choosing the variances for the
bivariate, we would prefer them to be different. This will ensure that the bivari-
ate distribution is not symetrical (to lend more credibility to the problem, we will
avoid symmetry where it is easy to do so). Therefore, we choose o2 to have a vari-
ance of 1 unit and o2 to have a variance of 2 units. As a result, the beamspot will
have a bivariate distribution twice as wide in the z direction as in the z direction.

The expected value integral calculations derived in Chapter 5 will require
numerical methods. Because the bivariate Gaussian distribution can theoretically
extend forever in the all directions of the z — z plane, performing numerical inte-
gration over the area will be inefficient. We are forced to choose more pragmatic
integration limits than +oco. After some trial and error, these limits were set to
+3.250. Values higher than 4-3.250 gain too little in accuracy at the expense of
significantly extended integration time. 3.250 was used as integration limits for
both the z and z axis of the plane.

The last unknown quantities to furnish before we can solve for Fisher's
Information are the distances h and z,;;. Remember from Chapter 2 that A is
defined as the distance from the sensor to the beamspot plane as shown in Figure
2.1. zo55 is defined to be the offset distance from the sensor to the center of the
beamspot plane, also shown in Figure 2.1. Both A and Zoff Will remain the same

for all test cases. We define them here as 1 unit and —1 unit respectively.
6.2 Test Cases

The tables below show the input parameters for eight different test cases.
Only the noise variances and the radius of the sphere are included in the table.
All the other input parameters remained fixed to the values given above. Table

6.1 presents the variances as voltages. Table 6.2 presents the variances in dB.
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Test Case | fr(rad) | o7 (V?) | 03(V?) [ 02(V?) | 02(V?)
il 1.8 0.01 0.005 0.2 0.2
2 173 0.01 0.005 0.001 0.001
3 1.3 0.0001 | 0.0001 | 0.2 0.2
4 1.3 0.0001 | 0.0001 | 0.001 0.001
) 2.3 0.01 0.005 0.2 0.2
6 2.3 0.01 0.005 0.001 0.001
i 2.3 0.0001 | 0.0001 | 0.2 0.2
8 2.3 0.0001 | 0.0001 | 0.001 0.001

Table 6.1: Input Parameters for the 8 Test Cases

Note that the test cases in the tables above differ only slightly by their input
parameters. Each test case was designed to simulate a real world condition. For
instance, test case one was given both large multiplicative (columns one and two)
and additive (columns three and four) noises. In a real world situation, multi-
plicative noise could represent channel imbalance in the receiver while additive
noise might represent interferers such as thermal noise. Therefore, test case one
represents the real world situation of large channel imbalance and large thermal
noise.

In test case two the additive noise is much smaller. One could conclude
that this test case represents the situation of large channel imbalance and small
thermal noise. Continuing, test case three represents small channel imbalance and
large thermal noise while test case four represents small channel imbalance and
small thermal noise.

In the first four test cases, the electrical radius of the sphere was set to
1.3 radians. Starting in test case five, the electrical radius is changed to 2.3
radians while all the other parameters are identical to test case one. In test case

six, the radius is again 2.3 radians while the other parameters are copied from
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Test Case | fr(rad) | 0i(dB) | 03(dB) [ 0%(dB) [ 03(dB)
1 1.3 0.01 0.005 0.2 0.2
2 1.3 0.01 0.005 0.001 0.001
3 1.3 0.0001 | 0.0001 | 0.2 0.2
4 1.3 0.0001 | 0.0001 | 0.001 0.001
) 2.8 0.01 0.005 0.2 0.2
6 2.3 0.01 0.005 0.001 0.001
T 2.3 0.0001 | 0.0001 |o0.2 0.2
8 2.3 0.0001 | 0.0001 | 0.001 0.001

Table 6.2: Input Parameters for the 8 Test Cases

test case two. The remaining test cases (seven and eight) are the same as test
cases three and four with exception of the electrical radius. What is significant
about the change in electrical radius? The change in radius simulates a change
in the frequency of the incident radiation. A smaller radius represents a higher
incident wave frequency. Likewise a larger radius represents a lower incident wave
frequency.

Therefore, the eight test cases are designed to simulate two different frequen-
cies and two different amounts of multiplicative and additive noise. The Fisher’s
Information was calculated for each of the eight test cases at 20 degree increments
of ¢ and @ around the sphere. It is not presented here because it is merely an

intermediate result.

6.3 Designing an array

The author has shown previously how to derive and compute Fisher’s Infor-
mation. However, one question remains. How to apply Fisher’s Information to the
design of an antenna array? When designing an array using Fisher’s Information,

there are several strategies one might choose to follow. One could implement an



81

N dimensional search algorithm to find the N best locations to place N elements.
Alternately, one could use an iterative search where the first element in the array
is placed at a location found to have the most information. Each additional ele-
ment is placed at a location found to have the next best information. The process
repeats until all N elements are placed. For the case where N =1 (a one element

array), the two methods are identical so we will consider this case first.

6.3.1 The One Element Array

The Fisher’s Information calculated in the preceding section takes the form
of a 4 x 4 matrix sampled at 20° intervals of ¢ and @ around the perimeter of
the sphere. In the hypothetical case of a one element array design, the Fisher’s
Information Matrix at each location would be inverted. From these inverted ma-
trices, each element along the diagonal is a CRLB for a corresponding element in
the state vector A = [¢: 6 x v]. More specifically, element (1,1) in the inverted
Fisher’s Information Matrix is the CRLB for the DOA angle ¢;. Element (2,2)
is the CRLB for the DOA angle ¢;. Element (3, 3) is the CRLB for the ellipticity
angle x. And last, element (4,4) is the CRLB for the rotational angle 4. To state
again in a different way, the diagonals in the inverted Fisher’s Information Matrix
represent the lower bounds on the variance for each of the four parameters we

want to estimate - ¢;, 6;, x, and 1.

Matrix Element | parameter description
1141 CRLB on variance of ¢ | one of two DOA parameters
2.2 CRLB on variance of | the other DOA parameter
) CRLB on variance of x | polarization ellipticity angle
4,4 CRLB on variance of 1 | polarization rotation angle

Table 6.3: Identities of the Important CRLB Matrix Elements
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It is important to note that DOA estimates are formulated from two angles
- ¢ and 6. When determining where to place array elements to make better DOA
estimates, start with the locations where the CRLB’s for both angles (matrix
positions (1,1) and (2,2)) are smallest. This is logical because whenever the
CRLB is small, the Fisher’s Information is high. Because the goal is to maximize
information when selecting locations for array elements, any points where the
Fisher’s Information is high become good candidates for placing an array element.

It is also important to note that if the CRLB for one of the DOA angles
is small, this does not imply that the CRLB for the other angle will also be
small. Therefore, it is possible, but not necessarily desirable, to develop estimators
that are good at estimating one of the angles but poor at estimating the other.
Obviously, for direction finding arrays, the CRLB’s for both angles should be
small at any potential locations for elements. One way to help ensure that the
CRLB’s for both angles are low is too add them together at each point calculated
and then select the point with the smallest sum. A weighted sum could also be
used if one desired to lessen the effect of one of the angles. Of course, one can
always choose to ignore one of the angles. In this research, the sum of the angles

will be used most frequently.

6.3.2 N Element Arrays

While the case of a single element array is interesting, the definition of an
array implies more than one element. Therefore, we now consider arrays with N
elements. The two strategies mentioned previously will produce different results

with two or more elements. Let’s consider the N dimensional search first.
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6.3.2.1 N Dimensional Search

When N = 2, the N dimensional search requires that the Fisher’s Informa-
tion at the first sample point on the sphere be added to every point on the sphere,
including itself. This creates a new set of matrices. Fach of these matrices is
inverted. The sum of the CRLB of both DOA angles is stored temporarily. Then,
the Fisher’s Information at the second sample point is added to every point on the
sphere, including itself. This creates another new set of matrices which are also
inverted. The sum of the CRLB of both DOA angles is stored. In a continued
fashion, the Fisher’s Information for the next sample point is added to every point
and the resulting set of matrices are each inverted. This occurs for every sample
point. The two points with the lowest sum of CRLB for both DOA angles are the
two best locations to place the two elements.

This algorithm may be followed for 1 < N < oco. However, there is a
practical constraint. As N grows increasingly large, the N dimensional search

algorithm becomes more and more burdensome to calculate.

6.3.2.2 Iterative Search

The iterative search strategy alleviates much of the computational burden
of the N dimensional search. In the iterative search, the best location for each
element is found successively, one after another. The best location for the first
element is determined exactly as was done for the single element case in Section
6.3.1. The position for the first element is fixed and we will call it location one.
The Fisher’s Information associated with location one is then added to the Fisher’s
Information of all the other points including location one. This set of matrices is

inverted. The sum of the CRLB for the DOA angles is computed and the location
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with the smallest sum becomes the best location to place element two. Element
two is fixed at location two and the process repeats itself for all the remaining
elements.

While the iterative search dramatically reduces the computational burden
associated with finding optimum locations for all the elements in an array, the it-
erative search has one disadvantage. The algorithm itself is somewhat suboptimal.
The best location for each additional element added to an array design is the best
location for that element given the locations of the previously placed elements.
An ideal algorithm, such as the N dimensional search, allows all N elements to
be located freely about the sphere. Nonetheless, the iterative search algorithm is

used for this research because of its computational savings.
6.4 Results

Results are presented in the form of contour plots for each of the eight test
cases. These plots show either the CRLB of the angle ¢ versus the angles ¢ and
¢, the CRLB of the angle # versus ¢ and @, or the sum of CRLB of the angles
¢ and 6 versus ¢ and 6. The contour plots in some of test cases did not show
enough detail with 12 equal range contours. Therefore the logarithm of the data
was plotted instead of just the data. The result is that the data plotted becomes
negative instead of positive (as Fisher’s Information should be).

To help interpret the plots, relative locations on the sphere are shown on a
blank contour plot in Figure 6.4. By revisiting Figure 3.3 from Chapter 3, one can
casily see that the top of the sphere translates into coordinates (¢ = 180,60 = 90).
Likewise, the bottom of the sphere is represented by coordinates (¢ =0,6 =90),
the front is represented by 6 = 0, and so forth.

When looking at the plots for the eight test cases, the first thing to notice
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is that the locations of the minimums (the white areas in the figures) are not
necessarily intuitive. In fact, sometimes the minima locations are both intuitive
and predictable, at other times, they are not. For instance, from Figure 6.3, there
is one absolute minima at (¢ = 180°,6 = 135°). There are also two relative
minima, one near (¢ = 0°,6 = 75°), the other near (¢ = 180°,6 = 60°). If array
elements were placed at the minima locations, one could argue that the resulting
array design is both intuitive and predictable in the angle ¢, but not so intuitive
or predictable in the angle . One might also say that the absolute minima (the
location to place the first element in a design) is completely predictable. It lies
on the back side of the sphere such that if one draws a line from the center of
the beamspot through the center of the sphere and all the way out the back side
of the sphere, the point where the line exits the sphere is the absolute minima.
In this case, it seems logical that one could predict the location to place the first
element, but it does not seem so easy to pick the locations for a second, third, or
even fourth element.

Let us examine another example, that of test case four. From Figure 6.7, one
can see that there are as many as five locations to place array elements. Three
are relative minimas, while the other two are considered because they are in a
band that shows high Fisher’s Information (low CRLB) yet are separated from
the relative minima a good distance.

Note that the minimas in test case four are in quite different locations than
for the example of test case one. This can be attributed to the differences in the
noise variances for the two test cases. As can be witnessed from Table 6.1, test
case four has a lower noise variance than test case one.

If the sphere is bisected with a plane at ¢ = 180°, the two best locations

for placing elements are mirror images of each other. While these two locations,



180

165

150

135

120

105

90

75

el9y3

60

45

30

15

Figure 6.5: Test Case 4 - CRLB of ¢ in log radians? vs. position ¢ and 6

45 90 135 180 225 270 315 360
phi

CRLB

>-1.16

<=1,16

<=1.37

<-1.58

<=1.79

< -2.42

<-2.63

< -2.84

<-3.04

< =325

90



180+
165+

150 | &

135¢

120+

105¢

90

15:F

ZEE )

60
45 &
30¢

15k

0 45 90 135 180 225 270 315 360
phi

Figure 6.6: Test Case 4 - CRLB of # in log radians? vs. position ¢ and 6

91



92

180+
165} 8
150¢ CRLB
- >-1.13
135+
- <-1.13
1207+ - =131
105} B -
90+ - <-1.65
& 75 - <-1.82
o B -
T
o 60}
<-2.17
45+ <-2.34
30_ <=-2.51
<-2.69
154k
<-2.86
Ot ; .

0 | %8 80 135

Figure 6.7: Test Case 4 - Sum
position ¢ and €

T80 5.t | 270 215 360
phi

of the CRLB’s of ¢ and # in logradians® vs.



93

(¢ = 120°,6 = 110°) and (¢ = 240°,8 = 110°), are symetrical, it is unlikely that
one could have predicted the precise placement of those elements without Fisher’s
Information or more intensive trial and error.

In addition to the two above, there are three other promising locations to
place elements. One is at (¢ = 0°,0 = 80°). Two more could be placed at an
azimuth of ¢ = 180°, one with elevation # = 55° the other with elevation of
6 = 150°. While the latter two are not relative minima, they are enough removed
from the true minima to merit consideration.

The next test case we shall discuss is test case five. In this test case, the
radius of the metallic sphere has been increased to 2—7} The noise variances stay
the same as test case one.

In the contour plot of Figure 6.10, there are three minima. All are located
at ¢ = 0° or ¢ = 180°, one at (¢ = 180°,6 = 80°), one at (¢ = 0°,6 = 55°),
and one at (¢ = 0°,0 = 125°). This test case is significant not only because it
shows the drastic changes in the results due to a slight change in the radius of the
sphere, but it is significant for another reason as well. Making the radius of the
sphere larger will produce the same effect as making the wavelength of the incident
waveform shorter, all other things being equal. Because frequency is the inverse of
wavelength, a shorter wavelength incident wave is also a higher frequency incident
wave. Therefore, as we might have guessed, the Fisher’s Information about the
sphere will change with variations in the frequency of the incident waveform.

The remaining five test cases follow. For these test cases, only the sum of

the CRLB’s of the angles ¢ and # are shown.
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6.5 Designing a Three Element Array

Up to this point, the contour plots have shown the best location to place
only one element. But it takes more than one element to build an array. Using
the iterative search procedure, let us build a three element direction finding array
using the Fisher’s Information data from test case two. Figure 6.11 is reprinted
here as Figure 6.16 for ease of reference. The minima in this Figure is not precisely
clear.

By choosing the contours nonlinearly, Figure 6.17 shows more detail at the
expense of some added distortion. Since we are only interested in the minimums,
this distortion will not be cause for concern. The remaining contour plots is this
section will be plotted in this manner.

The minimum in Figure 6.17 is located at (¢ = 180°,0 = 140°). This
mimimum is the best location to place the first element in our three element
array.

Now we will find the best location to place element two by following the
iterative search procedure described in Section 6.3.2.2. First, we add the Fisher’s
Information Matrix from the element one location to the Fisher’s Information
Matrices at all the other locations around the sphere. Next, we invert the matrices
from step one. Last, we compute the sum of the CRLB of angles ¢ and 6 and plot
as in Figure 6.18. We can see that the best location to place a second element
moves 20° in angle § from element one to location (¢ = 180°, 6 = 120°).

If we continued in a similar manner, we would find that the best location
to place a third element in our array is the same location as element two. If we
placed a fourth element, we would find its best location would be very near the first

three elements. Logically, this is not what one would expect, and physically, it is
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impossible to place one element on top of another. What is wrong? The elements
keep going back to the same location because this location is super sensitive in
terms of direction finding information. In other words, even though there already
exists an element in this location, there is still more information to be gathered by
placing the next element at this location than at any other location on the sphere.
This behavior can best be explained by comparing the placement of additional
elements in the same location to that of the mathematical operation known as
integration.

By placing 10 elements at element location one (¢ = 180°,0 = 140°), we
can simulate this integration and find a genuinely new location to place a second
element. If we add ten times the Fisher’s Information Matrix from the element
one location to the Fisher’s Information Matrices at all the other locations around
the sphere, invert, and compute the sum of the CRLB of angles ¢ and 6, we find
that the best location to place the next element now moves significantly from
element one. Because of the symmetry of the sphere, there is now a choice of
two locations, each with identical CRLB’s. They are (¢ = 140°,0 = 100°) and
(¢ = 220°,0 = 100°). Let’s pick (¢ = 140°,6 = 100°) and continue.

Again, we will place 10 more elements at this second location, (b= 14078 =
100°), and repeat the procedure just used to find location two. As one might
expect, the best location for the third element turns out to be the unused location
from the element two search. The two minima for this search are located at
(¢ = 140°,60 = 100°) and (¢ = 220°,6 = 100°), same as the previous search. Since
we don’t want to place another element at (¢ = 140°,8 = 100°) we will choose
location (¢ = 220°, 6 = 100°).

As can be seen from the final element placement, it would have been dif-

ficult to find the optimum locations to place the three elements in this direction
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finding array with conventional array design methods. The positions of the el-
ements in the Fisher’s array, while symetric, are neither obvious or predictable.
Therefore, Fisher’s Information would seem to be a useful technique so far. But
an unpredictable design such as the one just created is worthless if it doesn’t work.
Let us compare the Fisher designed array to a conventionally designed array to
determine the Fisher technique’s worth.

The array we will compare with will, of course, contain three elements. One
element will be placed at (¢ = 180°, 8 = 100°), one element at (¢ = 60°, 6 = 100°),
and one element at (¢ = 300°,6 = 100°). The design goal of this particular array
Is to maintain maximal separation of three elements in the z — y plane. Maximal
separation along a plane or line is a logical element placement which one might
expect to find in a real world array. Therefore it makes since to compare our
Fisher array to a maximally separated array.

Because the sum of CRLB’s of the angles ¢ and 6 is the information metric
by which we want to compare arrays, we must calculate the sum of CRLB of the
maximal separation array before continuing. This is accomplished in a manner
similar to that in the Fisher’s array design. The Fisher’s Information array at
the location for element one (¢ = 180°,6 = 100°) is first multiplied by ten to
compensate for a similar multiplication in the Fisher’s design. It is then added
to the Fisher’s Information arrays at every other location around the sphere.
This creates a new set of Fisher’s Information arrays. The calculation of the
CRLB at this intermediate step is unnecessary. We do not need it to choose the
next element location. It was chosen prior to starting - (¢ = 60°,8 = 100°).
The Fisher’s Information at the second element location is in turn multiplied
by ten and then added to the Fisher’s Information arrays at every other location

around the sphere. This operation creates another new set of Fisher’s Information
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arrays. These arrays are all inverted and the sum of elements (1,1) and (2,2) is
performed. While we calculated the sum at each location around the entire sphere
and contour-plotted this data in the bottom half of Figure 6.21, we are only
interested in the sum at one point, that of location three (¢ = 300° ¢ = 100°).
Figure 6.21 compares the sum of the CRLB’s of ¢ and @ for the Fisher’s design
and the conventional design. |
The magnitude of the sum of the CRLB’s at the last element in the Fisher’s
design must be compared to the magnitude of the sum of the CRLB’s for the last
element in the conventional design. The last element in the Fisher's design was
placed at (¢ = 220°,8 = 100°), so the log of the CRLB is somewhere between
—4.2913 and —4.2914. The last element in the conventional array was predeter-
mined to be (¢ = 300°,6 = 100°). The log of the sum of the CRLB at this
location is near —4.1409. Therefore the sum of the CRLB for the Fisher array is
lower than the sum of the CRLB for the non-Fisher case. Because the Cramer-
Rao Bound is a lower bound, a lower sum is better and could potentially provide
more information for use in direction-finding. This lends credibility to the Fisher
design procedure because it shows that arrays designed with Fisher’s Information

can potentially yield better angle-of-arrival estimates.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The plots from Chapter 6 illustrate some very important results. First,
the locations of the sensors for arrays designed with Fisher’s information are not
always obvious or predictable. This indicates that previous methods of array
design may not lead to arrays which are optimum for direction finding. Arrays
designed with Fisher’s information are potentially better in a direction finding
sense. However, more work will be needed to quantify just how close these Fisher’s
arrays will approach an optimum condition.

The second conclusion we can infer from the results is that additive and
multiplicative noise have different effects on DOA accuracy. This shows that
modeling all channel inaccuracies as additive does not accurately represent some
conditions such as imbalance. Therefore, a multiplicative noise model should be
considered for inclusion in DOA estimation problems.

The third conclusion we can draw from this work is that we can use Fisher’s
Information to design arrays which complement our a priori knowledge of the
direction finding problem. Stated another way, we can determine array designs
that will maximize information about targets in the directions we know them to

be a priori.
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The last conclusion that can be made from this work is that Fisher’s Infor-
mation can be used as a metric for comparing different array designs. Because it
can be calculated for all arrays (although maybe not so easily) and eliminates any
dependencies on estimators, Fisher’s Information allows us to compare one array
to another without regard to the DOA processor. Thus, Fisher’s Information gives

us a design criteria which can be applied to direction finding arrays.
7.2 Future Work

The use of Fisher’s Information in antenna array design is a promising tech-
nique. However, additional studies should be undertaken in order to fully charac-
terize the value of this technique. Future work should address three items. First,
future work should quantatively check the tightness of the Cramer-Rao Bound.
By conducting a Monte-Carlo analysis whereby a number of different random ar-
rays are connected to a MAP estimator, the performance of each of these arrays
can be compared with the performance of the Fisher’s array. If none of the ran-
dom arrays perform better than the Fisher’s array, the Cramer Rao Bound is a
tight bound, and the Fisher’s Information technique produces superior direction
finding arrays. If even one of the random arrays performs better than the Fisher’s
array, the Cramer Rao Bound is not a tight bound, and Fisher’s Information pro-
duces inferior direction finding arrays. The question then becomes how inferior
and additional investigation would be required.

The second item of future work involves the amplitude and phase of the
incident wave. In this study, the amplitude and phase of the incident wave were
considered known quantities. The primary reason for this was the resulting sim-
plification in the mathematics. If the amplitude and phase of the incident wave

were considered unknown, then they would have had to be included in the list
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of parameters to estimate. Instead of estimating four parameters (¢, 6;, x, 1),
the problem would have required estimation of six parameters (the original four
plus amplitude and phase). This would have grown the Fisher’s Information ma-
trix from a four-by-four to a six-by-six and would have lengthened computation
time considerably. Nonetheless, by fixing amplitude and phase, it is possible that
some important information about direction of arrival is lost. Therefore, it is
recommended that this experiment be performed in a future study.

The last item of study which should be undertaken is to repeat all the work
in this paper using different conformal structures for the array. Simple structures
such as a cylinder should be attempted first, graduating to more complex confor-
mal shapes such as nose cones and aircraft wings. It is these more practical shapes
which are of greater interest to the defense and aerospace industries. While more
complex conformal arrays will likely require complete numerical solutions, the ap-
plication of Fisher’s Information to complex conformal array design will test the

true merit of the technique.
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